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Chapter 5

Implementation Guidelines 5

It is possible to implement a substantial subset of the Unicode Standard as “wide ASCII”
with little change to existing programming practice. However, the Unicode Standard also
provides for languages and writing systems that have more complex behavior than English
does. Whether one is implementing a new operating system from the ground up or
enhancing existing programming environments or applications, it is necessary to examine
many aspects of current programming practice and conventions to deal with this more
complex behavior.

This chapter covers a series of short, self-contained topics that are useful for implementers.
The information and examples presented here are meant to help implementers understand
and apply the design and features of the Unicode Standard. That is, they are meant to pro-
mote good practice in implementations conforming to the Unicode Standard.

These recommended guidelines are not normative and are not binding on the imple-
menter, but are intended to represent best practice. When implementing the Unicode
Standard, it is important to look not only at the letter of the conformance rules, but also at
their spirit. Many of the following guidelines have been created specifically to assist people
who run into issues with conformant implementations, while reflecting the requirements
of actual usage.
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5.1  Data Structures for Character Conversion
The Unicode Standard exists in a world of other text and character encoding standards—
some private, some national, some international. A major strength of the Unicode Stan-
dard is the number of other important standards that it incorporates. In many cases, the
Unicode Standard included duplicate characters to guarantee round-trip transcoding to
established and widely used standards.

Issues
Conversion of characters between standards is not always a straightforward proposition.
Many characters have mixed semantics in one standard and may correspond to more than
one character in another. Sometimes standards give duplicate encodings for the same char-
acter; at other times the interpretation of a whole set of characters may depend on the appli-
cation. Finally, there are subtle differences in what a standard may consider a character.

For these reasons, mapping tables are usually required to map between the Unicode Stan-
dard and another standard. Mapping tables need to be used consistently for text data
exchange to avoid modification and loss of text data. For details, see Unicode Technical
Standard #22, “Character Mapping Markup Language (CharMapML).” By contrast, con-
versions between different Unicode encoding forms are fast, lossless permutations.

There are important security issues associated with encoding conversion. For more infor-
mation, see Unicode Technical Report #36, “Unicode Security Considerations.”

The Unicode Standard can be used as a pivot to transcode among n different standards.
This process, which is sometimes called triangulation, reduces the number of mapping
tables that an implementation needs from O(n2) to O(n).

Multistage Tables
Tables require space. Even small character sets often map to characters from several differ-
ent blocks in the Unicode Standard and thus may contain up to 64K entries (for the BMP)
or 1,088K entries (for the entire codespace) in at least one direction. Several techniques
exist to reduce the memory space requirements for mapping tables. These techniques apply
not only to transcoding tables, but also to many other tables needed to implement the Uni-
code Standard, including character property data, case mapping, collation tables, and
glyph selection tables.

Flat Tables. If diskspace is not at issue, virtual memory architectures yield acceptable
working set sizes even for flat tables because the frequency of usage among characters dif-
fers widely. Even small character sets contain many infrequently used characters. In addi-
tion, data intended to be mapped into a given character set generally does not contain
characters from all blocks of the Unicode Standard (usually, only a few blocks at a time
need to be transcoded to a given character set). This situation leaves certain sections of the
mapping tables unused—and therefore paged to disk. The effect is most pronounced for
large tables mapping from the Unicode Standard to other character sets, which have large
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sections simply containing mappings to the default character, or the “unmappable charac-
ter” entry.

Ranges. It may be tempting to “optimize” these tables for space by providing elaborate pro-
visions for nested ranges or similar devices. This practice leads to unnecessary perfor-
mance costs on modern, highly pipelined processor architectures because of branch
penalties. A faster solution is to use an optimized two-stage table, which can be coded with-
out any test or branch instructions. Hash tables can also be used for space optimization,
although they are not as fast as multistage tables.

Two-Stage Tables. Two-stage tables are a commonly employed mechanism to reduce table
size (see Figure 5-1). They use an array of pointers and a default value. If a pointer is NULL,
the value returned by a lookup operation in the table is the default value. Otherwise, the
pointer references a block of values used for the second stage of the lookup. For BMP char-
acters, it is quite efficient to organize such two-stage tables in terms of high byte and low
byte values. The first stage is an array of 256 pointers, and each of the secondary blocks
contains 256 values indexed by the low byte in the code point. For supplementary charac-
ters, it is often advisable to structure the pointers and second-stage arrays somewhat differ-
ently, so as to take best advantage of the very sparse distribution of supplementary
characters in the remaining codespace.

Optimized Two-Stage Table. Wherever any blocks are identical, the pointers just point to
the same block. For transcoding tables, this case occurs generally for a block containing
only mappings to the default or “unmappable” character. Instead of using NULL pointers
and a default value, one “shared” block of default entries is created. This block is pointed to

Figure 5-1.  Two-Stage Tables
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by all first-stage table entries, for which no character value can be mapped. By avoiding
tests and branches, this strategy provides access time that approaches the simple array
access, but at a great savings in storage. 

Multistage Table Tuning. Given a table of arbitrary size and content, it is a relatively simple
matter to write a small utility that can calculate the optimal number of stages and their
width for a multistage table. Tuning the number of stages and the width of their arrays of
index pointers can result in various trade-offs of table size versus average access time.



Implementation Guidelines 199 5.2 Programming Languages and Data Types 
5.2  Programming Languages and Data Types
Programming languages provide for the representation and handling of characters and
strings via data types, data constants (literals), and methods. Explicit support for Unicode
helps with the development of multilingual applications. In some programming languages,
strings are expressed as sequences (arrays) of primitive types, exactly corresponding to
sequences of code units of one of the Unicode encoding forms. In other languages, strings
are objects, but indexing into strings follows the semantics of addressing code units of a
particular encoding form.

Data types for “characters” generally hold just a single Unicode code point value for low-
level processing and lookup of character property values. When a primitive data type is
used for single-code point values, a signed integer type can be useful; negative values can
hold “sentinel” values like end-of-string or end-of-file, which can be easily distinguished
from Unicode code point values. However, in most APIs, string types should be used to
accommodate user-perceived characters, which may require sequences of code points.

Unicode Data Types for C
ISO/IEC Technical Report 19769, Extensions for the programming language C to support
new character types, defines data types for the three Unicode encoding forms (UTF-8,
UTF-16, and UTF-32), syntax for Unicode string and character literals, and methods for
the conversion between the Unicode encoding forms. No other methods are specified.

Unicode strings are encoded as arrays of primitive types as usual. For UTF-8, UTF-16, and
UTF-32, the basic types are char, char16_t, and char32_t, respectively. The ISO Tech-
nical Report assumes that char is at least 8 bits wide for use with UTF-8. While char and
wchar_t may be signed or unsigned types, the new char16_t and char32_t types are
defined to be unsigned integer types.

Unlike the specification in the wchar_t programming model, the Unicode data types do
not require that a single string base unit alone (especially char or char16_t) must be able
to store any one character (code point).

UTF-16 string and character literals are written with a lowercase u as a prefix, similar to the
L prefix for wchar_t literals. UTF-32 literals are written with an uppercase U as a prefix.
Characters outside the basic character set are available for use in string literals through the
\uhhhh and \Uhhhhhhhh escape sequences.

These types and semantics are available in a compiler if the <uchar.h> header is present
and defines the __STDC_UTF_16__ (for char16_t) and __STDC_UTF_32__ (for
char32_t) macros.

Because Technical Report 19769 was not available when UTF-16 was first introduced,
many implementations have been supporting a 16-bit wchar_t to contain UTF-16 code
units. Such usage is not conformant to the C standard, because supplementary characters
require use of pairs of wchar_t units in this case.
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ANSI/ISO C wchar_t. With the wchar_t wide character type, ANSI/ISO C provides for
inclusion of fixed-width, wide characters. ANSI/ISO C leaves the semantics of the wide
character set to the specific implementation but requires that the characters from the por-
table C execution set correspond to their wide character equivalents by zero extension. The
Unicode characters in the ASCII range U+0020 to U+007E satisfy these conditions. Thus,
if an implementation uses ASCII to code the portable C execution set, the use of the Uni-
code character set for the wchar_t type, in either UTF-16 or UTF-32 form, fulfills the
requirement. 

The width of wchar_t is compiler-specific and can be as small as 8 bits. Consequently,
programs that need to be portable across any C or C++ compiler should not use wchar_t
for storing Unicode text. The wchar_t type is intended for storing compiler-defined wide
characters, which may be Unicode characters in some compilers. However, programmers
who want a UTF-16 implementation can use a macro or typedef (for example, UNICHAR)
that can be compiled as unsigned short or wchar_t depending on the target compiler
and platform. Other programmers who want a UTF-32 implementation can use a macro or
typedef that might be compiled as unsigned int or wchar_t, depending on the target
compiler and platform. This choice enables correct compilation on different platforms and
compilers. Where a 16-bit implementation of wchar_t is guaranteed, such macros or
typedefs may be predefined (for example, TCHAR on the Win32 API).

On systems where the native character type or wchar_t is implemented as a 32-bit quan-
tity, an implementation may use the UTF-32 form to represent Unicode characters.

A limitation of the ISO/ANSI C model is its assumption that characters can always be pro-
cessed in isolation. Implementations that choose to go beyond the ISO/ANSI C model may
find it useful to mix widths within their APIs. For example, an implementation may have a
32-bit wchar_t and process strings in any of the UTF-8, UTF-16, or UTF-32 forms.
Another implementation may have a 16-bit wchar_t and process strings as UTF-8 or
UTF-16, but have additional APIs that process individual characters as UTF-32 or deal
with pairs of UTF-16 code units.
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5.3  Unknown and Missing Characters
This section briefly discusses how users or implementers might deal with characters that
are not supported or that, although supported, are unavailable for legible rendering. 

Reserved and Private-Use Character Codes. There are two classes of code points that
even a “complete” implementation of the Unicode Standard cannot necessarily interpret
correctly: 

• Code points that are reserved

• Code points in the Private Use Area for which no private agreement exists

An implementation should not attempt to interpret such code points. However, in practice,
applications must deal with unassigned code points or private-use characters. This may
occur, for example, when the application is handling text that originated on a system
implementing a later release of the Unicode Standard, with additional assigned characters. 

Options for rendering such unknown code points include printing the code point as four
to six hexadecimal digits, printing a black or white box, or another substitute glyph, such as
that commonly shown for U+FFFD. For certain code points, it is common to display noth-
ing; see “Default Ignorable Code Points” later in this section for details. An implementa-
tion should not blindly delete such characters, nor should it unintentionally transform
them into something else.

Interpretable but Unrenderable Characters. An implementation may receive a code point
that is assigned to a character in the Unicode character encoding, but be unable to render
it because it lacks a font for the code point or is otherwise incapable of rendering it appro-
priately.

In this case, an implementation might be able to provide limited feedback to the user’s que-
ries, such as being able to sort the data properly, show its script, or otherwise display the
code point in a default manner. An implementation can distinguish between unrenderable
(but assigned) code points and unassigned code points by printing the former with distinc-
tive glyphs that give some general indication of their type, such as A, B, C, D, E, F ,  G,
H, J, R, S, and so on.

Default Ignorable Code Points. Normally, characters outside the repertoire of supported
characters for an implementation would be graphical characters displayed with a fallback
glyph, such as a black box. However, certain special-use characters, such as format controls
or variation selectors, do not have visible glyphs of their own, although they may have an
effect on the display of other characters. When such a special-use character is not sup-
ported by an implementation, it should not be displayed with a visible fallback glyph, but
instead simply not be rendered at all. The list of such characters which should not be ren-
dered with a fallback glyph is defined by the Default_Ignorable_Code_Point property in
the Unicode Character Database. For more information, see Section 5.21, Ignoring Charac-
ters in Processing.
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Interacting with Downlevel Systems. Versions of the Unicode Standard after Unicode 2.0
are strict supersets of Unicode 2.0 and all intervening versions. The Derived Age property
tracks the version of the standard at which a particular character was added to the stan-
dard. This information can be particularly helpful in some interactions with downlevel sys-
tems. If the protocol used for communication between the systems provides for an
announcement of the Unicode version on each one, an uplevel system can predict which
recently added characters will appear as unassigned characters to the downlevel system.
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5.4  Handling Surrogate Pairs in UTF-16
The method used by UTF-16 to address the 1,048,576 supplementary code points that can-
not be represented by a single 16-bit value is called surrogate pairs. A surrogate pair con-
sists of a high-surrogate code unit (leading surrogate) followed by a low-surrogate code
unit (trailing surrogate), as described in the specifications in Section 3.8, Surrogates, and
the UTF-16 portion of Section 3.9, Unicode Encoding Forms. 

In well-formed UTF-16, a trailing surrogate can be preceded only by a leading surrogate
and not by another trailing surrogate, a non-surrogate, or the start of text. A leading surro-
gate can be followed only by a trailing surrogate and not by another leading surrogate, a
non-surrogate, or the end of text. Maintaining the well-formedness of a UTF-16 code
sequence or accessing characters within a UTF-16 code sequence therefore puts additional
requirements on some text processes. Surrogate pairs are designed to minimize this
impact.

Leading surrogates and trailing surrogates are assigned to disjoint ranges of code units. In
UTF-16, non-surrogate code points can never be represented with code unit values in
those ranges. Because the ranges are disjoint, each code unit in well-formed UTF-16 must
meet one of only three possible conditions:

• A single non-surrogate code unit, representing a code point between 0 and
D7FF16 or between E00016 and FFFF16

• A leading surrogate, representing the first part of a surrogate pair

• A trailing surrogate, representing the second part of a surrogate pair

By accessing at most two code units, a process using the UTF-16 encoding form can there-
fore interpret any Unicode character. Determining character boundaries requires at most
scanning one preceding or one following code unit without regard to any other context. 

As long as an implementation does not remove either of a pair of surrogate code units or
incorrectly insert another character between them, the integrity of the data is maintained.
Moreover, even if the data becomes corrupted, the corruption remains localized, unlike
with some other multibyte encodings such as Shift-JIS or EUC. Corrupting a single UTF-
16 code unit affects only a single character. Because of non-overlap (see Section 2.5, Encod-
ing Forms), this kind of error does not propagate throughout the rest of the text.

UTF-16 enjoys a beneficial frequency distribution in that, for the majority of all text data,
surrogate pairs will be very rare; non-surrogate code points, by contrast, will be very com-
mon. Not only does this help to limit the performance penalty incurred when handling a
variable-width encoding, but it also allows many processes either to take no specific action
for surrogates or to handle surrogate pairs with existing mechanisms that are already
needed to handle character sequences.

Implementations should fully support surrogate pairs in processing UTF-16 text. Without
surrogate support, an implementation would not interpret any supplementary characters
or guarantee the integrity of surrogate pairs. This might apply, for example, to an older
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implementation, conformant to Unicode Version 1.1 or earlier, before UTF-16 was
defined. Support for supplementary characters is important because a significant number
of them are relevant for modern use, despite their low frequency.

The individual components of implementations may have different levels of support for
surrogates, as long as those components are assembled and communicate correctly. Low-
level string processing, where a Unicode string is not interpreted but is handled simply as
an array of code units, may ignore surrogate pairs. With such strings, for example, a trun-
cation operation with an arbitrary offset might break a surrogate pair. (For further discus-
sion, see Section 2.7, Unicode Strings.) For performance in string operations, such behavior
is reasonable at a low level, but it requires higher-level processes to ensure that offsets are
on character boundaries so as to guarantee the integrity of surrogate pairs.

Strategies for Surrogate Pair Support. Many implementations that handle advanced fea-
tures of the Unicode Standard can easily be modified to support surrogate pairs in UTF-16.
For example:

• Text collation can be handled by treating those surrogate pairs as “grouped
characters,” such as is done for “ij” in Dutch or “ch” in Slovak. 

• Text entry can be handled by having a keyboard generate two Unicode code
points with a single keypress, much as an ENTER key can generate CRLF or an
Arabic keyboard can have a “lam-alef ”  key that generates a sequence of two
characters, lam and alef.

• Truncation can be handled with the same mechanism as used to keep combin-
ing marks with base characters. For more information, see Unicode Standard
Annex #29, “Unicode Text Segmentation.”

Users are prevented from damaging the text if a text editor keeps insertion points (also
known as carets) on character boundaries. 

Implementations using UTF-8 and Unicode 8-bit strings necessitate similar consider-
ations. The main difference from handling UTF-16 is that in the UTF-8 case the only char-
acters that are represented with single code units (single bytes) in UTF-8 are the ASCII
characters, U+0000..U+007F. Characters represented with multibyte sequences are very
common in UTF-8, unlike surrogate pairs in UTF-16, which are rather uncommon. This
difference in frequency may result in different strategies for handling the multibyte
sequences in UTF-8.
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5.5  Handling Numbers
There are many sets of characters that represent decimal digits in different scripts. Systems
that interpret those characters numerically should provide the correct numerical values.
For example, the sequence <U+0968 devanagari digit two, U+0966 devanagari digit

zero> when numerically interpreted has the value twenty.

When converting binary numerical values to a visual form, digits can be chosen from dif-
ferent scripts. For example, the value twenty can be represented either by <U+0032 digit

two, U+0030 digit zero> or by <U+0968 devanagari digit two, U+0966 devanagari

digit zero> or by <U+0662 arabic-indic digit two, U+0660 arabic-indic digit

zero>. It is recommended that systems allow users to choose the format of the resulting
digits by replacing the appropriate occurrence of U+0030 digit zero with U+0660 ara-

bic-indic digit zero, and so on. (See Chapter 4, Character Properties, for the information
needed to implement formatting and scanning numerical values.)

Fullwidth variants of the ASCII digits are simply compatibility variants of regular digits
and should be treated as regular Western digits.

The Roman numerals, Greek acrophonic numerals, and East Asian ideographic numerals
are decimal numeral writing systems, but they are not formally decimal radix digit systems.
That is, it is not possible to do a one-to-one transcoding to forms such as 123456.789. Such
systems are appropriate only for positive integer writing. 

It is also possible to write numbers in two ways with CJK ideographic digits. For example,
Figure 22-6 shows how the number 1,234 can be written. Supporting these ideographic dig-
its for numerical parsing means that implementations must be smart about distinguishing
between the two cases.

Digits often occur in situations where they need to be parsed, but are not part of numbers.
One such example is alphanumeric identifiers (see Unicode Standard Annex #31, “Unicode
Identifier and Pattern Syntax”). 

Only in higher-level protocols, such as when implementing a full mathematical formula
parser, do considerations such as superscripting and subscripting of digits become crucial
for numerical interpretation.

See Section 22.3, Numerals, for a more extended discussion of the various types of numerals
encoded in the Unicode Standard and their implications for implementations.
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5.6  Normalization
Alternative Spellings. The Unicode Standard contains explicit codes for the most fre-
quently used accented characters. These characters can also be composed; in the case of
accented letters, characters can be composed from a base character and nonspacing
mark(s).

The Unicode Standard provides decompositions for characters that can be composed
using a base character plus one or more nonspacing marks. The decomposition mappings
are specific to a particular version of the Unicode Standard. Further decomposition map-
pings may be added to the standard for new characters encoded in the future; however, no
existing decomposition mapping for a currently encoded character will ever be removed or
changed, nor will a decomposition mapping be added for a currently encoded character.
These constraints on changes for decomposition are enforced by the Normalization Stabil-
ity Policy. See the subsection “Policies” in Section B.3, Other Unicode Online Resources.

Normalization. Systems may normalize Unicode-encoded text to one particular sequence,
such as normalizing composite character sequences into precomposed characters, or vice
versa (see Figure 5-2).

Compared to the number of possible combinations, only a relatively small number of pre-
composed base character plus nonspacing marks have independent Unicode character val-
ues.

Systems that cannot handle nonspacing marks can normalize to precomposed characters;
this option can accommodate most modern Latin-based languages. Such systems can use
fallback rendering techniques to at least visually indicate combinations that they cannot
handle (see the “Fallback Rendering” subsection of Section 5.13, Rendering Nonspacing
Marks).

In systems that can handle nonspacing marks, it may be useful to normalize so as to elimi-
nate precomposed characters. This approach allows such systems to have a homogeneous
representation of composed characters and maintain a consistent treatment of such char-

Figure 5-2.  Normalization
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acters. However, in most cases, it does not require too much extra work to support mixed
forms, which is the simpler route.

The Unicode Normalization Forms are defined in Section 3.11, Normalization Forms. For
further information about implementation of normalization, see also Unicode Standard
Annex #15, “Unicode Normalization Forms.” For a general discussion of issues related to
normalization, see “Equivalent Sequences” in Section 2.2, Unicode Design Principles; and
Section 2.11, Combining Characters.
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5.7  Compression
Using the Unicode character encoding may increase the amount of storage or memory
space dedicated to the text portion of files. Compressing Unicode-encoded files or strings
can therefore be an attractive option if the text portion is a large part of the volume of data
compared to binary and numeric data, and if the processing overhead of the compression
and decompression is acceptable.

Compression always constitutes a higher-level protocol and makes interchange dependent
on knowledge of the compression method employed. For a detailed discussion of compres-
sion and a standard compression scheme for Unicode, see Unicode Technical Standard #6,
“A Standard Compression Scheme for Unicode.”

Encoding forms defined in Section 2.5, Encoding Forms, have different storage characteris-
tics. For example, as long as text contains only characters from the Basic Latin (ASCII)
block, it occupies the same amount of space whether it is encoded with the UTF-8 or ASCII
codes. Conversely, text consisting of CJK ideographs encoded with UTF-8 will require
more space than equivalent text encoded with UTF-16.

For processing rather than storage, the Unicode encoding form is usually selected for easy
interoperability with existing APIs. Where there is a choice, the trade-off between decoding
complexity (high for UTF-8, low for UTF-16, trivial for UTF-32) and memory and cache
bandwidth (high for UTF-32, low for UTF-8 or UTF-16) should be considered.
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5.8  Newline Guidelines
Newlines are represented on different platforms by carriage return (CR), line feed (LF),
CRLF, or next line (NEL). Not only are newlines represented by different characters on dif-
ferent platforms, but they also have ambiguous behavior even on the same platform. These
characters are often transcoded directly into the corresponding Unicode code points when
a character set is transcoded; this means that even programs handling pure Unicode have
to deal with the problems. Especially with the advent of the Web, where text on a single
machine can arise from many sources, this causes a significant problem.

Newline characters are used to explicitly indicate line boundaries. For more information,
see Unicode Standard Annex #14, “Unicode Line Breaking Algorithm.” Newlines are also
handled specially in the context of regular expressions. For information, see Unicode Tech-
nical Standard #18, “Unicode Regular Expressions.” For the use of these characters in
markup languages, see the W3C specification, “Unicode in XML and Other Markup Lan-
guages.”

Definitions
Table 5-1 provides hexadecimal values for the acronyms used in these guidelines. The acro-
nyms shown in Table 5-1 correspond to characters or sequences of characters. The name
column shows the usual names used to refer to the characters in question, whereas the
other columns show the Unicode, ASCII, and EBCDIC encoded values for the characters.

Encoding. Except for LS and PS, the newline characters discussed here are encoded as con-
trol codes. Many control codes were originally designed for device control but, together
with TAB, the newline characters are commonly used as part of plain text. For more infor-
mation on how Unicode encodes control codes, see Section 23.1, Control Codes.

Table 5-1.  Hex Values for Acronyms
Acronym Name Unicode ASCII EBCDIC

Default z/OS
CR carriage return 000D 0D 0D 0D
LF line feed 000A 0A 25 15

CRLF carriage return and 
line feed <000D 000A> <0D 0A> <0D 25> <0D 15>

NEL next line 0085 85 15 25
VT vertical tab 000B 0B 0B 0B
FF form feed 000C 0C 0C 0C
LS line separator 2028 n/a n/a n/a
PS paragraph separator 2029 n/a n/a n/a
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Notation. This discussion of newline guidelines uses lowercase when referring to functions
having to do with line determination, but uses the acronyms when referring to the actual
characters involved. Keys on keyboards are indicated in all caps. For example:

The line separator may be expressed by LS in Unicode text or CR on
some platforms. It may be entered into text with the SHIFT-RETURN
key.

EBCDIC. Table 5-1 shows the two mappings of LF and NEL used by EBCDIC systems.
The first EBCDIC column shows the default control code mapping of these characters,
which is used in most EBCDIC environments. The second column shows the z/OS Unix
System Services mapping of LF and NEL. That mapping arises from the use of the LF char-
acter for the newline function in C programs and in Unix environments, while text files on
z/OS traditionally use NEL for the newline function.

NEL (next line) is not actually defined in 7-bit ASCII. It is defined in the ISO control func-
tion standard, ISO 6429, as a C1 control function. However, the 0x85 mapping shown in
the ASCII column in Table 5-1 is the usual way that this C1 control function is mapped in
ASCII-based character encodings.

Newline Function. The acronym NLF (newline function) stands for the generic control
function for indication of a new line break. It may be represented by different characters,
depending on the platform, as shown in Table 5-2.

Line Separator and Paragraph Separator
A paragraph separator—independent of how it is encoded—is used to indicate a separation
between paragraphs. A line separator indicates where a line break alone should occur, typ-
ically within a paragraph. For example:

This is a paragraph with a line separator at this point,
causing the word “causing” to appear on a different line, but not causing
the typical paragraph indentation, sentence breaking, line spacing, or
change in flush (right, center, or left paragraphs).

For comparison, line separators basically correspond to HTML <BR>, and paragraph sep-
arators to older usage of HTML <P> (modern HTML delimits paragraphs by enclosing
them in <P>...</P>). In word processors, paragraph separators are usually entered using a
keyboard RETURN or ENTER; line separators are usually entered using a modified
RETURN or ENTER, such as SHIFT-ENTER.

Table 5-2.  NLF Platform Correlations
Platform NLF Value
MacOS 9.x and earlier CR
MacOS X LF
Unix LF
Windows CRLF
EBCDIC-based OS NEL
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A record separator is used to separate records. For example, when exchanging tabular data,
a common format is to tab-separate the cells and use a CRLF at the end of a line of cells.
This function is not precisely the same as line separation, but the same characters are often
used.

Traditionally, NLF started out as a line separator (and sometimes record separator). It is
still used as a line separator in simple text editors such as program editors. As platforms
and programs started to handle word processing with automatic line-wrap, these charac-
ters were reinterpreted to stand for paragraph separators. For example, even such simple
programs as the Windows Notepad program and the Mac SimpleText program interpret
their platform’s NLF as a paragraph separator, not a line separator.

Once NLF was reinterpreted to stand for a paragraph separator, in some cases another
control character was pressed into service as a line separator. For example, vertical tabula-
tion VT is used in Microsoft Word. However, the choice of character for line separator is
even less standardized than the choice of character for NLF.

Many Internet protocols and a lot of existing text treat NLF as a line separator, so an imple-
menter cannot simply treat NLF as a paragraph separator in all circumstances.

Recommendations
The Unicode Standard defines two unambiguous separator characters: U+2029 para-

graph separator (PS) and U+2028 line separator (LS). In Unicode text, the PS and LS
characters should be used wherever the desired function is unambiguous. Otherwise, the
following recommendations specify how to cope with an NLF when converting from other
character sets to Unicode, when interpreting characters in text, and when converting from
Unicode to other character sets.

Note that even if an implementer knows which characters represent NLF on a particular
platform, CR, LF, CRLF, and NEL should be treated the same on input and in interpreta-
tion. Only on output is it necessary to distinguish between them.

Converting from Other Character Code Sets

R1 If the exact usage of any NLF is known, convert it to LS or PS.

R1a If the exact usage of any NLF is unknown, remap it to the platform NLF. 

Recommendation R1a does not really help in interpreting Unicode text unless the imple-
menter is the only source of that text, because another implementer may have left in LF,
CR, CRLF, or NEL.

Interpreting Characters in Text

R2 Always interpret PS as paragraph separator and LS as line separator.

R2a In word processing, interpret any NLF the same as PS.

R2b In simple text editors, interpret any NLF the same as LS.
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In line breaking, both PS and LS terminate a line; therefore, the Unicode Line Breaking
Algorithm in Unicode Standard Annex #14, “Unicode Line Breaking Algorithm,” is defined
such that any NLF causes a line break.

R2c In parsing, choose the safest interpretation.

For example, in recommendation R2c an implementer dealing with sentence break heuris-
tics would reason in the following way that it is safer to interpret any NLF as LS:

• Suppose an NLF were interpreted as LS, when it was meant to be PS. Because
most paragraphs are terminated with punctuation anyway, this would cause
misidentification of sentence boundaries in only a few cases.

• Suppose an NLF were interpreted as PS, when it was meant to be LS. In this
case, line breaks would cause sentence breaks, which would result in significant
problems with the sentence break heuristics.

Converting to Other Character Code Sets

R3 If the intended target is known, map NLF, LS, and PS depending on the target con-
ventions. 

For example, when mapping to Microsoft Word’s internal conventions for documents, LS
would be mapped to VT, and PS and any NLF would be mapped to CRLF.

R3a If the intended target is unknown, map NLF, LS, and PS to the platform newline
convention (CR, LF, CRLF, or NEL). 

In Java, for example, this is done by mapping to a string nlf, defined as follows:
String nlf = System.getProperty("line.separator");

Input and Output

R4 A readline function should stop at NLF, LS, FF, or PS. In the typical implemen-
tation, it does not include the NLF, LS, PS, or FF that caused it to stop. 

Because the separator is lost, the use of such a readline function is limited to text pro-
cessing, where there is no difference among the types of separators.

R4a A writeline (or newline) function should convert NLF, LS, and PS according
to the recommendations R3 and R3a.

In C, gets is defined to terminate at a newline and replaces the newline with '\0', while
fgets is defined to terminate at a newline and includes the newline in the array into which
it copies the data. C implementations interpret '\n' either as LF or as the underlying plat-
form newline NLF, depending on where it occurs. EBCDIC C compilers substitute the rel-
evant codes, based on the EBCDIC execution set.

Page Separator

FF is commonly used as a page separator, and it should be interpreted that way in text.
When displaying on the screen, it causes the text after the separator to be forced to the next
page. It is interpreted in the same way as the LS for line breaking, in parsing, or in input
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segmentation such as readline. FF does not interrupt a paragraph, as paragraphs can
and do span page boundaries.
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5.9  Regular Expressions
Byte-oriented regular expression engines require extensions to handle Unicode success-
fully. The following issues are involved in such extensions:

• Unicode is a large character set—regular expression engines that are adapted to
handle only small character sets may not scale well. 

• Unicode encompasses a wide variety of languages that can have very different
characteristics than English or other Western European text.

For detailed information on the requirements of Unicode regular expressions, see Unicode
Technical Standard #18, “Unicode Regular Expressions.”
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5.10  Language Information in Plain Text

Requirements for Language Tagging
The requirement for language information embedded in plain text data is often overstated.
Many commonplace operations such as collation seldom require this extra information. In
collation, for example, foreign language text is generally collated as if it were not in a for-
eign language. (See Unicode Technical Standard #10, “Unicode Collation Algorithm,” for
more information.) For example, an index in an English book would not sort the Slovak
word “chlieb” after “czar,” where it would be collated in Slovak, nor would an English atlas
put the Swedish city of Örebro after Zanzibar, where it would appear in Swedish.

Text to speech is also an area where the case for embedded language information is over-
stated. Although language information may be useful in performing text-to-speech opera-
tions, modern software for doing acceptable text-to-speech must be so sophisticated in
performing grammatical analysis of text that the extra work in determining the language is
not significant in practice.

Language information can be useful in certain operations, such as spell-checking or
hyphenating a mixed-language document. It is also useful in choosing the default font for a
run of unstyled text; for example, the ellipsis character may have a very different appear-
ance in Japanese fonts than in European fonts. Modern font and layout technologies pro-
duce different results based on language information. For example, the angle of the acute
accent may be different for French and Polish.

Language Tags and Han Unification
A common misunderstanding about Unicode Han unification is the mistaken belief that
Han characters cannot be rendered properly without language information. This idea
might lead an implementer to conclude that language information must always be added to
plain text using the tags. However, this implication is incorrect. The goal and methods of
Han unification were to ensure that the text remained legible. Although font, size, width,
and other format specifications need to be added to produce precisely the same appearance
on the source and target machines, plain text remains legible in the absence of these speci-
fications.

There should never be any confusion in Unicode, because the distinctions between the
unified characters are all within the range of stylistic variations that exist in each country.
No unification in Unicode should make it impossible for a reader to identify a character if
it appears in a different font. Where precise font information is important, it is best con-
veyed in a rich text format.

Typical Scenarios. The following e-mail scenarios illustrate that the need for language
information with Han characters is often overstated:

• Scenario 1. A Japanese user sends out untagged Japanese text. Readers are Japa-
nese (with Japanese fonts). Readers see no differences from what they expect.
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• Scenario 2. A Japanese user sends out an untagged mixture of Japanese and
Chinese text. Readers are Japanese (with Japanese fonts) and Chinese (with
Chinese fonts). Readers see the mixed text with only one font, but the text is
still legible. Readers recognize the difference between the languages by the con-
tent.

• Scenario 3. A Japanese user sends out a mixture of Japanese and Chinese text.
Text is marked with font, size, width, and so on, because the exact format is
important. Readers have the fonts and other display support. Readers see the
mixed text with different fonts for different languages. They recognize the dif-
ference between the languages by the content, and see the text with glyphs that
are more typical for the particular language.

It is common even in printed matter to render passages of foreign language text in native-
language fonts, just for familiarity. For example, Chinese text in a Japanese document is
commonly rendered in a Japanese font.



Implementation Guidelines 217 5.11 Editing and Selection 
5.11  Editing and Selection

Consistent Text Elements
As far as a user is concerned, the underlying representation of text is not a material con-
cern, but it is important that an editing interface present a uniform implementation of
what the user thinks of as characters. (See “‘Characters’ and Grapheme Clusters” in
Section 2.11, Combining Characters.) The user expects them to behave as units in terms of
mouse selection, arrow key movement, backspacing, and so on. For example, when such
behavior is implemented, and an accented letter is represented by a sequence of base char-
acter plus a nonspacing combining mark, using the right arrow key would logically skip
from the start of the base character to the end of the last nonspacing character.

In some cases, editing a user-perceived “character” or visual cluster element by element
may be the preferred way. For example, a system might have the backspace key delete by
using the underlying code point, while the delete key could delete an entire cluster. More-
over, because of the way keyboards and input method editors are implemented, there often
may not be a one-to-one relationship between what the user thinks of as a character and
the key or key sequence used to input it.

Three types of boundaries are generally useful in editing and selecting within words: clus-
ter boundaries, stacked boundaries and atomic character boundaries.

Cluster Boundaries. Arbitrarily defined cluster boundaries may occur in scripts such as
Devanagari, for which selection may be defined as applying to syllables or parts of syllables.
In such cases, combining character sequences such as ka + vowel sign a or conjunct clusters
such as ka + halant + ta are selected as a single unit. (See Figure 5-3.)

Stacked Boundaries. Stacked boundaries are generally somewhat finer than cluster
boundaries. Free-standing elements (such as vowel sign a in Devanagari) can be inde-
pendently selected, but any elements that “stack” (including vertical ligatures such as Ara-
bic lam + meem in Figure 5-3) can be selected only as a single unit. Stacked boundaries
treat default grapheme clusters as single entities, much like composite characters. (See Uni-

Figure 5-3.  Consistent Character Boundaries
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code Standard Annex #29, “Unicode Text Segmentation,” for the definition of default
grapheme clusters and for a discussion of how grapheme clusters can be tailored to meet
the needs of defining arbitrary cluster boundaries.)

Atomic Character Boundaries. The use of atomic character boundaries is closest to selec-
tion of individual Unicode characters. However, most modern systems indicate selection
with some sort of rectangular highlighting. This approach places restrictions on the consis-
tency of editing because some sequences of characters do not linearly progress from the
start of the line. When characters stack, two mechanisms are used to visually indicate par-
tial selection: linear and nonlinear boundaries.

Linear Boundaries. Use of linear boundaries treats the entire width of the resultant glyph
as belonging to the first character of the sequence, and the remaining characters in the
backing-store representation as having no width and being visually afterward.

This option is the simplest mechanism. The advantage of this system is that it requires very
little additional implementation work. The disadvantage is that it is never easy to select
narrow characters, let alone a zero-width character. Mechanically, it requires the user to
select just to the right of the nonspacing mark and drag just to the left. It also does not
allow the selection of individual nonspacing marks if more than one is present.

Nonlinear Boundaries. Use of nonlinear boundaries divides any stacked element into
parts. For example, picking a point halfway across a lam + meem ligature can represent the
division between the characters. One can either allow highlighting with multiple rectangles
or use another method such as coloring the individual characters.

With more work, a precomposed character can behave in deletion as if it were a composed
character sequence with atomic character boundaries. This procedure involves deriving
the character’s decomposition on the fly to get the components to be used in simulation.
For example, deletion occurs by decomposing, removing the last character, then recom-
posing (if more than one character remains). However, this technique does not work in
general editing and selection.

In most editing systems, the code point is the smallest addressable item, so the selection
and assignment of properties (such as font, color, letterspacing, and so on) cannot be done
on any finer basis than the code point. Thus the accent on an “e” could not be colored dif-
ferently than the base in a precomposed character, although it could be colored differently
if the text were stored internally in a decomposed form.

Just as there is no single notion of text element, so there is no single notion of editing char-
acter boundaries. At different times, users may want different degrees of granularity in the
editing process. Two methods suggest themselves. First, the user may set a global prefer-
ence for the character boundaries. Second, the user may have alternative command mech-
anisms, such as Shift-Delete, which give more (or less) fine control than the default mode.
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5.12  Strategies for Handling Nonspacing Marks
By following these guidelines, a programmer should be able to implement systems and
routines that provide for the effective and efficient use of nonspacing marks in a wide
variety of applications and systems. The programmer also has the choice between minimal
techniques that apply to the vast majority of existing systems and more sophisticated tech-
niques that apply to more demanding situations, such as higher-end desktop publishing.

In this section and the following section, the terms nonspacing mark and combining char-
acter are used interchangeably. The terms diacritic, accent, stress mark, Hebrew point, Ara-
bic vowel, and others are sometimes used instead of nonspacing mark. (They refer to
particular types of nonspacing marks.) Properly speaking, a nonspacing mark is any com-
bining character that does not add space along the writing direction. For a formal defini-
tion of nonspacing mark, see Section 3.6, Combination.

A relatively small number of implementation features are needed to support nonspacing
marks. Different levels of implementation are also possible. A minimal system yields good
results and is relatively simple to implement. Most of the features required by such a sys-
tem are simply modifications of existing software.

As nonspacing marks are required for a number of writing systems, such as Arabic,
Hebrew, and those of South Asia, many vendors already have systems capable of dealing
with these characters and can use their experience to produce general-purpose software for
handling these characters in the Unicode Standard.

Rendering. Composite character sequences can be rendered effectively by means of a fairly
simple mechanism. In simple character rendering, a nonspacing combining mark has a
zero advance width, and a composite character sequence will have the same width as the
base character. 

Wherever a sequence of base character plus one or more nonspacing marks occurs, the
glyphs for the nonspacing marks can be positioned relative to the base. The ligature mech-
anisms in the fonts can also substitute a glyph representing the combined form. In some
cases the width of the base should change because of an applied accent, such as with “î”.
The ligature or contextual form mechanisms in the font can be used to change the width of
the base in cases where this is required.

Other Processes. Correct multilingual comparison routines must already be able to com-
pare a sequence of characters as one character, or one character as if it were a sequence.
Such routines can also handle combining character sequences when supplied with the
appropriate data. When searching strings, remember to check for additional nonspacing
marks in the target string that may affect the interpretation of the last matching character.

Line breaking algorithms generally use state machines for determining word breaks. Such
algorithms can be easily adapted to prevent separation of nonspacing marks from base
characters. (See also the discussion in Section 5.6, Normalization. For details in particular
contexts, see Unicode Technical Standard #10, “Unicode Collation Algorithm”; Unicode
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Standard Annex #14, “Unicode Line Breaking Algorithm”; and Unicode Standard Annex
#29, “Unicode Text Segmentation.”)

Keyboard Input
A common implementation for the input of combining character sequences is the use of
dead keys. These keys match the mechanics used by typewriters to generate such sequences
through overtyping the base character after the nonspacing mark. In computer implemen-
tations, keyboards enter a special state when a dead key is pressed for the accent and emit a
precomposed character only when one of a limited number of “legal” base characters is
entered. It is straightforward to adapt such a system to emit combining character
sequences or precomposed characters as needed. 

Typists, especially in the Latin script, are trained on systems that work using dead keys.
However, many scripts in the Unicode Standard (including the Latin script) may be imple-
mented according to the handwriting sequence, in which users type the base character first,
followed by the accents or other nonspacing marks (see Figure 5-4).

In the case of handwriting sequence, each keystroke produces a distinct, natural change on
the screen; there are no hidden states. To add an accent to any existing character, the user
positions the insertion point (caret) after the character and types the accent.

Truncation
There are two types of truncation: truncation by character count and truncation by dis-
played width. Truncation by character count can entail loss (be lossy) or be lossless.

Truncation by character count is used where, due to storage restrictions, a limited number
of characters can be entered into a field; it is also used where text is broken into buffers for
transmission and other purposes. The latter case can be lossless if buffers are recombined
seamlessly before processing or if lookahead is performed for possible combining charac-
ter sequences straddling buffers.

Figure 5-4.  Dead Keys Versus Handwriting Sequence

Dead Key Handwriting

Zrich

Zrich

Zürich
u

¨
Zurich

Zürich

Zrich
u

¨



Implementation Guidelines 221 5.12 Strategies for Handling Nonspacing Marks 
When fitting data into a field of limited storage length, some information will be lost. The
preferred position for truncating text in that situation is on a grapheme cluster boundary.
As Figure 5-5 shows, such truncation can mean truncating at an earlier point than the last
character that would have fit within the physical storage limitation. (See Unicode Standard
Annex #29, “Unicode Text Segmentation.”)

Truncation by displayed width is used for visual display in a narrow field. In this case, trun-
cation occurs on the basis of the width of the resulting string rather than on the basis of a
character count. In simple systems, it is easiest to truncate by width, starting from the end
and working backward by subtracting character widths as one goes. Because a trailing non-
spacing mark does not contribute to the measurement of the string, the result will not sep-
arate nonspacing marks from their base characters.

If the textual environment is more sophisticated, the widths of characters may depend on
their context, due to effects such as kerning, ligatures, or contextual formation. For such
systems, the width of a precomposed character, such as an “ï”, may be different than the
width of a narrow base character alone. To handle these cases, a final check should be
made on any truncation result derived from successive subtractions.

A different option is simply to clip the characters graphically. Unfortunately, this may
result in clipping off part of a character, which can be visually confusing. Also, if the clip-
ping occurs between characters, it may not give any visual feedback that characters are
being omitted. A graphic or ellipsis can be used to give this visual feedback. 

Figure 5-5.  Truncating Grapheme Clusters
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5.13  Rendering Nonspacing Marks
This discussion assumes the use of proportional fonts, where the widths of individual char-
acters can vary. Various techniques can be used with monospaced fonts. In general, how-
ever, it is possible to get only a semblance of a correct rendering for most scripts in such
fonts.

When rendering a sequence consisting of more than one nonspacing mark, the nonspacing
marks should, by default, be stacked outward from the base character. That is, if two nons-
pacing marks appear over a base character, then the first nonspacing mark should appear
on top of the base character, and the second nonspacing mark should appear on top of the
first. If two nonspacing marks appear under a base character, then the first nonspacing
mark should appear beneath the base character, and the second nonspacing mark should
appear below the first (see Section 2.11, Combining Characters). This default treatment of
multiple, potentially interacting nonspacing marks is known as the inside-out rule (see
Figure 5-6).

This default behavior may be altered based on typographic preferences or on knowledge of
the specific orthographic treatment to be given to multiple nonspacing marks in the con-
text of a particular writing system. For example, in the modern Vietnamese writing system,
an acute or grave accent (serving as a tone mark) may be positioned slightly to one side of
a circumflex accent rather than directly above it. If the text to be displayed is known to
employ a different typographic convention (either implicitly through knowledge of the
language of the text or explicitly through rich text-style bindings), then an alternative posi-
tioning may be given to multiple nonspacing marks instead of that specified by the default
inside-out rule.

Fallback Rendering. Several methods are available to deal with an unknown composed
character sequence that is outside of a fixed, renderable set (see Figure 5-7). One method
(Show Hidden) indicates the inability to draw the sequence by drawing the base character
first and then rendering the nonspacing mark as an individual unit, with the nonspacing
mark positioned on a dotted circle. (This convention is used in the Unicode code charts.) 

Another method (Simple Overlap) uses a default fixed position for an overlapping zero-
width nonspacing mark. This position is generally high enough to make sure that the mark

Figure 5-6.  Inside-Out Rule
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does not collide with capital letters. This will mean that this mark is placed too high above
many lowercase letters. For example, the default positioning of a circumflex can be above
the ascent, which will place it above capital letters. Even though the result will not be par-
ticularly attractive for letters such as g-circumflex, the result should generally be recogniz-
able in the case of single nonspacing marks.

In a degenerate case, a nonspacing mark occurs as the first character in the text or is sepa-
rated from its base character by a line separator, paragraph separator, or other format char-
acter that causes a positional separation. This result is called a defective combining
character sequence (see Section 3.6, Combination). Defective combining character
sequences should be rendered as if they had a no-break space as a base character. (See
Section 7.9, Combining Marks.)

Bidirectional Positioning. In bidirectional text, the nonspacing marks are reordered with
their base characters; that is, they visually apply to the same base character after the algo-
rithm is used (see Figure 5-8). There are a few ways to accomplish this positioning.

The simplest method is similar to the Simple Overlap fallback method. In the Bidirectional
Algorithm, combining marks take the level of their base character. In that case, Arabic and
Hebrew nonspacing marks would come to the left of their base characters. The font is
designed so that instead of overlapping to the left, the Arabic and Hebrew nonspacing
marks overlap to the right. In Figure 5-8, the “glyph metrics” line shows the pen start and
end for each glyph with such a design. After aligning the start and end points, the final
result shows each nonspacing mark attached to the corresponding base letter. More
sophisticated rendering could then apply the positioning methods outlined in the next sec-
tion.

Some rendering software may require keeping the nonspacing mark glyphs consistently
ordered to the right of the base character glyphs. In that case, a second pass can be done
after producing the “screen order” to put the odd-level nonspacing marks on the right of
their base characters. As the levels of nonspacing marks will be the same as their base char-
acters, this pass can swap the order of nonspacing mark glyphs and base character glyphs
in right-to-left (odd) levels. (See Unicode Standard Annex #9, “Unicode Bidirectional Algo-
rithm.”)

Figure 5-7.  Fallback Rendering
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Justification. Typically, full justification of text adds extra space at space characters so as to
widen a line; however, if there are too few (or no) space characters, some systems add extra
letterspacing between characters (see Figure 5-9). This process needs to be modified if
zero-width nonspacing marks are present in the text. Otherwise, if extra justifying space is
added after the base character, it can have the effect of visually separating the nonspacing
mark from its base.

Because nonspacing marks always follow their base character, proper justification adds let-
terspacing between characters only if the second character is a base character.

Figure 5-8.  Bidirectional Placement

Figure 5-9.  Justification
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Canonical Equivalence
Canonical equivalence must be taken into account in rendering multiple accents, so that
any two canonically equivalent sequences display as the same. This is particularly import-
ant when the canonical order is not the customary keyboarding order, which happens in
Arabic with vowel signs or in Hebrew with points. In those cases, a rendering system may
be presented with either the typical typing order or the canonical order resulting from nor-
malization, as shown in Table 5-3.

With a restricted repertoire of nonspacing mark sequences, such as those required for Ara-
bic, a ligature mechanism can be used to get the right appearance, as described earlier.
When a fallback mechanism for placing accents based on their combining class is
employed, the system should logically reorder the marks before applying the mechanism.

Rendering systems should handle any of the canonically equivalent orders of combining
marks. This is not a performance issue: the amount of time necessary to reorder combining
marks is insignificant compared to the time necessary to carry out other work required for
rendering.

A rendering system can reorder the marks internally if necessary, as long as the resulting
sequence is canonically equivalent. In particular, any permutation of the non-zero combin-
ing class values can be used for a canonical-equivalent internal ordering. For example, a
rendering system could internally permute weights to have U+0651 arabic shadda pre-
cede all vowel signs. This would use the remapping shown in Table 5-4.

Only non-zero combining class values can be changed, and they can be permuted only, not
combined or split. This can be restated as follows:

Table 5-3.  Typing Order Differing from Canonical Order

Typical Typing Order Canonical Order
U+0631 J arabic letter reh + U+0651 L 
arabic shadda + U+064B K arabic 
fathatan

U+0631 J arabic letter reh + U+064B K 
arabic fathatan + U+0651 L arabic 
shadda

Table 5-4.  Permuting Combining Class Weights
Combining 

Class
Internal 
Weight

27 → 33
28 → 27
29 → 28
30 → 29
31 → 30
32 → 31
33 → 32
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• Two characters that have the same combining class values cannot be given dis-
tinct internal weights.

• Two characters that have distinct combining class values cannot be given the
same internal weight.

• Characters with a combining class of zero must be given an internal weight of
zero.

Positioning Methods
A number of methods are available to position nonspacing marks so that they are in the
correct location relative to the base character and previous nonspacing marks.

Positioning with Ligatures. A fixed set of combining character sequences can be rendered
effectively by means of fairly simple substitution, as shown in Figure 5-10.

Wherever the glyphs representing a sequence of <base character, nonspacing mark> occur,
a glyph representing the combined form is substituted. Because the nonspacing mark has a
zero advance width, the composed character sequence will automatically have the same
width as the base character. More sophisticated text rendering systems may take additional
measures to account for those cases where the composed character sequence kerns differ-
ently or has a slightly different advance width than the base character.

Positioning with ligatures is perhaps the simplest method of supporting nonspacing marks.
Whenever there is a small, fixed set, such as those corresponding to the precomposed char-
acters of ISO/IEC 8859-1 (Latin-1), this method is straightforward to apply. Because the
composed character sequence almost always has the same width as the base character, ren-
dering, measurement, and editing of these characters are much easier than for the general
case of ligatures.

If a combining character sequence does not form a ligature, then either positioning with
contextual forms or positioning with enhanced kerning can be applied. If they are not
available, then a fallback method can be used.

Positioning with Contextual Forms. A more general method of dealing with positioning of
nonspacing marks is to use contextual formation (see Figure 5-11). In this case for Devana-
gari, a consonant RA is rendered with a nonspacing glyph (reph) positioned above a base
consonant. (See “Rendering Devanagari” in Section 12.1, Devanagari.) Depending on the
position of the stem for the corresponding base consonant glyph, a contextual choice is

Figure 5-10.  Positioning with Ligatures
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made between reph glyphs with different side bearings, so that the tip of the reph will be
placed correctly with respect to the base consonant’s stem. Base glyphs generally fall into a
fairly small number of classes, depending on their general shape and width, so a corre-
sponding number of contextually distinct glyphs for the nonspacing mark suffice to pro-
duce correct rendering.

In general cases, a number of different heights of glyphs can be chosen to allow stacking of
glyphs, at least for a few deep. (When these bounds are exceeded, then the fallback methods
can be used.) This method can be combined with the ligature method so that in specific
cases ligatures can be used to produce fine variations in position and shape.

Positioning with Enhanced Kerning. A third technique for positioning diacritics is an
extension of the normal process of kerning to be both horizontal and vertical (see
Figure 5-12). Typically, kerning maps from pairs of glyphs to a positioning offset. For exam-
ple, in the word “To” the “o” should nest slightly under the “T”. An extension of this system
maps to both a vertical and a horizontal offset, allowing glyphs to be positioned arbitrarily.

For effective use in the general case, the kerning process must be extended to handle more
than simple kerning pairs, as multiple diacritics may occur after a base letter.

Positioning with enhanced kerning can be combined with the ligature method so that in
specific cases ligatures can be used to produce fine variations in position and shape.

Figure 5-11.  Positioning with Contextual Forms

Figure 5-12.  Positioning with Enhanced Kerning
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5.14  Locating Text Element Boundaries
A string of Unicode-encoded text often needs to be broken up into text elements program-
matically. Common examples of text elements include what users think of as characters,
words, lines, and sentences. The precise determination of text elements may vary according
to locale, even as to what constitutes a “character.” The goal of matching user perceptions
cannot always be met, because the text alone does not always contain enough information
to decide boundaries unambiguously. For example, the period (U+002E full stop) is used
ambiguously—sometimes for end-of-sentence purposes, sometimes for abbreviations, and
sometimes for numbers. In most cases, however, programmatic text boundaries can match
user perceptions quite closely, or at least not surprise the user.

Rather than concentrate on algorithmically searching for text elements themselves, a sim-
pler computation looks instead at detecting the boundaries between those text elements.
Precise definitions of the default Unicode mechanisms for determining such text element
boundaries are found in Unicode Standard Annex #14, “Unicode Line Breaking Algo-
rithm,” and in Unicode Standard Annex #29, “Unicode Text Segmentation.”
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5.15  Identifiers
A common task facing an implementer of the Unicode Standard is the provision of a pars-
ing and/or lexing engine for identifiers. To assist in the standard treatment of identifiers in
Unicode character-based parsers, a set of guidelines is provided in Unicode Standard
Annex #31, “Unicode Identifier and Pattern Syntax,” as a recommended default for the
definition of identifier syntax. That document provides details regarding the syntax and
conformance considerations. Associated data files defining the character properties
referred to by the identifier syntax can be found in the Unicode Character Database.
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5.16  Sorting and Searching
Sorting and searching overlap in that both implement degrees of equivalence of terms to be
compared. In the case of searching, equivalence defines when terms match (for example, it
determines when case distinctions are meaningful). In the case of sorting, equivalence
affects the proximity of terms in a sorted list. These determinations of equivalence often
depend on the application and language, but for an implementation supporting the Uni-
code Standard, sorting and searching must always take into account the Unicode character
equivalence and canonical ordering defined in Chapter 3, Conformance. 

Culturally Expected Sorting and Searching
Sort orders vary from culture to culture, and many specific applications require variations.
Sort order can be by word or sentence, case-sensitive or case-insensitive, ignoring accents
or not. It can also be either phonetic or based on the appearance of the character, such as
ordering by stroke and radical for East Asian ideographs. Phonetic sorting of Han charac-
ters requires use of either a lookup dictionary of words or special programs to maintain an
associated phonetic spelling for the words in the text. 

Languages vary not only regarding which types of sorts to use (and in which order they are
to be applied), but also in what constitutes a fundamental element for sorting. For example,
Swedish treats U+00C4 latin capital letter a with diaeresis as an individual letter,
sorting it after z in the alphabet; German, however, sorts it either like ae or like other
accented forms of ä following a. Spanish traditionally sorted the digraph ll as if it were a let-
ter between l and m. Examples from other languages (and scripts) abound. 

As a result, it is not possible either to arrange characters in an encoding such that simple
binary string comparison produces the desired collation order or to provide single-level
sort-weight tables. The latter implies that character encoding details have only an indirect
influence on culturally expected sorting.

Unicode Technical Standard #10, “Unicode Collation Algorithm” (UCA), describes the
issues involved in culturally appropriate sorting and searching, and provides a specifica-
tion for how to compare two Unicode strings while remaining conformant to the require-
ments of the Unicode Standard. The UCA also supplies the Default Unicode Collation
Element Table as the data specifying the default collation order. Searching algorithms,
whether brute-force or sublinear, can be adapted to provide language-sensitive searching
as described in the UCA.

Language-Insensitive Sorting
In some circumstances, an application may need to do language-insensitive sorting—that
is, sorting of textual data without consideration of language-specific cultural expectations
about how strings should be ordered. For example, a temporary index may need only to be
in some well-defined order, but the exact details of the order may not matter or be visible to
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users. However, even in these circumstances, implementers should be aware of some
issues.

First, some subtle differences arise in binary ordering between the three Unicode encoding
forms. Implementations that need to do only binary comparisons between Unicode strings
still need to take this issue into account so as not to create interoperability problems
between applications using different encoding forms. See Section 5.17, Binary Order, for
further discussion.

Many applications of sorting or searching need to be case-insensitive, even while not car-
ing about language-specific differences in ordering. This is the result of the design of pro-
tocols that may be very old but that are still of great current relevance. Traditionally,
implementations did case-insensitive comparison by effectively mapping both strings to
uppercase before doing a binary comparison. This approach is, however, not more gener-
ally extensible to the full repertoire of the Unicode Standard. The correct approach to case-
insensitive comparison is to make use of case folding, as described in Section 5.18, Case
Mappings.

Searching
Searching is subject to many of the same issues as comparison. Other features are often
added, such as only matching words (that is, where a word boundary appears on each side
of the match). One technique is to code a fast search for a weak match. When a candidate is
found, additional tests can be made for other criteria (such as matching diacriticals, word
match, case match, and so on).

When searching strings, it is necessary to check for trailing nonspacing marks in the target
string that may affect the interpretation of the last matching character. That is, a search for
“San Jose” may find a match in the string “Visiting San José, Costa Rica, is a...”. If an exact
(diacritic) match is desired, then this match should be rejected. If a weak match is sought,
then the match should be accepted, but any trailing nonspacing marks should be included
when returning the location and length of the target substring. The mechanisms discussed
in Unicode Standard Annex #29, “Unicode Text Segmentation,” can be used for this pur-
pose.

One important application of weak equivalence is case-insensitive searching. Many tradi-
tional implementations map both the search string and the target text to uppercase. How-
ever, case mappings are language-dependent and not unambiguous. The preferred method
of implementing case insensitivity is described in Section 5.18, Case Mappings.

A related issue can arise because of inaccurate mappings from external character sets. To
deal with this problem, characters that are easily confused by users can be kept in a weak
equivalency class (d-bar,  eth,  capital d-bar,  capital eth). This approach tends to do
a better job of meeting users’ expectations when searching for named files or other objects.
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Sublinear Searching
International searching is clearly possible using the information in the collation, just by
using brute force. However, this tactic requires an O(m*n) algorithm in the worst case and
an O(m) algorithm in common cases, where n is the number of characters in the pattern
that is being searched for and m is the number of characters in the target to be searched.

A number of algorithms allow for fast searching of simple text, using sublinear algorithms.
These algorithms have only O(m/n) complexity in common cases by skipping over charac-
ters in the target. Several implementers have adapted one of these algorithms to search text
pre-transformed according to a collation algorithm, which allows for fast searching with
native-language matching (see Figure 5-13).

The main problems with adapting a language-aware collation algorithm for sublinear
searching relate to multiple mappings and ignorables. Additionally, sublinear algorithms
precompute tables of information. Mechanisms like the two-stage tables shown in
Figure 5-1 are efficient tools in reducing memory requirements.

Figure 5-13.  Sublinear Searching
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5.17  Binary Order
When comparing text that is visible to end users, a correct linguistic sort should be used, as
described in Section 5.16, Sorting and Searching. However, in many circumstances the only
requirement is for a fast, well-defined ordering. In such cases, a binary ordering can be
used.

Not all encoding forms of Unicode have the same binary order. UTF-8 and UTF-32 data,
and UTF-16 data containing only BMP characters, sort in code point order, whereas UTF-
16 data containing a mix of BMP and supplementary characters does not. This is because
supplementary characters are encoded in UTF-16 with pairs of surrogate code units that
have lower values (D80016..DFFF16) than some BMP code points.

Furthermore, when UTF-16 or UTF-32 data is serialized using one of the Unicode encod-
ing schemes and compared byte-by-byte, the resulting byte sequences may or may not have
the same binary ordering, because swapping the order of bytes will affect the overall order-
ing of the data. Due to these factors, text in the UTF-16BE, UTF-16LE, and UTF-32LE
encoding schemes does not sort in code point order.

In general, the default binary sorting order for Unicode text should be code point order.
However, it may be necessary to match the code unit ordering of a particular encoding
form (or the byte ordering of a particular encoding scheme) so as to duplicate the ordering
used in a different application.

Some sample routines are provided here for sorting one encoding form in the binary order
of another encoding form.

UTF-8 in UTF-16 Order
The following comparison function for UTF-8 yields the same results as UTF-16 binary
comparison. In the code, notice that it is necessary to do extra work only once per string,
not once per byte. That work can consist of simply remapping through a small array; there
are no extra conditional branches that could slow down the processing. 
int strcmp8like16(unsigned char* a, unsigned char* b) {
  while (true) {
    int ac = *a++;
    int bc = *b++;
    if (ac != bc) return rotate[ac] - rotate[bc];
    if (ac == 0) return 0;
  }
}
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static char rotate[256] =
{0x00, ..., 0x0F,
 0x10, ..., 0x1F,

 . . 
 . . 
 . . 

 0xD0, ..., 0xDF,
 0xE0, ..., 0xED, 0xF3, 0xF4,
 0xEE, 0xEF, 0xF0, 0xF1, 0xF2, 0xF5, ..., 0xFF};

The rotate array is formed by taking an array of 256 bytes from 0x00 to 0xFF, and rotating
0xEE to 0xF4, the initial byte values of UTF-8 for the code points in the range
U+E000..U+10FFFF. These rotated values are shown in boldface. When this rotation is
performed on the initial bytes of UTF-8, it has the effect of making code points
U+10000..U+10FFFF sort below U+E000..U+FFFF, thus mimicking the ordering of UTF-
16.

UTF-16 in UTF-8 Order
The following code can be used to sort UTF-16 in code point order. As in the routine for
sorting UTF-8 in UTF-16 order, the extra cost is incurred once per function call, not once
per character.
int strcmp16like8(Unichar* a, Unichar* b) {
  while (true) {
    int ac = *a++;
    int bc = *b++;
    if (ac != bc) {
      return (Unichar)(ac + utf16Fixup[ac>>11]) -
             (Unichar)(bc + utf16Fixup[bc>>11]);
    }
    if (ac == 0) return 0;
  }
}
static const Unichar utf16Fixup[32]={
  0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0x2000, 0xf800, 0xf800, 0xf800, 0xf800
};
This code uses Unichar as an unsigned 16-bit integral type. The construction of the
utf16Fixup array is based on the following concept. The range of UTF-16 values is
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divided up into thirty-two 2K chunks. The 28th chunk corresponds to the values
0xD800..0xDFFF—that is, the surrogate code units. The 29th through 32nd chunks corre-
spond to the values 0xE000..0xFFFF. The addition of 0x2000 to the surrogate code units
rotates them up to the range 0xF800..0xFFFF. Adding 0xF800 to the values 0xE000..0xFFFF
and ignoring the unsigned integer overflow rotates them down to the range
0xD800..0xF7FF. Calculating the final difference for the return from the rotated values pro-
duces the same result as basing the comparison on code points, rather than the UTF-16
code units. The use of the hack of unsigned integer overflow on addition avoids the need
for a conditional test to accomplish the rotation of values.

Note that this mechanism works correctly only on well-formed UTF-16 text. A modified
algorithm must be used to operate on 16-bit Unicode strings that could contain isolated
surrogates.
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5.18  Case Mappings
Case is a normative property of characters in specific alphabets such as Latin, Greek, Cyril-
lic, Armenian, and archaic Georgian, whereby characters are considered to be variants of a
single letter. These variants, which may differ markedly in shape and size, are called the
uppercase letter (also known as capital or majuscule) and the lowercase letter (also known
as small or minuscule). The uppercase letter is generally larger than the lowercase letter.
Alphabets with case differences are called bicameral; those without are called unicameral.

The case mappings in the Unicode Character Database (UCD) are normative. This follows
from their use in defining the case foldings in CaseFolding.txt and from the use of case
foldings to define case-insensitive identifiers in Unicode Standard Annex #31, “Unicode
Identifier and Pattern Syntax.” However, the normative status of case mappings does not
preclude the adaptation of case mapping processes to local conventions, as discussed
below. See also the Unicode Common Locale Data Repository (CLDR), in Appendix B.3,
Other Unicode Online Resources, for extensive data regarding local and language-specific
casing conventions.

Titlecasing
Titlecasing refers to a casing practice wherein the first letter of a word is an uppercase letter
and the rest of the letters are lowercase. This typically applies, for example, to initial words
of sentences and to proper nouns. Depending on the language and orthographic practice,
this convention may apply to other words as well, as for common nouns in German.

Titlecasing also applies to entire strings, as in instances of headings or titles of documents,
for which multiple words are titlecased. The choice of which words to titlecase in headings
and titles is dependent on language and local conventions. For example, “The Merry Wives
of Windsor” is the appropriate titlecasing of that play’s name in English, with the word “of”
not titlecased. In German, however, the title is “Die lustigen Weiber von Windsor,” and
both “lustigen” and “von” are not titlecased. In French even fewer words are titlecased:
“Les joyeuses commères de Windsor.”

Moreover, the determination of what actually constitutes a word is language dependent,
and this can influence which letter or letters of a “word” are uppercased when titlecasing
strings. For example l’arbre is considered two words in French, whereas can’t is considered
one word in English.

The need for a normative Titlecase_Mapping property in the Unicode Standard derives
from the fact that the standard contains certain digraph characters for compatibility. These
digraph compatibility characters, such as U+01F3 “dz” latin small letter dz, require
one form when being uppercased, U+01F1 “DZ” latin capital letter dz, and another
form when being titlecased, U+01F2 “Dz” latin capital letter d with small letter z.
The latter form is informally referred to as a titlecase character, because it is mixed case,
with the first letter uppercase. Most characters in the standard have identical values for
their Titlecase_Mapping and Uppercase_Mapping; however, the two values are distin-
guished for these few digraph compatibility characters.
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Complications for Case Mapping
A number of complications to case mappings occur once the repertoire of characters is
expanded beyond ASCII. 

Change in Length. Case mappings may produce strings of different lengths than the origi-
nal. For example, the German character U+00DF ß latin small letter sharp s expands
when uppercased to the sequence of two characters “SS”. Such expansion also occurs where
there is no precomposed character corresponding to a case mapping, such as with U+0149
N latin small letter n preceded by apostrophe. The maximum string expansion as a
result of case mapping in the Unicode Standard is three. For example, uppercasing U+0390
t greek small letter iota with dialytika and tonos results in three characters.

The lengths of case-mapped strings may also differ from their originals depending on the
Unicode encoding form. For example, the Turkish strings “topkapc” (with a dotless i) and
“TOPKAPI” have the same number of characters and are the same length in UTF-16 and
UTF-32; however, in UTF-8, the representation of the uppercase form takes only seven
bytes, whereas the lowercase form takes eight bytes. By comparison, the German strings
“heiß” and “HEISS” have a different number of characters and differ in length in UTF-16
and UTF-32, but in UTF-8 both strings are encoded using the same number of bytes.

Greek iota subscript. The character U+0345 n combining greek ypogegrammeni (iota
subscript) requires special handling. As discussed in Section 7.2, Greek, the iota-subscript
characters used to represent ancient text have special case mappings. Normally, the upper-
case and lowercase forms of alpha-iota-subscript will map back and forth. In some
instances, uppercase words should be transformed into their older spellings by removing
accents and changing the iota subscript into a capital iota (and perhaps even removing
spaces).

Context-dependent Case Mappings. Characters may have different case mappings,
depending on the context surrounding the character in the original string. For example,
U+03A3 “” greek capital letter sigma lowercases to U+03C3 “” greek small let-

ter sigma if it is followed by another letter, but lowercases to U+03C2 “” greek small

letter final sigma if it is not. 

Because only a few context-sensitive case mappings exist, and because they involve only a
very few characters, implementations may choose to hard-code the treatment of these
characters for casing operations rather than using data-driven code based on the Unicode
Character Database. However, if this approach is taken, each time the implementation is
upgraded to a new version of the Unicode Standard, hard-coded casing operations should
be checked for consistency with the updated data. See SpecialCasing.txt in the Unicode
Character Database for details of context-sensitive case mappings.

Locale-dependent Case Mappings. The principal example of a case mapping that depends
on the locale is Turkish, where U+0131 “” latin small letter dotless i maps to
U+0049 “I” latin capital letter i and U+0069 “i” latin small letter i maps to
U+0130 “” latin capital letter i with dot above. Figure 5-14 shows the uppercase
mapping for Turkish i and canonically equivalent sequences.
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Figure 5-15 shows the lowercase mapping for Turkish i.

In both of the Turkish case mapping figures, a mapping with a double-sided arrow round-
trips—that is, the opposite case mapping results in the original sequence. A mapping with
a single-sided arrow does not round-trip.

Caseless Characters. Because many characters are really caseless (most of the IPA block,
for example) and have no matching uppercase, the process of uppercasing a string does not
mean that it will no longer contain any lowercase letters. 

German sharp s. The German sharp s character has several complications in case map-
ping. Not only does its uppercase mapping expand in length, but its default case-pairings
are asymmetrical. The default case mapping operations follow standard German orthogra-
phy, which uses the string “SS” as the regular uppercase mapping for U+00DF ß latin

small letter sharp s. In contrast, the alternate, single character uppercase form,
U+1E9E latin capital letter sharp s, is intended for typographical representations of
signage and uppercase titles, and in other environments where users require the sharp s to
be preserved in uppercase. Overall, such usage is uncommon. Thus, when using the default
Unicode casing operations, capital sharp s will lowercase to small sharp s, but not vice
versa: small sharp s uppercases to “SS”, as shown in Figure 5-16. A tailored casing operation
is needed in circumstances requiring small sharp s to uppercase to capital sharp s.

Figure 5-14.  Uppercase Mapping for Turkish I

Figure 5-15.  Lowercase Mapping for Turkish I
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Reversibility
No casing operations are reversible. For example:

toUppercase(toLowercase(“John Brown”)) → “JOHN BROWN”

toLowercase(toUppercase(“John Brown”)) → “john brown”

There are even single words like vederLa in Italian or the name McGowan in English,
which are neither upper-, lower-, nor titlecase. This format is sometimes called inner-
caps—or more informally camelcase—and it is often used in programming and in Web
names. Once the string “McGowan” has been uppercased, lowercased, or titlecased, the
original cannot be recovered by applying another uppercase, lowercase, or titlecase opera-
tion. There are also single characters that do not have reversible mappings, such as the
Greek sigmas.

For word processors that use a single command-key sequence to toggle the selection
through different casings, it is recommended to save the original string and return to it via
the sequence of keys. The user interface would produce the following results in response to
a series of command keys. In the following example, notice that the original string is
restored every fourth time.

1. The quick brown 

2. THE QUICK BROWN 

3. the quick brown 

4. The Quick Brown 

5. The quick brown (repeating from here on) 

Uppercase, titlecase, and lowercase can be represented in a word processor by using a char-
acter style. Removing the character style restores the text to its original state. However, if
this approach is taken, any spell-checking software needs to be aware of the case style so
that it can check the spelling against the actual appearance.

Figure 5-16.  Casing of German Sharp S
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Caseless Matching
Caseless matching is implemented using case folding, which is the process of mapping
characters of different case to a single form, so that case differences in strings are erased.
Case folding allows for fast caseless matches in lookups because only binary comparison is
required. It is more than just conversion to lowercase. For example, it correctly handles
cases such as the Greek sigma, so that “xy{|” and “butu” will match.

Normally, the original source string is not replaced by the folded string because that substi-
tution may erase important information. For example, the name “Marco di Silva” would be
folded to “marco di silva,” losing the information regarding which letters are capitalized.
Typically, the original string is stored along with a case-folded version for fast compari-
sons.

The CaseFolding.txt file in the Unicode Character Database is used to perform locale-inde-
pendent case folding. This file is generated from the case mappings in the Unicode Charac-
ter Database, using both the single-character mappings and the multicharacter mappings.
It folds all characters having different case forms together into a common form. To com-
pare two strings for caseless matching, one can fold each string using this data and then use
a binary comparison.

Case folding logically involves a set of equivalence classes constructed from the Unicode
Character Database case mappings as follows.

For each character X in Unicode, apply the following rules in order:

R1 If X is already in an equivalence class, continue to the next character. Otherwise,
form a new equivalence class and add X. 

R2 Add any other character that uppercases, lowercases, or titlecases to anything in
the equivalence class. 

R3 Add any other characters to which anything in the equivalence class uppercases,
lowercases, or titlecases. 

R4 Repeat R2 and R3 until nothing further is added. 

R5 From each class, one representative element (a single lowercase letter where possi-
ble) is chosen to be the common form.

For rule R5, it is preferable to choose a single lowercase letter for the common form, but
this is not possible in all instances. For case folding of Cherokee letters, for example, a sin-
gle uppercase letter must be chosen instead, because the uppercase letters for Cherokee
were encoded in an earlier version of the Unicode Standard, and the lowercase letters were
encoded in a later version. This choice is required to keep case folding stable across Uni-
code versions.

Each equivalence class is completely disjoint from all the others, and every Unicode char-
acter is in one equivalence class. CaseFolding.txt thus contains the mappings from other
characters in the equivalence classes to their common forms. As an exception, the case fold-
ings for dotless i and dotted I do not follow the derivation algorithm for all other case fold-
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ings. Instead, their case foldings are hard-coded in the derivation for best default matching
behavior. There are alternate case foldings for these characters, which can be used for case
folding for Turkic languages. However, the use of those alternate case foldings does not
maintain canonical equivalence. Furthermore, it is often undesirable to have differing
behavior for caseless matching. Because language information is often not available when
caseless matching is applied to strings, it also may not be clear which alternate to choose.

The Unicode case folding algorithm is defined to be simpler and more efficient than case
mappings. It is context-insensitive and language-independent (except for the optional, alter-
nate Turkic case foldings). As a result, there are a few rare cases where a caseless match does
not match pairs of strings as expected; the most notable instance of this is for Lithuanian. In
Lithuanian typography for dictionary use, an “i” retains its dot when a grave, acute, or tilde
accent is placed above it. This convention is represented in Unicode by using an explicit
combining dot above, occurring in sequence between the “i” and the respective accent. (See
Figure 7-2.) When case folded using the default case folding algorithm, strings containing
these sequences will still contain the combining dot above. In the unusual situation where
case folding needs to be tailored to provide for these special Lithuanian dictionary require-
ments, strings can be preprocessed to remove any combining dot above characters occurring
between an “i” and a subsequent accent, so that the folded strings will match correctly. 

Where case distinctions are not important, other distinctions between Unicode characters
(in particular, compatibility distinctions) are generally ignored as well. In such circum-
stances, text can be normalized to Normalization Form NFKC or NFKD after case folding,
thereby producing a normalized form that erases both compatibility distinctions and case
distinctions. However, such normalization should generally be done only on a restricted
repertoire, such as identifiers (alphanumerics). See Unicode Standard Annex #15, “Uni-
code Normalization Forms,” and Unicode Standard Annex #31, “Unicode Identifier and
Pattern Syntax,” for more information. For a summary, see “Equivalent Sequences” in
Section 2.2, Unicode Design Principles.

Caseless matching is only an approximation of the language-specific rules governing the
strength of comparisons. Language-specific case matching can be derived from the colla-
tion data for the language, where only the first- and second-level differences are used. For
more information, see Unicode Technical Standard #10, “Unicode Collation Algorithm.”

In most environments, such as in file systems, text is not and cannot be tagged with lan-
guage information. In such cases, the language-specific mappings must not be used. Other-
wise, data structures such as B-trees might be built based on one set of case foldings and
used based on a different set of case foldings. This discrepancy would cause those data
structures to become corrupt. For such environments, a constant, language-independent,
default case folding is required.

Stability. The definition of case folding is guaranteed to be stable, in that any string of
characters case folded according to these rules will remain case folded in Version 5.0 or
later of the Unicode Standard. To achieve this stability, there are constraints on additions
of case pairs for existing encoded characters. Typically, no new lowercase character will be
added to the Unicode Standard as a casing pair of an existing upper- or titlecase character
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that does not already have a lowercase pair. In exceptional circumstances, where lowercase
characters must be added to the standard in a later version than the version in which the
corresponding uppercase characters were encoded, such lowercase characters can only be
defined as new case pairs with a corresponding change to case folding to ensure that they
case fold to the old uppercase letters. See the subsection “Policies” in Appendix B.3, Other
Unicode Online Resources.

Normalization and Casing
Casing operations as defined in Section 3.13, Default Case Algorithms are not guaranteed to
preserve Normalization Forms. That is, some strings in a particular Normalization Form
(for example, NFC) will no longer be in that form after the casing operation is performed.
Consider the strings shown in the example in Table 5-5.

The original string is in Normalization Form NFC format. When uppercased, the small j
with caron turns into an uppercase J with a separate caron. If followed by a combining mark
below, that sequence is not in a normalized form. The combining marks have to be put in
canonical order for the sequence to be normalized.

If text in a particular system is to be consistently normalized to a particular form such as
NFC, then the casing operators should be modified to normalize after performing their
core function. The actual process can be optimized; there are only a few instances where a
casing operation causes a string to become denormalized. If a system specifically checks for
those instances, then normalization can be avoided where not needed.

Normalization also interacts with case folding. For any string X, let Q(X) =
NFC(toCasefold(NFD(X))). In other words, Q(X) is the result of normalizing X, then
case folding the result, then putting the result into Normalization Form NFC format.
Because of the way normalization and case folding are defined, Q(Q(X)) = Q(X). Repeat-
edly applying Q does not change the result; case folding is closed under canonical normal-
ization for either Normalization Form NFC or NFD.

Case folding is not, however, closed under compatibility normalization for either Normal-
ization Form NFKD or NFKC. That is, given R(X) = NFKC(toCasefold(NFD(X))),
there are some strings such that R(R(X)) ≠ R(X). NFKC_Casefold, a derived property, is
closed under both case folding and NFKC normalization. The property values for NFKC_-
Casefold are found in DerivedNormalizationProps.txt in the Unicode Character Database.

Table 5-5.  Casing and Normalization in Strings
Original (NFC) MÎ <U+01F0 latin small letter j with caron,

U+0323 combining dot below>
Uppercased JOÎ <U+004A latin capital letter j,

U+030C combining caron, 
U+0323 combining dot below> 

Uppercased NFC JÎO <U+004A latin capital letter j,
U+0323 combining dot below,
U+030C combining caron>
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5.19  Mapping Compatibility Variants
Identifying one character as a compatibility variant of another character (or sequence of
characters) suggests that in many circumstances the first can be remapped to the second
without the loss of any textual information other than formatting and layout. (See
Section 2.3, Compatibility Characters.)

Such remappings or foldings can be done in different ways. In the case of compatibility
decomposable characters, remapping occurs as a result of normalizing to the NFKD or
NFKC forms defined by Unicode Normalization. Other compatibility characters which are
not compatibility decomposable characters may be remapped by various kinds of folding;
for example, Kangxi radical symbols in the range U+2F00..U+2FDF might be substituted
by the corresponding CJK unified ideographs of the same appearance.

However, such remapping should not be performed indiscriminately, because many of the
compatibility characters are included in the standard precisely to allow systems to main-
tain one-to-one mappings to other existing character encoding standards. In such cases, a
remapping would lose information that is important to maintaining some distinction in
the original encoding.

Thus an implementation must proceed with due caution—replacing a character with its
compatibility decomposition or otherwise folding compatibility characters together with
ordinary Unicode characters may change not only formatting information, but also other
textual distinctions on which some other process may depend.

In many cases there exists a visual relationship between a compatibility character and an
ordinary character that is akin to a font style or directionality difference. Replacing such
characters with unstyled characters could affect the meaning of the text. Replacing them
with rich text would preserve the meaning for a human reader, but could cause some pro-
grams that depend on the distinction to behave unpredictably. This issue particularly
affects compatibility characters used in mathematical notation. For more discussion of
these issues, see the W3C specification, “Unicode in XML and other Markup Languages,”
and Unicode Technical Report #25, “Unicode Support for Mathematics.”

In other circumstances, remapping compatibility characters can be very useful. For exam-
ple, transient remapping of compatibility decomposable characters using NFKC or NFKD
normalization forms is very useful for performing “loose matches” on character strings. See
also Unicode Technical Standard #10, “Unicode Collation Algorithm,” for the role of com-
patibility character remapping when establishing collation weights for Unicode strings.

Confusables. The visual similarities between compatibility variants and ordinary charac-
ters can make them confusable with other characters, something that can be exploited in
possible security attacks. Compatibility variants should thus be avoided in certain usage
domains, such as personal or network identifiers. The usual practice for avoiding compati-
bility variants is to restrict such strings to those already in Normalization Form NFKC; this
practice eliminates any compatibility decomposable characters. Compatibility decompos-
able characters can also be remapped on input by processes handling personal or network
identifiers, using Normalization Form NFKC.
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This general implementation approach to the problems associated with visual similarities
among compatibility variants, by focusing first on the remapping of compatibility decom-
posable characters, is useful for two reasons. First, the large majority of compatibility vari-
ants are in fact also compatibility decomposable characters, so this approach deals with the
biggest portion of the problem. Second, it is simply and reproducibly implementable in
terms of a well-defined Unicode Normalization Form.

Extending restrictions on usage to other compatibility variants is more problematical,
because there is no exact specification of which characters are compatibility variants. Fur-
thermore, there may be valid reasons to restrict usage of certain characters which may be
visually confusable or otherwise problematical for some process, even though they are not
generally considered to be compatibility variants. Best practice in such cases is to depend
on carefully constructed and justified lists of confusable characters.

For more information on security implications and a discussion of confusables, see Uni-
code Technical Report #36, “Unicode Security Considerations” and Unicode Technical
Standard #39, “Unicode Security Mechanisms.”
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5.20  Unicode Security
It is sometimes claimed that the Unicode Standard poses new security issues. Some of these
claims revolve around unique features of the Unicode Standard, such as its encoding
forms. Others have to do with generic issues, such as character spoofing, which also apply
to any other character encoding, but which are seen as more severe threats when consid-
ered from the point of view of the Unicode Standard.

This section examines some of these issues and makes some implementation recommen-
dations that should help in designing secure applications using the Unicode Standard.

Alternate Encodings. A basic security issue arises whenever there are alternate encodings
for the “same” character. In such circumstances, it is always possible for security-conscious
modules to make different assumptions about the representation of text. This conceivably
can result in situations where a security watchdog module of some sort is screening for
prohibited text or characters, but misses the same characters represented in an alternative
form. If a subsequent processing module then treats the alternative form as if it were what
the security watchdog was attempting to prohibit, one potentially has a situation where a
hostile outside process can circumvent the security software. Whether such circumvention
can be exploited in any way depends entirely on the system in question.

Some earlier versions of the Unicode Standard included enough leniency in the definition
of the UTF-8 encoding form, particularly regarding the so-called non-shortest form, to raise
questions about the security of applications using UTF-8 strings. However, the confor-
mance requirements on UTF-8 and other encoding forms in the Unicode Standard have
been tightened so that no encoding form now allows any sort of alternate representation,
including non-shortest form UTF-8. Each Unicode code point has a single, unique encod-
ing in any particular Unicode encoding form. Properly coded applications should not be
subject to attacks on the basis of code points having multiple encodings in UTF-8 (or UTF-
16).

However, another level of alternate representation has raised other security questions: the
canonical equivalences between precomposed characters and combining character
sequences that represent the same abstract characters. This is a different kind of alternate
representation problem—not one of the encoding forms per se, but one of visually identi-
cal characters having two distinct representations (one as a single encoded character and
one as a sequence of base form plus combining mark, for example). The issue here is differ-
ent from that for alternate encodings in UTF-8. Canonically equivalent representations for
the “same” string are perfectly valid and expected in Unicode. The conformance require-
ment, however, is that conforming implementations cannot be required to make an inter-
pretation distinction between canonically equivalent representations. The way for a
security-conscious application to guarantee this is to carefully observe the normalization
specifications (see Unicode Standard Annex #15, “Unicode Normalization Forms”) so that
data is handled consistently in a normalized form.

Spoofing. Another security issue is spoofing, meaning the deliberate misspelling of a
domain name, or user name, or other string in a form designed to trick unwary users into
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interacting with a hostile website as if it was a trusted site (or user). In this case, the confu-
sion is not at the level of the software process handling the code points, but rather in the
human end users, who see one character but mistake it for another, and who then can be
fooled into doing something that will breach security or otherwise result in unintended
results.

To be effective, spoofing does not require an exact visual match—for example, using the
digit “1” instead of the letter “l”. The Unicode Standard contains many confusables—that is,
characters whose glyphs, due to historical derivation or sheer coincidence, resemble each
other more or less closely. Certain security-sensitive applications or systems may be vul-
nerable due to possible misinterpretation of these confusables by their users.

Many legacy character sets, including ISO/IEC 8859-1 or even ASCII, also contain confus-
ables, albeit usually far fewer of them than in the Unicode Standard simply because of the
sheer scale of Unicode. The legacy character sets all carry the same type of risks when it
comes to spoofing, so there is nothing unique or inadequate about Unicode in this regard.
Similar steps will be needed in system design to assure integrity and to lessen the potential
for security risks, no matter which character encoding is used.

The Unicode Standard encodes characters, not glyphs, and it is impractical for many rea-
sons to try to avoid spoofing by simply assigning a single character code for every possible
confusable glyph among all the world’s writing systems. By unifying an encoding based
strictly on appearance, many common text-processing tasks would become convoluted or
impossible. For example, Latin B and Greek Beta  look the same in most fonts, but lower-
case to two different letters, Latin b and Greek beta, which have very distinct appear-
ances. A simplistic fix to the confusability of Latin B and Greek Beta would result in great
difficulties in processing Latin and Greek data, and in many cases in data corruptions as
well.

Because all character encodings inherently have instances of characters that might be con-
fused with one another under some conditions, and because the use of different fonts to
display characters might even introduce confusions between characters that the designers
of character encodings could not prevent, character spoofing must be addressed by other
means. Systems or applications that are security-conscious can test explicitly for known
spoofings, such as “MICROS0FT,” “A0L,” or the like (substituting the digit “0” for the letter
“O”). Unicode-based systems can provide visual clues so that users can ensure that labels,
such as domain names, are within a single script to prevent cross-script spoofing. However,
provision of such clues is clearly the responsibility of the system or application, rather than
being a security condition that could be met by somehow choosing a “secure” character
encoding that was not subject to spoofing. No such character encoding exists.

Unicode Standard Annex #24, “Unicode Script Property,” presents a classification of Uni-
code characters by script. By using such a classification, a program can check that labels
consist only of characters from a given script or characters that are expected to be used
with more than one script (such as the “Common” or “Inherited” script names defined in
Unicode Standard Annex #24, “Unicode Script Property”). Because cross-script names may
be legitimate, the best method of alerting a user might be to highlight any unexpected
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boundaries between scripts and let the user determine the legitimacy of such a string
explicitly.

For further discussion of security issues, see Unicode Technical Report #36, “Unicode
Security Considerations,” and Unicode Technical Standard #39, “Unicode Security Mech-
anisms.”
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5.21  Ignoring Characters in Processing
The majority of encoded characters in the Unicode Standard are ordinary graphic charac-
ters. However, the standard also includes a significant number of special-use characters.
For example, format characters (General_Category = Cf ) are often defined to have very
particular effects in text processing. These effects may impact one kind of text process, but
be completely irrelevant for other text processes. Format characters also typically have no
visible display of their own, but may impact the display of neighboring graphic characters.
Technically, variation selectors are not format characters, but combining marks. However,
variation selectors and other “invisible” combining marks also have special behavior in text
processing.

Other sections of the Unicode Standard specify the intended effects of such characters in
detail. See, for example, Section 23.2, Layout Controls and Section 23.4, Variation Selectors.
This section, on the other hand, approaches the issue by discussing which kinds of format
characters (and other characters) are ignored for different kinds of text processes, and pro-
viding pointers to related implementation guidelines.

How these kinds of special-use characters are displayed or not displayed in various con-
texts is of particular importance. Many have no inherent display of their own, so pose ques-
tions both for normal rendering for display and for fallback rendering. Because of this, a
particularly detailed discussion of ignoring characters for display can be found toward the
end of this section.

Characters Ignored in Text Segmentation
Processing for text segmentation boundaries generally ignores certain characters which are
irrelevant to the determination of those boundaries. The exact classes of characters depend
on which type of text segmentation is involved.

When parsing grapheme cluster boundaries, characters used to extend grapheme clusters
are ignored for boundary determination. These include nonspacing combining marks and
enclosing marks, as well as U+200C zero width non-joiner. The exact list of characters
involved is specified by the property value: Grapheme_Cluster_Break = Extend. U+200D
zero width joiner requires special handling, particularly for emoji sequences.

When parsing word or sentence boundaries, the set of characters which are ignored for
boundary determination is enlarged somewhat, to include spacing combining marks and
most format characters. For word breaking, the exact list of characters is specified by two
property values: Word_Break = Extend or Word_Break = Format. For sentence breaking,
the corresponding property values are: Sentence_Break = Extend or Sentence_Break =
Format.

For a detailed discussion of text segmentation, see Unicode Standard Annex #29, “Unicode
Text Segmentation.” In particular, see Section 6.2, Replacing Ignore Rules, in that annex, for
implementation notes about the rules which ignore classes of characters for segmentation.
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Characters Ignored in Line Breaking
Most control characters and format characters are ignored for line break determination,
and do not contribute to line width. The Unicode Line Breaking Algorithm handles this
class of characters by giving them the same Line_Break property value as combining
marks: Line_Break = CM. For a detailed discussion, see Unicode Standard Annex #14,
“Unicode Line Breaking Algorithm.”

When expanding or compressing intercharacter space, as part of text justification and
determination of line breaks, the presence of U+200B zero width space or U+2060 word

joiner is generally ignored. There are, however, occasional exceptions. See, for example,
the discussion of “Thai-style” letter spacing in Section 23.2, Layout Controls.

Characters Ignored in Cursive Joining
U+200C zero width non-joiner and U+200D zero width joiner are format controls
specifically intended to influence cursive joining. However, there are other format controls
which are explicitly ignored when processing text for cursive joining. In particular, U+2060
word joiner, U+FEFF zero width no-break space, and U+200B zero width space

influence text segmentation and line breaking, but should be ignored for cursive joining.
U+034F combining grapheme joiner is also ignored for cursive joining.

More generally, there is a broad class of characters whose occurrence in a string should be
ignored when calculating cursive connections between adjacent letters subject to cursive
joining. This class is defined by the property value, Joining_Type = Transparent, and
includes all nonspacing marks and most format characters other than ZWNJ and ZWJ. See
the detailed discussion of cursive joining in Section 23.2, Layout Controls.

Characters Ignored in Identifiers
Characters with the property Default_Ignorable_Code_Point (DI) are generally not rec-
ommended for inclusion in identifiers. Such characters include many (but not all) format
characters, as well as variation selectors. Exceptions are the cursive joining format charac-
ters, U+200C zero width non-joiner and U+200D zero width joiner, which in limited
circumstances may be used to make visual distinctions deemed necessary for identifiers.

There are several possible approaches for ensuring that characters with DI = True are not
significant for comparison of identifiers. A strict formal syntax definition may simply pro-
hibit their inclusion in identifier strings altogether. However, comparison of identifiers
often involves a folding operation, such as case folding. In applications which implement
identifier folding based on the toNFKC_CaseFold transformation, DI = True characters
are removed from a string by that transformation. With such an approach, DI= True char-
acters can be said to be “ignored” in identifier comparison, and their presence or absence
in a given identifier string is irrelevant to the comparison. See Unicode Standard Annex
#31, “Unicode Identifier and Pattern Syntax,” for a detailed discussion of normalization
and case folding of identifiers and of the handling of format characters in identifiers.
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Characters Ignored in Searching and Sorting
Searching and string matching is another context in which particular characters may be
ignored. Typically, users expect that certain characters, such as punctuation, will be
ignored when looking for string matches against a target string, or they expect that certain
character distinctions, such as case differences, will be ignored. Exact binary string com-
parisons in such circumstances produce the wrong results.

At its core, sorting string data involves using a string matching algorithm to determine
which strings count as equal. In any comparison of strings which do not count as equal,
sorting additionally requires the ability to determine which string comes before and which
after in the collation order. It is important to have a well-defined concept of which charac-
ters “do not make a difference,” and are thus ignored for the results of the sorting.

Some Unicode characters almost never make a significant difference for searching, string
matching, and sorting. For example, U+200C zero width non-joiner and U+200D zero

width joiner may impact cursive joining or ligature formation, but are not intended to
represent semantic differences between strings. At a first level of approximation, most Uni-
code format controls should be ignored for searching and sorting. However, there is no
unique way to use Unicode character properties to devise an exact list of which characters
should always be ignored for searching and sorting, in part because the criteria for any par-
ticular search or sort can vary so widely.

The Unicode algorithm which addresses this issue generically is defined in Unicode Tech-
nical Standard #10, “Unicode Collation Algorithm.” The Default Unicode Collation Ele-
ment Table (DUCET), documented in that standard, provides collation weights for all
Unicode characters; many of those weights are set up so that the characters will be ignored
by default for sorting. A string matching algorithm can also be based on the weights in that
table. Additionally, the UCA provides options for ignoring distinctions between related
characters, such as uppercase versus lowercase letters, or letters with or without accents.
The UCA provides a mechanism to tailor the DUCET. This mechanism not only enables
the general algorithm to support different tailored tables which allow for language-specific
orderings of characters, it also makes it possible to specify very precisely which characters
should or should not be ignored for any particular search or sort.

Characters Ignored for Display
There are two distinct cases to consider when determining whether a particular character
should be “ignored” for display. The first case involves normal rendering, when a process
supports the character in question. The second case involves fallback rendering, when the
character in question is outside the repertoire which can be supported for normal render-
ing, so that a fallback to exceptional rendering for unknown characters is required.

In this discussion, “display” is used as shorthand for the entire text rendering process,
which typically involves a combination of rendering software and font definition. Having a
display glyph for a character defined in a font is not sufficient to render it for screen display
or for printing; rendering software is involved as well. On the other hand, fonts may con-
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tain complex rendering logic which contributes to the text rendering process. This discus-
sion is not meant to preclude any particular approach to the design of a full text rendering
process. A phrase such as, “a font displays a glyph for the character,” or “a font displays no
glyph for the character,” is simply a general way of describing the intended display out-
come for rendering that character.

Normal Rendering. Many characters, including format characters and variation selectors,
have no visible glyph or advance width directly associated with them. Such characters with-
out glyphs are typically shown in the code charts with special display glyphs using a dotted
box and a mnemonic label. (See Section 24.1, Character Names List, for code chart display
conventions.) Outside of the particular context of code chart display, a font will typically
display no glyph for such characters. However, it is not unusual for format characters and
variation selectors to have a visible effect on other characters in their vicinity. For example,
ZWJ and ZWNJ may affect cursive joining or the appearance of ligatures. A variation selec-
tor may change the choice of glyph for display of the base character it follows. In such
cases, even though the format character or variation selector has no visible glyph of its own,
it would be inappropriate to say that it is ignored for display, because the intent of its use is
to change the display in some visible way. Additional cases where a format character has no
glyph, but may otherwise affect display include:

• Bidirectional format characters do not affect the glyph forms of displayed char-
acters, but may cause significant rearrangements of spans of text in a line. 

• U+00AD Á soft hyphen has a null default appearance in the middle of a
line: the appearance of “therÁapist” is simply “therapist”—no visible glyph. In
line break processing, it indicates a possible intraword break. At any intraword
break that is used for a line break—whether resulting from this character or by
some automatic process—a hyphen glyph (perhaps with spelling changes) or
some other indication can be shown, depending on language and context.

In other contexts, a format character may have no visible effect on display at all. For exam-
ple, a ZWJ might occur in text between two characters which are not subject to cursive
joining and for which no ligature is available or appropriate: <x, ZWJ, x>. In such a case,
the ZWJ simply has no visible effect, and one can meaningfully say that it is ignored for dis-
play. Another example is a variation selector following a base character for which no stan-
dardized or registered variation sequence exists. In that case, the variation selector has no
effect on the display of the text.

Finally, there are some format characters whose function is not intended to affect display.
U+200B zero width space affects word segmentation, but has no visible display. U+034F
combining grapheme joiner is likewise always ignored for display. Additional examples
include:

• U+2060 É word joiner does not produce a visible change in the appearance
of surrounding characters; instead, its only effect is to indicate that there
should be no line break at that point.
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• U+2061 Ê function application has no effect on the text display and is
used only in internal mathematical expression processing.

Disruption of Tightly Defined Sequences. In some instances, the mere presence of an oth-
erwise invisible character may affect the display of tightly defined sequences. A fairly obvi-
ous example would be the insertion of a U+200B zero width space or a U+2060 word

joiner into the middle of a combining character sequence. Such an insertion formally
breaks the combining character sequence, which has a tightly defined normative syntax.
(See D56 in Section 3.6, Combination.) The insertion may then result in unexpected display
results, including the appearance of dotted circles or other visual disruption.

The correct use of U+2044 fraction slash or various prepended concatenation marks
(see Figure 9-6) also depends on a tightly constrained syntax for neighboring characters.
For example, an implementation that supports the fraction slash character can take a pre-
ceding string of digits and a succeeding string of digits, and reformat them as the numera-
tor and denominator of a vulgar fraction for display. However, the insertion of any
invisible format character into those strings of digits would break the sequences of the dig-
its and thus result in an unexpected display. A similar outcome can be anticipated for the
insertion of invisible format characters into any sequence of digits following a prepended
concatenation mark.

The principle is that while many format characters have no visible glyphs and are usually
ignored for display, that does not obligate implementations to accommodate their occur-
rence in any position in text without disruption of display, particularly when they interrupt
the syntax of otherwise tightly defined sequences with specific interpretations in the stan-
dard.

Show Hidden Mode. The fact that variation selectors and most format characters have no
visible glyphs does not mean that such characters must always be invisible. An implemen-
tation can, for example, show a visible glyph on request, such as in a “Show Hidden” mode.
A particular use of a “Show Hidden” mode is to display a visible indication of misplaced or
ineffectual format characters. For example, a sequence of two adjacent joiners, <..., ZWJ,
ZWJ, ...>, is a case where the extra ZWJ should have no effect.

Whitespace Characters. Format characters with no visible glyphs are different from space
characters. Space characters, such as U+0020 space, are classified as graphic characters.
Although they do not have visible glyphs for display, they have advance widths. Techni-
cally, that counts as a “glyph” in a font—it is simply a blank glyph “with no pixels turned
on.” Like other graphic characters, a space character can be visibly selected in text. Line
separation characters, such as the carriage return, do not clearly exhibit their advance
width, because they always occur at the end of a line, but most implementations give them
a visible advance width when they are selected. Hence, they are classed together with space
characters; both are given the White_Space property. Whitespace characters are not con-
sidered to be ignored for display.

Fallback Rendering. Fallback rendering occurs when a text process needs to display a
character or sequence of characters, but lacks the rendering resources to display that char-
acter correctly. The typical situation results from having text to display without an appro-
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priate font covering the repertoire of characters used in that text. The recommended
behavior for display in such cases is to fall back to some visible, but generic, glyph display
for graphic characters, so that at least it is clear that there are characters present—and usu-
ally, how many are present. (See Section 5.3, Unknown and Missing Characters.) However,
variation selectors and some format characters are special—it is not appropriate for fall-
back rendering to display them with visible glyphs. This is illustrated by the following
examples.

First consider an ordinary graphic character. For example, if an implementation does not
support U+0915  devanagari letter ka, it should not ignore that character for display.
Displaying nothing would give the user the impression that the character does not occur in
the text at all. The recommendation in that case is to display a “last-resort” glyph or a visi-
ble “missing glyph” box, instead.

Contrast that with the typical situation for a format character, such as ZWJ. If an imple-
mentation does not support that character at all, the best practice is to ignore it completely
for display, without showing a last-resort glyph or a visible box in its place. This is because
even for normal rendering a ZWJ is invisible—its visible effects are on other characters.
When an implementation does not support the behavior of a ZWJ, it has no way of show-
ing the effects on neighboring characters.

Default Ignorable Code Point. The list of characters which should be ignored for display
in fallback rendering is given by a character property: Default_Ignorable_Code_Point
(DI). Those characters include almost all format characters, all variation selectors, and a
few other exceptional characters, such as Hangul fillers. The exact list is defined in
DerivedCoreProperties.txt in the Unicode Character Database.

The Default_Ignorable_Code_Point property is also given to certain ranges of code points:
U+2060..U+206F, U+FFF0..U+FFF8, and U+E0000..U+E0FFF, including any unassigned
code points in those ranges. These ranges are designed and reserved for future encoding of
format characters and similar special-use characters, to allow a certain degree of forward
compatibility. Implementations which encounter unassigned code points in these ranges
should ignore them for display in fallback rendering.

Surrogate code points, private-use characters, and control characters are not given the
Default_Ignorable_Code_Point property. To avoid security problems, such characters or
code points, when not interpreted and not displayable by normal rendering, should be dis-
played in fallback rendering with a fallback glyph, so that there is a visible indication of
their presence in the text. For more information, see Unicode Technical Report #36, “Uni-
code Security Considerations.”

A small number of format characters (General_Category = Cf ) are also not given the
Default_Ignorable_Code_Point property. This may surprise implementers, who often
assume that all format characters are generally ignored in fallback display. The exact list of
these exceptional format characters can be found in the Unicode Character Database.
There are, however, three important sets of such format characters to note:

• prepended concatenation marks
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• interlinear annotation characters

• Egyptian hieroglyph format controls

The prepended concatenation marks always have a visible display. See “Prepended Con-
catenation Marks” in Section 23.2, Layout Controlsfor more discussion of the use and dis-
play of these signs.

The other two notable sets of format characters that exceptionally are not ignored in fall-
back display consist of the interlinear annotation characters, U+FFF9 interlinear anno-

tation anchor through U+FFFB interlinear annotation terminator, and the
Egyptian hieroglyph format controls, U+13430 egyptian hieroglyph vertical joiner

through U+13438 egyptian hieroglyph end segment. These characters should have a
visible glyph display for fallback rendering, because if they are not displayed, it is too easy
to misread the resulting displayed text. See “Annotation Characters” in Section 23.8, Spe-
cials, as well as Section 11.4, Egyptian Hieroglyphs for more discussion of the use and dis-
play of these characters.
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5.22  U+FFFD Substitution in Conversion
When converting text from one character encoding to another, a conversion algorithm
may encounter unconvertible code units. This is most commonly caused by some sort of
corruption of the source data, so that it does not correctly follow the specification for that
character encoding. Examples include dropping a byte in a multibyte encoding such as
Shift-JIS, improper concatenation of strings, a mismatch between an encoding declaration
and actual encoding of text, use of non-shortest form for UTF-8, and so on.

When a conversion algorithm encounters such unconvertible data, the usual practice is
either to throw an exception or to use a defined substitution character to represent the
unconvertible data. In the case of conversion to one of the encoding forms of the Unicode
Standard, the substitution character is defined as U+FFFD replacement character.

For conversion between different encoding forms of the Unicode Standard, “U+FFFD Sub-
stitution of Maximal Subparts” in Section 3.9, Unicode Encoding Forms defines a practice
for the use of U+FFFD which is consistent with the W3C standard for encoding. It is useful
to apply the same practice to the conversion from non-Unicode encodings to an encoding
form of the Unicode Standard.

This practice is more secure because it does not result in the conversion consuming parts
of valid sequences as though they were invalid. It also guarantees at least one replacement
character will occur for each instance of an invalid sequence in the original text. Further-
more, this practice can be defined consistently for better interoperability between different
implementations of conversion.

For full consistency, it is important for conversion implementations to agree on 1) the
exact set of well-formed sequences for the source encoding, 2) all of the mappings for valid
sequences, and 3) the details of the practice for handling ill-formed sequences.
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