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Prospects: a Bayesian modelling approach0F0F

* 

Fengqing Chao,1F1F

** Vladimíra Kantorová,*** Giulia Gonnella, *** Lina Bassarsky, *** Lubov Zeifman*** 
and Patrick Gerland*** 

Abstract  
As part of its work in revising population estimates and projections for the biennial publication of the World 
Population Prospects (WPP), the United Nations Population Division produces age-specific fertility 
estimates for all countries and areas of the world, starting from 1950 up to today. These estimates are based 
on data from several reference data sources, such as civil registration and vital statistics systems, sample 
registration systems, surveys, national estimates and population censuses, and calculated using standard 
demographic techniques and approaches. Available estimates are often affected by biases and 
inconsistencies that need to be examined and considered while producing the annual series of age-specific 
fertility estimates. 

This technical paper details the Bayesian hierarchical model (BHM) that the Population Division developed 
to estimate the levels and trends in age-specific fertility rates (ASFR) for all countries and areas since 1950. 
The model uses an extensive database of fertility data from various data sources maintained by the 
Population Division. The BHM allows sharing of information across countries and periods to inform annual 
estimates for the countries and periods with sparse, biased or non-available data. 

The information included in World Population Prospects is used widely by the United Nations system, 
academia and civil society, among others, including for monitoring several indicators of the Sustainable 
Development Goals. The age-specific fertility estimates from the World Population Prospects are used to 
monitor the global and regional trends of the Sustainable Development Goal 3.7.2 Adolescent birth rate 
(aged 10–14 years; aged 15–19 years) per 1,000 women in that age group.  
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EXPLANATORY NOTES 

The following symbols have been used in the tables throughout this report: 

A full stop (.) is used to indicate decimals. 

References to countries, territories and areas: 

The designations employed in this publication and the material presented in it do not imply the expression of any 
opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, 
territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The term 
“country” as used in this publication also refers, as appropriate, to territories or areas. 

The following abbreviations have been used: 

AR1  first-order autoregression  
AR3  third-order autoregression  
ASFR  age-specific fertility rate  
BHM  Bayesian Hierarchical Model  
BRC  birth-reporting completeness  
CCM  cohort component method  
CI  Credible Interval  
CPS  Contraceptive Prevalence Surveys  
CRVS  civil registration and vital statistics  
CS  Calibrated Spline  
DHS  Demographic and Health Surveys  
DYB  Demographic Yearbook  
EDU  female educational attainment  
GBD  Global Burden of Disease  
HFD  Human Fertility Database  
IHME  Institute for Health Metrics and Evaluation, University of Washington  
INLA  Integrated Nested Laplace Approximation  
IPUMS  Integrated Public Use Microdata Series  
M49  Standard Country or Area Codes for Statistical Use (Series M, No. 49)  
MIS  Malaria Indicators Surveys  
MICS  Multiple Indicator Cluster Surveys  
NA  Not available  
OECD  Organization for Economic Co-operation and Development  
PAPCHILD  Pan Arab Project for Child Development  
PAPFAM  Pan Arab Project for Family Health  
PC  Penalized Complex  
PIs  Prediction Intervals  
PMA  Performance Monitoring and Accountability  
RHS  Reproductive Health Surveys  
RW1  first-order random walk  
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RW2  second-order random walk  
SDG  Sustainable Development Goals  
SQL  Structured Query Language  
SRS  Sample Registration System  
TFR  Total fertility rate  
UNAIDS  Joint United Nations Programme on HIV/AIDS  
UN DESA  United Nations Department of Economic and Social Affairs  
UNESCO  United Nations Educational, Scientific and Cultural Organization  
UNFPA  United Nations Population Fund  
UNICEF  United Nations Children's Fund  
UNSD  United Nations Statistics Division  
WFS  World Fertility Surveys  
WHO  World Health Organization  
WPP  World Population Prospects  
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I. INTRODUCTION 

The Population Division of the United Nations Department of Economic and Social Affairs (UN DESA) 
releases a set of population estimates and projections every other year, known as the World Population 
Prospects (WPP).  It forms a comprehensive set of demographic data to assess population trends at the 
global, regional, and national levels. The WPP consists of a prospective population reconstruction from 
1950 to the present (i.e., population estimates) and various scenarios of future population development (i.e., 
population projections) (United Nations, 2022a). 

 In the WPP, the cohort component method (CCM) is used to estimate and project populations by age 
and sex. The CCM offers a consistent framework for reconciling historical population estimates with 
estimated levels and trends in fertility, mortality, and net international migration. This method relies on the 
population balancing equation (Equation 1), whereby the national population can only increase or decrease 
between two points in time (e.g., 𝑡𝑡 and 𝑡𝑡 + 𝑛𝑛 where 𝑡𝑡 is the initial date and 𝑛𝑛 the time interval) as the result 
of births, deaths, and movements of the population across national boundaries (i.e., emigration and 
immigration).  

 Pop(t + n) = Pop(t) + Births(t, t + n) − Deaths(t, t + n) + NetMigrants(t, t + n)  (1) 

 As input for CCM, births within the time interval are compiled as the product of the estimates of age-
specific fertility rates (ASFR) and the estimated number of women in a given age group. Since the 2022 
revision of the World Population Prospects, the time interval and age group on which CCM is applied are 
one-year periods and single years of age (1x1). 

 This technical report describes the Bayesian hierarchical model (BHM) used to produce annual 
estimates of the levels and trends in age-specific fertility rates (ASFR) by five-year age groups from 10 to 
54 years for all countries and areas since 1950. The model uses an extensive database of age-specific fertility 
estimates from reference data sources maintained by the Population Division. The BHM allows the sharing 
of information across countries and periods to inform annual estimates for countries and periods with 
sparse, biased, or missing data. The annual estimates of ASFR for all five-year age groups produced with 
the BHM are eventually rescaled such that the total fertility rate obtained by appropriately aggregating the 
age-specific fertility rates is equal to that produced by bayesTFR, a model for total fertility only (Liu and 
Raftery, 2022; United Nations, 2022b), which is the model used in the WPP 2022 to estimate the total 
fertility rate based on a larger set of input fertility data (i.e., including data sources and estimation methods 
for which only the total fertility rate is available, but not the age-specific rates). The overall process is 
illustrated in figure 1. 

 In the following steps of the WPP process (United Nations, 2022b), the full annual time series of 
estimated fertility rates by five-year age groups was graduated to a single year of age using the Calibrated 
Spline (CS) method (Schmertmann, 2014), informed by a large set of empirical single-year fertility rates 
representing a diverse range of fertility age patterns (United Nations, 2022b). Lastly, preparing the final 
estimates of ASFR to be used in CCM entailed adjusting the graduated rates, as needed, for consistency 
with the total fertility rate each year (United Nations, 2022b). 

 The resulting age-specific fertility estimates from the World Population Prospects are used to 
monitor the global and regional trends of the Sustainable Development Goal (SDG) indicator 3.7.2 - 
Adolescent birth rate (aged 10–14 years; aged 15–19 years) per 1,000 women in that age group. SDG 
indicator 3.7.2 is one of two indicators used for the global monitoring of the progress made towards SDG 
target 3.7, which aims to ensure universal access to sexual and reproductive health care services, including 
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for family planning, information and education, and the integration of reproductive health into national 
strategies and programs by 2030. The Population Division is the custodian agency for SDG indicator 3.7.2. 

Figure 1. Workflow to estimate age-specific fertility rates 

 

  

Step 1: Compile estimates of age-specific 
fertility rates from various sources

Step 3: Data Preparation

1) Compute stochastic error for VR data

2) Compute sampling error for non-VR data

3) Impute missing sampling error for non-VR data

Step 4: Global BHM run

1) Obtain ASFR country-specific time trends and estimates for 
regional and global effects and parameters since 1950, for 
five-year age groups from 15 to 49.

2) Obtain ASFR estimates for age groups 10-14 and 50-54 
based on results from ASFR 15-19 and 45-49

To obtain 
consolidated 
country 
estimates 
and updated 
regional and 
global 
effects 

New data become 
available

Step 5: One-country BHM run

1) Preparation of new data for the specific country (as Step 1)

2) Use the updated set of data

3) Use estimates of regional and global effects and parameters 
from Step 2 as model input 

4) Obtain ASFR country-specific time trends since 1950

Step 2: Selection of highest quality data 
for inclusion in estimation process
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II. DATA COMPILATION AND DATA PREPARATION 

A. Data compilation 

 Analysts from the Population Division collected available data from various reference data sources, 
such as population censuses, surveys, vital and population registers, analytical reports and other sources for 
a given country. 1 The preferred data source for fertility is counts of live births by the age of the mother 
from a system of civil registration and vital statistics (CRVS) with national coverage and a high level of 
completeness (United Nations, 2017a). In cases where birth registration is deficient or lacking, fertility 
estimates are typically obtained through household sample surveys. Demographic sample surveys may 
provide estimates of fertility by asking women detailed questions to obtain their complete childbearing 
status. Current global survey programmes collecting detailed birth histories include the Demographic and 
Health Surveys (DHS) and Multiple Indicator Cluster Surveys (MICS). 2   Separate from the global 
programmes, some countries field their national demographic surveys, and a few have established sample 
vital registration systems. Population censuses serve as additional sources of information on fertility 
through questions about the number of children ever born and the births in the last 12 (or 24) months before 
the census date. Moreover, census or survey household population counts can be used to estimate age-
specific fertility rates through “own-children estimates” methods (Cho, Retherford and Choe, 1986; United 
Nations, 2004).  

 From all compiled data in the empirical demographic database of the Population Division 3, when 
multiple sources of information were available, only the series that met the highest authoritative standards 
were selected for inclusion in the estimation model. For example, birth registration data were used only for 
combinations of country and year for which birth registration completeness was higher than 60 per cent 
(Preston, 1984). Additionally, to avoid duplicates, when multiple sources of information existed, only one 
series of estimates and one series of vital registration were selected for each country and year combination. 
However, for the same time period, if results from multiple surveys, censuses or vital registration were 
available, each of these different data sources (or estimation methods) were included. 

 Overall, 41.3 per cent of data selected for the estimation of fertility rates by the age of mother were 
from vital registration covering 168 countries or areas (table 1). Additional common data sources were 
surveys (31.1 per cent of all observations, covering 141 countries) and estimates (24.7 per cent covering 93 
countries). Other data sources providing a smaller percentage of selected data were censuses (2.7 per cent 
of all observations covering 128 countries) and sample registration systems (only 0.1 per cent of all 
observations, but a particularly important source of data for two countries - Bangladesh and India).  

 
1 Traditionally, the data on number of births and fertility rates are obtained from the United Nations Statistics Division (Demographic Yearbook), 
national statistical offices and regional ones (e.g., Eurostat, OECD), United Nations Regional Commissions, other United Nations entities (e.g., 
UNAIDS, UNFPA, UNESCO, UNICEF, WHO, World Bank), and complemented using international databases (the Human Fertility Database (Max 
Planck Institute for Demographic Research (Germany) and Vienna Institute of Demography (Austria), 2021) and Human Fertility Collection (Max 
Planck Institute for Demographic Research (Germany) and Vienna Institute of Demography (Austria), 2020),  the International Data Base (U.S. 
Bureau of the Census, 2020), the Global Burden of Disease project (Institute for Health Metrics and Evaluation, 2020), and public use microdata 
archives (e.g., DHS, MICS, IPUMS-International). 
2 Fertility estimates from some other international survey programs were also considered, for example, the Performance Monitoring and 
Accountability (PMA) surveys. Other international survey programs that provided fertility estimates in decades prior to 2010 included the World 
Fertility Survey (WFS), the Contraceptive Prevalence Surveys (CPS), the Reproductive Health Surveys (RHS), and the Pan-Arab Project for Family 
Health (PAPFAM). 
3 DemoData SQL database available at https://population.un.org/DemoData/web/. 

https://www.humanfertility.org/
https://www.fertilitydata.org/
https://www.census.gov/data-tools/demo/idb/informationGateway.php
http://www.healthdata.org/gbd
https://population.un.org/DemoData/web/
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TABLE 1. DATA AVAILABILITY BY TYPE OF DATA SOURCE 

Source 

Number 
of 

countries 
Number of 

observations 

Proportion of 
observations 
(percentage) 

Census 128 3683 2.7 
Survey 141 42648 31.1 
Estimate 93 33866 24.7 
CRVS 168 56568 41.3 
SRS 2 154 0.1 
Total 237 136919 100 

Note: Observations were selected from the DemoData SQL database 
(https://population.un.org/DemoData/web/) for analysis of age-specific 
fertility rates as of March 2022. CRVS: Civil Registration and Vital Statistics. 
SRS: Sample Registration System. 

 More than half of the observations from the surveys were obtained through DHS (more than 25,000 
observations, 59.1 per cent of all survey observations) and MICS (more than 6,000 observations, 14.5 per 
cent) (table 2). Most of the observations from the demographic surveys were calculated using the full birth 
(or pregnancy) histories (representing 93.8 per cent of all observations from surveys), which reconstructed 
the list of births a woman had, including information on the date of birth (table 3). This type of data allows 
for the calculation of the ASFR for the periods preceding the survey. In this context, the period between the 
interview and the event – birth, in this case – can be classified into different intervals (5-year periods, 3-
year periods or irregular intervals). As shown in table 4 (for the observations from birth histories classified 
by five-year periods), the availability of such data was critical, especially for the youngest age groups (10-
14 and 15-19), providing estimates of age-specific fertility for long periods preceding the survey.  

TABLE 2. DATA AVAILABILITY BY TYPE OF SURVEY 

Survey Countries Observations 

Proportion of 
observations 
(percentage) 

DHS 93 25184 59.1 
MICS 64 6201 14.5 
WFS 40 2624 6.2 
RHS 14 1386 3.2 
PAPFAM/PAPCHILD 14 1292 3 
MIS 18 875 2.1 
Panel 1 86 0.2 
Other 93 5000 11.7 
Total 141 42648 100 

Note: DHS: Demographic and Health Surveys. MICS: Multiple Indicator Cluster Surveys. 
WFS: World Fertility Surveys. RHS: Reproductive Health Surveys. PAPFAM: Pan Arab 
Project for Family Health. PAPCHILD: Pan Arab Project for Child Development. MIS: 
Malaria Indicators Surveys. 
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TABLE 3. ESTIMATION METHODS USED TO CALCULATE AGE-SPECIFIC FERTILITY RATES FOR CENSUS AND SURVEY 

Source Method Observations 

Proportion of 
observations 
(percentage) 

Census 
Recent births 2866 77.8 

Population methods 584 15.9 

Other methods 233 6.3 

Survey Birth histories 40017 93.8 

Recent births 2187 5.1 

Other methods 444 1.0 

 

TABLE 4. NUMBER OF OBSERVATIONS FOR AGE-SPECIFIC FERTILITY RATES BY 5-YEAR PERIODS PRECEDING  
THE SURVEY, ACCORDING TO AGE GROUP 

 
 Number of years preceding survey 

Age group 0-4 5-9 10-14 15-19 20-24 25-29 30-34 

10-14 458 430 429 426 426 404 390 

15-19 462 432 431 429 428 397   

20-24 466 433 432 430 417     

25-29 466 433 432 423       

30-34 466 433 425        

35-39 466 426         

40-44 465          

45-49 453          
Note: Only observations from birth histories using 5-year periods are presented in this table. Other observations 
used 3-year or irregular periods, and are not presented in this table. 

 The years of the most recent observations of age-specific fertility rates from all available data sources 
and estimation methods vary greatly among countries. Among the 236 countries or areas with 1,000 
inhabitants or more in 2021, all but 38 had available fertility data collected in 2015 or later (table 5). For 
20 countries, the most recent data were collected between 2011-2014, for 16 countries between 2007 and 
2010, and for only 2 countries, the most recent national data were from 2004 (Western Sahara) and 2003 
(Lebanon). In terms of the differences in recent data availability across regions (figure 2), the majority of 
countries in Europe and Northern America and Australia and New Zealand had the latest data available in 
2019 or 2020 (figure 1), while 52.4 per cent of countries in sub-Saharan Africa and 40 per cent in Oceania 
(excluding Australia and New Zealand) had the latest data available in 2016 or earlier. In the remaining 
regions, some countries had recent data from 2019 or 2020, whereas other countries had no recent data 
available. 

 The metadata associated with the 2022 revision of WPP, available online, provide further details 
about the age-specific fertility data used for each country 4 and for the development of BHM methods 
presented in this technical report. In many cases, estimates derived from different data sources or methods 
vary significantly. 

 
4  https://population.un.org/wpp/Download/Metadata/Documentation/ and https://population.un.org/wpp/DataSources/. 

https://population.un.org/wpp/Download/Metadata/Documentation/
https://population.un.org/wpp/DataSources/
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TABLE 5. NUMBER OF COUNTRIES BY THE LATEST YEAR WITH DATA AVAILABLE 

Year Countries 

2014 and earlier 38 

2015 12 

2016 18 

2017 19 

2018 30 

2019 76 

2020 39 

2021   5 
 

Figure 2. Proportion of countries by latest year of available data by SDG regions 
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B. Data preparation 

 This section describes the preparation of the input dataset used in BHM, including the calculation of 
the stochastic error for CRVS data, and the calculation of sampling error for non-CRVS data. 

1. Stochastic error of CRVS data 

 The first step in data preparation entails the computation of stochastic errors for the CRVS data. As 
previously stated, CRVS data were used only for combinations of country and year in which the birth 
reporting completeness was above 60 per cent. The number of births by women in a specific age group is 
computed as the product of the observed fertility rates for the women in that age group from CRVS and the 
number of women in that age group (from WPP estimates of the female population by age). Generally, the 
number of births computed is smaller than the actual number, as births are subject to under-reporting. In 
the calculation of the stochastic errors of the CRVS data, the uncertainties from both under-reported and 
reported births were included. 

First, the reported birth-reporting completeness 5 (BRC) for country 𝑐𝑐 in year 𝑡𝑡, denoted as 𝑧𝑧𝑐𝑐,𝑡𝑡 , 
accounts for the uncertainty of under-reported births. The reported BRC 𝑧𝑧𝑐𝑐,𝑡𝑡 was assumed to be uniformly 
distributed. The 𝑔𝑔-th simulated BRC 𝑧𝑧𝑐𝑐,𝑡𝑡

𝑔𝑔  is obtained by: 

 𝑧𝑧𝑐𝑐,𝑡𝑡
𝑔𝑔  ~ 𝑈𝑈�𝑧𝑧𝑐𝑐,𝑡𝑡 − δ(𝑧𝑧)𝑐𝑐,𝑡𝑡 , 𝑧𝑧𝑐𝑐,𝑡𝑡 + δ(𝑧𝑧)𝑐𝑐,𝑡𝑡� (2) 

 where 𝛿𝛿(𝑧𝑧)𝑐𝑐,𝑡𝑡 is the standard error of the reported BRC for country 𝑐𝑐 in year 𝑡𝑡. T was assumed to 
decrease linearly from 0.25 to 0.05 when the reported BRC 𝑧𝑧𝑐𝑐,𝑡𝑡 was within the interval [60%, 95%]. When 
𝑧𝑧𝑐𝑐,𝑡𝑡 further increased to 100%, 𝛿𝛿(𝑧𝑧)𝑐𝑐,𝑡𝑡 was assumed to further decline linearly to zero. 𝛿𝛿(𝑧𝑧)𝑐𝑐,𝑡𝑡 was imputed 
as follows: 

 
𝛿𝛿(𝑧𝑧)𝑐𝑐,𝑡𝑡 = 0.25−

0.25 − 0.05
0.95 − 0.6 �𝑧𝑧𝑐𝑐,𝑡𝑡 − 0.6� 𝑖𝑖𝑖𝑖 60% ≤ 𝑧𝑧𝑐𝑐,𝑡𝑡 < 95%

𝛿𝛿(𝑧𝑧)𝑐𝑐,𝑡𝑡 = 0.05−
0.05

1 − 0.95 �
𝑧𝑧𝑐𝑐,𝑡𝑡 − 0.95� 𝑖𝑖𝑖𝑖 𝑧𝑧𝑐𝑐,𝑡𝑡 ≥ 95%

 (3) 

 It is worth noting that the assumptions made in simulating BRC are largely based on expert opinions. 
When additional information becomes available about the distribution of 𝑧𝑧𝑐𝑐,𝑡𝑡, the simulation steps can be 
updated accordingly. 

 The 𝑔𝑔-th simulated number of under-reported births 𝐵𝐵𝑐𝑐,𝑡𝑡
under(𝑔𝑔) was calculated as the product of the 

number of births reported 𝐵𝐵𝑐𝑐,𝑡𝑡
report and the difference between 1 and the 𝑔𝑔-th simulated BRC 𝑧𝑧𝑐𝑐,𝑡𝑡

(𝑔𝑔):  

 
5 The completeness of birth registration corresponds to the proportion of all births that occurred in a given year and were reported to civil registration 
authorities. The degree of completeness of birth registration can be evaluated through various analytical methods, including aggregated analysis 
(comparing observed vital events with reference figures from an alternative source believed to represent the true potential value of expected events), 
individual-level analysis (comparing and linking individual records of vital events from multiple data sources to identify matched records and those 
present in one data source but not another), indirect demographic analysis (comparing reported births with those expected from the reverse survival 
of enumerated children in censuses or from health or education statistics with universal coverage), or census or survey assessments (asking questions 
about whether vital events reported in the survey or census have been registered with local authorities) (Rao and others, 2020). 
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 𝐵𝐵𝑐𝑐,𝑡𝑡
under(𝑔𝑔) = 𝐵𝐵𝑐𝑐,𝑡𝑡

report �1 − 𝑧𝑧𝑐𝑐,𝑡𝑡
(𝑔𝑔)�. (4) 

 The 𝑔𝑔-th simulated total number of births 𝐵𝐵𝑐𝑐,𝑡𝑡
(𝑔𝑔) was obtained as the sum of reported births and 𝑔𝑔-th 

simulated under-reported births. The uncertainty in the estimates was included by assuming that the 
simulated number of births had a Poisson distribution:  

 𝐵𝐵𝑐𝑐,𝑡𝑡
(𝑔𝑔)~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 �𝐵𝐵𝑐𝑐,𝑡𝑡

report + 𝐵𝐵𝑐𝑐,𝑡𝑡
under(𝑔𝑔)�. (5) 

 At this point, the 𝑔𝑔-th simulated number of total births 𝐵𝐵𝑐𝑐,𝑡𝑡
(𝑔𝑔) was divided by the number of women in 

the specific age group 𝑁𝑁𝑐𝑐,𝑡𝑡
female to obtain the 𝑔𝑔-th simulated ASFR𝑐𝑐,𝑡𝑡

(𝑔𝑔): 

 ASFR𝑐𝑐,𝑡𝑡
(𝑔𝑔) = 𝐵𝐵𝑐𝑐,𝑡𝑡

(𝑔𝑔)/𝑁𝑁𝑐𝑐,𝑡𝑡
female (6) 

The stochastic error is the standard deviation of the simulated ASFR𝑐𝑐,𝑡𝑡
(𝑔𝑔): 

 σ𝑐𝑐,𝑡𝑡 = �∑ �ASFR𝑐𝑐,𝑡𝑡
(𝑔𝑔) − ASFR�������𝑐𝑐,𝑡𝑡�

2
𝐺𝐺
𝑔𝑔=1

𝐺𝐺 − 1
, (7) 

where: 

 ASFR�������𝑐𝑐,𝑡𝑡 =
∑ ASFR𝑐𝑐,𝑡𝑡

(𝑔𝑔)𝐺𝐺
𝑔𝑔=1

𝐺𝐺
 (8) 

2. Sampling errors for non-CRVS data 

 Whenever available, sampling errors were calculated from the micro-datasets. If the sampling errors 
were missing, they were imputed as the median of the sampling errors within each combination of age 
groups and the period between the interview and the event. The sampling errors were then calculated using 
a set of simulated normally distributed ASFR, with a mean equal to the observed ASFR and a standard 
deviation equal to the sampling error computed from the microdata. The computed standard deviation of 
the simulated ASFR on the logit scale provided the sampling error of the non-CRVS data. 

3. Data inclusion criteria 

 Additionally, observations with implausible extreme values were removed based on age-specific 
inclusion criteria: (1) exclude observations with zero values in some age groups and (2) exclude 
observations above age-specific upper cut-off values based on the estimated maximum natural fertility in 
human populations (Henri, 1961). Table 6 summarizes the age-specific inclusion criteria for the ASFR 
observations. 
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TABLE 6. AGE-SPECIFIC INCLUSION CRITERIA FOR ASFR OBSERVATIONS (PER 1000 WOMEN) 

 Age group 

Henri (1961) 
natural fertility 

for married 
women* 

(1) 

Proportion 
married or in a 

union (maximum 
observed)** 

(2) 

ASFR for natural 
fertility for all 

women 
(3) = (1)*(2) 

Upper cut-off 
values to 
include 

observations 
(4) 

Exclude 
true 

zeros 
(5) 

10-14      30 YES 
15-19   0.60  250 YES 
20-24 435 0.90 392 450 YES 
25-29 407 0.98 399 475 YES 
30-34 371 0.98 364 425 YES 
35-39 298 0.98 292 350 YES 
40-44 152 0.95 144 200 YES 
45-49 22 0.95 21 50 NO 
50-54   0.90  2 NO 

 
*Estimates of the average number of live births among women of a given age group based on 13 historical populations with 
no deliberate use of contraception or other fertility control methods. Henry (1961) defined natural fertility as “the maximum 
fertility of a population, which would be achieved if all women were married, lived in stable unions, and had no recourse to 
voluntary contraception”. 
**United Nations (2019e).  
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III. BAYESIAN HIERARCHICAL MODEL FOR ESTIMATING AGE-SPECIFIC FERTILITY 

 Bayesian hierarchical models (BHM) in the context of demographic analysis allow the use of data 
from different sources, while accounting for uncertainty and potential biases (Bijak, 2016). This section 
provides the technical details of the BHM used to estimate the age-specific fertility rates by five-year age 
groups from 10 to 54; first, explaining the process models (section III A-B), which are theoretical models 
used to describe the levels and trends in the true underlying ASFR, and second, the data models (section III 
C-D), which are models that describe patterns and uncertainties in the ASFR observations, given the process 
models. The process and data models are presented separately for age groups 10-14, 45-49, and 50-54 
because different parameters are used.  

A. Process model for age group 15 to 44 

 The BHM estimates the logit ASFR for all the 5-year age groups between 15-19 and 40-44 in a 
specific country and a specific year. The logit scale constrains the ASFR to fall between 0 and 1. The true 
logit-scaled underlying ASFR from country c in year t for all five-year age groups, logit�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐,𝑡𝑡�, is 
modelled as the combination of (i) the country-specific effect of female educational attainment, 
𝛼𝛼𝑐𝑐 log�EDU𝑐𝑐,𝑡𝑡�, (ii) regional effect 6 from the total fertility rate (TFR), 𝑊𝑊𝑟𝑟,𝑑𝑑[𝑐𝑐,𝑡𝑡] , (iii) country-specific 
temporal effect, 𝑃𝑃𝑐𝑐,𝑡𝑡, and (iv) country-specific offset, 𝜂𝜂𝑐𝑐. Specifically, 

 logit�𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑐𝑐,𝑡𝑡� = α𝑐𝑐 log�EDU𝑐𝑐,𝑡𝑡� + 𝑊𝑊𝑟𝑟,𝑑𝑑[𝑐𝑐,𝑡𝑡] + 𝑃𝑃𝑐𝑐,𝑡𝑡 + η𝑐𝑐  (9) 

 𝑊𝑊𝑟𝑟,𝑑𝑑[𝑐𝑐,𝑡𝑡] models the regional non-linear relationship between ASFR and TFR for country 𝑐𝑐 year 𝑡𝑡, 
where the index 𝑟𝑟 refers to the SDG region 𝑟𝑟 to which country 𝑐𝑐 belongs. Specifically, let 𝑉𝑉𝑐𝑐,𝑡𝑡 denote the 
log of TFR multiplied by 1000 for country 𝑐𝑐 year 𝑡𝑡, 7 taken from the WPP estimates (in this case from the 
2022 revision of WPP (United Nations, 2022a)). A grid of values 𝜅𝜅𝑑𝑑 was defined for 𝑑𝑑 ∈ {1,⋯ , 𝑥𝑥}, 𝑥𝑥 is 
the number of locations where 𝑊𝑊𝑟𝑟,𝑑𝑑 was evaluated, where 𝑥𝑥 = 151,𝜅𝜅1 = log(745/1000) and 𝜅𝜅𝑥𝑥 as the 
99.5th percentile of 𝑉𝑉𝑐𝑐,𝑡𝑡  across all country-years with data. Each 𝑉𝑉𝑐𝑐,𝑡𝑡  was matched to the 𝜅𝜅𝑑𝑑  with the 
smallest absolute difference from 𝑉𝑉𝑐𝑐,𝑡𝑡, denoting the 𝑑𝑑th index for country-year 𝑐𝑐, 𝑡𝑡 as 𝑑𝑑[𝑐𝑐, 𝑡𝑡]. To model the 
relationship between 𝑊𝑊𝑟𝑟,𝑑𝑑 and 𝜅𝜅𝑑𝑑. 𝑊𝑊𝑟𝑟,𝑑𝑑 was assumed to be constant outside the range of 𝜅𝜅1 and 𝜅𝜅𝑥𝑥 across 
all 𝑐𝑐 and 𝑡𝑡. In particular: 

 ∆2�𝑊𝑊𝑟𝑟,𝑑𝑑� =  𝑊𝑊𝑟𝑟,𝑑𝑑 − 2𝑊𝑊𝑟𝑟,𝑑𝑑+1 + 𝑊𝑊𝑟𝑟,𝑑𝑑+2,  (10) 

 ∆2�𝑊𝑊𝑟𝑟,𝑑𝑑� ~ 𝒩𝒩�0,
1
𝜏𝜏𝑟𝑟𝑤𝑤
� ,   for 𝑟𝑟 ∈ {1, … , 7},  𝑑𝑑 ∈ {1,⋯ , 𝑥𝑥 − 2}  (11) 

 
6 The regional classification used are SDG regions. Further details about the classification used: 
https://population.un.org/wpp/DefinitionOfRegions/. 
7 Multiplying by 1000 is done for computational purposes only, such that a finer grid of TFR values can be evaluated in the process model. 
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𝑃𝑃𝑐𝑐,𝑡𝑡 accounts for the within-country temporal fluctuations. We used a first-order random walk (RW1) 
to model 𝑃𝑃𝑐𝑐,𝑡𝑡 as follows: 

 ∆𝑃𝑃𝑐𝑐,𝑡𝑡 =  𝑃𝑃𝑐𝑐,𝑡𝑡 − 𝑃𝑃𝑐𝑐,𝑡𝑡−1,  (12) 

 ∆𝑃𝑃𝑐𝑐,𝑡𝑡 ~ 𝒩𝒩�0,
1
𝜏𝜏𝑐𝑐
𝑝𝑝� , for 𝑡𝑡 ∈ {1950, … ,𝜔𝜔}, 𝑐𝑐 ∈ {1, … , 237}  (13) 

where ω is the latest year in the estimation period. 

The country-specific regression coefficients for female educational attainment (the proportion of 
females with any education, GBD 2019 8) follow hierarchical normal distributions: 

 𝛼𝛼𝑐𝑐 ~ 𝒩𝒩(0, 1/𝜏𝜏𝛼𝛼) , for 𝑐𝑐 ∈ {1, … , 237}  (14) 

Penalized Complex (PC) priors to the regional precision parameter 𝜏𝜏𝑟𝑟𝑤𝑤 for 𝑟𝑟 ∈ {1, … , 7}, and country-
specific precision parameter 𝜏𝜏𝑐𝑐

𝑝𝑝 for 𝑐𝑐 ∈ {1, … , 237} are assigned as follows: 

 𝜏𝜏𝑟𝑟𝑤𝑤 ∼ PC(𝑧𝑧, 0.01), for 𝑟𝑟 ∈ {1, … , 7}, (15) 

 𝜏𝜏𝑐𝑐
𝑝𝑝 ∼ PC(1,0.01), for 𝑐𝑐 ∈ {1,⋯ ,237} (16) 

where 𝑧𝑧 is the standard deviation of all observations. The PC prior is a vague prior. Simpson and 
others (2017) documented the PC prior specification in detail. 

Non-informative priors for the global precision parameters  τα = 1/σα2  are assigned as follows:  

 τα ∼ Gamma(1,0.00005) (17) 

Figure 3.1 presents an overview of the BHM used for ASFR for an example country (Afghanistan). 
Part (i) consists of estimates of the proportion of the female population receiving any level of education in 
each country over time. This effect is modelled for each country and can be shared across all countries. In 
part (ii), the main assumption is that the levels and trends in TFR have similar effects on ASFR across 
countries within the same region. Since TFR patterns are usually non-linear, their effect on ASFR patterns 
is assumed to be non-linear across regions. In addition, using the three-phase Bayesian hierarchical model 
of fertility transition (Alkema and others, 2011), the effect of TFR in phase I (pre-fertility transition period) 
is assumed to be constant. For example, in Afghanistan, the TFR phase I transition ended in 1995. The TFR 
effect is constant during phase I. After 1995, the BHM assumed that for a given level of TFR, the TFR 
effect on ASFR is the same as in other countries in the same region. As the TFR in Afghanistan declined 
after 1995, the model estimated a decreasing effect on ASFR. Part (iii) models the correlation over time for 
each country, while part (iv) offsets the discrepancy between the logit-scaled true level of the ASFR and 
all other effects. 

 
8 Institute for Health Metrics and Evaluation (2020). 
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B. Process model for age groups 10–14 and 50–54 

The main assumption in this model is that the ASFR for age groups 10–14 and 50–54 are correlated 
with their neighbouring age groups (ASFR 15–19 and 45–49, respectively). Figures 3 and 4 present an 
overview of the BHM used for ASFR for the age groups of 15-19 and 10–14 years for an example country 
(Bangladesh). Instead of modelling the ASFR directly for these two age groups, the model was fitted to the 
ratio of the logit-scaled targeted ASFR to the logit of the neighbouring ASFR. Hence, the ASFR estimates 
are informed by empirical observations, and in periods when data are unavailable, they follow the trend and 
level of neighbouring ASFR. Throughout this section, superscript 𝑎𝑎 refers to the estimated age group, that 
is, age groups 10–14 or 50–54, and superscript 𝑎𝑎 ∗ refers to the corresponding neighbouring age group, that 
is, age group 15–19 as the neighbouring age group for 10–14 and 45–49 as the neighbouring age group for 
50–54. The process model is expressed in Equation 18 for 𝑎𝑎 ∈ {10− 14, 50 − 54}: 

 
logit(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐,𝑡𝑡

𝑎𝑎 )
logit(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝑐𝑐,𝑡𝑡

𝑎𝑎∗(𝑀𝑀𝑀𝑀10))
= 𝛼𝛼𝑐𝑐𝑎𝑎 log�EDU𝑐𝑐,𝑡𝑡� + 𝛽𝛽𝑐𝑐𝑎𝑎 log�TFR𝑐𝑐,𝑡𝑡�+ 𝑊𝑊𝑡𝑡

𝑎𝑎 + 𝑃𝑃𝑐𝑐,𝑡𝑡
𝑎𝑎 ,  (18) 

The process model estimates the ratio between two logits: (1) logit of the outcome of interest ASFR 
in age groups 10-14 or 50-54 logit(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐,𝑡𝑡

𝑎𝑎 ), and (2) logit of the 10-year moving average of ASFR median 
estimates from the neighbouring age group, denoted as logit(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝑐𝑐,𝑡𝑡

𝑎𝑎∗(𝑀𝑀𝑀𝑀10)), where the median estimates 
of the ASFR from the neighbouring age group are obtained based on the model described in section A. 
Regarding the denominator 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝑐𝑐,𝑡𝑡

𝑎𝑎∗(𝑀𝑀𝑀𝑀10), the 10-year moving average of ASFR of the neighbouring age 
groups (15-19 and 45-49, respectively) preserved the general country-specific pattern of the ASFR while 
eliminating the within-country year-by-year fluctuation. The moving average was kept constant during 
phase I of the fertility transition (as explained above).  

The process model for ages 10-14 and 50-54 includes three country-specific effects: (1) the female 
educational attainment linear effect, 𝛼𝛼𝑐𝑐𝑎𝑎 log�EDU𝑐𝑐,𝑡𝑡�, where EDU𝑐𝑐,𝑡𝑡 across all the countries and years was 
obtained from GBD 2019; (2) the TFR linear effect, 𝛽𝛽𝑐𝑐𝑎𝑎 log�TFR𝑐𝑐,𝑡𝑡�, where TFR𝑐𝑐,𝑡𝑡 across all the countries 
and years was obtained from WPP (based on the latest set of empirical data modelled using bayesTFR); 
(3) the flexible temporal effect 𝑃𝑃𝑐𝑐,𝑡𝑡

𝑎𝑎 ; and (4) one global temporal effect 𝑊𝑊𝑡𝑡
𝑎𝑎  that models the non-linear 

relationship between ASFR and time across all countries. 𝑊𝑊𝑡𝑡
𝑎𝑎 was modelled using a second-order random 

walk (RW2) structure for 𝑎𝑎 ∈ {10 − 14, 50 − 54}: 

 ∆2(𝑊𝑊𝑡𝑡
𝑎𝑎) =  𝑊𝑊𝑡𝑡

𝑎𝑎 − 2𝑊𝑊𝑡𝑡+1
𝑎𝑎 + 𝑊𝑊𝑡𝑡+2

𝑎𝑎 ,  (19) 

∆2(𝑊𝑊𝑡𝑡
𝑎𝑎) ~ 𝒩𝒩(0, 𝜏𝜏(𝑎𝑎)𝑤𝑤−1),   for 𝑡𝑡 ∈ {1950, … , 2019},  

𝑃𝑃𝑐𝑐,𝑡𝑡
𝑎𝑎  accounts for the within-country temporal fluctuations. We used a first-order autoregression 

(AR1) time series model to model 𝑃𝑃𝑐𝑐,𝑡𝑡
𝑎𝑎  for 𝑎𝑎 ∈ {10 − 14, 50 − 54}: 

 𝑃𝑃𝑐𝑐,𝑡𝑡
𝑎𝑎 ~ 𝑁𝑁(0,

1
𝜏𝜏(𝑎𝑎)𝑐𝑐

𝑝𝑝(1 − 𝜌𝜌2)
), for 𝑡𝑡 = 1950, 𝑐𝑐 ∈ {1, … , 237}  (20) 



 

 

 

Population Division 
 

18 

 

 𝑃𝑃𝑐𝑐,𝑡𝑡
𝑎𝑎 = 𝜌𝜌𝑃𝑃𝑐𝑐,𝑡𝑡−1

𝑎𝑎 + 𝜀𝜀𝑐𝑐,𝑡𝑡
𝑎𝑎 , for 𝑡𝑡 ∈ {1951, … , 2019}, 𝑐𝑐 ∈ {1, … , 237}  (21) 

 𝜀𝜀𝑐𝑐,𝑡𝑡
𝑎𝑎  ~ 𝒩𝒩�0,

1
𝜏𝜏(𝑎𝑎)𝑐𝑐

𝑝𝑝� , for 𝑡𝑡 ∈ {1951, … , 2019}, 𝑐𝑐 ∈ {1, … , 237},  (22) 

We assumed that the time series had a mean of zero and temporal correlation 𝜌𝜌 with the previous 
year (|𝜌𝜌| < 1 so that the process was stationary). 𝜀𝜀𝑐𝑐,𝑡𝑡

𝑎𝑎  was the country-year-specific white noise with a mean 
of zero and country-specific precision parameter 𝜏𝜏(𝑎𝑎)𝑐𝑐

𝑝𝑝. 

The country-specific regression coefficients for female educational attainment (the proportion of 
females with any education) and TFR followed hierarchical normal distributions for 𝑎𝑎 ∈ {10 − 14, 50 −
54}: 

 𝛼𝛼𝑐𝑐𝑎𝑎 ~ 𝒩𝒩(0, 1/𝜏𝜏(𝑎𝑎)𝛼𝛼) , for 𝑐𝑐 ∈ {1, … , 237}  (23) 

 𝛽𝛽𝑐𝑐𝑎𝑎 ~ 𝒩𝒩�0, 1/𝜏𝜏(𝑎𝑎)𝛽𝛽� , for 𝑐𝑐 ∈ {1, … , 237}  (24) 

We assigned non-informative priors to the global temporal correlation parameter 𝜌𝜌, the country-
specific precision parameter 𝜏𝜏(𝑎𝑎)𝑐𝑐

𝑝𝑝  for 𝑎𝑎 ∈ {10 − 14, 50 − 54}  and 𝑐𝑐 ∈ {1, … , 237} , and the global 
precision parameters 𝜏𝜏(𝑎𝑎)𝑤𝑤, 𝜏𝜏(𝑎𝑎)𝛼𝛼, and 𝜏𝜏(𝑎𝑎)𝛽𝛽 for 𝑎𝑎 ∈ {10− 14, 50 − 54}: 

 𝜌𝜌~𝑃𝑃𝑃𝑃(0.8,0.5) (25) 

 𝜏𝜏(𝑎𝑎)𝑐𝑐
𝑝𝑝 ∼ PC(1,0.01), for 𝑐𝑐 ∈ {1,⋯ ,237} (26) 

 τ(𝑎𝑎)𝑤𝑤 ∼ PC(𝑧𝑧, 0.01) (27) 

 τ(𝑎𝑎)α ∼ Gamma(1,0.00005) (28) 

 τ(𝑎𝑎)𝛽𝛽 ∼ Gamma(1,0.00005) (29) 

C. Process model for age groups 45–49 and 50-54 

Similar to the main model assumption for 10-14 and 50-54, the ASFR for age groups 45-49 and 50-
54 was assumed to correlate with its neighbouring age groups (40-44 and 45-49, respectively). Throughout 
this section, superscript 𝑎𝑎 refers to the estimated age groups, that is, age groups 45–49 or 50-54, and 
superscript 𝑎𝑎 ∗ refers to its corresponding neighbouring age group, that is, age groups 40–44 or 45-49, 
respectively. 
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The process model is expressed in Equation 30 for 𝑎𝑎 = 45– 49 and 𝑎𝑎 ∗ = 40– 44 as follows: 

 
logit(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐,𝑡𝑡

𝑎𝑎 )
logit(𝐴𝐴𝑆𝑆𝐹𝐹𝑅𝑅� 𝑐𝑐,𝑡𝑡

𝑎𝑎∗(𝑀𝑀𝑀𝑀10))
= 𝛼𝛼𝑐𝑐𝑎𝑎 log�EDU𝑐𝑐,𝑡𝑡� + 𝑊𝑊𝑟𝑟,𝑑𝑑[𝑐𝑐,𝑡𝑡]

𝑎𝑎 + 𝑃𝑃𝑐𝑐,𝑡𝑡
𝑎𝑎 ,  (30) 

where 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝑐𝑐,𝑡𝑡
𝑎𝑎∗(𝑀𝑀𝑀𝑀10) denotes the 10-year moving average of ASFR median estimates from the 

neighbouring age group 40-44, and the median estimates of the ASFR from the neighbouring age group 
were obtained based on the model described in section A for 40-44 and in this section for 45-49.  

The process model for these age 45-49 groups includes three parts: (1) female educational attainment 
linear effect, 𝛼𝛼𝑐𝑐𝑎𝑎 log�EDU𝑐𝑐,𝑡𝑡�, where EDU𝑐𝑐,𝑡𝑡 across all the countries and years are obtained from GBD 
2019 ; (2) regional effect from the TFR (obtained from the WPP 2022 revision), with the same model 
specification as described in section A the process model for ages 15-44, Equations 10-11  ;  (3) flexible 
temporal effect 𝑃𝑃𝑐𝑐,𝑡𝑡

𝑎𝑎 , where we used a third-order autoregression (AR3) time series model to estimate: 

 𝑃𝑃𝑐𝑐,𝑡𝑡
𝑎𝑎 = 𝜙𝜙1𝑃𝑃𝑐𝑐,𝑡𝑡−1

𝑎𝑎 + 𝜙𝜙2𝑃𝑃𝑐𝑐,𝑡𝑡−2
𝑎𝑎 + 𝜙𝜙3𝑃𝑃𝑐𝑐,𝑡𝑡−3

𝑎𝑎 + 𝜀𝜀𝑐𝑐,𝑡𝑡
𝑎𝑎  (31) 

 𝜀𝜀𝑐𝑐,𝑡𝑡
𝑎𝑎  ~ 𝒩𝒩�0,

1
𝜏𝜏(𝑎𝑎)𝑐𝑐

𝑝𝑝� , for 𝑡𝑡 ∈ {1951, … , 2019}, 𝑐𝑐 ∈ {1, … , 237},  (32) 

The time series 𝑃𝑃𝑐𝑐,𝑡𝑡
𝑎𝑎  was assumed to have a mean of zero and a temporal correlation with the previous 

three years 𝑃𝑃𝑐𝑐,𝑡𝑡−1
𝑎𝑎 , 𝑃𝑃𝑐𝑐,𝑡𝑡−2

𝑎𝑎 , and 𝑃𝑃𝑐𝑐,𝑡𝑡−3
𝑎𝑎  with correlation parameters 𝜙𝜙1, 𝜙𝜙2, and 𝜙𝜙3 respectively (where 𝜙𝜙1, 

𝜙𝜙2, and 𝜙𝜙3 are reparametrized by the partial correlation functions to maintain the stationarity of the time 
process). The prior for the reparametrized 𝜙𝜙1, 𝜙𝜙2, and 𝜙𝜙3 followed a multivariate normal distribution. 9 

D. Data model for age group 15 to 44 

The 𝑖𝑖-th observed ASFR, a𝑠𝑠𝑠𝑠𝑟𝑟𝑖𝑖, was modelled on the logit scale to ensure that the ASFR fell within 
the bounds of 0 and 1, as shown in Equation 33. The logit of the observed fertility rate was assumed to be 
the sum of (1) the true underlying rate on the logit scale logit�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐[𝑖𝑖],𝑡𝑡[𝑖𝑖]� for country 𝑐𝑐[𝑖𝑖] in year 𝑡𝑡[𝑖𝑖], 
and (2) the measurement error 𝛿𝛿𝑖𝑖  for the 𝑖𝑖-th observation 𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑖𝑖 . The indices 𝑐𝑐[𝑖𝑖] and 𝑡𝑡[𝑖𝑖] are used to 
distinguish multiple observations from the same country-year 𝑐𝑐 and 𝑡𝑡. The 𝑖𝑖 indexes observations across all 
country-years. 

 logit(𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑖𝑖) = logit�𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑐𝑐[𝑖𝑖],𝑡𝑡[𝑖𝑖]� + 𝛿𝛿𝑖𝑖  (33) 

As shown in Equation 34, the measurement error 𝛿𝛿𝑖𝑖  was modelled as the sum of (i) the 
sampling/stochastic error 𝜎𝜎𝑖𝑖2 and (ii) the non-sampling error 𝜔𝜔𝑠𝑠[𝑖𝑖]

2  for the data source type 𝑠𝑠 to which the 𝑖𝑖-
th observation 𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑖𝑖 belongs: 

 
9 The reparameterization and the multivariate normal prior for 𝜙𝜙1, 𝜙𝜙2, and 𝜙𝜙3 are achieved by the INLA R-package in the background. Refer to 
https://inla.r-inla-download.org/r-inla.org/doc/latent/ar.pdf for details on the reparameterization and prior. 

https://inla.r-inla-download.org/r-inla.org/doc/latent/ar.pdf
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 𝛿𝛿𝑖𝑖 ∼ 𝒩𝒩�0,𝜎𝜎𝑖𝑖2 + 𝜔𝜔𝑠𝑠[𝑖𝑖]
2 �  (34) 

The sampling/stochastic errors 𝜎𝜎𝑖𝑖2 were pre-calculated for each observation as described in the 
previous section. They reflect the uncertainty resulting from the survey sampling design for data from 
surveys and censuses and stochastic uncertainty from administrative records for vital registration data. The 
non-sampling errors 𝜔𝜔𝑠𝑠2, for 𝑠𝑠 ∈ {1, … , 5} are usually unknown, but inevitable during data collection and 
processing. They represent uncertainty from non-responses, recall bias, and data input errors, among others. 
For this reason, we modelled non-sampling errors as data source-specific parameters by assigning vague 
priors: 

 1/ω𝑠𝑠
2 ∼ PC(𝑧𝑧, 0.01), for 𝑠𝑠 ∈ {1, … , 5}. (35) 

E. Data model for age groups 10–14, 45-49 and 50–54 

In this section, the superscript 𝑎𝑎 refers to the estimated age group, that is, age groups 10–14, 45-49 
or 50–54. The superscript 𝑎𝑎 ∗ refers to the corresponding neighbouring age group, that is, age group 15–19 
as the neighbouring age group for 10–14, age group 40–44 as the neighbouring age group for 45–49, and 
45–49 as the neighbouring age group for 50–54. 

The data model for age groups 10-14, 45–49, and 50-54 is presented in Equation 36, where: 

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎 represents the 𝑖𝑖-th observation of ASFR in the age group 10-14, 45-49, or 50-54, and 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐[𝑖𝑖],𝑡𝑡[𝑖𝑖]
𝑎𝑎∗  is the corresponding ASFR estimate from the neighboring age group 15-19 (for 10-

14), age group 40-44 (for 45-49), or age group 45-49 (for 50-54). 

 
logit(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎)

logit�𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑐𝑐[𝑖𝑖],𝑡𝑡[𝑖𝑖]
𝑎𝑎∗ �

=
logit(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐[𝑖𝑖],𝑡𝑡[𝑖𝑖]

𝑎𝑎 )
logit(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐[𝑖𝑖],𝑡𝑡[𝑖𝑖]

𝑎𝑎∗ )
+ 𝛿𝛿𝑖𝑖  (36) 

The measurement error 𝛿𝛿𝑖𝑖 was modelled in the same manner as shown in Equation 34. 

F. Statistical computing 

The method used for this study is the Integrated Nested Laplace Approximation (INLA) for 
Bayesian inference (Rue, Marino and Chopin, 2009), implemented through the R package R-INLA (R Core 
Team, 2022; Rue, Marino, Lindgren et al., 2013). 

G. One-country model 

While the BHMs described in sections III A-D are global models that use observations from all 
countries, running a “one-country model” is also possible. During the process of country updates by an 
analyst, different versions of the model are run with new observations added, adjusted, or removed. When 
such minor data updates occur, global and regional effects are assumed to be unaffected. Hence, the one-
country model uses regional and global effects from the global model as model inputs, and only estimates 
country-level effects, assuming no change in regional and global effects. This is especially useful for 
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obtaining results using updated data and can provide immediate feedback on the impact of data inclusion, 
adjustment, or exclusion on the estimates. The advantage of the one-country model is that it runs faster than 
the global model and can immediately produce updated results. 10 Once the data updates were finalized for 
all countries, the global model was run to produce the final results for the specific revision of the WPP 
estimates. 

Using the results of the global and regional average effects from the global run, the “one-country 
model” allows to obtain updated estimates for a specific country when new data become available, without 
having to re-run the full global model. This enables analysts to update their estimates as needed, which will 
then be consolidated when the next global run is performed. The process model for the age group 15-44 
now becomes: 

 logit�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐,𝑡𝑡� = 𝛼𝛼𝑐𝑐 log�EDU𝑐𝑐,𝑡𝑡� + 𝑊𝑊�𝑟𝑟[𝑐𝑐],𝑡𝑡 + 𝑃𝑃𝑐𝑐,𝑡𝑡 + 𝜂𝜂𝑐𝑐 ,  (37) 

where 𝑊𝑊�𝑟𝑟[𝑐𝑐],𝑡𝑡 is the median estimate from the global run for region r in country 𝑐𝑐 in year 𝑡𝑡. 

The process model for the age groups 45-49 and 50-54 was as follows.  

For 𝑎𝑎 = 45 − 49 and 𝑎𝑎 ∗= 40 − 44, we have: 

 
logit(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐,𝑡𝑡

𝑎𝑎 )
logit(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴� 𝑐𝑐,𝑡𝑡

𝑎𝑎∗(𝑀𝑀𝑀𝑀10))
= 𝛼𝛼𝑐𝑐𝑎𝑎 log�EDU𝑐𝑐,𝑡𝑡� + 𝑊𝑊�𝑟𝑟,𝑑𝑑[𝑐𝑐,𝑡𝑡]

𝑎𝑎 + 𝑃𝑃𝑐𝑐,𝑡𝑡
𝑎𝑎 ,  (38) 

where 𝑊𝑊�𝑟𝑟,𝑑𝑑[𝑐𝑐,𝑡𝑡]
𝑎𝑎  is the median estimate from the global run for region r in country 𝑐𝑐 in year 𝑡𝑡. 

The process model for age groups 10-14 and 50-54 was as follows:  

For 𝑎𝑎 ∈ {10− 14, 50 − 54}: 

 
logit(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐,𝑡𝑡

𝑎𝑎 )
logit(𝐴𝐴𝐴𝐴𝐹𝐹𝑅𝑅� 𝑐𝑐,𝑡𝑡

𝑎𝑎∗(𝑀𝑀𝑀𝑀10))
= 𝛼𝛼𝑐𝑐𝑎𝑎 log�EDU𝑐𝑐,𝑡𝑡� + 𝛽𝛽𝑐𝑐𝑎𝑎 log�TFR𝑐𝑐,𝑡𝑡� + 𝑊𝑊�𝑡𝑡𝑎𝑎 + 𝑃𝑃𝑐𝑐,𝑡𝑡

𝑎𝑎 ,  (39) 

where 𝑊𝑊�𝑡𝑡 is the median estimate from the global run in year 𝑡𝑡. 

The only change in the data model for all age groups was the distribution of the measurement 
error 𝛿𝛿𝑖𝑖: 

 𝛿𝛿𝑖𝑖 ∼ 𝒩𝒩�0,𝜎𝜎𝑖𝑖2 + 𝜔𝜔�𝑠𝑠[𝑖𝑖]
2 �  (40) 

where 𝜔𝜔�𝑠𝑠[𝑖𝑖]
2  is the median estimate for the non-sampling error variance from the global model for 

the data source type 𝑠𝑠 to which the 𝑖𝑖-th observation belongs. 

  

 
10 For a typical desktop computer, a global run for an age group takes roughly 18 minutes for 10,000 posterior samples and a one-country run takes 
10-15 seconds. 
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Figure 3. ASFR model illustration for a five-year age group between 15 and 44 years  
Example of Afghanistan and age group 15-19 

 

 
Source: United Nations (2022), GBD (2019) and own calculations. 
Note: The curves show the posterior medians. The shades show 95 per cent uncertainty bounds. Dots are the observations 
used for modelling. The shading and vertical lines around the dots represent sampling errors (if available). The scale of 
the y-axis in the 2nd and 3rd rows is an inverse-logit numerical value for each effect. 
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Figure 4. ASFR model illustration for age group 10-14 using Bangladesh  

 

 

 

 

 

 

 

 

Source: United Nations (2022), GBD (2019) and own calculations. 
Note: The curves show the posterior medians. The shades show 95 per cent uncertainty bounds. Dots are the observations used for 

modelling. The green line and right-hand y-axis represent the results of the model for neighbouring age group (15-19 in this case). The shading and 
vertical lines around the dots represent sampling errors (if available). The scale of the y-axis in the 2nd and 3rd rows is the inverse-logit numerical 
value of for each effect. 
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IV. RESULTS FOR SELECTED COUNTRIES 

This section presents the BHM estimates of age-specific fertility rates by five-year age groups for the 
selected countries. The aim is to illustrate the results for three different cases:  

1. Countries with high quality and high coverage of data, such as vital registration data from 
administrative records. Countries in this category are usually high-income or upper-middle-income 
countries with complete registration systems for recording vital events. 

2. Countries without high-quality vital registration data from administrative records but with some data 
from surveys, censuses, and estimates, and with proper data coverage over time. Countries in this 
category usually do not have complete vital registration systems, but sampling surveys and censuses 
are regularly conducted. They are typically middle- or low-income countries. 

3. Countries with very limited data. 

Figure 5 presents the ASFR estimates for each five-year age group from 10 to 54 years from Czechia 
and the United States of America based on the BHM method. These two countries have high-quality vital 
registration data for every year since 1950 for all the five-year age groups. The BHM median estimates 
closely follow the observation levels and trends within a country over time. The uncertainty bounds are 
narrow for all age groups and reflect the fact that the observations are of high quality and only stochastic 
errors are accounted for in the model. The wider uncertainty bounds for BHM results in the age groups 10-
14, 45-49 and 50-54 in recent years are due to the very small number of births in these age groups. This 
results in larger stochastic errors in the vital registration data. 

Figure 6 shows the ASFR estimates for Egypt and Peru. Egypt had some vital registration observations 
included in the dataset in the most recent period. Both countries have many observations from other data 
sources such as international surveys (e.g., DHS and MICS), country-specific surveys, and censuses. The 
data coverage was generally good in recent decades but low in earlier ones. There are no data for the age 
group of 50-54. The BHM model estimates follow the data trends for the country-periods in which the data 
are available. If there are multiple observations for a certain country-year, the BHM model can use all of 
them. In such cases, the model estimates are closer to the higher-quality observations (corresponding to 
smaller sampling errors) and less towards the data points with lower quality (equivalent to larger sampling 
errors). For country-periods with no data, the BHM estimates are mainly driven by the model assumptions: 
the country-level effect of female education attainment, the regional effect of TFR for all age groups except 
for 10-14 and the global TFR effect for age group 10-14, country-level temporal effect and offset (i.e., 
exposure time). For the age group 50-54, the BHM estimates reflect the average experience from all 
country-periods with data, and also reflect the additional model assumption that the trend in ASFR 50-54 
is similar to that in ASFR 45-49. 

Figure 7 presents the ASFR estimates for Eritrea and Saudi Arabia. The selected countries have a very 
limited number of available observations and do not have any data points before the 1980s. The BHM 
estimates are driven almost entirely by model assumptions for the entire estimation period 1950-1980. 
Hence, as a result of the hierarchical model structure, the effect of female education attainment is based on 
the average effect from all countries in the world; the effect of TFR is the average effect from all countries 
in the same region for age groups between 15 and 49 years or from all countries for age groups 10-14, and 
the temporal effect, which is the average of all countries. 
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Figure 5. ASFR model estimates for five-year age groups from 10 to 54 years from selected countries with high-quality 
and high completeness of vital registration data 

Examples of Czechia and United States of America  
 

 
Note: The red curves show the posterior medians. The shades show 95 per cent uncertainty bounds. Dots are the observations used for modelling. 
The shading and vertical lines around the dots represent sampling errors (if available).  
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Figure 5. Continued 

 
Note: The red curves show the posterior medians. The shades show 95 per cent uncertainty bounds. Dots are the observations used for modelling. 
The shading and vertical lines around the dots represent sampling errors (if available). 
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Figure 6. ASFR model estimates for five-year age groups from 10 to 54 from selected countries with data from surveys, 
censuses and reports and with reasonable data coverage 

Examples of Egypt and Peru  

 

Note: The red curves show the posterior medians. The shades show 95 per cent uncertainty bounds. Dots are the observations used for modelling. 
The shading and vertical lines around the dots represent sampling errors (if available). 
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Figure 6. Continued 

 

Note: The red curves show the posterior medians. The shades show 95 per cent uncertainty bounds. Dots are the observations used for modelling. 
The shading and vertical lines around the dots represent sampling errors (if available).  
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Figure 7. ASFR model estimates for five-year age groups from 10 to 54 years from selected countries with limited data   

Examples of Eritrea and Saudi Arabia 

 
Note: The red curves show the posterior medians. The shades show 95 per cent uncertainty bounds. Dots are the observations used for modelling. 
The shading and vertical lines around the dots represent sampling errors (if available). 
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Figure 7. Continued 

 

Note: The red curves show the posterior medians. The shades show 95 per cent uncertainty bounds. Dots are the observations used for modelling. 
The shading and vertical lines around the dots represent sampling errors (if available). 
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V. VALIDATION 

The model performance was validated using the validation approach of Alkema and others (2014). 
ASFR observations within each five-year age group from ages 10 to 54 collected after each age-specific 
year (referred to as “data source reference year,” which is not the reference year of an observation but rather 
the reference year in which the observation was collected) were excluded from a model run for that 
particular five-year age group. The left-out observations comprise approximately 20 per cent of the total 
observations (owing to the varying number of observations collected in each survey reference year, the left-
out observations can be slightly above or below 20 per cent). The left-out observations were the testing 
dataset and the remaining observations were the training dataset. For each age group, table 7 shows the 
years for data sources after which the ASFR observations are left out and the corresponding percentage and 
number of observations left out by age group. 

TABLE 7. AGE-SPECIFIC SURVEY REFERENCE YEAR USED FOR TESTING DATASET, PERCENTAGE, AND NUMBER  
OF LEAVING LEFT-OUT ASFR OBSERVATIONS 

Age 
group 

Cut-off survey 
year to leave out 
observations as 

testing data 

Percentage of 
left-out 

observations 

Number of 
 left-out 

observations 

10-14 2013 15.4 3385 

15-19 2012 17.7 3795 

20-24 2011 20.1 3792 

25-29 2011 20.1 3482 

30-34 2011 20.1 3158 

35-39 2010 22.4 3168 

40-44 2010 22.4 2967 

45-49 2009 24.1 2985 

50-54 2007 28.1 561 
 

For each left-out observation in the testing dataset, a posterior predictive distribution was generated 
based on BHM fittings for the training dataset. The error was computed as the difference between the left-
out observation and the median of the posterior predictive distribution: 

 𝑒𝑒𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑌𝑌𝚤𝚤� , (41) 

where 𝑦𝑦𝑖𝑖 is the 𝑖𝑖-th left-out observation and 𝑌𝑌𝚤𝚤�  is the corresponding median of the posterior predictive 
distribution. The median errors of all the left-out observations and the median of the absolute errors are 
presented in table 8, together with the coverage of 90 per cent prediction intervals (PIs). 11 The lower and 
upper bounds of the 90 per cent PIs for each left-out observation are the 5th and 95th percentiles of the 
posterior predictive distribution, respectively. 

 
11 Prediction interval is the uncertainty interval based on the posterior predictive distribution that would have been constructed based on left-out 
observations. 
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To summarize the coverage, we computed the proportion of left-out observations that fell outside the 
90 per cent PIs. Table 8 summarizes the results related to the proportion of left-out observations for the 
validation exercise. The median errors and median absolute errors were close to zero for all age groups, 
indicating that the differences were small. The coverage of 90 per cent prediction intervals was higher than 
expected for all age groups except for the age group 40–44 years. This means that the model predictions 
are conservative, with wider prediction intervals than expected.  

TABLE 8. VALIDATION RESULTS FOR LEFT-OUT OBSERVATIONS BY AGE GROUP 

Age group 
(observation year) Median error 

Median 
absolute 

error 

Proportion of  
left-out  

observations below 
5th percentile of 

prediction interval 

Proportion of  
left-out 

observations above 
95th percentile 

prediction interval 

10-14 (2013-2021) 0.000 0.001 4.4% 1.4% 

15-19 (2012-2021) -0.001 0.013 6.0% 2.7% 

20-24 (2011-2021) -0.002 0.016 5.1% 0.9% 

25-29 (2011-2021) 0.000 0.011 0.8% 1.1% 

30-34 (2011-2021) 0.008 0.015 0.6% 3.1% 

35-39 (2010--2021) 0.007 0.012 1.6% 6.5% 

40-44 (2010--2021) 0.002 0.005 2.1% 9.0% 

45-49 (2009-2021) 0.000 0.001 0.8% 3.1% 

50-54 (2007-2021) 0.000 0.000 0.0% 1.4% 

The model performance was validated by comparing the model estimates based on the full and 
training datasets. For each country-year, the error was computed as the difference between the median 
estimates based on the full dataset and those based on the training dataset. For all country-years, the median 
of these errors and absolute errors was calculated, and the percentage of country-years in which the median 
estimates based on the full dataset fell outside the credible bounds of the estimates based on the training 
dataset was calculated. Table 9 shows the results of the comparison between the estimates obtained based 
on the full dataset and those based on the training set for the year 2000. Median errors and the median 
absolute errors were close to zero. The proportion of updated estimates that fell outside the uncertainty 
intervals constructed based on the training set was generally within the expected range (less than 5 per 
cent). 

The exceptions are for each five-year age group from 15 to 39 years, where the median prediction 
based on the full run tends to be higher than the 90 per cent credible interval (CI) 12 based on the full training 
database. This implies that the recent data show that the ASFR from age 15 to 39 declined faster than the 
historical experience based on the model assumptions. 

  

 
12 Credible interval is the uncertainty interval based on the posterior samples from the model fittings. 
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TABLE 9. SUMMARY OF DIFFERENCES IN ASFR ESTIMATES IN OBSERVATION YEAR 2000,  
BASED ON THE TRAINING AND FULL DATA SETS 

Age group  
(observation year) Median error 

Median 
absolute 

Error 

Full run prediction 
below 5th 

percentile of 
prediction interval 
of validation run 

(%) 

Full run prediction 
above 95th 
percentile 

prediction interval 
of validation run 

(%) 

10-14 (2000) 0.000 0.000 3.0 3.0 

15-19 (2000) 0.000 0.002 2.1 8.0 

20-24 (2000) 0.000 0.003 3.8 8.4 

25-29 (2000) 0.000 0.002 5.5 8.4 

30-34 (2000) 0.000 0.001 3.0 8.0 

35-39 (2000) 0.000 0.001 1.7 8.4 

40-44 (2000) 0.000 0.001 3.4 3.8 

45-49 (2000) 0.000 0.000 3.8 3.4 

50-54 (2000) 0.000 0.000 0.4 3.8 
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VI. CONCLUSIONS 

The model presented in this report produces estimates of age-specific fertility rates for all countries 
and territories since 1950 in a manner that is reproducible, consistent, and comparable across countries and 
times. The model uses an extensive database of age-specific fertility estimates to produce annual estimates 
for all five-year age groups from 10 to 54 years for all countries and areas since 1950. Estimates in countries 
with limited or no data or low-quality or biased data are supported by borrowing information from other 
countries in the region and by using covariates in a reproducible fashion. The estimates are based on 
extensive databases from all available data sources. Estimates in countries with limited or no data or with 
data of low-quality or biased data are supported by borrowing information from other countries in the region 
and by using covariates in a reproducible fashion. All underlying data and estimates are publicly available 
through https://population.un.org/dataportal/home link to data portal for the most recent revision of World 
Population Prospects. 

 

https://population.un.org/dataportal/home


 

 

 

Population Division 
 

35 

 

VII. REFERENCES 

Alkema, L., and others (2011). Probabilistic projections of the total fertility rate for all countries. 
Demography, vol. 48, No. 3, pp. 815-39. doi: 10.1007/s13524-011-0040-5.  

Alkema L, and others (2014). National, regional, and global sex ratios of infant, child, and under-5 mortality 
and identification of countries with outlying ratios: A systematic assessment. The Lancet Global 
Health, vol. 2, No. 9, e521-30.  

Andreev, K., and others (2013). Demographic Components of Future Population Growth. Technical Paper 
No. 2013/3, United Nations, New York. 

Bijak, J. and J. Bryant (2016). Bayesian demography 250 years after Bayes. Population Studies, vol. 70, 
No. 1, pp. 1–19. 

Cho, L.J., R.D. Retherford, and M.K. Choe (1986). The Own-Children Method of fertility estimation. 
Honolulu: The East-West Center. 

Henry, L. (1961). La fécondité naturelle. Observation-théorie-résultats. Population (french edition), pp. 
625-636. 

Institut Centrafricain des Statistiques et des Études Économiques et Sociales (ICASEES) (2009). Enquête 
par Grappe à Indicateurs Multiples, couplée avec la Sérologie VIH et Anémie 2006 (MICS-3), Bangui, 
République Centrafricaine. 

Institute for Health Metrics and Evaluation (2020). Global Burden of Disease Study 2019 (GBD 2019). 
University of Washington. Available from www.healthdata.org/gbd. Accessed 10 October 2020. 

Liu, P., and A.E Raftery (2020). Accounting for uncertainty about past values in probabilistic projections 
of the total fertility rate for most countries. The annals of applied statistics, vol. 14 N0. 2, pp. 685. 

Preston, S. (1984). The Use of Direct and Indirect Techniques for Estimating the Completeness of Death 
Registration Systems. In Data bases for mortality measurements, edited by United Nations, pp. 66-76. 
New York.  

R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical 
Computing, Vienna, Austria. (www.R-project.org/). 

Raftery, A., and others (2009). Probabilistic Projections of the Total Fertility Rate for All Countries for the 
2010 World Population Prospects. Paper presented to United Nations Expert Group Meeting on Recent 
and Future Trends in Fertility, held at the United Nations Headquarters in New York from 2-4 
December 2009 by the Population Division Department of Economic and Social Affairs: United 
Nations. 

Rao, C., R. Mswia, M.Brastchi, and P. Setel (2020). Estimating Completeness of Birth and Death 
Registration: Methods and Options for Estimating Completeness of Civil Registration. Vital Strategies, 
NY. 

 Rutstein, S. (2018). Data Quality Evaluation of the Niger 2017 Demographic and Health Survey. The 
Demographic and Health Surveys Program (https://dhsprogram.com/pubs/pdf/OD73/OD73.pdf). 

Simpson D, and others (2017). Penalising model component complexity: A principled, practical approach 
to constructing priors. Statistical science, vol. 32, No. 1, pp. 1-28. 

Susmann, H., M. Alexander, and L. Alkema (2022). Temporal Models for Demographic and Global Health 
Outcomes in Multiple Populations: Introducing a New Framework to Review and Standardise 

https://unitednations.sharepoint.com/sites/DESA-POP/POSU/POSU_Staff/2_Publications/3_Production/3_Technical_Paper/2023_Estimating_ASFR_in_the_World_Population_Prospects/www.healthdata.org/gbd
https://unitednations.sharepoint.com/sites/DESA-POP/POSU/POSU_Staff/2_Publications/3_Production/3_Technical_Paper/2023_Estimating_ASFR_in_the_World_Population_Prospects/www.R-project.org/
https://dhsprogram.com/pubs/pdf/OD73/OD73.pdf


 

 

 

Population Division 
 

36 

 

Documentation of Model Assumptions and Facilitate Model Comparison. International Statistical 
Review, vol. 90, pp. 437– 467. 

United Nations (2004). Handbook on the Collection of Fertility and Mortality Data. Statistical papers. 
Series F, Studies in methods. ST/ESA/STAT/SER.F/92. Statistics Division Department of Economic 
and Social Affairs. New York, NY, United Nations. Available from 
https://unstats.un.org/unsd/publication/SeriesF/SeriesF_92E.pdf. 

----------------- (2006). World Population Prospects: The 2004 Revision, Volume III: Analytical Report. 
ST/ESA/SER.A/246.  

------------------ (2017a). Principles and Recommendations for Population and Housing Censuses, 
Revision 3. ST/ESA/STAT/SER.M/67/Rev.3. New York, NY, United Nations. Available from 
https://unstats.un.org/unsd/demographic-social/Standards-and-
Methods/files/Principles_and_Recommendations/Population-and-Housing-
Censuses/Series_M67rev3-E.pdf. 

------------------ (2017b). World Population Prospects 2017, Online Edition. 

------------------ (2017c). World Fertility Data 2017. POP/DB/Fert/Rev2017. 

------------------ (2019b). World Population Prospects 2019, Methodology of the United Nations Population 
Estimates and Projections, ST/ESA/SER.A/425. 

------------------ (2019c). World Population Prospects 2019, Online Edition. Rev. 1. (metadata). 

------------------ (2019d). World Fertility Data 2019. POP/DB/Fert/Rev2019. 

------------------ (2019e). World Marriage Data 2019. POP/DB/Marr/Rev2019. 

------------------ (2022a). World Population Prospects 2022, Online Edition. 

------------------ (2022b). World Population Prospects 2022: Methodology of the United Nations population 
estimates and projections. UN DESA/POP/2022/TR/NO. 4. 

United Nations Economic Commission for Europe (UNECE) (2018). Recommendations on 
Communicating Population Projections, Prepared by the Task Force on Population Projections, United 
Nations, New York and Geneva.  

Wilson, C. (2011). Understanding Global Demographic Convergence since 1950. Population and 
Development Review, vol. 37, No. 2, pp. 375-388. Retrieved on May 13, 2020, from 
www.jstor.org/stable/23043287. 

 

 

https://unstats.un.org/unsd/publication/SeriesF/SeriesF_92E.pdf
https://unstats.un.org/unsd/demographic-social/Standards-and-Methods/files/Principles_and_Recommendations/Population-and-Housing-Censuses/Series_M67rev3-E.pdf
https://unstats.un.org/unsd/demographic-social/Standards-and-Methods/files/Principles_and_Recommendations/Population-and-Housing-Censuses/Series_M67rev3-E.pdf
https://unstats.un.org/unsd/demographic-social/Standards-and-Methods/files/Principles_and_Recommendations/Population-and-Housing-Censuses/Series_M67rev3-E.pdf
http://www.jstor.org/stable/23043287

	EXPLANATORY NOTES
	I. Introduction
	II. Data compilation and data preparation
	A. Data compilation
	B. Data preparation
	1. Stochastic error of CRVS data
	2. Sampling errors for non-CRVS data
	3. Data inclusion criteria


	III. Bayesian hierarchical model for estimating age-specific fertility
	A. Process model for age group 15 to 44
	B. Process model for age groups 10–14 and 50–54
	C. Process model for age groups 45–49 and 50-54
	D. Data model for age group 15 to 44
	E. Data model for age groups 10–14, 45-49 and 50–54
	F. Statistical computing
	G. One-country model

	IV. Results for selected countries
	V. Validation
	VI. Conclusions
	VII. References



