
ITS�� A Static Vulnerability Scanner for C and C�� Code

John Viega� J�T� Bloch� Tadayoshi Kohno� Gary McGraw
Reliable Software Technologies

����� Ridgetop Circle� Suite ���� Dulles� VA �����
phone	 
���� ���
����� fax	 
���� ���
����

email	 fviega� jtbloch� yoshi� gemg�rstcorp�com
http���www�rstcorp�com

Abstract
We describe ITS�� a tool for statically scanning

security�critical C and C�� source code for vulnerabil�
ities� Compared to other techniques� our results indi�
cate that this approach stakes out a new middle ground
on accuracy� while being e�cient enough to give real�
time feedback to a developer during coding� Our tech�
nique is also simple enough that it can easily be ap�
plied to C��� despite the complexities inherent in the
language� We have used our tool to �nd new remotely�
exploitable vulnerabilities in a widely distributed soft�
ware package� as well as a major piece of e�commerce
software�

Our tool� along with its source code� is available
from http���www�rstcorp�com�its����

� Introduction
The C and C�� programming languages are a

detriment to writing secure code� because the lan�
guages and their supporting libraries make it easy for
programmers to add vulnerabilities to their code in�
advertently�

For example� the C standard library de�nes the
gets routine� which takes as a parameter a pointer to
a character� s� The gets function reads text from the
standard input of a program� placing the �rst charac�
ter at the location to which s points� Subsequent data
are placed consecutively after s in memory� Bytes are
read from the standard input until a newline or end
of �le character is reached� at which point the bu�er
is terminated with a null character� The programmer
has no way to specify how big a bu�er is being passed
to gets� As a result� if the bu�er is n bytes and an
attacker tries to write n�m bytes into the bu�er when
running the program� the attack will always be suc�
cessful� as long as the data does not include newlines�

�Note to reviewers� this page is expected to go live on Febru�

ary ��� Source code is available earlier by request�

There are two signi�cant risks in this case� First�
variables adjacent in memory to the bu�er can easily
be overwritten� If such variables store security�critical
data such as an access control list� then a wily attacker
can modify the data to great advantage� The second
risk is that an attacker will be able to trick the pro�
gram into running arbitrary code� Such stack over�ow
attacks are perhaps the most common security �aw in
applications today� The technical details of such at�
tacks are discussed widely in the security community�
��� 	
�

In practice� the presence of gets in a program al�
most always signals a security problem� Nonetheless�
this function has remained in the standard C library
since the early days of the language� Many simi�
lar problems pervade the library� Some well�known
�gotchas
 include sprintf� strcpy and strcat�
Wagner�	
� discusses more subtle bu�er over�ow prob�
lems with common C functions� including the so�
called �safe
 alternatives to these functions� including
strncpy and strncat�

The problem of widespread security vulnerabilities
easily �nding their way into C and C�� programs is
by no means restricted to bu�er over�ow conditions�
even though they are the most common type of er�
ror� For example� system and popen� two library calls
for running programs through the command shell� are
both notoriously di�cult to use correctly�

Nonetheless� these functions are commonly used in
security�critical applications� Indeed� so are the well�
known unsafe string operations� including strcpy and
sprintf� For example� sendmail version ����� boasts
��� individual calls to strcpy alone� If these problems
are so well known� why are they still encountered so
often�

We believe based on personal experience that there
are several factors contributing to this problem�

	� Despite the fact these problems are well known�



they are not universally known� Programmers
who have heard about a problem aren�t always
thinking about it when they use a questionable
call� Many programmers give no consideration to
security at all until after all the code has been
written�

�� Programmers often know that a particular call
may introduce problems� but do not know what
the potential problems are�

�� Programmers are often unaware of what should
be corrected to avoid a known problem�

�� Programmers are likely to take the easiest ap�
proach� hoping that their use of a hazardous con�
struct is either not exploitable� or that no one will
�gure out that they have a problem �the �security
through obscurity
 argument��

Unfortunately� there are few good sources of infor�
mation about writing secure software� Such sources
would help alleviate problems through education� but
will not represent a complete solution because the pro�
grammer must remain security conscious�

Adding to these obvious problems� there are other
categories of bugs that are far less well known� and
far more subtle� For example� synchronization issues
such as race conditions can often lead to security vul�
nerabilities� The �time�of�check�time�of�use
 �TOC�
TOU� category of �le�based race conditions identi�ed
by Bishop and Dilger��� is a good example� Many
programs that use temporary� publicly writable stor�
age space are susceptible to being raced by a mali�
cious process� Problems arise when a process checks
information on a �le �such as whether or not it al�
ready exists�� then later uses the �le� assuming that
the recently checked information is still true� For ex�
ample� a setuid text editor might open a temporary
�le 	�tmp�foo	 after checking to see that it does not
already exist� After the check� but before the �le is ac�
tually opened� a malicious attacker symbolically links
a temporary �le with the same name to �etc�passwd�
The attacker then types his new password �le into the
text editor and saves it� at leisure�

Many programmers would never think that such an
attack was even a possibility� Even worse� fewer pro�
grammers would know how to avoid race conditions
and other hazards� For example� one common solution
among people supposedly in the know is to create a
temporary �le name that is meant to be hard to guess
by appending a unique string that is some transforma�
tion on the output of a system random function such
as rand� Unfortunately� such solutions are poor� since

most random number generation routines generate re�
producible output based on a seed value� Choosing a
secure seed is itself a di�cult software security prob�
lem�

We believe that in an ideal world� the program�
mer should need to know nothing about security� the
abstractions and tools used in programming should
be so good that there is miniscule chance of the pro�
grammer ever writing code that contains a security
bug� Of course� this goal is unrealistic� Determining
whether �untrusted
 data is able to a�ect �trusted

data in a general purpose manner is quite a complex
problem� and currently requires the programmer to
annotate variables with what is essentially a security
policy �	��� There is currently no realistic hope that
this task could ever be completely automated�

The C and C�� languages are unlikely to become
inherently more secure anytime soon� To make up for
this shortcoming� we believe that programming envi�
ronments should attempt to ease the burden of writing
secure software for the end programmer� For example�
both editors and program compilers can be made to
examine code for potential security violations�

Such a paradigm works well for more mundane er�
rors� Editors catch some errors� especially those of a
syntactic nature� Compilers are more powerful� de�
tecting syntactic errors� and more complex problems�

Why have the editor catch errors when compilers
are available� There are bene�ts� The main bene�
�t is that the user receives more immediate feedback
from an editor than a compiler� Plus� editors must be
interactive� real�time applications� whereas compilers
are generally slow� Every bug the editing environment
catches can potentially spare the programmer an ad�
ditional compile when building and testing a program�

We see similar parallels in the area of static software
vulnerability detection� On one end of the spectrum�
�quick�and�dirty
 approaches should be available to
the programmer as early in the development cycle as
possible �preferably as the programmer types�� even
if they forego a signi�cant amount of precision� Our
work falls in this space� On the other end of the spec�
trum� compilers �or similar tools� should be capable
of performing a much higher�assurance static security
analysis at build time� even if such an analysis is time
consuming�

� The problem with grep
ITS� was developed to address the need for a prac�

tical� widely applicable tool to help people identify po�
tentially unsafe constructs in C and C�� code� While
we certainly would �nd such a tool useful in the course
of developing our own security�critical software� the



primary motivation was to save ourselves time when
performing security audits of C and C�� source�

Before ITS�� we would use grep at the command
line as one part of a source code audit �as we believe
many people do�� The primary goal was to identify
locations at which a program might fall prey to the
same old bag of tricks� We almost exclusively looked
for call sites to standard library functions with known
issues� While this technique was indeed useful for �nd�
ing actual vulnerabilities� we found it to be lacking in
several respects�

	� Too much expert knowledge is required�

There are dozens� or even hundreds� of vulnera�
ble system calls� many rarely appear in the wild�
We found it very hard to remember everything for
which we should search� and found ourselves too
lazy to spend a lot of time looking up such infor�
mation in our rather poor notes and our scattered
references�

By contrast� we believe that a good tool low�
ers the requirement for possessing expert knowl�
edge by keeping a database of vulnerabilities�
This database would include a description pos�
sible problems� hints on how to tell if there really
is a problem� and suggested �xes�

�� Using grep is too in�exible� It would be use�
ful for the code auditor to be able to sort data
intelligently� For example� an auditor may wish
to look at vulnerabilities in order on a per��le ba�
sis� instead of looking at all strcpys followed by
all sprintfs� etc� Also� an auditor might want to
look at all bu�er over�ow problems at once� fol�
lowed by all TOCTOU problems� Unfortunately�
grep alone cannot readily provide this sort of
functionality� a special�purpose tool is necessary�

More importantly� it would be useful to perform
other forms of analysis in addition to the grep�
to help re�ne the results� For example� a heuris�
tic for detecting race conditions��� may help keep
the auditor from having to check dozens of calls�
Grep does not provide a good framework for such
analysis� since it a�ords no data structures repre�
senting the program �e�g�� there are no parse trees
or token streams��

�� There tend to be too many false posi�

tives� Since grep is only performing simple string
matching� its false positive rate can be quite frus�
trating� We�ve found that when a user has to
sift through high proportions of false positives�

it is common for a user not to examine individ�
ual instances closely or at all�� We call this the
�get done� go home
 phenomenon� We postu�
late that this phenomenon contributes to the fact
that there are several reported cases of signi��
cant vulnerabilities escaping notice during secu�
rity audits�	
��

��� False positives

It is not unheard of to see risky function names
mentioned in comments or string literals�� Similarly� it
is not uncommon practice for someone to use a macro
de�nition such as�

�define safe�strcpy�dst� src� �

�sizeof�dst� � strlen�src� ��

strcpy�dst� src� 	 abort���

Every instance of safe strcpy encountered by
grep will be �agged as a potential problem� To get
rid of all those instances� grep must be rerun� with a
more complex command line�

From our experience� these problems combined
happen surprisingly often in real applications� See
Section ��	 for some results in this area�

Another type of false positive is a call that can al�
most trivially be ruled out from context� For example�
running grep on ssh version 	����� yields 	�� calls to
sprintf� �� of these calls can be quickly classi�ed as
�very unlikely to be a problem
 once the context is
examined� Consider the following examples from that
distribution�

sprintf�hex 
 � � 
� ����x�� byte��

sprintf�buf� �select	 ��
��s�r�n��

strerror�errno���

In the �rst case� it might be possible to scribble into
memory� but the odds are incredibly low that anything
interesting would be possible even if we could� since
we only get to write a single byte� Generally� we would
ignore any such problems in our audit� because expe�
rience tells us that it is not a good use of our time to
examine such cases�

In the second case� the programmer has ex�
plicitly speci�ed that no more than 	�� bytes of
strerror�errno� are to be copied into buf� Gen�
erally� that indicates someone is pretty sure buf is at

�In fact� if a user doesn�t �nd a vulnerability fairly quickly�

we often �nd people claiming that the code is secure without

�nishing their audit�
�Reviewers� we plan on determining how common this prac�

tice actually is in several big packages� including sendmail and

wu�ftpd�



least that long� Of course� mistakes can happen� How�
ever� we generally classify these call sites as �low risk
�
and only examine them if time permits�

Similarly� the following can potentially be ex�
ploitable in theory� but seldom is in practice�

strcpy�dst� ��n���

If an experienced user can trivially prioritize all the
code shown above� a good tool should be able to do
the same in an e�ort to avoid the �get done� go home

phenomenon as much as possible�

��� False negatives

Note that� theoretically� false negatives are possi�
ble with grep� i�e�� it is possible to fail to report a call
site� even though it is in the source and will be parsed
by the compiler� However� such �potential� false neg�
atives do not tend to be a signi�cant problem in prac�
tice� Consider the following cases�

	� A function we wish to �ag is used in a

macro� This case is not much of a problem� es�
pecially if we remember to grep through header
�les as well as the source� If we do so� we are
bound to �ag the macro de�nition�

Additionally� �nding one of our functions of in�
terest in a macro can help reduce the amount of
spam we must wade through to perform useful
analysis� For example� sendmail ����� de�nes the
following macro�

�define newstr�s��

strcpy�xalloc�strlen�s� 
 
�� s�

This macro is clearly never going to lead to any
bu�er over�ow problems� given no bugs in xalloc
�� However� newstr is called from 	
� sites� sav�
ing us much manual inspection� If the macro were
not so clearly safe� it would be pretty easy for us
to also grep for newstr�

ITS� behaves the same as grep does in the face
of macros�

�� A function we wish to �ag is applied indi�

rectly through a function pointer� Consider
the following code�

char ���fp��char �� const char���

fp � strcpy�

�But it may be disastrous when the system runs out of

memory�

���

��fp��dst� src��

While grep will �ag the assignment to a function
pointer� it obviously will not catch applications
through that pointer� Such call sites must be dis�
covered by manual inspection� This situation is
not even caught by the technique presented in
�	
�� though it is certainly possible for static anal�
ysis to �ag these call sites if a su�ciently powerful
alias analysis is performed�

If the pointer to strcpy is obtained without spec�
ifying the name of the function �e�g�� by calculat�
ing the location from a known o�set to another
function� no warning results�a true false nega�
tive �assuming the call was actually a real vul�
nerability�� However� such code is generally not
found outside of obfuscated C contests�

ITS� behaves like grep with respect to function
pointers�

�� A call to a function we wish to �ag is sep�

arated across multiple lines� For example�

int main�int argc� char ��argv�

�

char buf�
����

if�argc � 
�

str�

cpy�dst�argv�
���

return ��

�

In this case� grep will produce a true false nega�
tive� However� in practice� breaking a single to�
ken across multiple lines is rare �except perhaps in
compiler test suites and more obfuscated C con�
tents��

ITS� does not share this problem because of our
parsing strategy�

� Why not more precise analysis�
��� Parsing strategy

ITS� performs only simplistic analysis on source
code �as described in more detail in the next section��
A large part of the reason why ITS� does not per�
form analysis of any real sophistication is because of
its parsing strategy�

ITS� breaks a non�preprocessed �le up into a series
of lexical tokens� and then matches patterns in the
stream of tokens� Matching code is added by hand�



Package Total counted lines Percent passive
wu�ftpd���� ��	� �����
net�tools�	��� ���� ��
��
sshd�	����� �	��� 	�����
sendmail������ �
	�� 	
����
apache�	���� ����� �
����

Table 	� Code not compiled into an average con�gu�
ration

so non�regular patterns can be recognized� When per�
forming more sophisticated static analysis� it is gen�
erally easier to use a fairly complete� easy to navigate
representation of a program� such as a parse tree gen�
erated from a context�free parser�

����� False negatives

One reason we chose not to use a �real parser
 was
that we wanted to have a false negative rate of as
close to � as possible� Analysis tools using traditional
parsing �such as the lint family of tools� can only an�
alyze a single build of a program at once� since there is
currently no known technique for parsing C and C��
programs with preprocessor directives into a single ab�
stract syntax tree�

As developers ourselves� we want to check every
possible build of our program� not just the build we use
to develop� As people who audit the code of others� we
also want to examine the entire program easily with�
out having to specify multiple build con�gurations and
keep track of uncovered code�

Under the assumption that people aren�t often go�
ing to analyze more than a single build� we examined
several large pieces of open�source software to see how
much source such an analysis will miss� We wrote
a simplistic preprocessor that counts how many lines
of original source �not counting system headers� will
be included into an executable �we call these active
lines�� and how many will not be �we call these pas�
sive lines�� This tool is not sophisticated enough to
handle complex conditional expressions� so in those
cases� we evaluate them by hand� and substitute a
constant expression� We ran this tool on several large
open�source projects� using default con�gurations for
a Pentium��� running Redhat ���� The tool counts
lines of source and blank lines� but omits comments�
We did not count lines in packaged third�party soft�
ware� All preprocessor directives are ignored in our
statistics� The results are shown in Table 	�

Even ����� of a program is quite a large portion
not to consider during analysis� In the testing world�
�	���� statement coverage is not considered adequate�

Although we elide per�module data for the sake of
brevity� we should note that the percentage of pas�
sive lines in individual modules can vary greatly� This
means that static analysis tools can fail to analyze
mission�critical modules accurately�

For example� the net�tools package includes code
to support IPv�� However� if HAVE AFINET� is not
de�ned� then none of the functionality in the IPv�
portions of net�tools will be examined by a static
analysis tool�

Of course� multiple builds can be made� But the
analyst has to �gure out which builds to make� compile
each� and run the entire analysis algorithm repeatedly�
We currently do not know how many builds of each of
the applications above would require analysis� Future
work will address this question�

����� Practicality

Another reason why we chose not to use �real
 pars�
ing was the desire to immediately produce a practical�
widely applicable tool that developers can use� We
wanted something �quick and dirty
 that avoided all
the di�culties that we would encounter in �real
 pars�
ing� The most signi�cant hurdle was the large� com�
plex nature of C���s syntax� Another factor was the
amount of time required to design the data structures
used by analysis techniques�

����� Interactivity

A third reason for not using �real
 context�free pars�
ing is that we wanted to be able to support interac�
tive programming environments such as Emacs and
Microsoft Visual C�� in real time� We would like
to see potential security errors highlighted in red� like
bad spelling in Microsoft O�ce applications� In other
words� as the programmer enters code� the program�
ming environment should recognize the likelihood of
any particular piece of code being a security problem�
and act appropriately�

Unfortunately� traditional parsing techniques are
not suitable for meeting this goal� since they only work
reliably on a semantically valid program� Highly ac�
curate error handling in traditional parsers is notori�
ously di�cult�	�� Also� traditional parsing considers
an entire �le as a unit� and thus may end up being
ine�cient in practice if an individual �le was parsed
after every few keystrokes�



However� heuristics based on regular languages are
known to work fairly well in similar situations� even if
they are not fully precise� For example� Emacs uses
regular�expression based matching on code in order
to perform syntax highlighting� Though its inferences
about the syntax of an individual token are occasion�
ally wrong� Emacs is right far more often than not�
Similarly� the Microsoft O�ce incremental spelling
and grammar checker can fail to parse an English sen�
tence properly� Despite shortcomings� these tools are
widely used and highly useful�

��� Current limitations of advanced static
analysis for C and C��

We believe that static analysis of a quality beyond
that available in ITS� can have a tremendous impact
on software security in C and C��� However� we iden�
tify several problems� some of which make a practical
tool involving such technology di�cult for the time
being�

	� C�s liberal nature makes the language

poorly suited to static analysis� The general
laxness of the C language �e�g�� arbitrary pointer
arithmetic and gotos� makes many types of static
analysis intractable in the worst case�		�� In the
average case� C�s heavy reliance upon pointers
makes any sophisticated analysis very di�cult�

�� The added complexities of C�� make it

very di�cult to analyze� Though resent re�
search on static analysis has made some head�
way into performing useful analyses on object�
oriented languages in general� C�� su�ers be�
cause it is both object�oriented and derived from
C� Currently� object�oriented analysis techniques
are still cutting�edge research� performing an ac�
curate analysis in an environment with classes�
dynamic dispatch and templates is a large chal�
lenge�

�� Static analysis in a multi�threaded envi�

ronment is di�cult� In a production environ�
ment� multi�threaded applications are quite pop�
ular on Windows platforms� and are becoming
ever�more popular for Unix�based systems� Un�
fortunately� the potential for interaction of data
between threads must be considered by any anal�
ysis tool that wishes to be correct�

�� Better static analysis is less e�cient� ITS��
which performs a very simple analysis �described
in Section ��� analyzes about ���� lines of code
per second on a Pentium���� For sendmail

������ it took ���	� seconds on average to scan

the code in CPU time� and never more than 
��
seconds of wall time �more detailed performance
information is given in Section �����

�	
� presents a static analysis technique that
uses constraint solving to try to determine which
bu�ers can potentially over�ow� and by how
much� That technique ignores control �ow infor�
mation as well as context� Their prototype tool
can process sendmail in about 	� minutes on a
Pentium III� It is believed that a version of the
software could be made to run on the order of
a few minutes if the code were better tuned for
performance �	��� We anticipate that a similar
analysis that handled �ow and context properly
would be at least an order of magnitude slower
still�

These problems played a signi�cant role in our de�
cision to avoid complicated forms of analysis in ITS��
The conclusions we drew from our experience with
static analysis is that it would take several years of
solid e�ort to produce a robust� precise� portable and
�most importantly� practical tool that does an excel�
lent job of statically analyzing source for security vul�
nerabilities�

� I
�
t�s T

�
he S

�
oftware� S

�
tupid� 	S

�
ecurity

S
�
canner


This section discusses version 	��b	 of ITS�� The
current version of the tool supports a command�line
interface to the scanning engine� and integration with
Gnu Emacs�

��� Initial scanning and assessment

ITS� takes one or more C or C�� source �les as in�
put� breaking each into a stream of tokens� After scan�
ning a �le ITS� examines the resultant token stream�
comparing identi�ers against a database of �suspects�

The database is discussed in more detail in the next
subsection�

Checking each identi�er is a heuristic that is not
completely accurate� security neutral identi�ers may
be �agged� The most obvious example is variable
names� Consider the following C code�

�include �test�h�

int main��

�

int strcpy�

return ��

�

Running ITS� on this code produces the following
results�



�viega�lima c�� its� test
�c

test
�c	�	�Very Risky� strcpy

This function is high risk for buffer overflows�

Use strncpy instead�

����������������

Obviously� we would like to avoid these false pos�
itives� However� we cannot accurately determine all
identi�ers that are lexically used as variables without
�real
 parsing� The largest problem is that the pre�
processor can arbitrarily modify our identi�ers� In the
program above� both the int speci�er and the variable
strcpy could be replaced with arbitrary code�

We could make a �closed�world
 assumption that
our scanner gets to examine all code that will be used
to build the application� However� to handle the gen�
eral case correctly� we would have to implement a full
preprocessor� as the programmer might do arbitrarily
complex things� The problem is made worse in that
the preprocessor can have arbitrarily complex expres�
sions in conditionals� and the resulting value of each
conditional can change from build to build by passing
in �ags at the compile line�

Fortunately� programmers don�t generally pervert
the preprocessor in this way� a simpler analysis usu�
ally su�ces for practical applications� Of course� pro�
grammers don�t generally use strcpy as a variable
name� On one hand� we could add further complex�
ity to our code� and in the theoretical worst case have
false negatives� On the other� we could err on the side
of conservatism� potentially adding false positives� We
chose the conservative approach�

While our approach does seem to do what the
programmer expects with regard to �agging function
calls almost all the time� we have run into one case
where it did not do so� In particular� when scanning
sendmail������� we found several uses of a variable
named stat� which happens to clash with the stat

call� often involved in race condition problems�

Scanning for all identi�er tokens had unexpected
bene�ts� It had been suggested that we could restrict
our checks to those identi�ers that are followed by a
left parenthesis� We did not do so due to the poten�
tial for preprocessor abuse� and because our tool �ags
assignments of dangerous functions to variables �see
Section �����

��� The vulnerability database

ITS� reads a vulnerability database from a text
�le at startup� keeping the entire contents resident in
memory for the lifetime of the tool� Vulnerabilities
can be added to the database� removed and changed
with ease�

The ITS� vulnerability database currently contains
	�	 calls culled from many sources��� �� �� includ�
ing the Bugtraq archives�	�� and our own personal
experience� The largest single class of problems in
our database are race conditions involving �le ac�
cesses� Functions susceptible to bu�er over�ows also
account for many entries� Several di�erent pseudo�
random number routines are �agged because they
are often used �incorrectly� to provide entropy in
security�critical applications� For example� develop�
ers may use these functions to shu�e cards or gener�
ate cryptographic keys in situations where security is
important��� ���

For each call� we store the following information�

� A brief description of the problem�

� A high�level description of how to code around
the problem�

� A relative assessment of the severity of the prob�
lem� on the following scale� NO RISK� LOW RISK�
MODERATE RISK� RISKY� VERY RISKY� MOST RISKY�

� An indication of what type of analysis to per�
form whenever the function is found in the token
stream�

� Whether or not the function can retrieve input
from an external source such as a �le or socket�
ITS� has a mode that �nds all points at which in�
put can come in to the program� because we often
found ourselves wanting that sort of functionality
in our manual audits�

Unfortunately� the database currently has several
limitations� mainly stemming from the fact that it was
put together based on the limited knowledge of the
authors�

	� Measures of severity should be re�ned based on
feedback from the security community� We do not
feel we were the best people to judge these values
in most cases�

�� The descriptions and recommendations we pro�
vide are thin in substance�

�� Several �elds would be desirable but are currently
not present� such as a detailed description of the
problem and a detailed code example for how to
mitigate the problem�

�� The database is currently Unix speci�c� re�ecting
our lack of knowledge of Windows vulnerabilities�



We hope each of these issues can be addressed in
the near future with the help of the community�

The location of the vulnerability database can be
speci�ed at the command line� As a result� it is very
easy to use databases that have been modi�ed� such
as a pared down database that contains only bu�er
over�ow information� The programmer can also spec�
ify functions for which ITS� should check at the com�
mand line� even if they are not in the database� Also�
the programmer can selectively check for particular
functions� or ignore functions through command line
options�

��� ITS� commands

ITS� can ignore individual occurrences of a partic�
ular function� While such a feature can be detrimental
�as misuse can cause the tool to ignore actual vulner�
abilities�� it is useful for pruning the output as indi�
vidual vulnerabilities are manually audited and elim�
inated�

For example� a developer may add a strcpy to
a work�in�progress� After running ITS�� she learns
about the potential problem� and �xes it by adding
an explicit bounds check before the call� ITS� cannot
currently perform a sophisticated enough analysis to
determine that such a check is present� As a result�
it will always �ag this instance of strcpy� It would
be unfortunate for there to be no way to suppress this
error�

ITS� commands are meant to ameliorate this prob�
lem� and o�ers two ways to do so� First� the de�
veloper can insert in�place comments with embedded
commands to the scanner� For example�

strcpy�buf� dst�� �� ITS�	 ignore

Will be ignored� The comment usually occurs on
the same line as the code it e�ects� However� if there
is no code on the same line� it a�ects the subsequent
line�

The case�insensitive text �ITS��
 must appear in
the comment� followed by an optional list of function
calls� The list may optionally be comma separated�
Nothing else may appear in the comment�� If no calls
are speci�ed� ITS� will ignore any call on the a�ected
line�

When modifying the source code is not an option�
the user can keep a list of ITS� commands in a �le�
along with the �le name and line number to which the
command applies� The user speci�es the location of
this �le on the command line�

�Well� okay� whitespace may also appear�

To allow auditing of code that already has embed�
ded ITS� commands� the tool provides a command
line option to ignore all commands�

ITS� provides other ways to reduce the amount of
output� or� at the very least� to present it in a more
useful way� For example� there are several di�erent
sorting methods available� and vulnerabilities can be
�ltered based on severity�

��� Analysis techniques

When ITS� �rst �ags a function name� it looks
up a �handler
 for the function in the vulnerability
database� The handler is responsible for reporting the
problem �agged by the scanner� If no handler is found
in the database� the default handler is used� which
merely adds the problem to the results database� How�
ever� handlers can be used to perform more sophisti�
cated analysis on a program�

ITS� performs several tricks in an attempt to re�
duce the number of false positives produced by the
tool� However� the notion of �false positive
 is slightly
fuzzy in this discussion� because our tool will never
throw away information about a vulnerability� In
practice� we expect that users will often consider only
a percentage of the output� and then only the output
ranked as most severe� Consider the following C code�

strcpy�buf� ��n���

ITS� will reduce the severity of the above use of str�
cpy from VERY RISKY to the lowest available� Since the
scanner only outputs vulnerabilities of MODERATE RISK

or above by default� the end user will never see the
warning generated by the tool unless she speci�cally
asks to see all warnings�

In our experience with the tool� we�ve found that
even the most patient programmers will give up fairly
quickly when the severity of all problems is RISKY or
below� We believe the RISKY designation is approxi�
mately where the false positive rate starts to approach
	��� rapidly�� Therefore� even in our own security au�
dits� we may only look at such items if time permits�
depending on the situation� This problem is discussed
further in Section ��

Currently� there are two types of analysis that ITS�
can perform to re�ne the initial assessment it pro�
duces� The �rst is checking parameters of string con�
stants in argument parameters in unsafe string oper�
ations� The second is performing a heuristic check for

�Unfortunately� measuring accuracy rates is very di�cult to

do� because we would have to examine a large number of pro�

grams to get signi�cant numbers� and because the manual work

involved to obtain such numbers would be enormous�



race conditions� using a modi�cation of an algorithm
presented in ����

Both analyses can be turned o� at the command
line�

	�	�� Sanity checking arguments

As mentioned in Section �� grep unfortunately re�
ports many hazards that are �obviously
 unlikely to
be problems in practice� When performing code in�
spections with grep we would often note in frustration
the things that could easily be ignored with some code
that wrapped the command� The most common ex�
amples we saw were strcpys that only copied a �xed
string into a bu�er and sprintfs with no string spec�
i�er �i�e�� �s� in the format string� ITS� is able to
identify these obvious cases through its handler mech�
anism�

One handler that comes with ITS� is the �strcpy

handler� This handler is currently used not only by
strcpy� but also by strcat and strncpy� In each of
these functions� the �rst argument is the target bu�er�
and the second is the source string� If the source string
is a constant� then we should reduce the severity of this
vulnerability� For example� the following call should
not be �agged as severe� because the second argument
is a �xed string�

strcpy�dst� ��n���

Our handler has a pointer to the current token�
which is the left parenthesis immediately after the
strcpy� If the handler �nds anything other than a
parenthesis� it gives up� Next� it tries to �nd the
second argument� by scanning forward in the token
stream� looking for commas at the right nesting level�
If the �rst argument consists of nested function calls�
the algorithm will work properly� For example� ITS�
has no problem with the following�

strcat�a�b��h�i�� e�x�y�z��� �the end����

If a second argument is not found or is not a string�
ITS� gives up� Otherwise� it matches the pattern� and
awards the problem the lowest possible severity level�

Similar checking is performed for the sprintf fam�
ily of functions� First� the format string is found�
Then� the format string is scanned for a percent sign�
followed immediately by an �s�� If no such pattern is
found� ITS� assumes that either the format string only
contains formatting for numbers� or that all strings
have a precision speci�cation� Either way� the chances
of exploit are greatly reduced� More checking could
easily distinguish between the two possibilities�

In both of these cases� we are recognizing patterns
that are not regular� due to the parenthesis matching
that must be performed� grep�style tools cannot rec�
ognize a pattern that allows arbitrary nesting�� Since
the programmer writing a handler can make use of
the full power of the C�� language� ITS� is certainly
capable in the general case of performing an analysis
that is not undecidable��

These two checks were added as a proof of con�
cept� Several other checks that would be possible to
add �and at least somewhat e�ective� are discussed in
Section ��
�

A comparison of our technique vs� grep and a more
sophisticated static analysis tool is presented in Sec�
tion ��

	�	�� Race condition analysis

Our analysis also addresses race conditions in �le
accesses� so�called �Time�Of�Check� Time�Of�Use

�TOCTOU� problems� Bishop and Dilger discuss
this type of problem extensively���� we introduced this
problem in Section 	�

We scan for these problems in a simple way� First�
TOCTOU functions are classi�ed based on their han�
dler into functions that can be checks and functions
that can be uses �several can be both�� Every time we
see a function� we look at the identi�er that holds the
�le name� We store a mapping of variables to the list
of TOCTOU functions that use that variable�

FILE �f�

int main���

char �fname � argv�
��

if� access�fname� W�OK���

f � fopen�fname� �w
���

�

else�

�� Do error handling�

�

�� Write stdin to f then exit�

�

In the example above� our mapping would contain
a single key �fname
 which would have an array of
two elements as a value� The array�s values would be
the instance of access on line � and the instance of
fopen on line �� The mapping has a lifetime beyond
that of the handler�

�Unless they have context�free extensions�
�Of course� how easy such analyses will be to write is another

matter completely�



At this point� scanning continues� After scanning
all tokens� ITS� calls the handler module to perform
any �nal analysis of the data before reporting the re�
sults� We iterate over our mapping� For any keys
where there is at least one check on a variable and
one use� we combine the notations into a single result�
which is reported with an increased severity�

This strategy works well� but there are currently
signi�cant limitations that result in ITS� failing to
promote the severity of conditions that should proba�
bly be reported� The �rst problem is that ITS� cur�
rently only recognizes identi�ers or string constants as
valid arguments for �les� As a result� if we change the
above code to the following�

FILE �f�

int main���

if� access�argv�
�� W�OK���

f � fopen�argv�
�� �w
���

�

else�

�� Do error handling�

�

�� Write stdin to f then exit�

�

ITS� will not increase the severity of the code
above� It easily could do so� we only need imple�
ment a function that can compare a set of tokens for
equivalence��

Another problem is that we do not handle alias�
ing� For example� if we changed the above code to the
following�

FILE �f�

int main���

char �f
 � argv�
��

char �f� � f
�

if� access�f
� W�OK���

f � fopen�f�� �w
���

�

else�

�� Do error handling�

�

�� Write stdin to f then exit�

�

ITS� would not increase the severity� Approaches
for improving the �false negative
s of this analysis are
discussed in Section ��
�

�Reviewers� This will likely be done before we release the

tool�

Note also that there is still plenty of room for false
positives� Having two variables with the same name is
indistinguishable from a single variable� as far as our
analysis is concerned� Also� our approach fails to take
control �ow into account� and so if the check happens
after the use� they are both promoted in severity� when
they should not be�

Currently� there is no similar� available tool that
performs a better static analysis for us to compare
ourselves against� However� in Section 
 we do dis�
cuss our tool in relation to the prototype discussed by
Bishop and Dilger����

��� Environment integration

ITS� is designed so that the front�end to the tool
and the back�end for the tool are both easily removed�
We did this because we hope to see ITS� integrated
into popular programming environments� such as Mi�
crosoft�s Visual Studio�

In such an environment� code should be analyzed
in the background while the user types� The current
line can be scanned continually� and the entire �le can
be scanned frequently to see if there are any new con�
structs to �ag� When such a construct is identi�ed�
it should be highlighted� Mousing over the problem
could give a detailed description of the issues� and so
on�

ITS� commands would be a poor user interface for
such an environment� For example� Microsoft O�ce
allows the user to right�click on a misspelled word to
ignore it� a much better user interface� in our opinion�

Currently� the only environment with which we
have integrated ITS� is Gnu Emacs� The user can
either run the scan all at once� much like one would
compile a program from within Emacs� Alternatively�
we have bindings available that will scan the current
�le every time the user hits enter or moves o� the cur�
rent line� Problems are highlighted� and output from
the scanner is placed in another bu�er� This inte�
gration is only a prototype� however� it is still fairly
ine�cient� The biggest problem is that we invoke the
ITS� command every time� It would be easy to add
a new front�end to the scanner that enables it to be
a persistent server communicating with Emacs� which
would make it far more usable�

��� Performance

We performed preliminary tests on the performance
of ITS�� We measured performance on a Pentium���
with ��M of RAM running Redhat ���� Generally� the
machine is ���
� idle� with under �M of real memory
free� We measured the sum of user and system time
using the time command�



Package Lines Avg� time lines�sec�
user	sys�

wu�ftpd���� ���� 	���� 
�
���	
net�tools�	��� 		
�� 	���� �������
sshd�	����� �
��� ��	�� �������
sendmail������ ����� ���	� �������
apache�	���� ����� 	��
�� �������

Table �� Performance of ITS� on a P��

In this environment� we ran our scanner on all the
tools mentioned in Section ��	�	� The scanner was
run ten times per tool� The wc command was used
to count lines for this study� so comments and blank
lines are included� Our results for each tool appear in
Table ��

Computed over all �� runs� the mean number of
lines per second that ITS� scans is �
������ with a
standard deviation of 
�
�	� lines�

In the course of developing this software� we noticed
some interesting anecdotal trends that help us inter�
pret our results� First� adding analyses such as TOC�
TOU scanning did not have any noticeable impact on
the run time of our tool whatsoever� suggesting that
our tool is currently I�O bound� and not bound by the
analysis�

��� Future Directions for ITS�

There are several practical improvements that can
easily be made to ITS�� Among them�

� Integrate with new programming environ�

ments� We discuss this option in Section ����

� Downgrade bu
er over�ow severity if the

destination is not stack allocated� Over�ows
of dynamically allocated and static memory are
generally more di�cult to exploit than are over�
�ows of stack allocated memory� ITS� can look
for patterns that look like array declarations� For
each such pattern� ITS� can actually parse the
declaration to determine whether it is stack al�
located� If not� the variable may be an alias for
a stack allocated bu�er� Therefore� the scanner
would also need to check for allocation statements
�and static declarations� before it could rule out
stack allocation� With our general philosophy of
conservatism� items would not be downgraded un�
less such an allocation could be found��	

�	We rarely see references to heap allocated memory later be

used to alias the stack� so we feel comfortable downgrading this

type of situation�

� Perform alias analysis� More accurate TOC�
TOU scanning can be performed if we obtain
pointer aliasing information with any degree of
accuracy� even if it is not fully precise� One way to
go about this is to scan through all tokens� look�
ing for assignments and function calls� noting any
aliases we see� Then� aliases can be considered in
a �ow�insensitive� context�insensitive light� Since
we will ignore the lack of �ow information and
other contextual clues� we certainly will not be
capable of a precise analysis� The results should
be much better than no such analysis� however�
assuming that it is uncommon for such an ap�
proach to decide something not helpful� such as
�all variables can alias all variables�


� Perform range analysis� The biggest hurdle to
ITS� performing the sort of static analysis pre�
sented by Wagner� �	
� and brie�y described in
Section ���� is that the constraint generation step
is di�cult� given our approach to parsing the in�
put� While we would have a very di�cult time
generating the same constraint sets as they do� a
heuristic parse could potentially do a good job�
Such work should be integrated with any sort of
alias analysis performed�

� Approximate �ow information� Even our
proposed heuristic static analysis techniques
could be improved in accuracy if we can extract
a reasonable model of the program�s control �ow
from the data stream alone�

� Practical experience with ITS�
To date� we have applied ITS� as a tool to assist in

our auditing of two large pieces of software� The �rst
was I�Pay� a reference version of an electronic payment
system used by many Dutch banks� Our tool helped
us �nd a de�nitive break in one of the network appli�
cations that comes with this package� The second was
Jitterbug� a web�based bug tracking system� which has
been extensively audited for security in the past �	���
ITS� helped �nd a small number of exploitable �aws�
though they are unlikely to a�ect many users of the
software�

We have some initial conclusions based on our ex�
periences usign ITS��

	� ITS� still requires a signi�cant level of ex�

pert knowledge� While our tool does encode a
vast amount of knowledge on vulnerabilities that
the developer no longer needs to keep in his head�
we�ve found that an expert still does a much bet�
ter job than a novice at taking a potential vul�



nerability location and manually performing the
static analysis necessary to determine whether an
exploit is possible� We �nd experts tend to be
far more e�cient and far more accurate at this
process�

�� Even for experts� analysis is still time�

consuming� While we have not used the tool
enough to give more than anecdotal evidence� we
would say that the tool only eliminates from one
quarter to one third of the time it takes to perform
such an analysis� because the manual analysis is
so time consuming�

�� Every little bit helps� We feel based on
our limited experience with the tool that ITS�

helps signi�cantly with �ghting the �get done� go
home
 e�ect� We noticed that in the case where
ITS� prioritizes one instance of a function call
over another� we tend to be more careful about
analysis of the more severe problem�

�� It can help �nd real bugs� Using ITS�� we
have found security problems in two real applica�
tions� In both cases� we found the problems in
the �rst 	� minutes of analysis that we would not
have found as quickly otherwise�

Note that although we ran our tool on several
large applications such as sendmail and apache�
we did not hand�audit those tools� We only spent
enough time with them to gather data for pur�
poses such as timing tests and comparative anal�
yses with other tools�

��� I	Pay

We used ITS� to audit the source code for I�Pay�
�the Internet payment infrastructure for the combined
Dutch banks
�	��� We were most interested in remote
exploits� since the I�Pay software utilities typically run
on organizational web servers and other protected ma�
chines�

ITS� immediately �agged 	�� potential problems
in I�Pay� including � possible race conditions� We �rst
examined all input points of the distribution� as pro�
vided by ITS�� We then examined approximately �� of
the problems reported by the regular scan� We did this
over the course of two hours� We primarily searched
bu�er over�ow candidates that ITS� �agged as �very
risky
� We uncovered one problem that is exploitable
over the network� and three that can be exploited lo�
cally�

Our �rst step was to use ITS� in locating all sites
where network or �le data was read� ITS� �agged a

single call to recv� We saw that this call was made
from a function called netread� We asked ITS� to
�nd netread� and nothing else� There were several
instances found� but we followed the �rst� which was
made from a function called multiread� We asked
ITS� to �nd uses of this function� It found us one�
in a function called saferead� which was itself used
only three times� Examining these three call sites
showed that most interesting network communication
took place from these points� The �rst of these three
calls turned out to be a major vulnerability�

I�Pay includes a utility called checkkey which is
used after installation to check the �rewall settings of
the host machine and con�rm that the Triple�DES li�
brary included with I�Pay is correctly con�gured for
encryption and decryption� When checkkey executes�
it constructs a simple text message� which is encrypted
and sent to a server speci�ed in a con�guration �le�
The checkkey program waits for a response from this
server� decrypts the response upon reciept� and dis�
plays it along with status information� Unfortunately�
the bu�er which receives the response message is a
stack�allocated ��� byte bu�er� while the function
charged with reading data from the socket will read
up to ��
�� bytes� This programming mistake will al�
low a malicious server or a machine masquerading as
the server to introduce and execute arbitrary code on
the client machine� About an hour of subsequent anal�
ysis was required to con�rm that this spot was likely
to be a vulnerability� A brief test con�rmed that it
was remotely exploitable�

The other potential problems identi�ed by ITS�

were less serious� Several calls to strcpy and sprintf

were �agged as risky� but were deemed harmless upon
inspection� We did locate three other bu�er over�ow
vulnerabilities using the tool� but they each require lo�
cal access� As long as the I�Pay utilities run with low
privileges on non�interactive machines� these potential
�aws are likely have little or no impact�

The temporary �le name selection algorithm em�
ployed by I�Pay appears quite poor� and susceptible
to a race condition� We were alerted to this potential
problem by ITS�� but we have not had enough time
to look into the matter���

��� Jitterbug

Jitterbug is free software� written in C� that tracks
bug reports over the web� We were interested in audit�
ing Jitterbug because we use it for other purposes� and
we are skeptical of any C code we run� especially if it
has network access� We learned after our analysis that
Jitterbug has previously been extensively analyzed�

��Reviewers� We do expect to do so shortly�



The �rst �ve things reported by ITS� were calls to
popen� All of the calls passed input from the con�g�
uration �le into popen� Assuming the con�guration
�le is secure and the environment in which the pro�
gram runs is also secure� these should not be prob�
lems� However� three of those popens also take input
from the web� One performs su�cient sanity checking
of the arguments� we were unable to exploit it� The
other two uses are exploitable� we were able to con�rm
this with an actual exploit� However� the vulnerabil�
ities are only exploitable if one of two undocumented
features are enabled �by default� they are not�� There�
fore� very few people� if any� are susceptible to this
vulnerability� Apparently� the features were added for
a single high�pro�le user who no longer uses the soft�
ware� and� in light of the vulnerabilities found� they
will be removed in the next version of the software�	���

ITS� also found some bu�er over�ow conditions
that were also exploitable in only very exceptional cir�
cumstances� For example� Jitterbug has the following
macro de�nition�

�define MAX�USERNAME�LEN ��

If a user decides this number is low for her needs
and changes it to a very high number because she
doesn�t want there to be an arbitrary limit� the user
has unintentionally added a security vulnerability� be�
cause elsewhere in the program there will now be an
exploitable sprintf�

There was also another fully exploitable bu�er over�
�ow found� However� its scope was also one of the
aforementioned undocumented features �	���

We did not have time to examine all output from
the tool��� In particular� there were �ve TOCTOU re�
ports generated by the race condition analysis that we
wish to explore� The grep command reported nearly
�� di�erent function call sites where the called func�
tion can be involved in a TOCTOU condition� With�
out this tool� we would have manually examined each
of the �� calls in the context of the entire program� In
this case� we will only have to consider �agged spots
in the context of the list generated�

The reduction in time spent examining code is
therefore expected to be large� However� do remember
that our analysis does not handle aliasing�

One thing that we noticed when examining Jitter�
bug is that out of 
� functions ITS� identi�ed as po�
tential spots for bu�er over�ows� �� of them were pro�
tected by a call to a function called check overflow

on the line immediately preceding it� This function
aborts if it detects an over�ow� We did not notice any

��Reviewers� We expect to �nish this analysis shortly�

Package grep ITS� ITS� Lex Anl�
�anl� red���� red����

wu�ftpd ��� ��� ��� ���� �	���

net�tools ��
 ��� �
� ����� �����

sshd ��� ��� �
� �
��� ���
�

sendmail ��
 ��� ��� ����� �����

apache ��� ��� ��� 	��
� ����

Table �� E�ectiveness of grep compared to ITS��
without and with analysis�

instances where the programmer used this call incor�
rectly� It would be nice if these false positives could be
removed automatically by the tool� but currently we
do not perform a sophisticated enough static analysis�

� Comparing ITS� to other solutions
��� grep

In this subsection� we compare grep to ITS�� each
using a database that only scans the 	� functions for
which there are bu�er over�ow handlers� We limit the
scope of our comparison in this way so that we can
compare the performance of the handlers� Relative
severities are ignored� either the tool reported a prob�
lem� or it did not� In the case of ITS� with analysis� if
the analysis downgraded a problem to the lowest pos�
sible setting� we considered that a failure to report�

Table � shows the number of vulnerabilities found
by grep� ITS� with analysis turned o�� and ITS�

with analysis on� The next to the last column of
this table shows the percent reduction of results re�
ported compared to grep when smarter parsing is ap�
plied �i�e�� lexing instead of grep�� The last column
shows the percent reduction of results reported that
are due to our analysis� Note that� except in the case
of apache� which is a vast outlier� our feeble analysis
seems slightly more e�ective than better parsing�

Table � shows the overall reduction in vulnerabil�
ities reported from grep� We believe that indicates
that ITS� users can expect results that are around
��� better than grep� perhaps more� However� this
number will probably vary widely by application� and
may also vary based on the programming style of the
developer�

��� Bu
er over�ow detection via range
analysis

The only other tool of which we are aware that
we might possibly compare our work to is presented
in �	
�� Unfortunately� this comparison proves to be
quite di�cult�



Package grep ITS� Reduction ���

wu�ftpd ��� ��� �����

net�tools ��
 �
� �����

sshd ��� �
� �����

sendmail ��
 ��� ���	�

apache ��� ��� �����

Table �� Total reduction compared to grep�

	� Their work is not limited to picking out function
calls� as ours currently is� Therefore� they may
�ag some problems that we do not�

�� Their work fails to analyze approximately 	
����
of the program that ITS� does not fail to analyze�

�� Their output is based on di�erent metrics than
ours is� While theirs is based solely on the results
of their analysis� ours is largely based on human
experience� with only a small analysis component�

Nonetheless� we make some simplifying assump�
tions� in an attempt to compare how the tools would
compare �in practice
�

	� Since we do not know the con�guration used to
test sendmail� we make the assumption that it
was the same as ours�

�� We assume that our tool will report everything
their tool reports� and probably more�

�� They present results for how many �probable
 re�
sults their tool gives� We assume that reporting
our �very risky
 and �most risky
 classi�cations
has the same semantic meaning� This means that�
for the sake of our comparison� there are some
functions our tool considers that it will never re�
port� because its risk classi�cation is too low� The
assumption is that such calls are very unlikely to
show up in their analysis�

�� We assume that the vulnerabilities that a par�
ticular tool will �ag are uniformly distributed
throughout the source code�

Their analysis of sendmail yielded �� �probable

vulnerabilities� Our analysis yielded 
�� Adjusting
their number for the 	
���� of the code they missed
based on our uniform distribution assumption� their
modi�ed number of vulnerabilities for the sake of com�
parison would be ����� With this set of simpli�ed as�
sumptions� their results give a ���	�� reduction in
false positives� In practice� we would expect to see re�
sults from their tool that give up to a ��� reduction�


 Related work
Regular �lint
 tools such as LCLint �
� perform sim�

ilar functions� but in the context of general robustness�
security features generally are not included� Also� such
tools tend work on a per�build basis� and use context�
free parsing�

Security experts have long proposed building sim�
ple scanners that operate on source code� looking for
simple patterns that can potentially be exploited� To
date� we know of three limited prototypes of such sys�
tems �other than ours�� all of which process C� and
possibly C���

The �rst is slint�	��� a general�purpose security
scanner developed by mudge� formerly of the l�pht�
While there is a public web page for this product� no
technical information is public�

The second is the Bishop and Dilger race condition
scanner� In ���� they detail a fairly accurate static
analysis for TOCTOU problems� Their prototype is
similar in functionality and power to our race condi�
tion scanning� For example� it uses regular expressions
for token recognition� instead of context�free parsing�

The primary di�erence between the two tools is
that the Bishop and Dilger scanner considers variable
names on a per�function basis� whereas ITS� does not�
If two functions each have a variable with the same
name� ITS� will treat all variables with the same name
as the same variable� even if across separate �les� We
believe the ITS� behavior to be slightly more useful�
because most programmers name parameters and local
variables consistently across functions� For example�
consider the following code�

void do�it�char �fname� �

FILE �f � fopen�fname� �w���

�

int main�int argc� char ��argv� �

char �fname � argv�
��

if�access�fname� W�OK��

do�it�fname��

�

The Bishop and Dilger scanner will miss the above
race condition� because it does not support interpro�
cedural analysis�

Bishop and Dilger�s tool has never been distributed�
however� a third party reimplementation has recently
become available����

The only other tool we know about that statically
scans for security vulnerabilities is presented in �	
��
We discussed this tool �primarily in Sections � and ���
as well as its relative advantages and disadvantages
compared to the ITS� approach�



Other forms of static analysis are possible� For ex�
ample� we discussed locating the places in the code
where input to the program is possible� From there�
the usual goal is to follow program �ow to see what
damage untrusted input can do� Static language sup�
port for such an analysis is now available for a superset
of the Java programming language�	���

� Conclusion
We have presented ITS�� a static analysis tool for

C and C��� While its parsing model makes it poorly
suited for highly accurate static analysis� the same
model makes the tool very practical for real world use�
even with some facility for a heuristic�driven static
analysis of the program� ITS� can scan large programs
e�ciently� while still achieving adequate results� The
tool is also appropriate for integration into program�
ming environments with little modi�cation�

References
�	� A� Aho� R� Sethi� and J� Ullman� Compilers�

Principles� Techniques and Tools� Addison Wes�
ley� 	����

��� Antonomasia� scancode�plx�
http���www�notatla�demon�co�uk�SOFTWARE�

��� B� Arkin� F� Hill� S� Marks� M� Schmidt� T� Walls�
and G� McGraw� How we learned to cheat
at online poker� A study in software secu�
rity� The developer�com Journal� September 	����
http���www�developer�com�journal�

��� M� Bishop� Writing safe setuid programs� 	����
seclab�cs�ucdavis�edu� bishop�secprog�html�

��� M� Bishop and M� Dilger� Checking for race
conditions in �le accesses� Computing Systems�
�����	�	 	��� Spring 	����

��� C� Cowan et� al� Stackguard� Automatic adap�
tive detection and prevention of bu�er�over�ow
attacks� In Proceedings of the Seventh USENIX
Security Symposium� pages �� 

� San Antonio�
TX� 	����

�
� D� Evans� J� Guttag� J� Horning� and Y� Meng
Tan� Lclint� A tool for using speci�cations to
check code� In In proceedings of the SIGSOFT
Symposium on the Foundations of Software En�
gineering� December 	����

��� S� Gar�nkel and G� Spa�ord� Practical Unix and
Internet Security� O�Reilly and Associates� Inc��
	����

��� I� Goldberg and D� Wagner� Randomness and
the netscape browser� How secure is the world
wide web� Communications of the ACM� Jan�
uary 	����

�	�� InterPay� I�pay product web site�
http���www�ipay�com�

�		� W� Landi and B� Ryder� A safe approxima�
tion algorithm for interprocedural pointer alias�
ing� In Proceedings of Programming Language
Design and Implementation� 	����

�	�� E� Levy� The bugtraq mailing list�
http���www�securityfocus�com�

�	�� mudge� The slint web page�
http���www�l�pht�com�slint�html�

�	�� A� Myers� Practical mostly�static information
�ow control� In Proceedings of ACM SIGPLAN�
SIGACT Symposium on Principles of Program�
ming Languages� San Antonio� TX� January 	����

�	�� A� Tridgell� Personal Communication�

�	�� D� Wagner� Personal Communication�

�	
� D� Wagner� J� Foster� E� Brewer� and A� Aiken� A
�rst step towards automated detection of bu�er
overrun vulnerabilities� In Proceedings of the Year

��� Network and Distributed System Security
Symposium �NDSS
� pages � 	
� San Diego� CA�
�����


