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Abstract

This paper concerns measurement invariance analysis for situations with many

groups or time points. A BSEM (Bayesian Structural Equation Modeling)

approach is proposed for detecting non-invariance that is similar to modification

indices with maximum-likelihood estimation, but unlike maximum-likelihood

is applicable also for high-dimensional latent variable models for categorical

variables. Under certain forms of non-invariance, BSEM gives proper comparisons

of factor means and variances using only approximate measurement invariance and

without relaxing the invariance specifications or deleting non-invariant items. To

ensure correct estimation, a two-step Bayesian analysis procedure is proposed,

where step 1 uses BSEM to identify non-invariant parameters and step 2 frees

those parameters.
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1 Introduction

Muthén and Asparouhov (2012a) introduced a special type of Bayesian structural

equation modeling that provides a more flexible confirmatory factor analysis

(CFA) and structural equation model (SEM) analysis. Instead of translating

hypotheses into fixed zero parameters which are characteristic of such analyses,

the authors proposed the use of approximately zero parameters using zero-mean,

small-variance informative priors via Bayesian analysis. The approach is referred

to as BSEM and is mainly intended for cross-loadings and residual correlations

in CFA and for direct effects representing measurement non-invariance in CFA

with covariates, also referred to as MIMIC modeling. An application of BSEM

to competing factor analysis models for the Wechsler Intelligence Scale is given

in Golay et al. (2012). The current paper generalizes the BSEM approach

to the analysis of measurement invariance across several groups or several

time points, applying the zero-mean, small-variance prior idea to differences

in measurement parameters, thereby introducing the concept of approximate

measurement invariance.

Measurement invariance CFA using maximum-likelihood estimation often

takes as a baseline model the specification of fully-invariant measurement

parameters and then uses modification indices as guidance to improve the model

by freeing parameters that strongly violate invariance. This procedure is suitable

for cases with only a few groups/time points, typically only two, and where only a

small number of measurement parameters are non-invariant. Modification indices

have not been used in item response analysis, presumable for computational

reasons due to the numerical integration necessary for maximum-likelihood
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estimation with categorical variables. For categorical variables, maximum-

likelihood estimation with likelihood ratio chi-square testing of item parameters

across groups was discussed in Thissen et al. (1993). In this context, backward

and forward maximum-likelihood approaches have been studied in (Kim & Yoon,

2011; Lee et al., 2010; Stark et al., 2006). The backward approach starts with a

fully invariant model and then releases the invariance specification for one item at

a time, producing a likelihood-ratio chi-square test of invariance for each item. The

forward approach starts with a fully non-invariant model, comparing it to models

where one item at a time is held invariant. Depending on the type of application,

non-invariant items are either deleted or their invariance specification relaxed. Cai

et al. (2011; pp. 239-243) discussed a multi-step Wald procedure with a designated

set of invariant items. De Jong et al. (2007) and Fox (2010) proposed a novel

random parameter approach to non-invariance where a measurement parameter

for different groups is seen as randomly drawn from a population with shared mean

and variance and where a significant variance corresponds to non-invariance. Bou

and Satorra (2010) criticize the assumption of random draws in this approach in

favor of a multiple-group approach.

In many applications, measurement invariance needs to be studied for many

groups or many time points where there is possibly a large number of non-invariant

item parameters. The case of many groups/time points is the focus of this

paper. Typical applications are country comparisons such as with the achievement

studies of PISA (Program for International Student Assessment) conducted by the

Organization for Economic Co-operation and Development, with cross-cultural

studies such as the European Social Survey (see, e.g., Davidov et al., 2011), as well

as with growth modeling with many time points. In these cases, an item parameter
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may be invariant across some groups/time points and non-invariant across some

other groups/time points. Here, proposed backward and forward maximum-

likelihood approaches and multi-step Wald procedures may be too cumbersome

to be practical. Furthermore, although maximum-likelihood modification index

procedures can be developed for categorical items, many applications involve high-

dimensional latent variable models where the computations would be too heavy.

CFA is characterized by using strict parameter constraints. In single-group

CFA these are fixed zero loadings corresponding to items hypothesized to not

load on certain factors (so called cross-loadings). In multiple-group and multiple-

time point CFA these are equalities of loadings and intercepts across groups and

time point. As illustrated in the top part of Figure 1, from a Bayesian perspective

the zero cross-loading case can be seen as CFA using a very strong prior with mean

zero and zero variance for certain factor loadings, here represented by a parameter

λ. The bottom part of Figure 1 shows the more flexible BSEM approach of

using a zero-mean, small-variance prior for the parameter as discussed in Muthén

and Asparouhov (2012a). In multiple-group and multiple-time point modeling

considered in this paper, the parameter in question concerns the difference

in a certain measurement parameter across two groups or time points. This

BSEM approach implies the specification of approximate measurement invariance.

Appendix, Section 9.1 presents the Mplus specification of such zero-mean, small-

variance priors for differences between parameters.

In this paper it is shown that the BSEM approach provides a tool for

detecting non-invariance that serves the same purpose as modification indices

with maximum-likelihood estimation, but unlike maximum-likelihood is applicable

also for high-dimensional latent variable models for categorical variables. Under
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Figure 1: ML versus Bayes priors
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(b)
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certain forms of non-invariance, proper comparisons of factor means and variances

are obtained using only approximate measurement invariance and without relaxing

the invariance specifications or deleting non-invariant items. To ensure correct

estimation, a two-step Bayesian analysis procedure is proposed, where step 1 uses

BSEM to identify non-invariant parameters and step 2 frees those parameters.

Section 2 discusses an alignment issue which reflects an indeterminacy in

measurement invariance analysis. Section 3 presents the BSEM approach for

detecting non-invariance. Section 4 discusses a simulation study of a multiple-

group factor analysis model. Section 5 present an application with binary items

measuring an achievement factor in 40 countries. Section 6 discusses a simulation

study of a multiple indicator growth model. Section 7 presents a binary multiple

indicator growth model application for eight time points. Section 8 concludes.

2 The alignment issue

As pointed out in Asparouhov and Muthén (2012b), the BSEM method for

multiple-group, multiple-time point analysis, as well as other methods for such

settings, faces a parameterization indeterminacy, or put differently an alignment

issue. Briefly stated, the approximate invariance of BSEM essentially acts to

find a solution where the variance across groups or time points for a measurement

parameter is small. This is not the same simplicity criterion as for example seeking

a solution that has many invariant parameters and few non-invariant parameters.

The latter simplicity criterion may be preferred by researchers who hypothesize

a large degree of invariance, while the BSEM criterion may be preferred by

researchers who hypothesize that there is a large degree of minor non-invariance
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where different non-invariance may be in opposite directions and largely cancel

each other out.

As a hypothetical example of the BSEM approach applied to the case with

few non-invariant parameters, consider an item where there is invariance of a

measurement intercept or threshold across all time points except for one time

point where there is a large positive deviation. The BSEM small-variance prior

for the parameter differences tends to pull the deviating parameter towards the

average of the parameters for all the time points. This means that the deviating

parameter will be smaller and the invariant parameters larger than their true

values. The same thing occurs for loadings. With intercepts/thresholds and

loadings misestimated, the factor means and factor variances are misestimated.

This is the alignment issue. As Asparouhov and Muthén (2012b) point out, it does

not mean that the model does not fit the data, but that an equally well-fitting

solution with a possibly simpler interpretation due to another simplicity criterion

may be available.

The alignment issue should be kept in mind in Monte Carlo simulation studies

of the proposed approach. The BSEM analysis for multiple groups or time points

is not expected to always recover parameter values used to simulate the data.

Perfect recovery will only occur when the non-invariance is designed to be in line

with BSEM, such as random, normally-distributed deviations from a parameter

average over groups/time points. When non-invariant items have been detected

and equalities relaxed, however, the parameter values will be recovered.

Given that in the above hypothetical example there is a majority of invariant

time points, the underestimation of the non-invariant parameter will be smaller

than the overestimation of the invariant parameters. Only the non-invariant
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parameter is therefore likely to be detected as significantly different from the

average over time points. Such parameters can then be freed from their invariance

restriction in a subsequent analysis that gives correct results. This procedure is

discussed in the next section.

3 Detecting non-invariance

The BSEM analysis is augmented with estimation of the difference between each

measurement parameter and its average across the groups or time points. Assum-

ing that the parameter is approximately invariant for most of the groups/time

points, these differences can point to the groups/time points that have significant

non-invariance. In a follow-up analysis, the equality constraint for the parameter

can then be relaxed for those groups/time points. This follow-up analysis would

use Bayesian analysis but not specify BSEM approximate measurement invariance

for any of the parameters but instead hold all but the non-invariant parameters

exactly equal across groups/time points. This two-step approach serves the

same purpose as working with modification indices with maximum-likelihood

estimation. Instead of the modification index approach of relaxing one equality

restriction at a time, however, it is here proposed that all significantly mis-fitting

equalities are relaxed at the same time. One consideration is the risk of relaxing

too many equality restrictions. This should not, however, have much effect on the

point estimates, but only increase standard errors to a small extent. With too

many equality restrictions relaxed, a non-identification problem arises, but this

should be clearly seen in the Bayes plots (for Bayes non-identification detection,

see the rejoinder discussion in Muthén & Asparouhov, 2012a).
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The parameter differences across groups/time points are printed in an Mplus

output section labeled DIFFERENCE OUTPUT. In Monte Carlo simulations,

the output also contains information in parentheses about the proportion of

replications for which the difference is significant, providing an estimate of the

power to detect the non-invariance. With only two groups/time points, the

difference relative to the average can be augmented by the difference across the

two groups/timepoints which can be expressed in MODEL CONSTRAINT.

The choice of prior variance for the differences between parameters is important

for detecting non-invariance. As the prior variance is increased, the non-invariance

of a parameter is allowed to be more freely estimated, that is, the estimate can

escape from the invariance value to a larger degree. At the same time, the standard

error of the parameter increases as the prior variance is increased (see also Muthén

& Asparouhov, 2012a). The significance of a parameter difference considers a

ratio where the numerator is the invariance value and the denominator is the

standard error. The numerator increases with increased prior variance and the

denominator increases with increased prior variance so that it is difficult to predict

how significance is going to be affected. A balance needs to be found for the best

prior variance choice. Simulation studies which include these choices are presented

in the next section and in Section 6.
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4 A multiple-group factor analysis simulation

Consider a situation with continuous items y measuring a single factor in different

groups, using the factor model for individual i, variable j, and group g,

yijg = νjg + λjg ηig + εijg, (1)

E(ηig) = αg, V (ηig) = ψg, (2)

E(εijg) = 0, V (εijg) = θjg, (3)

where the residual ε is uncorrelated with the factor η. The measurement

parameters are the intercepts νjg and the loadings λjg. The focus is on correctly

estimating the factor means αg and factor variances ψg. The factor metric is set

as mean zero and variance one in one group.

The Appendix Section 9.2 shows the Mplus Monte Carlo simulation input

using six items, 10 groups, and a small degree of non-invariance for seven of the

60 intercepts and for seven of the 60 loadings. Only item 1 is invariant across

all groups. Groups 1 and 10 have no non-invariant items. The intercept non-

invariance is an increase of 0.2 in group 2 for item 6, in group 3 for item 5, in

group 4 for item 3, in group 5 for item 2, in group 7 for item 6, in group 8 for item 5,

and in group 9 for item 3. The loading non-invariance is an increase of 0.2 in group

2 for item 3, in group 3 for item 2, in group 4 for item 6, in group 5 for item 5, in

group 7 for item 3, in group 8 for item 2, and in group 9 for item 5. The intercept

non-invariance corresponds to an average of about 0.2 standard deviations of the

items and the loading non-invariance about 0.15 in a standardized metric. The

small number of non-invariant items and the small magnitude of non-invariance
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correspond to a well-developed measurement instrument.

As a devil’s advocate approach, the settings for the simulation are chosen as

the least favorable for the proposed two-step BSEM procedure in two regards.

First, there is limited non-invariance so that an approach that simply ignores the

non-invariance is a strong contender. Second, the form of non-invariance is not of

the type that is assumed for BSEM approximate invariance. The non-invariance

is in only one direction with higher values than the average over time points in

each non-invariant instance for both loadings and intercepts. This implies that

the alignment will not be perfect and the population values used to generate

the data will not be perfectly recovered. It is of interest to see to which degree

recovery occurs and what the coverage values are. A determinant of this is the

power to detect non-invariance and the study of how well an analysis with relaxed

invariance for non-invariant items performs.

As a first step, three BSEM analyses are done to study the power to detect

non-invariance. Prior variances for the differences are set at 0.01, 0.05, and 0.10,

respectively. Using the three different prior variances, Table 1, Table 3, and

Table 4 show power estimates in terms of the percentage of replications that show

significant differences from the mean across groups, that is, the proportion of

replications where the 95% credibility interval for the difference does not include

zero. Power estimates for the non-invariant parameters are bolded. In Table 1

the prior variance 0.01 is used and all 14 non-invariant parameters have power

estimates close to 100%. The largest power estimate for an invariant parameter is

52% for the loading of item 3 in group 3, showing that it is possible to make

an incorrect diagnosis of non-invariance. Most power estimates for invariant

parameter are, however, much smaller. It is therefore likely that the correct
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Table 1: Multiple-group factor analysis simulation: Power estimates with prior
variance 0.01

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

Loadings

Item 1 00 02 02 00 00 00 01 00 00 04

Item 2 00 00 100 00 01 00 00 100 03 03

Item 3 17 100 52 22 02 17 100 05 02 05

Item 4 00 01 01 00 00 00 01 00 01 02

Item 5 03 00 01 00 96 04 01 48 98 25

Item 6 01 04 25 100 00 02 03 01 00 01

Intercepts

Item 1 00 00 00 00 00 00 00 00 00 01

Item 2 00 01 00 02 100 01 01 07 02 00

Item 3 08 01 14 100 12 04 01 13 100 07

Item 4 00 00 00 00 00 01 00 00 00 01

Item 5 00 04 96 04 23 00 04 95 14 02

Item 6 02 93 17 06 14 01 96 16 09 03

non-invariant parameters are identified.

Table 2 shows the Mplus output in the DIFFERENCE section for the intercept

of the second item using prior variance 0.01. The fifth group has a difference

estimate of 0.140 with power estimate 1.00. The other nine groups show smaller

negative differences, so that all differences sum to zero.

Table 3 and Table 4 use the prior variances 0.05 and 0.10, respectively, showing

decreasing power. With prior variance 0.10 several of the non-invariant parameters

have power estimates smaller than the typical limit of 80%, indicating that a
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Table 2: Difference output for the intercept of the second item using prior variance
0.01

NU1 2 NU2 2 NU3 2 NU4 2 NU5 2

-0.002(0.00) -0.018(0.01) -0.016(0.00) -0.025(0.02) 0.140(1.00)

NU6 2 NU7 2 NU8 2 NU9 2 NU10 2

0.000(0.01) -0.013(0.01) -0.033(0.07) -0.024(0.02) -0.008(0.00)

larger sample size for each group is necessary for this size non-invariance when

prior variance 0.10 is used. The low power estimate of 15% for item 5 in group

8 corresponds to an intercept that has a non-invariance of 0.16 of a standard

deviation of the item. Put differently, for this small magnitude of non-invariance

the smaller prior variance of 0.01 is more suitable.

To study how well the factor means and variances can be recovered by different

approaches, five different types of Bayesian analyses are performed:

1. Exact invariance over groups for all loadings and intercepts. It is expected

that this analysis gives biased results in this setting

2. BSEM analysis using approximate invariance of all loadings and intercepts

across groups, assuming ignorance of where the non-invariance resides. This

analysis provides information about non-invariance, that is, parameters that

are significantly different from the average over groups for the respective item

parameter. The analysis is not expected to recover the population values

exactly due to the alignment issue. It is unknown if this analysis improves
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Table 3: Multiple-group factor analysis simulation: Power estimates with prior
variance 0.05

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

Loadings

Item 1 00 00 00 00 00 00 00 00 00 00

Item 2 00 00 94 00 00 00 00 100 01 00

Item 3 02 94 12 09 00 00 98 00 01 17

Item 4 00 00 00 00 00 00 00 00 00 01

Item 5 01 00 00 00 78 00 00 02 78 00

Item 6 00 03 05 98 00 00 00 00 00 06

Intercepts

Item 1 00 00 00 00 00 00 00 00 00 00

Item 2 00 00 00 00 86 00 00 01 00 00

Item 3 02 00 04 96 03 00 00 05 98 03

Item 4 00 00 00 00 00 00 00 00 00 00

Item 5 00 00 73 00 03 00 00 53 00 00

Item 6 00 89 09 02 03 01 92 02 02 00
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Table 4: Multiple-group factor analysis simulation: Power estimates with prior
variance 0.10

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

Loadings

Item 1 00 00 00 00 00 00 00 00 00 14

Item 2 00 00 62 00 00 00 00 96 01 19

Item 3 00 75 05 01 00 00 80 00 00 51

Item 4 00 00 00 00 00 00 00 00 00 20

Item 5 00 00 00 00 59 00 00 00 56 04

Item 6 00 00 01 89 00 00 00 00 00 26

Intercepts

Item 1 00 00 00 00 00 00 00 00 00 00

Item 2 00 00 00 00 47 00 00 00 00 00

Item 3 01 00 01 79 00 00 00 00 80 01

Item 4 00 00 00 00 00 00 00 00 00 00

Item 5 00 00 30 00 00 00 00 15 00 00

Item 6 00 74 03 00 00 00 76 00 00 00
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on analysis 1

3. Exact invariance for invariant items based on analysis 2. and BSEM

approximate invariance for other items. It is unknown if utilizing invariant

”anchor” items improves on analysis 2. The invariant item 1 is the anchor

item in the simulation

4. Free non-invariant parameters based on analysis 2 and BSEM approximate

invariance for other parameters. It is unknown if freeing the non-invariant

parameters improves on analysis 2. The 14 non-invariant parameters are

freed in the simulation

5. Exact invariance for only the invariant parameters and non-invariant

parameters free. This analysis is expected to perform optimally given that

this is how the data are generated, assuming that the correct non-invariance

is diagnosed in analysis 2

Analysis 5 is the proposed two-step procedure. A sample size of n = 500 for each

group (total sample size 5,000) and 100 replications are used in the five simulation

analyses.

Table 5 shows the factor mean and variance estimates and coverage using the

five approaches. The results for the 10th group are not shown because this is the

metric-setting group with fixed values. The last column gives the average absolute

bias over the first nine groups.

Analysis 1 specifies exact invariance across all 10 groups for all loadings and

intercepts. The biases are not large in this case. The 95% coverage for the factor

variances is, however, too low in four of the groups.
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Analysis 2a shows the BSEM analysis with approximate measurement invari-

ance and prior variance 0.10. This analysis gives worse bias than analysis 1. due

to the alignment issue. Analysis 2b uses BSEM with prior variance 0.01 which

was found to better match the generated non-invariance and to give better power

to detect non-invariance. Analysis 2b improves on analysis 2a but still performs

worse than analysis 1 in terms of bias.

Analysis 3 uses item 1 as an anchor item with exact invariance and does

perform better than analysis 2b. It performs better than analysis 1 in terms of

bias for factor means although not for factor variances.

Analysis 4 frees the non-invariant parameters and thereby improves on analysis

2b and analysis 3. It performs better than analysis 1.

Analysis 5 frees the non-invariant parameters and holds other parameter

exactly invariant. It is the second step in the proposed approach and performs

better than all the other analyses.

Although not considered here, a more thorough study of analysis 5 can be

done where for each replication the parameters with significant difference from

the mean in analysis 2 are freed in analysis 5 and the final estimates of this two-

step procedure summarized. This takes into account that in some replications the

wrong parameters will be diagnosed as non-invariant.

Other simulation settings with different choices of parameter values are of

interest but are not pursued here. For example, data may be generated with

many non-invariant parameters and where the non-invariance is in both directions

and more in line with BSEM specifications. In such settings, the first step of

BSEM analysis may be sufficient and not requiring the freeing of non-invariant

parameters.
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Table 5: Multiple-group factor analysis simulation: Factor mean and variance
estimates (95% coverage) using five different methods

G1 G2 G3 G4 G5 G6 G7 G8 G9 Bias

Population values

Mean 1.000 1.000 0.600 0.400 0.000 1.000 1.000 0.600 0.400

Variance 2.000 1.800 1.600 1.400 1.000 2.000 1.800 1.600 1.400

1. Exact invariance

Mean estimate 1.027 1.104 0.680 0.444 0.041 1.015 1.099 0.631 0.428 0.052

Mean coverage 0.980 0.840 0.800 0.950 0.920 0.900 0.830 0.940 0.970

Variance estimate 2.151 2.050 1.837 1.609 0.992 2.154 2.045 1.616 1.398 0.141

Variance coverage 0.920 0.770 0.820 0.700 0.930 0.900 0.750 0.980 0.970

2a. BSEM, V=0.10

Mean estimate 0.832 0.904 0.562 0.354 0.029 0.823 0.900 0.518 0.346 0.088

Mean coverage 0.990 1.000 1.000 1.000 1.000 0.980 0.980 1.000 1.000

Variance estimate 1.453 1.414 1.294 1.114 0.688 1.457 1.413 1.119 0.965 0.409

Variance coverage 0.960 0.980 1.000 1.000 0.940 0.930 0.990 0.960 0.940

2b. BSEM, V=0.01

Mean estimate 1.040 1.124 0.698 0.445 0.040 1.028 1.119 0.647 0.432 0.064

Mean coverage 0.990 0.900 0.870 0.980 0.970 0.950 0.910 0.970 0.980

Variance estimate 2.244 2.172 1.982 1.711 1.055 2.248 2.167 1.724 1.483 0.243

Variance coverage 0.960 0.820 0.830 0.750 0.980 0.950 0.810 1.000 1.000

3. Exact invariance for one anchor item, BSEM V=0.01 for others

Mean estimate 1.040 1.067 0.643 0.418 0.019 1.026 1.064 0.640 0.426 0.038

Mean coverage 0.940 0.910 0.910 0.960 0.950 0.870 0.930 0.960 0.960

Variance estimate 2.226 2.018 1.814 1.595 1.071 2.225 2.008 1.757 1.520 0.182

Variance coverage 0.880 0.880 0.900 0.800 0.930 0.910 0.860 0.910 0.870

4. Freeing non-invariants, BSEM V=0.01 for others

Mean estimate 0.952 0.967 0.572 0.365 -0.009 0.941 0.961 0.569 0.374 0.034

Mean coverage 0.980 0.980 0.980 0.990 0.990 0.930 0.980 0.980 1.000

Variance estimate 1.894 1.705 1.521 1.342 0.954 1.898 1.701 1.546 1.337 0.078

Variance coverage 0.980 1.000 1.000 0.960 1.000 0.990 1.000 1.000 0.990

5. Freeing non-invariants, exact invariance for others

Mean estimate 1.019 1.021 0.610 0.406 -0.002 1.015 1.020 0.610 0.410 0.013

Mean coverage 0.960 0.950 0.940 0.950 0.950 0.940 0.950 0.950 0.950

Variance estimate 2.107 1.891 1.681 1.466 1.052 2.097 1.891 1.694 1.469 0.083

Variance coverage 0.930 0.940 0.930 0.930 0.910 0.910 0.920 0.910 0.92019



5 A multiple-group factor analysis application:

Math item responses in 40 PISA countries

The two-step BSEM multiple-group approach is here applied to binary items from

the PISA (Program for International Student Assessment) survey of 2003. As in

Section 7.6 of Fox (2010), a one-factor model is considered for eight mathematics

test items administered to a total of 9796 students from 40 countries. The model

is a 2-parameter probit IRT model that accommodates country measurement non-

invariance for all difficulty (threshold) and discrimination (loading) parameters as

well as country-specific factor means and variances.

The analyses use Bayesian estimation with a probit link so that for subject i,

item j, and group g the probability of the binary variable uijg can be expressed

in terms of the factor η using the standard normal distribution function Φ as

P (uijg = 1|ηig) = Φ[−τjg + λjg ηig], (4)

where for each group it is assumed conditional independence among the u’s

conditional on the factor and normality for the factor. The item response

model can be expressed in terms of continuous-normal latent response variable

u∗ underlying the binary outcomes,

u∗ijg = λjg ηig + εijg, (5)

with the usual probit standardization of unit variance for the residual ε. The

factor metric can be set by fixing the factor mean in one group at 0 and by fixing
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either a factor loading at 1 for one item or by fixing the factor residual variance

at 1 for one group. For these BSEM analyses, the choice is made to fix the factor

mean and variance at 0 and 1 for the 40th group.

A posterior predictive p-value (PPP) is obtained for the fit to the u∗ structure

as discussed in Asparouhov and Muthén (2010) and Muthén and Asparouhov

(2012a). As described in Muthén and Asparouhov (2012a), the PPP is a useful

guide when studying the sensitivity of the results to the choice of prior variance.

If the prior variance is small relative to the magnitude of non-invariance, PPP

will be lower than if the prior variance corresponds better to the magnitude of

non-invariance.

For the PISA data a BSEM prior variance of 0.01 for the measurement

parameters results in PPP = 0.136, a prior variance of 0.05 results in PPP

= 0.449, a prior variance of 0.10 results in PPP = 0.489, and a prior variance

of 0.20 results in PPP = 0.493. A prior variance 0.10 implies a prior belief that

95% of the distribution of the non-invariance lies in the range [−0.62,+0.62].

Using this prior variance the estimated magnitude of non-invariance is less than

0.55 in absolute value and is therefore within this range. Using prior variance

0.10 in the BSEM analysis, Table 6 shows the PISA countries with significant

differences relative to the average across countries. Relatively few of the loadings

and thresholds are non-invariant, only 31 out of the 640 parameters. Several

countries have no non-invariant parameters and only countries 18 and 27 have

more than one non-invariant parameter. Item 8 shows the least degree of non-

invariance.

This analysis may be compared to that of Fox (2010) using the same data. Fox

(2010) used a random parameter approach to non-invariance where a measurement
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Table 6: PISA countries with significant differences relative to the average across
countries (prior variance = 0.10)

Item Loading Threshold

1 - 2, 12, 18, 22, 28, 39
2 15, 35 29, 38
3 15 23, 34, 35
4 - 12, 27, 40
5 3 7, 37
6 3, 33 5, 18, 25, 27, 37
7 - 9, 24, 27
8 24 -

parameter for different groups is seen as randomly drawn from a population with

shared mean and variance and where a significant variance corresponds to non-

invariance. This technique finds non-invariance for all item parameters except the

threshold for item 8. The analysis does not, however, pinpoint which countries

contribute to this non-invariance. For example, as Table 6 shows, there are only

five countries who have any non-invariant loadings.

The ordering of factor means across the countries can be compared between the

different types of analysis using scatter plots. Figure 2 compares BSEM analysis

(X axis) with analysis imposing exact invariance (Y axis). On the whole, the

points in the figure align well along a line with only minor deviations, describing

a similar ordering of countries. One notable exception is seen in the upper right

part of the figure where the analysis under exact invariance ranks the country

lower than using BSEM.

Figure 3 compares BSEM results with those of analysis 5, freeing the non-

invariant parameters and imposing exact equality for the other parameters. There
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is no longer a notable deviation from the line as in Figure 2. Also, the two

countries which in Figure 2 have zero factor means according to exact invariance

analysis and BSEM analysis are separated along the Figure 3 Y axis using the

proposed approach so that the two analyses disagree in this regard. According

to the simulations, the ordering according to analysis 5 shown on the Y axis in

Figure 3 is the most trustworthy.

23



Figure 2: Estimated factor means for 40 countries: Comparing BSEM analysis (X
axis) with analysis imposing exact invariance (Y axis)
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Figure 3: Estimated factor means for 40 countries: Comparing BSEM analysis (X
axis) with analysis that frees non-invariant parameters and imposes exact equality
for other parameters (Y axis)
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6 A multiple indicator growth model simulation

Consider a case where there are 10 binary items measuring a single factor at

five time points. A linear growth model is specified for the factor. The factor

loadings and thresholds are invariant across time with some minor exceptions.

The growth model parameterization holds the thresholds equal across time so that

the intercept growth factor mean is zero. The focus is on correctly estimating the

slope growth factor mean as well as the variances of the intercept and slope growth

factors.

The analyses use Bayesian estimation with a probit link so that for subject

i, item j, and time point t, the probability of the binary variable uijt can be

expressed in terms of the factor η, the intercept growth factor η0 and the slope

growth factor η1 as

P (uitj = 1|ηit, η0i, η1i) = Φ[−τtj + λtj ηit], (6)

ηit = η0i + xt η1i + ζit, (7)

with conditional independence among the u’s conditional on the factors. The item

response model can be expressed in terms of continuous-normal latent response

variable u∗ underlying the binary outcomes,

u∗itj = λtj ηit + εitj, (8)

with the usual probit standardization of unit variance for the residual ε. The

factor metric can be set either by a factor loading fixed at 1 for one item or by the

factor residual variance fixed at 1 for one time point. With binary items, it turns
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out that the former approach is preferable due to making the Bayes iterations

converge faster.

The time-invariant factor loadings are chosen as 1 while the time-invariant

thresholds are chosen as 0. Following are the non-invariant loadings and

thresholds: λ11 = 1.70, λ22 = 1.70, λ33 = 1.35, λ44 = 1.35, λ55 = 1.35,

τ16 = 0.7, τ17 = 0.7, τ56 = −0.7, τ57 = −0.7. This means that out of the 100

measurement parameters, only nine are non-invariant, corresponding to a well-

developed measurement instrument. Nevertheless, ignoring the non-invariance

has biasing effects on key parameters as will be seen. The magnitude of the

loading and threshold non-invariance can be related to the standardized metric of

each u∗ variable, that is, dividing both loadings and thresholds by the u∗ standard

deviation and multiplying the loadings by the factor standard deviation. Although

changing slightly over the time points due to changing factor variances, the loading

difference of 0.7 corresponds to about 0.60 in the standardized metric, the loading

difference of 0.35 to half of that, and the threshold difference of 0.7 to about 0.35

in the standardized metric.

The variance of the prior for the non-invariance, that is the difference between

each pair of loading or threshold parameters, is chosen as 0.10. This implies a prior

belief that 95% of the distribution of the (unstandardized) non-invariance lies in

the range [−0.62,+0.62], a range which almost covers the 0.7 magnitude non-

invariance. Using a prior variance of 0.15 corresponds to the range [−0.76,+0.76]

and gives similar results. Using the much smaller prior variance 0.01 corresponds

to the narrower range [−0.20,+0.20] and is not large enough to let non-invariance

be sufficiently expressed for this example and does not give good BSEM point

estimates or coverage. The non-invariance detection is still reasonably good also
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in this case, however, although indicating too many invariant parameters.

As in the multiple-group simulation, the form of non-invariance simulated in

this example is not of the type that is assumed for BSEM approximate invariance.

This implies that the alignment will not be perfect and the population values

used to generate the data will not be perfectly recovered. It is of interest to see to

which degree recovery occurs and what the coverage values are. Most importantly,

however, is what the power is to detect non-invariance and how well an analysis

with relaxed invariance for non-invariant items performs.

As in the multiple-group simulation, five different types of Bayesian analyses

are performed:

1. Exact invariance over time for all loadings and thresholds. It is expected

that this analysis gives strongly biased results in this setting

2. BSEM analysis using approximate invariance of all loadings and thresholds

across time, assuming ignorance of where the non-invariance resides. This

analysis is expected to perform better than analysis 1 and also provide

information about non-invariance, that is, parameters that are significantly

different from the average over time for the respective item parameter. The

analysis is not expected to recover the population values exactly due to the

alignment issue

3. Exact invariance for invariant items based on analysis 2. and BSEM

approximate invariance for other items. It is unknown if utilizing invariant

”anchor” items improves on analysis 2. The invariant items 8-10 are anchor

items in the simulation
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4. Free non-invariant parameters based on analysis 2 and BSEM approximate

invariance for other parameters. It is unknown if freeing the non-invariant

parameters improves on analysis 2. The nine non-invariant parameters are

freed in the simulation

5. Exact invariance for only the invariant parameters and non-invariant

parameters free. This analysis is expected to perform optimally given that

this is how the data are generated, assuming that the correct non-invariance

is diagnosed in analysis 2

A sample size of n = 1000 and 100 replications are used in the three simulation

analyses. The approximate BSEM invariance is specified with prior variance 0.10

for both loadings and thresholds.

Appendix Section 9.3 shows the input for the Monte Carlo simulation of the

second analysis, the BSEM analysis. A total of 50 items are analyzed, 10 items

for each of the 5 time points. The metric of the factor is determined by fixing the

loading of the last item at the first time point to 1. This approach has been found

to perform better than setting the metric in the factor variance at one time point.

As shown in the table, MODEL PRIORS therefore excludes the loadings of the

last item so that the DO loop for the DIFF statement only goes to 9 instead of

10. Instead, a MODEL CONSTRAINT section is added to express the differences

between the last item’s loadings and their average over time points. In MODEL

PRIORS the approximate invariance for the last item is specified for time points

2-5 using a prior with mean 1, that is, the same value as the fixed loading of the

last item at the first time point.

Table 7 shows the results for the difference at each of the five time points for
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each of the 10 item’s loading and threshold relative to their mean over time points.

In parentheses are given the estimates of the power to detect non-invariance. All

non-invariant parameters have a power estimate of at least 0.80. These power

estimates are bolded. No invariant parameters has a power estimate larger than

0.28. This suggests that BSEM will most often diagnose the correct parameters

as non-invariant.

Table 8 shows the results of the five analyses to be discussed. Five key

parameters are considered. First the mean of the slope growth factor (the

mean of the intercept growth factor is zero in this parameterization where the

thresholds are held equal or approximately equal across time) and the variances

of the intercept and slope growth factors. Next, the standardized slope mean

is considered to include a scale-free quantity. A final quantity considered is the

product of the last item’s factor loading and the slope mean which relates to how

quickly the last item probability changes over time.

Analysis 1 with exact invariance gives unacceptable results in that the bias

and coverage is poor for the slope mean and the loading × slope mean product.

Analysis 2 using BSEM with small-variance prior variance 0.10 gives improved

results but due to the alignment issue it still gives a large bias for the slope

mean and poor coverage for the loading × slope mean product. Analysis 3 with

exact invariance for invariant items based on analysis 2 while maintaining BSEM

approximate invariance for other items does not give uniform improvement over

analysis 2. Analysis 4 with free non-invariant parameters based on analysis 2

while maintaining BSEM approximate invariance for other parameters also does

not give uniform improvement over analysis 2. Analysis 5 that frees the non-

invariant parameters while having exact invariance for the other parameters is the
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Table 7: BSEM results for a growth model simulation with 10 binary items at 5
time points: Deviations from the mean (power estimates)

Time 1 Time 2 Time 3 Time 4 Time 5

Loadings

Item 1 0.405 (1.00) -0.124 (0.26) -0.102 (0.22) -0.105 (0.24) -0.083 (0.08)

Item 2 -0.139 (0.36) 0.410 (1.00) -0.101 (0.19) -0.087 (0.15) -0.090 (0.16)

Item 3 -0.090 (0.07) -0.072 (0.10) 0.251 (0.84) -0.059 (0.08) -0.040 (0.02)

Item 4 -0.098 (0.18) -0.077 (0.11) -0.054 (0.05) 0.256 (0.90) -0.034 (0.04)

Item 5 -0.094 (0.15) -0.070 (0.07) -0.054 (0.09) -0.053 (0.04) 0.263 (0.89)

Item 6 -0.060 (0.03) -0.010 (0.02) 0.013 (0.02) 0.011 (0.01) 0.038 (0.01)

Item 7 -0.061 (0.04) -0.013 (0.03) 0.021 (0.01) 0.011 (0.02) 0.032 (0.00)

Item 8 -0.037 (0.05) -0.010 (0.01) 0.004 (0.07) 0.006 (0.01) 0.029 (0.06)

Item 9 -0.039 (0.05) -0.006 (0.01) 0.010 (0.02) 0.008 (0.01) 0.019 (0.01)

Item 10 -0.052 (0.08) -0.016 (0.00) 0.028 (0.04) 0.013 (0.05) 0.019 (0.02)

Thresholds

Item 1 -0.108 (0.23) -0.036 (0.05) 0.001 (0.00) 0.036 (0.04) 0.106 (0.28)

Item 2 -0.100 (0.22) -0.027 (0.02) -0.002 (0.03) 0.023 (0.04) 0.104 (0.25)

Item 3 -0.100 (0.22) -0.040 (0.04) 0.027 (0.01) 0.018 (0.03) 0.092 (0.19)

Item 4 -0.103 (0.24) -0.053 (0.09) 0.007 (0.00) 0.041 (0.02) 0.106 (0.27)

Item 5 -0.108 (0.25) -0.044 (0.10) -0.003 (0.04) 0.018 (0.02) 0.135 (0.25)

Item 6 0.555 (1.00) -0.042 (0.03) -0.002 (0.04) 0.033 (0.03) -0.546 (1.00)

Item 7 0.549 (1.00) -0.039 (0.05) 0.012 (0.03) 0.026 (0.04) -0.549 (1.00)

Item 8 -0.098 (0.25) -0.027 (0.04) -0.002 (0.06) 0.026 (0.04) 0.099 (0.21)

Item 9 -0.092 (0.23) -0.032 (0.04) 0.002 (0.02) 0.015 (0.01) 0.105 (0.25)

Item 10 -0.102 (0.24) -0.044 (0.07) 0.013 (0.02) 0.033 (0.04) 0.098 (0.17)
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preferred analysis and gives good bias results and coverage for all five quantities.

The remaining bias seen in analysis 5 is due to sampling error and improves with

a larger sample size.

As for the multiple-group simulation study, the outcome of the growth

simulation suggests that the proposed two-step approach works well where the

BSEM analysis (analysis 2) is followed by analysis 5. The strong power results

shown in Table 7 are key to the good performance.
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Table 8: A growth model simulation with 10 binary items at 5 time points: Mean
estimates (95% coverage) for five analyses

Model Slope Intercept Slope Standard’d Loading ×
Mean Variance Variance Slope Mean Slope Mean

Population values

0.5 0.5 0.2 1.118 0.5

1. Exact invariance

0.595 0.538 0.217 1.310 0.595

(0.300) (0.940) (0.950) (0.870) (0.300)

2. BSEM, V=0.10

0.553 0.516 0.187 1.314 0.594

(0.920) (0.950) (0.960) (0.950) (0.800)

3. Exact invariance for anchor items, BSEM V=0.10 for others

0.516 0.544 0.216 1.139 0.516

(0.890) (0.930) (0.940) (0.970) (0.890)

4. Freeing non-invariants, BSEM V=0.10 for others

0.439 0.457 0.171 1.096 0.491

(0.930) (0.930) (0.940) (0.990) (0.990)

5. Freeing non-invariants, exact invariance for others

0.504 0.537 0.224 1.094 0.504

(0.940) (0.930) (0.920) (0.950) (0.940)
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7 A growth model application

As a growth model example, consider a teacher-rated measurement instrument

capturing aggressive-disruptive behavior among a sample of U.S. students in

Baltimore public schools (Ialongo et al., 1999). A total of 1174 boys are observed

in 41 classrooms at eight different time points, from the Fall of Grade 1 to

the Spring of Grade 7. Nine items scored as 1 (Almost Never) through 6

(Almost Always) are considered. The item distribution is very skewed with

a high percentage in the Almost Never category. The items are therefore

dichotomized into Almost Never versus the other categories combined. A multiple-

indicator growth model is considered for the eight time points. With maximum-

likelihood estimation, this requires eight-dimensional numerical integration which

is feasible with Monte Carlo integration, for instance using 5000 integration

points. Maximum-likelihood, however, gives heavy computations with this many

latent variable dimensions, has difficulty in obtaining precise likelihood values

(Asparouhov & Muthén, 2012a), does not automatically produce indices of non-

invariance, and does not scale to more time points as easily as Bayesian analysis.

The multilevel aspect of students within classrooms is ignored in this analysis,

but leads to even more latent variable dimensions; see Muthén and Asparouhov

(2012b).

Appendix Section 9.4 shows the input for BSEM analysis with approximate

measurement invariance across the eight time points. A quadratic growth model is

used with zero quadratic growth factor variance. The aim of the BSEM analysis

is to detect non-invariance in the measurement parameters. In line with the

simulations of the previous section, the metric is set in the factor loading for
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Table 9: Time points with significant differences relative to the average across
time points for the aggression example (prior variance = 0.10)

Item Loading Threshold

stubborn 1, 3, 8 1, 2, 3, 6, 8
breaks rules 1, 2, 8 1, 5, 8
harms others 1, 7, 8 2, 8
breaks things 1, 7 2, 3, 8
yells 1, 3 2, 4, 6, 8
takes property 1, 8 1, 2, 5, 6, 7
fights 2, 8 1, 3, 4
lies 2, 8 -
teases 7, 8 1, 4, 6, 8

the first time point and the variance for the prior is chosen as 0.10. Variance

choices ranging from 0.01 to 0.15 result in similar indications of non-invariant

parameters, although somewhat fewer significant parameters are obtained with

smaller variance values.

Table 9 shows the time points with significant differences relative to the average

across time points for both loadings and thresholds. Among the 144 possible

instances of non-invariance, 50 are detected as significant in this BSEM analysis.

No item is invariant across all time point with respect to both loadings and

thresholds. Time points one and eight show the largest number of non-invariant

parameters which may be natural given that these time points span the time

range. The table is informative about the invariance properties of the items. Of

the nine items, the items stubborn and take property show the largest degree of

non-invariance, while the item lies shows the least degree of non-invariance.

Table 10 shows the growth factor estimates using the three analyses: Exact
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Table 10: Estimates (SEs) from three analyses of aggression example: Exact
invariance, BSEM, and freeing non-invariants

Analysis PPP Mean s Mean q Var i Var s

Exact 0.000 0.062* -0.007 1.847* 0.023*

invariance (0.025) (0.004) (0.143) (0.005)

BSEM 0.095 0.053 -0.006 1.960* 0.060*

(0.052) (0.009) (0.198) (0.013)

Freeing 0.089 0.150* -0.017 7.392* 0.258*

non-invariants (0.065) (0.011) (1.437) (0.063)

invariance, BSEM, and exact invariance except freeing non-invariants (analyses 1,

2, and 5 in Section 6). The results are quite different among the three analyses

with a much steeper linear increase using the third analysis. The third analysis

was found to be the better performing in the simulation studies of Section 6.

8 Conclusions

The multiple-group and multiple-time point simulations show that the BSEM

approach with approximate measurement invariance is capable of detecting non-

invariant parameters. It is a convenient way to identify the specific combination of

item and group/time point that gives rise to the non-invariance. The simulations

also show that the proposed two-step procedure of BSEM followed by a regular

Bayes analysis that frees the non-invariant parameters works well. The procedure

easily scales to many groups and time points, as well as many latent variable
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dimensions.

The proposed BSEM approach has the advantage that it can also be combined

with the types of BSEM applications discussed in Muthén and Asparouhov

(2012a). For example, small-variance priors can be used to accommodate

small cross-loadings in multifactorial confirmatory factor analysis models. This

flexibility may be necessary in for example cross-cultural studies where a

confirmatory factor analysis model with exactly zero cross-loadings is often

unrealistic.
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9 Appendix

9.1 Using Mplus to specify priors for parameter differ-

ences

When choosing Bayesian priors, parameters are typically specified as independent,

but can also be allowed to covary. In Mplus the covariation can be accomplished

using the COVARIANCE option in MODEL PRIORS. Following is a regression

example:

MODEL:

y ON x1(a)

x2(b);

MODEL PRIORS:

a ∼ N(10, 4);

b ∼ N(6, 1);

COV(a,b)=0.5;

which says that the prior bivariate distribution of a and b has a covariance of 0.5,

which translates to a correlation of 0.25:

0.5√
(4)

√
(1)

= 0.25

The COVARIANCE option can also be used to specify small differences

between parameters. Note that

V (a− b) = V (a) + V (b)− 2 Cov(a, b), (9)

40



so that if a and b have non-informative priors with V (a) = V (b) = 1000, using

Cov(a, b) = 999.995 gives V (a−b) = 0.01. With a normal distribution, this means

that the difference has a 95% chance of being between −0.196 and +0.196, that

is, in a small range around the zero mean. This is specified as follows in Mplus:

a ∼ N(0, 1000);

b ∼ N(0, 1000);

COV(a, b)=999.995;

The Mplus DIFF option is used with MODEL PRIORS to simplify specifying

differences between parameters. The above example can be specified as:

DIFF(a, b) ∼ N(0, 0.01);

DO DIFF is used to express parameter differences between large sets of

parameters and groups/timepoints. Consider the example of group differences

for the loadings on a factor measured by 4 variables in 3 groups. Let lamjk denote

a factor loading for group j and variable k. Table 11 shows the Mplus input for

this analysis. Here the MODEL PRIORS statement

DO(1,4) DIFF(lam1# – lam3#) ∼ N(0,0.01);

results in approximate invariance across the 3 groups, so that for the first variable

lam11 ≈ lam21, lam11 ≈ lam31, lam21 ≈ lam31, etc. for the lam parameters for

variables 2-4.
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Table 11: DO DIFF input for a 1-factor model with 4 indicators in 3 groups

ANALYSIS: TYPE = MIXTURE; ! 3 classes corresponding to 3 groups
ESTIMATOR = BAYES;
PROCESSORS = 2;
MODEL = ALLFREE;

MODEL: %OVERALL%
f BY y1-y4* (lam# 1 – lam# 4);
! the above gives labels for all 3 groups (group is #)

MODEL PRIORS:
DO(1,4) DIFF(lam1 # – lam3 #)∼N(0,0.01);

The DO DIFF approach is used in Table 11 to analyze multiple groups, which

for Bayes is carried out using KNOWNCLASS (not shown) and TYPE=MIXTURE.

The ANALYSIS specification MODEL=ALLFREE lets parameter arrays be

different across groups. The auto labeling statement

f BY y1-y4* (lam# 1 – lam# 4);

saves an increasingly large amount of typing with an increasing number of groups.

9.2 Mplus input for multiple-group simulation
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Table 12: caption

TITLE: This is an example of BSEM analysis of a multiple-group

model with approximate measurement invariance for a
single-factor model in 10 groups

MONTECARLO:

NAMES = y1-y6 u;

GENERATE = u (9);

CATEGORICAL = u;

GENCLASSES = c(10);

CLASSES = c(10);

NOBSERVATIONS = 5000;

NREPS = 100;

ANALYSIS:

TYPE = MIXTURE;

ESTIMATOR = BAYES;

PROCESSORS = 2;

BITERATIONS = (10000);

MODEL POPULATION:

same as for MODEL

MODEL:

%OVERALL%

f1 BY y1*1 y2*.7 y3*.5

y4*1 y5*.7 y6*.5;

[y1-y6*0];

[f1*1];

f1*2;

y1-y6*.5;

%c#1%

[u$1@15 u$2@16 u$3@17 u$4@18 u$5@19 u$6@20 u$7@21
u$8@22 u$9@23];

f1 BY y1*1 y2*.7 y3*.5 y4*1 y5*.7 y6*.5 (lam1 1-lam1 6);

[y1*0 y2*.5 y3*1 y4*1.5 y5*2 y6*2.5] (nu1 1-nu1 6);

[f1*1];

f1*2;

y1-y6*.5;

%c#2%

[u$1@-15 u$2@16 u$3@17 u$4@18 u$5@19 u$6@20 u$7@21
u$8@22 u$9@23];

f1 BY y1*1 y2*.7 y3*.7 y4*1 y5*.7 y6*.5 (lam2 1-lam2 6);

[y1*0 y2*.5 y3*1 y4*1.5 y5*2 y6*2.7] (nu2 1-nu2 6);

[f1*1];

f1*1.8;

y1-y6*.5;
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%c#3%

[u$1@-16 u$2@-15 u$3@17 u$4@18 u$5@19 u$6@20 u$7@21
u$8@22 u$9@23];

f1 BY y1*1 y2*.9 y3*.5 y4*1 y5*.7 y6*.5 (lam3 1-lam3 6);

[y1*0 y2*.5 y3*1 y4*1.5 y5*2.2 y6*2.5] (nu3 1-nu3 6);

[f1*0.6];

f1*1.6;

y1-y6*.5;

%c#4%

[u$1@-17 u$2@-16 u$3@-15 u$4@18 u$5@19 u$6@20 u$7@21
u$8@22 u$9@23];

f1 BY y1*1 y2*.7 y3*.5 y4*1 y5*.7 y6*.7 (lam4 1-lam4 6);

[y1*0 y2*.5 y3*1.2 y4*1.5 y5*2 y6*2.5] (nu4 1-nu4 6);

[f1*0.4];

f1*1.4;

y1-y6*.5;

%c#5%

[u$1@-18 u$2@-17 u$3@-16 u$4@-15 u$5@19 u$6@20
u$7@21 u$8@22 u$9@23];

f1 BY y1*1 y2*.7 y3*.5 y4*1 y5*.5 y6*.5 (lam5 1-lam5 6);

[y1*0 y2*.7 y3*1 y4*1.5 y5*2 y6*2.5] (nu5 1-nu5 6);

[f1*0];

f1*1;

y1-y6*.5;

%c#6%

[u$1@-18 u$2@-17 u$3@-16 u$4@-15 u$5@-14 u$6@20
u$7@21 u$8@22 u$9@23];

f1 BY y1*1 y2*.7 y3*.5 y4*1 y5*.7 y6*.5 (lam6 1-lam6 6);

[y1*0 y2*.5 y3*1 y4*1.5 y5*2 y6*2.5] (nu6 1-nu6 6);

[f1*1];

f1*2;

y1-y6*.5;

%c#7%

[u$1@-18 u$2@-17 u$3@-16 u$4@-15 u$5@-14 u$6@-13
u$7@21 u$8@22 u$9@23];

f1 BY y1*1 y2*.7 y3*.7 y4*1 y5*.7 y6*.5 (lam7 1-lam7 6);

[y1*0 y2*.5 y3*1 y4*1.5 y5*2 y6*2.7] (nu7 1-nu7 6);

[f1*1];

f1*1.8;

y1-y6*.5;
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%c#8%

[u$1@-18 u$2@-17 u$3@-16 u$4@-15 u$5@-14 u$6@-13
u$7@-12 u$8@22 u$9@23];

f1 BY y1*1 y2*.5 y3*.5 y4*1 y5*.7 y6*.5 (lam8 1-lam8 6);

[y1*0 y2*.5 y3*1 y4*1.5 y5*2.2 y6*2.5] (nu8 1-nu8 6);

[f1*0.6];

f1*1.6;

y1-y6*.5;

%c#9%

[u$1@-18 u$2@-17 u$3@-16 u$4@-15 u$5@-14 u$6@-13
u$7@-12 u$8@-11 u$9@23];

f1 BY y1*1 y2*.7 y3*.5 y4*1 y5*.5 y6*.5 (lam9 1-lam9 6);

[y1*0 y2*.5 y3*1.2 y4*1.5 y5*2 y6*2.5] (nu9 1-nu9 6);

[f1*0.4];

f1*1.4;

y1-y6*.5;

%c#10%

[u$1@-18 u$2@-17 u$3@-16 u$4@-15 u$5@-14 u$6@-13
u$7@-12 u$8@-11 u$9@-10];

f1 BY y1*1 y2*.7 y3*.5 y4*1 y5*.7 y6*.5 (lam10 1-lam10 6);

[y1*0 y2*.5 y3*1 y4*1.5 y5*2 y6*2.5] (nu10 1-nu10 6);

[f1@0];

f1@1;

y1-y6*.5;

MODEL PRIORS:

DO(1,6) DIFF(lam1 #-lam10 #)∼N(0,0.10);

DO(1,6) DIFF(nu1 #-nu10 #)∼N(0,0.10);

OUTPUT:

TECH8 TECH9;
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9.3 Mplus input for growth model simulation

9.4 Mplus input for growth modeling of aggression items
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Table 13: A BSEM growth model simulation with 10 binary items at 5 time points

TITLE: This is an example of BSEM analysis of a growth model with

approximate measurement invariance.

MONTECARLO: NAMES = u11-u60;

GENERATE = u11-u60 (1);

CATEGORICAL = u11-u60;

NOBSERVATIONS = 1000;

NREPS = 100;

MODEL

POPULATION: Same as for MODEL

ANALYSIS: ESTIMATOR = BAYES;

PROCESSORS = 2;

BITERATIONS = 75000 (20000);

MODEL: f1 BY u11*1.70 u12-u19*1 (lam1 1-lam1 9)

u20@1;

f2 BY u21*1 u22*1.70 u23-u30*1 (lam2 1-lam2 10);

f3 BY u31-u32*1 u33*1.35 u34-u40*1 (lam3 1-lam3 10);

f4 BY u41-u43*1 u44*1.35 u45-u50*1 (lam4 1-lam4 10);

f5 BY u51-u54*1 u55*1.35 u56-u60*1 (lam5 1-lam5 10);

[u11$1-u15$1*0 u16$1-u17$1*.7 u18$1-u20$1*0] (tau1 1-tau1 10);

[u21$1-u30$1*0] (tau2 1-tau2 10);

[u31$1-u40$1*0] (tau3 1-tau3 10);

[u41$1-u50$1*0] (tau4 1-tau4 10);

[u51$1-u55$1*0 u56$1-u57$1*-.7 u58$1-u60$1*0] (tau5 1-tau5 10);

[f1-f5@0];

f1*3 f2*2.5 f3*2 f4*1.5 f5*1;

i s | f1@0 f2@.5 f3@1 f4@1.5 f5@2;

[i@0 s*.5];

i*.5 s*.2; i WITH s*.1;

MODEL PRIORS: DO(1,9) DIFF(lam1 #-lam5 #)∼N(0,0.10);

DO(1,9) DIFF(tau1 #-tau5 #)∼N(0,0.10);

lam2 10∼N(1,0.10);

lam3 10∼N(1,0.10);

lam4 10∼N(1,0.10);

lam5 10∼N(1,0.10);

MODEL

CONSTRAINT: NEW(lam1 10*1 ave*1 diff1-diff5*0);

lam1 10 = 1;

ave = (lam1 10+lam2 10+lam3 10+lam4 10+lam5 10)/5;

DO(1,5) diff#=lam# 10-ave;

OUTPUT: TECH8 TECH9;
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Table 14: A growth model of aggressive-disruptive behavior with 9 items measured
at 8 time points

ANALYSIS: ESTIMATOR = BAYES;

PROCESSORS = 2;

BITERATIONS = 100000 (50000);

MODEL: f1f BY stub1f@1

bkrule1f-tease1f* (lam12-lam19);

f1s BY stub1s-tease1s* (lam21-lam29);

f2s BY stub2s-tease2s* (lam31-lam39);

f3s BY stub3s-tease3s* (lam41-lam49);

f4s BY stub4s-tease4s* (lam51-lam59);

f5s BY stub5s-tease5s* (lam61-lam69);

f6s BY stub6s-tease6s* (lam71-lam79);

f7s BY stub7s-tease7s* (lam81-lam89);

[stub1f$1-tease1f$1] (tau11-tau19);

[stub1s$1-tease1s$1] (tau21-tau29);

[stub2s$1-tease2s$1] (tau31-tau39);

[stub3s$1-tease3s$1] (tau41-tau49);

[stub4s$1-tease4s$1] (tau51-tau59);

[stub5s$1-tease5s$1] (tau61-tau69);

[stub6s$1-tease6s$1] (tau71-tau79);

[stub7s$1-tease7s$1] (tau81-tau89);

[f1f-f7s@0];

i s q | f1f@0 f1s@0.5 f2s@1.5 f3s@2.5 f4s@3.5 f5s@4.5 f6s@5.5 f7s@6.5;

q@0;

OUTPUT: TECH1 TECH8;

MODEL PRIORS: DO(2,9) DIFF(lam1#-lam8#)∼N(0,0.10);

DO(1,9) DIFF(tau1#-tau8#)∼N(0,0.10);

lam21∼N(1,0.10);

lam31∼N(1,0.10);

lam41∼N(1,0.10);

lam51∼N(1,0.10);

lam61∼N(1,0.10);

lam71∼N(1,0.10);

lam81∼N(1,0.10);

MODEL

CONSTRAINT: NEW(lam11 ave diff1-diff8);

lam11=1;

ave = (lam11+lam21+lam31+lam41+lam51+lam61+lam71+lam81)/8;

DO(1,8) DIFF#=lam#1-ave;
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