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Scaling the Computer
to the Problem: 
Application Programming 
with Unlimited Memory
Ike Nassi, TidalScale and University of California, Santa Cruz

Instead of scaling an application and data around the 

computer, programmers can use a software-defined server—

an inverse hypervisor—in which multiple physical machines 

run a single virtual machine. Memory can be expanded as 

needed without modifying the application or limiting its data.

In computing’s early days, memory and address 
space were significant limitations. Virtual memory 
evolved to broaden those limits, greatly expanding 
the amount of memory available to an application. 

So, OSs could now automatically manage the mapping of 
the application’s virtual memory to the system’s physical 
memory. This allowed software to become more ambi-
tious because virtual memory could be much larger than 
the physical memory.

However, this expansion gave rise to a disparity 
between virtual-memory size and physical-memory 
size, which required introducing paging to backing 
(secondary) storage to accommodate information not 
currently in main memory. Paging, in turn, created 
application performance overhead. To improve perfor-
mance, the computing industry turned to hardware 

dynamic address translation to convert virtual-memory 
addresses to physical-memory addresses.

But the foundational problem remained: applications 
are frequently insatiable memory consumers, particu-
larly in the current big data era. To avoid this dilemma, 
industry and academia have been exploring scale-out 
alternatives.1,2 Some experts point to the combination 
of cloud computing and these scale-out alternatives as 
the solution to the ever-expanding demand for mem-
ory. But far from being a panacea, the cloud makes the 
entire scale-out process more difficult because now the 
information mapping of data to physical machines must 
occur across a massive cloud. MapReduce software, such 
as Apache Hadoop (hadoop.apache.org) and Apache 
Spark (spark.apache.org), was developed to help manage 
the additional complexity, but software must be written 
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or rewritten to align with the broader 
distribution of information across 
the cloud. Virtualization is a well-
established technology for multiplex-
ing a set of virtual machines (VMs) 
onto a single physical server, using a 
software hypervisor.

At TidalScale, we began asking 
questions about how to use virtualiza-
tion to avoid scale-out’s extra work:

›› What if all of a cluster’s nodes 
could be combined to form a 
single virtual computer that 
contained all the memory, all 
the processors, all the networks, 
and all the disks?

›› What if that virtual computer 
could automatically optimize 
itself? Could it be better and 
faster than humans at adjusting 
its behavior and operations?

›› What if the computer could get 
bigger and better without need-
ing new silicon generations—for 
example, use more main mem-
ory, cores, Ethernets, or disks 
and better aggregate memory 
and PCI bandwidth? Would it 
be possible to opportunistically 
reduce the computer’s size with-
out changing the application, so 
as to increase the datacenters’ 
energy efficiency or enable them 
to use servers more effectively?

›› How can application software 
best exploit such a computer?

Although the first two questions 
are intriguing, if not controversial, 
we focused on the last two. To investi-
gate answers to these questions, Tidal
Scale developed a hyperkernel, which 
is essentially an inverse hypervisor. 
In a traditional virtual environment, 
multiple VMs share a single physical 
machine. In an inverse hypervisor, 

multiple physical machines run a 
single VM, and each hyperkernel 
instance runs on a physical server. By 
connecting individual physical serv-
ers on a standard private interconnect, 
a set of tightly coupled hardware serv-
ers each running this hyperkernel can 
cooperatively form a single large VM 
running a single standard OS. The OS 
runs on what it views as a single hard-
ware server but what is actually a vir-
tual server. We call this VM a software-
defined server.

A software-defined server exploits 
the idea that physical memory as seen 
by a guest OS can differ from real phys-
ical memory. Guest physical memory 
is the sum of all the physical memory 
of all the physical servers. So, it can 
be significantly larger than previous 
memory limits have allowed—sizable 
enough that physical memory might 
no longer be the limitation it has been, 
and paging could be greatly reduced or 
even eliminated. The hyperkernel sees 
the OS’s view of the physical memory 
it is managing as a second level of vir-
tual memory and the OS’s view of the 
physical processors it is managing as 
virtual processors. A similar situation 
exists with networks and storage.

HOW MEMORY  
DEMAND GREW
Memory started out as a costly 
resource that needed to be conserved. 
In the 1970s, for example, the PDP-11 
had a 16-bit physical address space, in 
which all effective addresses had to fit. 
Addressable memory locations were 
thus limited to 216 (65,536) addressable 
locations of 8-bit bytes.

Virtual memory
Over time, memory became less expen-
sive, but expanding software ambitions 
motivated the quest for even larger 

address spaces. Virtual memory was 
introduced, which gave programmers 
the memory address space they sought. 
Programmers had the illusion of deal-
ing with physical memory, although 
it was actually an artificial represen-
tation of memory. The association 
between virtual-memory addresses 
and physical-memory addresses was, 
and still is, invisible to most applica-
tions. From a programmer’s viewpoint, 
reading and writing appear to be in 
physical memory, not virtual memory. 
The location of the physical memory 
represented by the virtual memory can 
vary over time, as the program’s execu-
tion progresses.

Virtual memory might be partly or 
entirely contained in physical mem-
ory, or it might be paged out and actu-
ally reside in backing storage (partly 
or entirely). The OS manages the map-
ping between virtual and physical 
memories with hardware support in 
the form of dynamic address transla-
tion. When presented with a virtual-
memory address, the hardware for 
dynamic address translation con-
verts the virtual-memory address to a 
physical-memory address.

Virtualization
Hardware support for virtualization—
not to be confused with virtual 
memory—was introduced to accom-
modate the need for different VMs to 
share a physical computer.3 Before vir-
tualization, the OS was solely respon-
sible for mapping the application’s 
virtual memory to physical memory. 
With hardware virtualization sup-
port, the OS now manages the map-
ping between guest virtual memory 
and guest physical memory. However, 
the virtualization software becomes 
responsible for mapping guest physi-
cal memory to real physical memory.
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Because the OS doesn’t need to 
know this is happening and because 
this hardware virtualization support 
is invisible to the OS, a virtualization 
system can potentially run an unmod-
ified guest OS (see Figure 1). The OS 
continues to be responsible for man-
aging any insufficiencies in guest 
physical-memory size, assisted by pag-
ing and first-level dynamic address 
translation, which continues to move 
memory blocks to and from backing 
storage to compensate. The result is 
that virtualization meets the appli-
cation’s memory needs. However, the 
virtualization system now becomes 
responsible for managing second-level 
dynamic address translation.

Application programming models 
that exploit virtualization have remain 
largely unchanged, which was virtual-
ization’s goal. For the most part, virtu-
alization still works well, but for appli-
cations there is a catch. The maximum 
amount of real physical memory that a 
system can support is not up to either 
the application or the OS. It is defined 
by the number of physical pins on the 
microprocessor chip that are used 
for reading, writing, and address-
ing physical memory, interprocessor 
communication, and communication 
with external devices. Quite simply, 
mechanical limits on pin count and 
interprocessor protocols limit the 
amount of physical addressable mem-
ory on a single system.

Shared-memory multiprocessing
Shared-memory multiprocessors were 
created to increase the number of pro-
cessors available for use. However, 
simply increasing the number of pro-
cessors does not remove the obstacle 
of having insufficient memory avail-
able for applications.4 Shared-memory 
multiprocessors failed in that part of 
the mission because adding processors 
did not change the amount of physically 
addressable shared memory. Unfortu-
nately, the same memory limitation 
applies to modern multicore processors.

Scale-out computing
Big data, particularly in-memory com-
puting, is the latest stimulant to whet 
the memory appetite. Virtual memory 
cannot replace the need for increased 
real memory.5 Cloud computing was 
introduced to increase the available 
computation and memory resources 
for applications. However, that expan-
sion comes at the cost of more com-
plexity in mapping memory and com-
putation in a distributed environment. 
Incorporating MapReduce software is 
a hassle. In theory, scale-out comput-
ing is effective if programmers can live 
with rewriting software and manag-
ing data placement to accommodate it.

THE SOFTWARE- 
DEFINED SERVER
But is there a better way? We 
think a valid alternative is our 

software-defined server, which adopts 
a single-system-image approach. Fig-
ure 2 shows how several such servers 
can be organized.

Our goal at TidalScale was to 
achieve the simplicity of scale-up with 
the linear-cost economics of scale-
out. We wanted users to be able to 
scale their computer to their problem 
instead of having to scale their prob-
lem to their computer. In short, we 
wanted a software-defined server that 
provided the best of both the scale-out 
and scale-up worlds.6

Why not just scale-out?
The combination of scale-up and scale-
out can yield many additional benefits 
over scale-out alone. As with scale-out 
computing, an organization can start 
with a small number of less expen-
sive networked computers rather than 
buying or renting a single, expensive 
supercomputer. As the organization’s 
needs evolve, it can add physical com-
puters, resulting in more efficient use 
of capital. So, hardware costs grow 
linearly in cost and dynamically over 
time. Using software-defined serv-
ers can also be more energy efficient, 
and servers can easily be repurposed 
to increase a datacenter’s server 
utilization.

No modification. Scale-up has the 
major advantage that applications and 
OSs can run with no modifications— 
a tremendous plus for legacy 
applications—and with unmodified 
hardware. In addition, there is less 
need for new hardware. The hardware 
features required for software-defined 
servers, principally virtualization sup-
port that delivers two levels of auto-
matic dynamic address translation, are 
already in production and widely used 
in modern microprocessors.
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FIGURE 1. Traditional virtualization. In a traditional virtual environment, a set of virtual 
machines (VMs) share a single physical machine. No modifications are needed for the OS or 
for applications. However, for modern big data applications, more memory is better, not less.
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Virtualization indirection. Software-
defined servers make it possible to 
introduce a level of virtualization indi-
rection between the OS and the physical 
hardware and provide a place where the 
virtualization system could optimize 
system performance without any mod-
ifications to the application or the OS. 
Such virtualization is not possible with 
scale-out alone. Virtualization indirec-
tion could also dynamically modify sys-
tem reliability, making the system more 
resilient to certain failure types. For 
example, an OS might have difficulty 
dealing with hardware resource fail-
ures because it assumes that it is deal-
ing with reliable, physical hardware. 
However, if the same resources, as seen 
by the VM, are mobile and migratable, 
the hyperkernel could, in many cases, 
replace those failing resources with 
alternatives without the guest OS’s 
knowledge or participation. In other 
words, the VM’s reliability can exceed 
that of the physical machine.

Fewer cores per processor. As in scale-
out, adding computers can increase not 
only the total number of processors but 
also the available hardware bandwidth 
to memory and the total network and 

I/O bandwidth. For example, given 10 
servers, each with a certain amount of 
memory bandwidth, adding a server 
increases the raw memory bandwidth 
by 10 percent and increases the number 
of processors and the I/O and network-
ing bandwidth.

This approach contrasts sharply 
with the strategy of adding cores 
to each processor, which, because 
of power dissipation constraints, 
decreases processor frequencies and 
thus degrades single-stream comput-
ing’s performance. With fewer cores 
per processor, manufacturers can offer 
processors at higher operating frequen-
cies, which improves single-stream 
performance. However, an additional 
problem is that memory densities have 
not kept pace with processor-core den-
sities, so the ratio of available memory 
to available cores has actually been 
declining. An alternative to reducing 
the number of available cores is to use 
software-defined servers to combine 
the cores in ways that avoid compro-
mising core-count requirements.

Using unlimited memory
One of TidalScale’s goals was to never 
require software modification, and we 

achieved that goal. But another ques-
tion is how a greatly relaxed memory 
limitation might change the nature of 
an application written for limited mem-
ory, giving it novel possibilities that 
were impossible or impractical before. 
Thus, we sharpened the last original 
question (how can application software 
best exploit such a computer?) to, how 
might application developers recon-
sider their software assumptions?

Recall that when an application 
uses more virtual memory than phys-
ical memory, paging occurs, which 
can degrade performance. Access to 
main memory is about three orders 
of magnitude faster than the fastest 
solid-state disk drives currently avail-
able. Because of paging, applications 
that regularly use more virtual mem-
ory than physical memory often hit a 
memory cliff—the point at which per-
formance as measured in total elapsed 
time drops dramatically.7 Although it 
is highly desirable to have sufficient 
memory to support in-memory com-
puting, the required amount of mem-
ory can often be very expensive and 
might not even be achievable.

From an application performance 
view, moving large amounts of data 
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FIGURE 2. A software-defined server. A collection of physical servers, connected by a private high-speed network and running a coop-
erating set of hyperkernels, can form a VM running a standard unmodified OS that supports unmodified applications. Virtual memory 
and virtual processors can automatically migrate among physical servers on demand to satisfy the needs of applications running on a 
guest OS.
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costs time and energy, regardless of 
where it is moved, be it within a sin-
gle server, between a motherboard 
and storage, or across a network. The 
cost is due to not only transmission 
time but also the reality that inter-
connect resources (memory buses, 
networks, and PCI buses) are always 
time and energy constrained. If hard-

ware resources are used to move data 
from memory to backing storage, they 
cannot be used at the same time for 
any other purpose. Faster intercon-
nect technologies are not the answer. 
Regardless of interconnect speed, not 
having to move data is always better 
than having to move it.

APPLYING  
EXPANDED MEMORY
A large, uniform, and strongly coher-
ent memory space has a several advan-
tages that algorithms can exploit. Con-
sider data stored in tables. Instead of 
moving the rows of the tables stored 
in memory to achieve some specified 
effect, we can use pointers to rows 
rather than the rows themselves, and 
not have to move any memory at all. 
However, this is possible only if every 
processor can directly address every 
byte of memory. Manipulating point-
ers to data can be much, much less 
expensive than manipulating the data 
itself. An interesting problem in the 

financial-technology domain illus-
trates how cost can be reduced.

Problem definition
Suppose that each of 3,000 securities 
is represented by two tables of histor-
ical data, labeled Left and Right. Each 
table has a column of time stamps and 
a column containing the name of the 

security it represents (for example, 
AAPL and GM) as well as some addi-
tional data. Suppose also that Left has 
150 additional data columns, Right has 
100 additional data columns, and each 
table has 10,000 rows. All these con-
stants are arbitrary. The numbers can 
be much larger, or smaller, depending 
on specific needs.

The information in the tables could 
be initially read from disk or a net-
worked data repository or streamed 
directly into memory in real time. 
In this example, we assume that the 
tables are artificially generated and 
that the data, because it is historical, is 
rarely (if ever) updated.

All rows of data then need to be 
merged into a single master table, 
sorted by time stamp. For good per-
formance, the sorted in-memory data 
must be ready for many different que-
ries without paging, and the query 
order is unpredictable.

Increasing the number of securi-
ties, the number of rows, or the number 

of columns of data per row can greatly 
enlarge the amount of data being man-
aged. The cost of a single computer to 
manage this much in-memory data 
might be extremely expensive, pos-
sibly even impractical, with current 
technology. The network traffic for a 
scale-out implementation can be high 
and exhibit an unpredictable amount 
of network congestion. Bugs might 
also be introduced into a complex dis-
tributed application.

Possibly, no single affordable phys-
ical server exists that can be deployed 
for this problem type.

The software-defined 
server as a solution
With a software-defined server, how-
ever, the problem is manageable. By 
combining a set of commodity serv-
ers into a single software-defined 
server that the application views as a 
single server large enough to hold all 
the in-memory data, the application 
can now support fast query response. 
In fact, TidalScale has already devel-
oped a prototype solution and made 
it freely available at tidalscale.com 
/how_to_use_large_memory.

Ingesting data. Tables can be created 
in parallel using subthreads, one for 
each security. Each subthread gener-
ates (or loads from a local or remote 
database) the data for each security 
into a table stored in a region of shared 
memory that the parent thread can 
directly access. Because all the sub-
threads operate in parallel, ingestion 
has the potential to be fast. When a 
subthread finishes, it notifies the par-
ent that it has completed its job and 
then terminates, leaving its tables in 
shared memory. Ultimately, when all 
subthreads have finished, only the 
parent thread remains. All the data 

WITH GREATLY RELAXED MEMORY 
LIMITATIONS, APPLICATION DEVELOPERS 
CAN CONSIDER IMPLEMENTATIONS THAT 

WERE ONCE DEEMED IMPRACTICAL.
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remains in main memory, which the 
parent thread can directly address.

The data and the ingesting thread 
for a security are most likely on the 
same physical hardware server for two 
reasons. First, securities were loaded 
in parallel by their own separate 
threads into the memory of the node 
on which the thread was running. 
Second, the software-defined server 
understands affinity and locality, and 
tends to keep the thread and its data 
together. Data ingestion is embarrass-
ingly parallel. Because the threads 
themselves are spread out across 
nodes through strategies employed by 
the hyperkernel, the data will be also 
spread out over as many nodes as it 
finds necessary or available.

Merging and sorting data. Now that all 
the data is in memory, the parent thread 
can merge the rows virtually. To do so, it 
first builds a table of pointers to all the 
rows of all the tables of all the securities. 
The total number of rows is the number 
of securities × number of rows × 2. The 
table of pointers is in essence a faithful 
representation of a single combined 
table, which the parent thread then 
sorts in order of the time stamps of the 
rows to which it points. One sorted, the 
application is then ready to respond to 
arbitrary queries.

The merge step is quite simple and 
fast. In the sample program, pointers to 
the data from each security are copied in 
arbitrary order along with some meta-
data into a single merged array. A recur-
sive merge sort, running in O(nlogn) 
time, results in a view of all the data 
sorted by time stamp. Thus, it fully 
exploits the combined aggregated pro-
cessors, combined memory, and com-
bined memory bandwidth. Moreover, 
once the tables for each security are 
read (or generated), they need never 

move and are, in this example, never 
updated. Consequently, no data is ever 
lost. If desired for archiving or check-
pointing, the (virtually) merged table 
can be written to backing storage as a 
physical table, in time-stamp order.

The point is not that this algorithm 
is unique. In fact, it’s the obvious algo-
rithm to use. The key point is that 
unless the address space is sufficiently 
large, the obvious algorithm will not 
be able to be run at all!

The software-defined server is 
a viable scale-up alternative to 
scale-out, removing many of the 

current boundaries on an application’s 
memory use. The server also aggre-
gates processors, enabling designs to 
use many fast single-stream proces-
sors rather than the more expensive 
and slower high-density multicore 
processors. Finally, once real, physical 
memory is no longer the limitation of 
the past, developers can rethink how 
best to use it, which could motivate 
the creation of software application 
architectures with significantly less 
complexity and significantly better 
performance. 
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