
46	 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y � 0 0 1 8 - 9 1 6 2 / 1 7 / $ 3 3 . 0 0 © 2 0 1 7 I E E E

COVER FEATURE COMPUTER DESIGN STARTS OVERCOVER FEATURE COMPUTER DESIGN STARTS OVER

Scaling the Computer
to the Problem:
Application Programming
with Unlimited Memory
Ike Nassi, TidalScale and University of California, Santa Cruz

Instead of scaling an application and data around the

computer, programmers can use a software-defined server—

an inverse hypervisor—in which multiple physical machines

run a single virtual machine. Memory can be expanded as

needed without modifying the application or limiting its data.

In computing’s early days, memory and address
space were significant limitations. Virtual memory
evolved to broaden those limits, greatly expanding
the amount of memory available to an application.

So, OSs could now automatically manage the mapping of
the application’s virtual memory to the system’s physical
memory. This allowed software to become more ambi-
tious because virtual memory could be much larger than
the physical memory.

However, this expansion gave rise to a disparity
between virtual-memory size and physical-memory
size, which required introducing paging to backing
(secondary) storage to accommodate information not
currently in main memory. Paging, in turn, created
application performance overhead. To improve perfor-
mance, the computing industry turned to hardware

dynamic address translation to convert virtual-memory
addresses to physical-memory addresses.

But the foundational problem remained: applications
are frequently insatiable memory consumers, particu-
larly in the current big data era. To avoid this dilemma,
industry and academia have been exploring scale-out
alternatives.1,2 Some experts point to the combination
of cloud computing and these scale-out alternatives as
the solution to the ever-expanding demand for mem-
ory. But far from being a panacea, the cloud makes the
entire scale-out process more difficult because now the
information mapping of data to physical machines must
occur across a massive cloud. MapReduce software, such
as Apache Hadoop (hadoop.apache.org) and Apache
Spark (spark.apache.org), was developed to help manage
the additional complexity, but software must be written

	 A U G U S T 2 0 1 7 � 47

or rewritten to align with the broader
distribution of information across
the cloud. Virtualization is a well-
established technology for multiplex-
ing a set of virtual machines (VMs)
onto a single physical server, using a
software hypervisor.

At TidalScale, we began asking
questions about how to use virtualiza-
tion to avoid scale-out’s extra work:

›› What if all of a cluster’s nodes
could be combined to form a
single virtual computer that
contained all the memory, all
the processors, all the networks,
and all the disks?

›› What if that virtual computer
could automatically optimize
itself? Could it be better and
faster than humans at adjusting
its behavior and operations?

›› What if the computer could get
bigger and better without need-
ing new silicon generations—for
example, use more main mem-
ory, cores, Ethernets, or disks
and better aggregate memory
and PCI bandwidth? Would it
be possible to opportunistically
reduce the computer’s size with-
out changing the application, so
as to increase the datacenters’
energy efficiency or enable them
to use servers more effectively?

›› How can application software
best exploit such a computer?

Although the first two questions
are intriguing, if not controversial,
we focused on the last two. To investi-
gate answers to these questions, Tidal
Scale developed a hyperkernel, which
is essentially an inverse hypervisor.
In a traditional virtual environment,
multiple VMs share a single physical
machine. In an inverse hypervisor,

multiple physical machines run a
single VM, and each hyperkernel
instance runs on a physical server. By
connecting individual physical serv-
ers on a standard private interconnect,
a set of tightly coupled hardware serv-
ers each running this hyperkernel can
cooperatively form a single large VM
running a single standard OS. The OS
runs on what it views as a single hard-
ware server but what is actually a vir-
tual server. We call this VM a software-
defined server.

A software-defined server exploits
the idea that physical memory as seen
by a guest OS can differ from real phys-
ical memory. Guest physical memory
is the sum of all the physical memory
of all the physical servers. So, it can
be significantly larger than previous
memory limits have allowed—sizable
enough that physical memory might
no longer be the limitation it has been,
and paging could be greatly reduced or
even eliminated. The hyperkernel sees
the OS’s view of the physical memory
it is managing as a second level of vir-
tual memory and the OS’s view of the
physical processors it is managing as
virtual processors. A similar situation
exists with networks and storage.

HOW MEMORY
DEMAND GREW
Memory started out as a costly
resource that needed to be conserved.
In the 1970s, for example, the PDP-11
had a 16-bit physical address space, in
which all effective addresses had to fit.
Addressable memory locations were
thus limited to 216 (65,536) addressable
locations of 8-bit bytes.

Virtual memory
Over time, memory became less expen-
sive, but expanding software ambitions
motivated the quest for even larger

address spaces. Virtual memory was
introduced, which gave programmers
the memory address space they sought.
Programmers had the illusion of deal-
ing with physical memory, although
it was actually an artificial represen-
tation of memory. The association
between virtual-memory addresses
and physical-memory addresses was,
and still is, invisible to most applica-
tions. From a programmer’s viewpoint,
reading and writing appear to be in
physical memory, not virtual memory.
The location of the physical memory
represented by the virtual memory can
vary over time, as the program’s execu-
tion progresses.

Virtual memory might be partly or
entirely contained in physical mem-
ory, or it might be paged out and actu-
ally reside in backing storage (partly
or entirely). The OS manages the map-
ping between virtual and physical
memories with hardware support in
the form of dynamic address transla-
tion. When presented with a virtual-
memory address, the hardware for
dynamic address translation con-
verts the virtual-memory address to a
physical-memory address.

Virtualization
Hardware support for virtualization—
not to be confused with virtual
memory—was introduced to accom-
modate the need for different VMs to
share a physical computer.3 Before vir-
tualization, the OS was solely respon-
sible for mapping the application’s
virtual memory to physical memory.
With hardware virtualization sup-
port, the OS now manages the map-
ping between guest virtual memory
and guest physical memory. However,
the virtualization software becomes
responsible for mapping guest physi-
cal memory to real physical memory.

48	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

COMPUTER DESIGN STARTS OVER

Because the OS doesn’t need to
know this is happening and because
this hardware virtualization support
is invisible to the OS, a virtualization
system can potentially run an unmod-
ified guest OS (see Figure 1). The OS
continues to be responsible for man-
aging any insufficiencies in guest
physical-memory size, assisted by pag-
ing and first-level dynamic address
translation, which continues to move
memory blocks to and from backing
storage to compensate. The result is
that virtualization meets the appli-
cation’s memory needs. However, the
virtualization system now becomes
responsible for managing second-level
dynamic address translation.

Application programming models
that exploit virtualization have remain
largely unchanged, which was virtual-
ization’s goal. For the most part, virtu-
alization still works well, but for appli-
cations there is a catch. The maximum
amount of real physical memory that a
system can support is not up to either
the application or the OS. It is defined
by the number of physical pins on the
microprocessor chip that are used
for reading, writing, and address-
ing physical memory, interprocessor
communication, and communication
with external devices. Quite simply,
mechanical limits on pin count and
interprocessor protocols limit the
amount of physical addressable mem-
ory on a single system.

Shared-memory multiprocessing
Shared-memory multiprocessors were
created to increase the number of pro-
cessors available for use. However,
simply increasing the number of pro-
cessors does not remove the obstacle
of having insufficient memory avail-
able for applications.4 Shared-memory
multiprocessors failed in that part of
the mission because adding processors
did not change the amount of physically
addressable shared memory. Unfortu-
nately, the same memory limitation
applies to modern multicore processors.

Scale-out computing
Big data, particularly in-memory com-
puting, is the latest stimulant to whet
the memory appetite. Virtual memory
cannot replace the need for increased
real memory.5 Cloud computing was
introduced to increase the available
computation and memory resources
for applications. However, that expan-
sion comes at the cost of more com-
plexity in mapping memory and com-
putation in a distributed environment.
Incorporating MapReduce software is
a hassle. In theory, scale-out comput-
ing is effective if programmers can live
with rewriting software and manag-
ing data placement to accommodate it.

THE SOFTWARE-
DEFINED SERVER
But is there a better way? We
think a valid alternative is our

software-defined server, which adopts
a single-system-image approach. Fig-
ure 2 shows how several such servers
can be organized.

Our goal at TidalScale was to
achieve the simplicity of scale-up with
the linear-cost economics of scale-
out. We wanted users to be able to
scale their computer to their problem
instead of having to scale their prob-
lem to their computer. In short, we
wanted a software-defined server that
provided the best of both the scale-out
and scale-up worlds.6

Why not just scale-out?
The combination of scale-up and scale-
out can yield many additional benefits
over scale-out alone. As with scale-out
computing, an organization can start
with a small number of less expen-
sive networked computers rather than
buying or renting a single, expensive
supercomputer. As the organization’s
needs evolve, it can add physical com-
puters, resulting in more efficient use
of capital. So, hardware costs grow
linearly in cost and dynamically over
time. Using software-defined serv-
ers can also be more energy efficient,
and servers can easily be repurposed
to increase a datacenter’s server
utilization.

No modification. Scale-up has the
major advantage that applications and
OSs can run with no modifications—
a tremendous plus for legacy
applications—and with unmodified
hardware. In addition, there is less
need for new hardware. The hardware
features required for software-defined
servers, principally virtualization sup-
port that delivers two levels of auto-
matic dynamic address translation, are
already in production and widely used
in modern microprocessors.

Application

VM VM VM

100% bit for bit
unmodi�ed

Application

Multiple VMs share a single physical server

Application

OS OS OS

Vi
rtu

al
Ph

ys
ic

al

FIGURE 1. Traditional virtualization. In a traditional virtual environment, a set of virtual
machines (VMs) share a single physical machine. No modifications are needed for the OS or
for applications. However, for modern big data applications, more memory is better, not less.

	 A U G U S T 2 0 1 7 � 49

Virtualization indirection. Software-
defined servers make it possible to
introduce a level of virtualization indi-
rection between the OS and the physical
hardware and provide a place where the
virtualization system could optimize
system performance without any mod-
ifications to the application or the OS.
Such virtualization is not possible with
scale-out alone. Virtualization indirec-
tion could also dynamically modify sys-
tem reliability, making the system more
resilient to certain failure types. For
example, an OS might have difficulty
dealing with hardware resource fail-
ures because it assumes that it is deal-
ing with reliable, physical hardware.
However, if the same resources, as seen
by the VM, are mobile and migratable,
the hyperkernel could, in many cases,
replace those failing resources with
alternatives without the guest OS’s
knowledge or participation. In other
words, the VM’s reliability can exceed
that of the physical machine.

Fewer cores per processor. As in scale-
out, adding computers can increase not
only the total number of processors but
also the available hardware bandwidth
to memory and the total network and

I/O bandwidth. For example, given 10
servers, each with a certain amount of
memory bandwidth, adding a server
increases the raw memory bandwidth
by 10 percent and increases the number
of processors and the I/O and network-
ing bandwidth.

This approach contrasts sharply
with the strategy of adding cores
to each processor, which, because
of power dissipation constraints,
decreases processor frequencies and
thus degrades single-stream comput-
ing’s performance. With fewer cores
per processor, manufacturers can offer
processors at higher operating frequen-
cies, which improves single-stream
performance. However, an additional
problem is that memory densities have
not kept pace with processor-core den-
sities, so the ratio of available memory
to available cores has actually been
declining. An alternative to reducing
the number of available cores is to use
software-defined servers to combine
the cores in ways that avoid compro-
mising core-count requirements.

Using unlimited memory
One of TidalScale’s goals was to never
require software modification, and we

achieved that goal. But another ques-
tion is how a greatly relaxed memory
limitation might change the nature of
an application written for limited mem-
ory, giving it novel possibilities that
were impossible or impractical before.
Thus, we sharpened the last original
question (how can application software
best exploit such a computer?) to, how
might application developers recon-
sider their software assumptions?

Recall that when an application
uses more virtual memory than phys-
ical memory, paging occurs, which
can degrade performance. Access to
main memory is about three orders
of magnitude faster than the fastest
solid-state disk drives currently avail-
able. Because of paging, applications
that regularly use more virtual mem-
ory than physical memory often hit a
memory cliff—the point at which per-
formance as measured in total elapsed
time drops dramatically.7 Although it
is highly desirable to have sufficient
memory to support in-memory com-
puting, the required amount of mem-
ory can often be very expensive and
might not even be achievable.

From an application performance
view, moving large amounts of data

Application

OS

Hyperkernel Hyperkernel Hyperkernel Hyperkernel
…

Hyperkernel

RAM
RAM

RAM

RAM

RAM

RAM

RAM
CPU

CPU

RAM

RAM

RAM

RAM

CPU

CPU

CPU

RAM

RAM

RAM

RAM

RAM

CPU

CPU

CPU

CPU

TidalScale software-de�ned server

Uses patented machine learning to transparently align resources

FIGURE 2. A software-defined server. A collection of physical servers, connected by a private high-speed network and running a coop-
erating set of hyperkernels, can form a VM running a standard unmodified OS that supports unmodified applications. Virtual memory
and virtual processors can automatically migrate among physical servers on demand to satisfy the needs of applications running on a
guest OS.

50	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

COMPUTER DESIGN STARTS OVER

costs time and energy, regardless of
where it is moved, be it within a sin-
gle server, between a motherboard
and storage, or across a network. The
cost is due to not only transmission
time but also the reality that inter-
connect resources (memory buses,
networks, and PCI buses) are always
time and energy constrained. If hard-

ware resources are used to move data
from memory to backing storage, they
cannot be used at the same time for
any other purpose. Faster intercon-
nect technologies are not the answer.
Regardless of interconnect speed, not
having to move data is always better
than having to move it.

APPLYING
EXPANDED MEMORY
A large, uniform, and strongly coher-
ent memory space has a several advan-
tages that algorithms can exploit. Con-
sider data stored in tables. Instead of
moving the rows of the tables stored
in memory to achieve some specified
effect, we can use pointers to rows
rather than the rows themselves, and
not have to move any memory at all.
However, this is possible only if every
processor can directly address every
byte of memory. Manipulating point-
ers to data can be much, much less
expensive than manipulating the data
itself. An interesting problem in the

financial-technology domain illus-
trates how cost can be reduced.

Problem definition
Suppose that each of 3,000 securities
is represented by two tables of histor-
ical data, labeled Left and Right. Each
table has a column of time stamps and
a column containing the name of the

security it represents (for example,
AAPL and GM) as well as some addi-
tional data. Suppose also that Left has
150 additional data columns, Right has
100 additional data columns, and each
table has 10,000 rows. All these con-
stants are arbitrary. The numbers can
be much larger, or smaller, depending
on specific needs.

The information in the tables could
be initially read from disk or a net-
worked data repository or streamed
directly into memory in real time.
In this example, we assume that the
tables are artificially generated and
that the data, because it is historical, is
rarely (if ever) updated.

All rows of data then need to be
merged into a single master table,
sorted by time stamp. For good per-
formance, the sorted in-memory data
must be ready for many different que-
ries without paging, and the query
order is unpredictable.

Increasing the number of securi-
ties, the number of rows, or the number

of columns of data per row can greatly
enlarge the amount of data being man-
aged. The cost of a single computer to
manage this much in-memory data
might be extremely expensive, pos-
sibly even impractical, with current
technology. The network traffic for a
scale-out implementation can be high
and exhibit an unpredictable amount
of network congestion. Bugs might
also be introduced into a complex dis-
tributed application.

Possibly, no single affordable phys-
ical server exists that can be deployed
for this problem type.

The software-defined
server as a solution
With a software-defined server, how-
ever, the problem is manageable. By
combining a set of commodity serv-
ers into a single software-defined
server that the application views as a
single server large enough to hold all
the in-memory data, the application
can now support fast query response.
In fact, TidalScale has already devel-
oped a prototype solution and made
it freely available at tidalscale.com
/how_to_use_large_memory.

Ingesting data. Tables can be created
in parallel using subthreads, one for
each security. Each subthread gener-
ates (or loads from a local or remote
database) the data for each security
into a table stored in a region of shared
memory that the parent thread can
directly access. Because all the sub-
threads operate in parallel, ingestion
has the potential to be fast. When a
subthread finishes, it notifies the par-
ent that it has completed its job and
then terminates, leaving its tables in
shared memory. Ultimately, when all
subthreads have finished, only the
parent thread remains. All the data

WITH GREATLY RELAXED MEMORY
LIMITATIONS, APPLICATION DEVELOPERS
CAN CONSIDER IMPLEMENTATIONS THAT

WERE ONCE DEEMED IMPRACTICAL.

	 A U G U S T 2 0 1 7 � 51

remains in main memory, which the
parent thread can directly address.

The data and the ingesting thread
for a security are most likely on the
same physical hardware server for two
reasons. First, securities were loaded
in parallel by their own separate
threads into the memory of the node
on which the thread was running.
Second, the software-defined server
understands affinity and locality, and
tends to keep the thread and its data
together. Data ingestion is embarrass-
ingly parallel. Because the threads
themselves are spread out across
nodes through strategies employed by
the hyperkernel, the data will be also
spread out over as many nodes as it
finds necessary or available.

Merging and sorting data. Now that all
the data is in memory, the parent thread
can merge the rows virtually. To do so, it
first builds a table of pointers to all the
rows of all the tables of all the securities.
The total number of rows is the number
of securities × number of rows × 2. The
table of pointers is in essence a faithful
representation of a single combined
table, which the parent thread then
sorts in order of the time stamps of the
rows to which it points. One sorted, the
application is then ready to respond to
arbitrary queries.

The merge step is quite simple and
fast. In the sample program, pointers to
the data from each security are copied in
arbitrary order along with some meta-
data into a single merged array. A recur-
sive merge sort, running in O(nlogn)
time, results in a view of all the data
sorted by time stamp. Thus, it fully
exploits the combined aggregated pro-
cessors, combined memory, and com-
bined memory bandwidth. Moreover,
once the tables for each security are
read (or generated), they need never

move and are, in this example, never
updated. Consequently, no data is ever
lost. If desired for archiving or check-
pointing, the (virtually) merged table
can be written to backing storage as a
physical table, in time-stamp order.

The point is not that this algorithm
is unique. In fact, it’s the obvious algo-
rithm to use. The key point is that
unless the address space is sufficiently
large, the obvious algorithm will not
be able to be run at all!

The software-defined server is
a viable scale-up alternative to
scale-out, removing many of the

current boundaries on an application’s
memory use. The server also aggre-
gates processors, enabling designs to
use many fast single-stream proces-
sors rather than the more expensive
and slower high-density multicore
processors. Finally, once real, physical
memory is no longer the limitation of
the past, developers can rethink how
best to use it, which could motivate
the creation of software application
architectures with significantly less
complexity and significantly better
performance.

REFERENCES
1.	 R. White, “The Single System Image

Feature Delivers Greater Flexibility
and Resilience,” IBM Systems Maga-
zine, May 2013; www.ibmsystems
mag.com/mainframe/administrator
/Virtualization/ssi_feature_zvm.

2.	 R. Buyya, “Architecture Alternatives
for Scalable Single System Image

Clusters,” Proc. 1999 Conf. High Perfor-
mance Computing on Hewlett-Packard
Systems (HiPer 99), 1999; buyya.com
/papers/ssiArch.html.

3.	 M. Rosenblum, “The Reincar-
nation of Virtual Machines,”
ACMQueue, vol. 2, no. 5, 2004;
doi:10.1145/1016998.1017000.

4.	 G. Bell et al., “The Encore Con-
tinuum: A Complete Distributed
Workstation-Multiprocessor
Computing Environment,” Proc.
Nat’l Computer Conf. (NCC 85), 1985,
pp. 147−155.

5.	 I. Nassi, “A Preliminary Report on
the UltraMax,” Proc. DARPA Conf.
Mathematical and Scientific Comput-
ing, 1987.

6.	 M. Sevilla et al., “A Framework for an
In-Depth Comparison of Scale-Out
and Scale-Up,” Proc. 2nd Int’l Work-
shop Data-Intensive Scalable Comput-
ing Systems (DISCS 13), 2013; issdm
.soe.ucsc.edu/sites/default/files
/sevilla-discs13.pdf.

7.	 P.-H. Kamp, “You’re Doing It
Wrong,” ACMQueue, vol. 8, no. 6,
2010, pp. 20−27.

ABOUT THE AUTHOR
IKE NASSI is the founder, chairman, and chief technical officer of TidalScale;
an adjunct professor of computer science at the University of California, Santa
Cruz; and a founding trustee of the Computer History Museum. His research
interests include programming languages, OSs, system architecture, and the
history of computer science and mathematics. Nassi received a PhD in com-
puter science from Stony Brook University. He is a Senior Member of IEEE. Con-
tact him at ike.nassi@tidalscale.com.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

