
The 5th annual report on global

open source software development

2019

Stateof the

Software
Supply

Chain

in partnership withpresented by

Table of Contents
Introduction... 3

Infographic... 4

CHAPTER 1: Global Supply of Open Source..................5

1.1 Supply of Open Source is Massive..6

1.2 Supply of Open Source is Expanding Rapidly...................7

1.3 Suppliers, Components and Releases...................................7

CHAPTER 2: Global Demand for Open Source...........8

2.1 �Accelerating Demand for
Open Source Libraries..9

2.2 �Automated Pipelines and
DevOps Are Key Drivers..10

CHAPTER 3: Exemplary Project Teams11

3.1 Research Goals...12

3.2 Time to Remediate Vulnerabilities...13

3.3 Time to Update Dependencies...15

3.4 Stale Dependencies...16

3.5 Exploring the Link Between MTTR and MTTU............ 16

3.6 Hypothesis Testing..18

3.7 Finding Different Behavioral Groups..................................22

3.8 �Guidance for Open Source Project
Owners and Contributors...24

3.9 �Guidance for Enterprise
Development Teams...24

CHAPTER 4: Exemplary Dev Teams..................................26

4.1 The Enterprise Continues to Accelerate............................27

4.2 Analysis of 12,000 Large Enterprises.................................27

4.3 �Component Releases Make
Up 85% of a Modern Application...28

4.4 �Characteristics of Exemplary
Development Teams..29

4.5 Rewards for Exemplary Development Teams...............34

CHAPTER 5: The Changing Landscape35

5.1 Deming Emphasizes Building Quality In............................36

5.2 �Tracing Vulnerable Component Release
Downloads Across Software Supply Chains..................37

5.3 �Adversaries Increasingly Target
Open Source Components...38

5.4 �Government and Industry Apply New
Standards to Secure Software Development................42

Conclusion...44

Sources..45

Appendix A..46

Acknowledgments...46
About the Analysis...46

Appendix B...47

Appendix C..49

Appendix D..50

Introduction
Now in its fifth year, Sonatype's annual State of the

Software Supply Chain Report examines the rapidly

expanding supply and continued exponential growth

in consumption of open source components. Our

research also reveals best practices exhibited by

exemplary open source software projects and exem-

plary commercial application development teams.

This year, for the first time, we’ve collaborated with

research partners Gene Kim from IT Revolution

and Dr. Stephen Magill, Principal Scientist at Galois

and CEO of MuseDev, to objectively examine and

empirically document, release patterns and hygiene

practices across 36,000 open source project teams

and 3.7 million open source releases.

Separately, we observed 12,000 commercial

engineering teams to document their consumption

of open source and third party libraries. We also

conducted two surveys, with a combined participation

of over 6,200 development professionals, to better

understand the current state of DevSecOps and

software supply chain management practices. We

compared teams with, and without, automated open

source governance capabilities (in an attempt) to

reveal the baseline benefit of building applications

that utilize higher quality open source components.

The 2019 State of the Software Supply Chain Report

blends a broad set of public and proprietary data with

survey results, expert research, and analysis to reveal

the following:

⊲⊲ 75% growth in supply of open source component
releases over the past two years (Chapter 1)

⊲⊲ 68% year over year growth in download requests
from the Central Repository to 146 billion (Chapter 2)

⊲⊲ 18x faster median time to update dependencies for
exemplary open source components (Chapter 3)

⊲⊲ 55% reduction in the use of vulnerable open source
component releases within managed software
supply chains (Chapter 4)

⊲⊲ 71% increase in confirmed or suspected open
source related breaches since 2014 (Chapter 5)

At Sonatype, we’ve long been active contributors to,

and maintainers of, numerous open source efforts,

including Apache Maven and Nexus Repository

Manager. Since 2005, we’ve curated and operated

the Central Repository, which last year alone serviced

146 billion download requests for component releases

from developers around the world. Commercially, our

interest lies in helping developers and organizations

accelerate innovation and minimize risk by continu-

ously sourcing third-party libraries from the highest

quality open source projects.

Together with our partners, we are proud to share this

research. We hope that you find it valuable.

3

https://itrevolution.com/faculty/gene-kim/
https://galois.com/team/stephen-magill/

51% of
JavaScript

The top 5% of
projects remediate

security vulnerabilities

within 21 days

12x more likely313,000
average enterprise
 downloads of OSS
 components per year

at remediating
known
vulnerabilities

3.4x
faster

10x more
likely to schedule

dependency
updates

PCI introduces
new
standards

for development
teams using open

source components

component releases have
known vulnerabilities

components have a
known security vulnerability

at updating
dependencies

18x
faster

Exemplary
Projects are

Exemplary Dev Teams are

Exemplary Dev Teams are

Exemplary
Projects are

71% increase
in open source related

breaches over the
past five years

to have automated tools to
manage open source
dependencies

1 in 10
downloads
of Java

55% reduction
in the use of vulnerable
OSS component
releases in automated
environments

Exemplary Dev Teams
experience a

21,448
new open source
releases per day

Secure Dev Practices are

to proactively
remove
troublesome
dependencies

9.3x more
likely

146B
Java download requests

in 2018, represented a

68%
year over year growth

pg. 13

pg. 29

pg. 31

pg. 38
pg. 37pg. 9

pg. 36

pg. 34

pg. 6

pg. 42pg. 31

pg. 27

pg. 29

pg. 14

CHAPTER 1

Global Supply
of Open Source
A World of Infinite Choice

1.1 Supply of Open
Source is Massive
There are now more than 3.7 million unique Java

open source software component releases in the

Central Repository, 800,000 unique JavaScript

packages in npm, 1.2 million unique Python com-

ponent releases housed in the PyPI repository, and

1.6 million .NET component releases in the NuGet

Gallery.1 There are also more than 2.2 million

containerized applications housed in Docker Hub

— up from 900,000 the previous year.2

This massive supply of software parts is rapidly

and organically expanding due to constant

innovations and regular versioning of existing

components. These new versions not only offer

enhanced features, but also provide improved

performance, bug fixes, and security patches.3

1.2 Supply of Open Source
is Expanding Rapidly
Sonatype’s study across several open source

component ecosystems reveals number of

releases housed within public repositories

increased from 16.6 million to 28.4 million from

January 2018 through today. On average, devel-

opers had access to more than 21,448 new open

source component releases every day, since the

beginning of 2018.

Go crates.io
0

5K

10K

15K

20K

25K

OSS Component Growth from 2017-2019

2017 2019

average growth
over two years.

75%
+213%

+21%

Go crates.io

+21%
+213%+21%

+76%

+109%

+48%

+79%

+81%

RubyGems Packagist PyPInpm NuGet Java

4M

3.5M

3M

2.5M

2M

1.5M

1M

.5M

FIG. 1A	 OSS Component Growth from 2017 – 2019

KEY POINT

⊲⊲ On average, developers had
access to more than 21,448
new open source component
releases every day, since the
beginning of 2018.

62019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 1

:
G

L
O

B
A

L
 S

U
P

P
L

Y
 O

F
 O

P
E

N
 S

O
U

R
C

E

While Java components continue to dominate by

sheer number of component releases available,

package types like npm and crates.io demon-

strated the highest growth rates. npm packages

experienced 109% growth and now total 836,000

component releases. Newcomer crates.io (Rust)

increased 213% during the period and now offers

more than 25,000 component releases (see

FIGURE 1A).4

Open source growth is robust across numerous

ecosystems, but npm has grown particularly fast

due to JavaScript’s emergence as a universal

web application programming language. For

JavaScript developers looking for a library, tool, or

adapter, odds are very good that someone else

has already created it and published it to npm

where it can easily be borrowed. According to

the stewards of the npm repository, “Every week

roughly 160 people publish their first package in

the registry.”5

New component versions are released for a vari-

ety of reasons, including supporting new function-

ality, fixing defects, or supporting a new API. New

releases may also address non-feature-related

concerns, such as improving performance, adding

or updating their dependencies, or remediating

security vulnerabilities.

Although brand new projects are constantly being

created and introduced, growth in open source

supply is driven mostly by new versions of existing

projects being published. While the growth

in supply fuels rapid innovation, it does pose

significant questions for organizations wanting to

better manage their software supply chains:

⊲⊲ How often do projects publish new versions?

⊲⊲ Do certain projects release updates more
frequently?

⊲⊲ Do other projects release updates less
frequently?

⊲⊲ What are the implications?

⊲⊲ Who are the best component suppliers?

This year, State of the Software Supply Chain

researchers set out to answer these questions and

many more.

1.3 Suppliers, Components
and Releases
To match terminology in the previous State of

the Software Supply Chain reports and provide

consistency across research findings, we will

follow the Maven terminology using the following

definitions:

⊲⊲ A supplier is a Maven Group (e.g., org.apache.
httpcomponents)

⊲⊲ A component is a Maven Group and Artifact
(e.g., org.apache.httpcomponents, httpclient)

⊲⊲ A component release is a specific Maven
Group, Artifact and Version (e.g., org.apache.
httpcomponents, httpclient, 4.5.6). For other
ecosystems, we sometimes refer to releases as
packages.

Fueling Rapid Innovation Consumption of open

source is so vast that most organizations cannot

identify how many components are entering

into their software supply chains, how those

components are flowing through development

lifecycles, the relative quality and security of those

components, or which components exist within

production applications.

According to International Data Corporation (IDC),

“there were 22.30 million software developers in

the world at the outset of 2018. IDC estimated that

11.65 million are full-time developers, 6.35 million

are part-time developers, and 4.30 million are

nonprofessional developers.”6 In 2018, developers

around the world consumed hundreds of billions

of open source software component releases.

72019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 1

:
G

L
O

B
A

L
 S

U
P

P
L

Y
 O

F
 O

P
E

N
 S

O
U

R
C

E

CHAPTER 2

Global Demand
for Open Source
Fueling Rapid Innovation

2.1 Accelerating Demand
for Open Source Libraries
The growing demand for innovation has accel-

erated implementations of automated software

development pipelines while also driving open

source consumption to new heights across all

major ecosystems.

2.1.1 Demand for Java
In 2018, the aggregate number of download

requests for Java component releases from the

Central Repository grew 68% year over year to 146

billion. With an estimated 12 million Java developers

around the world, this equates to 12,166 per person.7

2.1.2 Demand for JavaScript
While growth in demand for Java components

is remarkable, a view into JavaScript package

downloads demonstrates even greater growth in

developer demand. In 2018, average weekly npm

package downloads increased from approximately

3.5 billion to 10 billion — an increase of 185%.8 To

add further context, there are an estimated 9.7

million JavaScript developers in the world — mean-

ing the average JavaScript developer is sourcing

1,030 packages per week or 53,608 packages per

year.9

2.1.3 Others
Other public repositories have experienced similar

levels of developer demand. For example, down-

loads of RubyGems packages have grown from

8 billion to 33 billion over the past three years.10

NuGet package downloads have increased from

756 million in 2015 to an annual run rate of 16.2

billion in 2019.11

B
IL

L
IO

N
S

0

25B

50B

75B

100B

125B

150B
146B

2018201720162015201420132012

Number of Download
Requests for Java Component
Releases 2012 – 2018FIG. 2A Number of Download
Requests for Java Component
Releases 2012 – 2018

92019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 2

:
G

L
O

B
A

L
 D

E
M

A
N

D
 F

O
R

 O
P

E
N

 S
O

U
R

C
E

2.2 Automated Pipelines and
DevOps Are Key Drivers
Exponential growth in the consumption of open

source component releases and containers is

a proxy for the adoption of automated software

development tools and DevOps pipelines.

Automated tooling can generate hundreds or

thousands of download requests per build.

In the context of software supply chain manage-

ment, each download equates to a procurement

effort by development teams. Each open source

software component release is chosen from an

OSS project that acts as a supplier to developers

who assemble tens, hundreds, and sometimes

thousands of component releases into a finished

application.

JavaScript Package Downloads,
Rolling Weekly Average 2013 – 2019
SOURCE: NPM INC., LAURIE VOSS (@SELDO)

B
IL

L
IO

N
S

10B

12.5B

7.5B

5B

2.5B

0

2018 201920172016201520142013

FIG. 2B JavaScript Package Downloads,
Rolling Weekly Average 2013 – 2019
SOURCE: NPM INC., LAURIE VOSS (@SELDO)

A view into JavaScript component downloads demonstrates
even greater growth in developer demand. In 2018, average

weekly npm package downloads increased from

approximately 3.5 billion to 10 billion — an increase of 185%.

102019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 2

:
G

L
O

B
A

L
 D

E
M

A
N

D
 F

O
R

 O
P

E
N

 S
O

U
R

C
E

CHAPTER 3

Exemplary
Project Teams
Open Source Projects
Are Not Created Equal

3.1 Research Goals
We wanted to better understand the health and

habits of the open source component ecosystem,

and how software developers choose which OSS

components to use in their own projects. To do

this, we studied all the Java artifacts stored in The

Central Repository (often referred to as “Maven

Central”). At the time of this writing, The Central

Repository has over 266,000 unique components

with over 3.7 million component releases.

The research set out to answer:

⊲⊲ Do differences exist in how effectively OSS
projects update their dependencies and fix
vulnerabilities? Are there exemplary components
that do this better than others?

⊲⊲ Are exemplary components more widely-used
than “non-exemplary” components?

⊲⊲ What factors correlate with exemplary
components?

⊲⊲ What advice can be offered to producers of OSS
components and the developers that consume
them?

For the purpose of this study, we restricted our

analysis to components that met six qualifying

criteria (see FIGURE 3A), resulting in a data set

of 36,203 components. Given this data set, we

examined a number of attributes to measure

responsiveness to security vulnerabilities and

determine what properties exemplary component

project teams shared. In addition to the security

relevant attributes — described in the next section

— the primary attributes tracked were:

Number of Dependencies: the maximum count of

dependencies for any given component across all

versions in the study period, as measured by the

dependencies in the Maven pom.xml file.

Stale Dependencies (fewer is better): the average

percentage of out-of-date component depen-

dencies (i.e., a newer version has been released)

present when the component has a new release.

Release Period (shorter is better): average time

in days each component version spends as the

“current” release. A shorter average release period

equates to more frequent releases.

Popularity: the average number of downloads per

day from The Central Repository.

SCM Commits per Month: average number of

commits to the GitHub repo per month — a measure

of development activity (i.e., developer velocity).

Constructing the Study Dataset (N = 36,203)

N = 266,170
Components were published in

The Central Repository.

N = 168,231
Components had at least two version

releases in the last five years.

N = 101,252
Components were part of the “open source software supply chain”

 (e.g., they are or they have a dependency).

N = 100,643
Components follow the Maven standard for versioning guidance.

(e.g., correct use of numeric version strings, components separated by dots.)

N = 76,795
Components have dependencies satisfying

all of the above.

N = 36,203
Components have updated a dependency at least once.

FIG. 3A Constructing the Study Dataset (N = 36,203)

122019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 3

:
E

X
E

M
P

L
A

R
Y

 P
R

O
J

E
C

T
 T

E
A

M
S

Developer Team Size: as measured by the

average number of unique developers committing

each month.

Presence of Continuous Integration (CI): as

measured by the detection of any CI-related

configuration files in the source code repository

(e.g., Travis, Jenkins, CircleCI, etc.).

Support Type: support for the component comes

from an open source foundation, a commercial

organization, or is not officially supported by any

organization (e.g., a personal project).

To gather these attributes, we augmented the data

as follows:

⊲⊲ CHAOSS:12 using the perceval utility to gather
GitHub commit data, we gathered the number
of commits per month for twelve months, as well
as the number of unique developers committing
during each month.

⊲⊲ Libraries.io:13 using this dataset, we were able
to gather the number of GitHub stars, forks, and
pull requests.

⊲⊲ Sonatype Nexus IQ Server:14 using Sonatype
data, we are able to gather vulnerability informa-
tion and a derived component popularity score
(based on how frequently components are seen
by the Nexus IQ repository scanning service).

3.2 Time to Remediate
Vulnerabilities
The first outcome metric we focused on was time

to remediate (TTR). TTR is the time required for a

component team to remediate any security vul-

nerabilities reported against their dependencies.

For a vulnerable dependency, remediation occurs

when it is upgraded to a new version that fixes the

vulnerability. We combined data on component

updates with data on vulnerabilities, and tagged

updates as security relevant if there was a known

vulnerability targeting the old version at the time

the new version was released. We then measure

mean time to remediate (MTTR) as the average

time required for a component to adopt security

relevant updates to dependencies.

Note that the TTR clock starts when a component

version fixing a vulnerability is released. Specifically,

the TTR clock is not started when the vulnerability

is reported or published; early efforts used vulnera-

bility publish times from various sources as the TTR

starting time led to many problems. For example,

responsible disclosure often delays the publishing

of the vulnerability until developers have released

a fixed component version, or vulnerabilities may

have CVE numbers associated with the date they

were reserved rather than published. These factors

make it difficult to obtain precise dates of when

component teams were advised of vulnerabilities.

On the other hand, data on which components fixed

a known vulnerability with a new version release is

widespread and much more reliable.

For developers wanting to use more secure

components, those exhibiting faster MTTR are

desirable. FIGURE 3B (we cropped the x-axis at the

95th percentile) shows a histogram of MTTR across

all components, demonstrating the long tail of

components that apply security updates very slowly,

often years after they are released. We observed:

⊲⊲ In the study, 47% of components — after releasing
a new version — had a vulnerability discovered
in one of its dependencies, during the period in
which that version was current. (N = 36,203)

⊲⊲ The median TTR was 180 days (similar to num-
bers reported in previous versions of the State of
the Software Supply Chain Report). The top 5%
of components remediated vulnerabilities within
21 days.

KEY POINTS

⊲⊲ TTR is the time required for a
component team to remediate any
security vulnerabilities reported
against their dependencies.

⊲⊲ For developers wanting to use
more secure components, those
exhibiting faster MTTR are
desirable.

⊲⊲ In the study, 47% of components —
after releasing a new version — had
a vulnerability discovered in one of
its dependencies, during the period
in which that version was current.

132019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 3

:
E

X
E

M
P

L
A

R
Y

 P
R

O
J

E
C

T
 T

E
A

M
S

⊲⊲ The TTR has an extremely “long tail” — the 95%
percentile occurs at 1,302 days (3.5 years), with
the maximum TTR at 3,388 days (9.3 years). The
mean of the TTR is 326 days.

⊲⊲ 59% of components have had at least one
non-up-to-date and known vulnerable depen-
dency at the time of release (e.g., a newer
dependency was available that fixed a known
vulnerability).

During the period studied, many components

had to remediate a security vulnerability caused

by a dependency, but over half of the sample

set did not have vulnerabilities in any of their

direct dependencies. Furthermore, we focused

further study on components that were published

on GitHub, where we could gather developer

activity metrics. When we restrict the population

to GitHub-hosted components, the portion that

had to deal with a security-relevant dependency

update dropped to 16%. In other words, our TTR

data set was much smaller than our component

data set. This, combined with the hypothesized

correlation between median time to update

(MTTU) and MTTR, motivated us to look at MTTU

as a primary project health metric.

70%

40%

60%

50%

100%

80%

30%

10%

90%

20%

P
e

rc
e

n
ta

g
e

 o
f

P
o

p
u

la
ti

o
n

Days to Remediate Vulnerability

Mean and Median Time to Remediate Vulnerabilities
(cumulative percentage)
SOURCE: 2019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

Mean
TTR is

326 days

Median
TTR is

180 days

95%
percentile
occurs at

1,302 days
(3.5 years)

FASTER SLOWER

1 year

2 years
3 years

FIG. 3B Mean and Median Time to Remediate Vulnerabilities (cumulative percentage)

KEY POINTS

⊲⊲ 59% of components have released
at least one version that contained
a dependency with a known
vulnerability.

⊲⊲ Over half of the sample set did not
have vulnerabilities in any of their
direct dependencies.

142019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 3

:
E

X
E

M
P

L
A

R
Y

 P
R

O
J

E
C

T
 T

E
A

M
S

3.3 Time to Update
Dependencies
To enable a broader analysis of dependency

update hygiene, we defined a time to update

(TTU) attribute for all components in our dataset.

For each component in our data set, we con-

structed the dependency graph of the set of

components (and their versions) that each compo-

nent release depends on.

Then for the given period, for every component,

whenever a new version of one of its depen-

dencies was released, we measured the time

required for the component to update to the

newer dependency. We then computed the

median of all those time to update data points to

obtain the MTTU metric.

FIGURE 3C shows three of our key metrics — time

to update (TTU), time to remediate (TTR), and stale

dependencies. Suppose:

⊲⊲ Component C depends on Component A and B.

⊲⊲ Component B (version 2.2) has a vulnerability
published against it that is fixed in version 2.3.

⊲⊲ The release of B (version 2.3) starts the
Component C TTR and TTU clock.

⊲⊲ When Component C updates Component B from
version 2.3 to 2.4, the clock stops and we record
the TTR and TTU.

⊲⊲ Since the release of A (version 2.4) is not security
relevant (no vulnerability known against A),
upgrading this component only contributes to
TTU.

⊲⊲ When C (version 2.2) is released it is using an
old version of A (2.2 rather than 2.3); this causes
A to be regarded as a stale dependency for the
release of C.

There are several reasons we suspected that MTTU

would be an effective indicator of MTTR perfor-

mance. One of the most important was phrased by

Jeremy Long, founder of the OWASP Dependency

Check project who recommends the best security

patching strategy is to remain current on all

dependencies. Long speculates that “only 25% of

organizations report vulnerabilities to users, and

only 10% of vulnerabilities are reported as Common

Vulnerabilities and Exposures (CVE).”15 Furthermore,

the publication of a CVE is often for a vulnerability

that was fixed in an earlier version of a component.

As an example, Long cites a security vulnerability

discovered in PrimeFaces — a Java UI framework.

The PrimeFaces project became aware of the

vulnerability and fixed it in February 2016. A CVE

for this vulnerability (CVE-2017-1000486) was

subsequently assigned in 2017. Then, the CVE

was published into the national catalogue on

Timeline Demonstrating Stale
Dependencies, Time to Update (TTU),
and Time to Remediate (TTR)

vuln B

A
2.3

C
2.3

D
2.3
B

2.3

vuln B

A
2.4

C
2.2

A
2.2

TTU: C (A2.4)

SKIPPED
(2.2 BECOMES

STALE)

TTR: C (B2.3)

TTU: C (B2.3)

B
2.2

FIG. 3C Timeline Demonstrating
Stale Dependencies, Time
To Update (TTU), and Time
To Remediate (TTR)

KEY POINT

⊲⊲ Jeremy Long, founder of the
OWASP Dependency Check
project speculates that “only
25% of organizations report
vulnerabilities to users, and only
10% of vulnerabilities are reported
as Common Vulnerabilities and
Exposures (CVE).”

152019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 3

:
E

X
E

M
P

L
A

R
Y

 P
R

O
J

E
C

T
 T

E
A

M
S

January 3, 2018. Upon the publication of the CVE,

crypto-miners actively started exploiting vulnera-

ble versions of the component. Developers who

made a practice of updating to the latest released

versions of PrimeFaces were less at risk than

developers who relied upon publication of a CVE

to trigger remediation efforts.

To summarize:

⊲⊲ MTTU data was derivable for all components,
whereas MTTR data is more sparse. (N=36,203
for MTTU vs. N = 16,997 for MTTR).

⊲⊲ Fast MTTU makes it more likely that components
are already protected when new CVEs are
published.

⊲⊲ There is a general sense in the security com-
munity that “having better security” is achieved
by better technical practices. In this case, better
practices means integrating updated dependen-
cies into the daily work of the development team.

We therefore explored TTU in our population to

better understand how effectively component

teams were updating their dependencies.

3.4 Stale Dependencies
Almost every developer has updated their depen-

dencies only to discover that it introduced breaking

changes: either compile-time failures, or worse,

run-time errors because the dependency func-

tionality has changed. Because of these situations,

updating dependencies and patching vulnerabilities

becomes an arduous and painful activity, which

often leads to developments becoming so behind in

updates that upgrading will surely break application

functionality (see the survey results in Chapter 4).

To capture the distinction between “fully up to

date” and the more conservative “within one

version of up to date,” we introduced an attribute

called stale dependency percentage. This

measures the percentage of dependencies, on

average, which are not fully up to date when

a component releases a new version. In other

words, a component that always releases with all

their dependencies up to date will have a perfect

stale dependency ratio of 0%.

Projects that stick to the “bleeding edge” of using

the latest N or N-1 dependencies will have fast

MTTU and a low stale dependency ratio. Projects

that tend to stay one version behind will have

relatively fast MTTU, but high stale dependency

ratio. Projects that do not update frequently will

have even slower MTTU and higher stale depen-

dency ratios.

One of the papers we were inspired by was Why

and How Java Developers Break APIs16 that

monitored 400 Java libraries for 116 days, and

found 282 commits that were breaking changes.

Not all of these were in the released components,

but it shows that the risk of breaking changes is

real, and potentially introduces a huge economic

cost of staying current with OSS components.

3.5 Exploring the Link
Between MTTR and MTTU
Across the entire population, the adoption curve

for upgrading dependencies and remediating

vulnerabilities are similar, as shown in FIGURE 3D.

When comparing MTTR with MTTU for non-secu-

rity-relevant updates on a per-component basis,

we see a correlation between update behavior

for security relevant updates (MTTR) and non-se-

curity-relevant updates (Pearson correlation17 was

0.6 with N = 17,017). In all, 55% of components had

values for MTTR and non-security-relevant MTTU

that were within 20% of each other.

KEY POINTS

⊲⊲ Fast MTTU makes it more likely that
components are already protected
when new CVEs are published.

⊲⊲ We introduced an attribute called
stale dependency percentage.

⊲⊲ 400 Java libraries were monitored
for 116 days. Researchers found
282 commits that were breaking
changes.

⊲⊲ When comparing MTTR with MTTU
for non-security-relevant updates
on a per-component basis, we
see a correlation between update
behavior for security relevant
updates (MTTR) and non-security-
relevant updates.

162019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 3

:
E

X
E

M
P

L
A

R
Y

 P
R

O
J

E
C

T
 T

E
A

M
S

However, we saw a group of components that

focused much more on upgrading vulnerable

dependencies than applying other updates —

achieving good security outcomes while ignoring

(deliberately or accidentally) other component

updates. The analysis found that 15% of compo-

nents have a better than average MTTR, while

having below average MTTU for non-security

relevant updates.

In general, developers staying up to date on

dependencies will also stay up to date on security

updates, because security updates are a subset of

general updates. We observed that many teams

follow this practice, exhibiting very similar MTTR

and MTTU values. To replicate this practice, security

managers can improve vulnerability updating prac-

tices by partnering with their development manager

counterparts to improve their general dependency

management practices.

3.6 Hypothesis Testing
Over several months, we came up with a series of

hypotheses of what factors might be associated

with better upgrade hygiene (i.e., faster MTTU and

TTU Cumulative

TTR Cumulative

Days to Update

Time to Remediate (TTR) vs. Time to Update (TTU)
(cumulative percentage)
SOURCE: 2019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

TTU median:
130 days

TTR median:
180 days

TTU mean:
199 days

FASTER SLOWER

TTR mean:
326 days

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
P

e
rc

e
n

ta
g

e
 o

f
P

o
p

u
la

ti
o

n

FIG. 3D Time to Remediate (TTR) vs. Time to Update (TTU) (cumulative percentage)

In general, developers

staying up to date on

dependencies will

also stay up to date on

security updates, because
security updates are a
subset of general updates.

172019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 3

:
E

X
E

M
P

L
A

R
Y

 P
R

O
J

E
C

T
 T

E
A

M
S

MTTR). Some of the factors included: number of

dependencies, developer commit frequency, num-

ber of active developers, continuous integration

(CI) usage, and component popularity. We hoped

to find specific behaviors associated with exem-

plary component teams and outcomes. This could

provide guidance for other component teams

(component producers), and provide developers

(consumers in the software supply chain) with a list

of attributes to look for in OSS components.

To perform this analysis, we combined our dataset

with statistics on development behaviors collected

from GitHub via the CHAOSS project’s Perceval

tool. Since not all components are hosted on

GitHub, this reduced our dataset size to 10,573

components.

0 500250 750 1,000 1,250 1,500 1,750

0

500

750

250

1,000

1,250

1,500

1,750

Non-Security-Relevant MTTU (days)

S
e

cu
ri

ty
-R

e
le

v
a

n
t

M
T

T
U

 (
d

a
y
s)

Correlation Between Security-Relevant and
Non-Security-Relevant Update Times
SOURCE: 2019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

S
LO

W
E

R
F

A
S

T
E

R

FASTER SLOWER

Projects that tend to
prioritize security updates

Projects that tend to prioritize
non-security updates

FIG. 3E	 Correlation Between Security-Relevant
and Non-Security-Relevant Update Times

KEY POINT

⊲⊲ Over several months, we came up
with a series of hypotheses of what
factors might be associated with
better upgrade hygiene (i.e., faster
MTTU and MTTR).

182019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 3

:
E

X
E

M
P

L
A

R
Y

 P
R

O
J

E
C

T
 T

E
A

M
S

Our primary hypotheses were:

1. Popularity: More popular components will have

better update hygiene, due to the pressure to stay

secure when a component is widely used.

2. Number of Dependencies: Components with

fewer dependencies will have better update

hygiene, as it is easier to keep current with fewer

dependencies.

3. Size of Team: Large development teams will

have better update hygiene.

4. Development Activity: Components that

release faster or commit more frequently will have

better update hygiene.

5. Use of Continuous Integration: Projects that

used continuous integration would have better

update hygiene.

6. Institutional Support: Components that are

supported by an open source foundation or

commercial entity will have better update hygiene,

due to having more resources.

While we found evidence for hypotheses 3 and

4, and weak evidence of 5, the most interesting

results were the hypotheses that we could not

confirm (1 and 2). For each of our hypotheses

regarding component attributes that would be

associated with faster MTTU, we obtained the

following results.

3.6.1 Popularity

QUESTION: Do popular projects, as

measured by The Central Repository

downloads, have better MTTU?

FINDINGS : No. When deciding to choose compo-

nents to use in a development project, popularity

is often used as a proxy for quality (i.e., “everyone

else is using it, so it must be safe, secure, and

reliable”). Across the entire population studied,

analysis showed popularity did not correlate with

fast MTTU (Pearson correlation coefficient of -0.07,

Kendall Tau18 of -0.1). Even when our researchers

selected the most popular components (e.g., the

top 10 or 20 percent of components by popularity)

and compared their MTTU to the rest of the

population, no statistically significant differences in

MTTU were found.

3.6.2 Number of Dependencies

QUESTION: Do fewer dependencies

correlate with faster MTTU?

FINDINGS : No. We had expected components

with fewer dependencies to have better MTTU.

One would expect that the difficulty of keeping

dependencies up to date should grow as the

number of dependencies grow. However, our

analysis found very little correlation (Pearson =

-0.09). What little correlation there was showed

that components with larger dependency counts

having slightly faster TTU.

Even more surprising, the analysis showed that

components with the most dependencies (i.e.,

the top 10%) had 39% faster TTU (p = 1.2e-29

on Mann-Whitney U test19) than the rest of the

population. They also had 18% larger develop-

ment teams than the rest of the population, and

this ratio grows as the number of dependencies

increase (e.g., at the 95th percentile, the teams

were 23% larger). The top 10% by dependency

count had 4.8 times more dependencies on

average than the bottom 90% and yet had 39%
faster TTU. This led us to investigate further the

connection between number of dependencies

and size of development team. FIGURE 3F shows

the plot of number of dependencies versus

average size of development team (smoothed

over a sliding window of 10 data points).

We were surprised and delighted to find that

fast TTU is possible even with large numbers of

dependencies. It was particularly interesting that

the size of the development team tends to increase

as the number of dependencies increases, bring-

ing up an interesting question of causation: when

development teams grow, does each developer

bring in their favorite dependencies, adding to the

dependency count? Or is it that as a project grows,

new functionality requires new dependencies,

which increase the workload, which requires

bringing in new developers. These are questions

that we hope to address in a future study.

KEY POINTS

⊲⊲ Across the entire population studied,
analysis showed popularity did not
correlate with fast MTTU.

⊲⊲ The top 10% by dependency count
had 4.8 times more dependencies
on average than the bottom 90%
and yet had 39% faster TTU.

⊲⊲ Fast TTU is possible even with large
numbers of dependencies.

192019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 3

:
E

X
E

M
P

L
A

R
Y

 P
R

O
J

E
C

T
 T

E
A

M
S

3.6.3 Size of Development Team

QUESTION: Do components with more active

developers correlate with faster MTTU?

FINDINGS: Yes. Selecting directly for size of

development team reveals that across all projects,

the top 20% of teams by size (11 or more develop-

ers contributing per month) have 50% faster MTTU

and release 2.6 times more frequently. They are

also 37% more likely to be foundation supported.

All results are statistically significant (Mann-Whitney

U test) and these trends hold for the top 15%

and 10% of teams as well (13 and 16 developers

involved per month respectively).

3.6.4 Development
Activity and Velocity

QUESTION: Do components with higher

release frequency and higher monthly

commits correlate with faster MTTU?

FINDINGS: Yes. Clearly, high development activity

has the potential to enable a project to stay more

up to date. In particular, a project cannot update

dependencies without releasing a new version.

Therefore, frequent releases are generally required

for fast MTTU of dependencies. However it is also

possible to spend development effort solely on

new features, bug fixes, etc., and ignore depen-

dency management. Furthermore, development

and release velocity have been shown to be highly

predictive of project outcomes as noted in the 2018

Accelerate: State of DevOps Report.20 While we

cannot determine causation, we found correlations

that match these prior results — the top 20% of

teams by commits per month had 26% faster

MTTU and 83% faster release frequency. Release

frequency itself is strongly correlated with MTTU

(Pearson correlation of 0.48). This was the strongest

3

4

5

6

7

8

9

50 60 7010 20 30 40

Number of Dependencies

A
v
e

ra
g

e
 S

iz
e

 o
f

D
e

v
e

lo
p

m
e

n
t

Te
a

m

More Dependencies Correlate with Larger Development Teams

(smoothed)
SOURCE: 2019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

FIG. 3F �More Dependencies Correlate with Larger Development Teams
(smoothed)

KEY POINTS

⊲⊲ The top 20% of teams by size (11 or more developers contributing per month)
have 50% faster MTTU and release 2.6 times more frequently.

⊲⊲ The top 20% of teams by commits per month had 26% faster MTTU
and 83% faster release frequency. This was the strongest
correlation we found among the attributes we considered.

⊲⊲ The top 20% of projects by release frequency have 2.3 times faster TTU on average.

202019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 3

:
E

X
E

M
P

L
A

R
Y

 P
R

O
J

E
C

T
 T

E
A

M
S

correlation we found among the attributes we

considered. The top 20% of projects by release

frequency have 2.3 times faster TTU on average.

3.6.5 Use of Continuous Integration

QUESTION: Does the use of continuous

integration correlate with faster MTTU?

FINDINGS: No. We were surprised that continuous

integration (CI) did not correlate with MTTU. CI

was used in the release processes for 68.3% of

the components we studied. Usage of CI across all

the groups were similar, +/-5%. We speculate that

perhaps CI adoption is widespread enough, and

that expectations of submitting automated tests

with contributed code is high enough, that it is now

a mandatory practice for any OSS components.

Because we scanned for the presence of CI con-

figuration files in the source code repository, we

were able to establish which tools they used. Of

the 7,682 repositories, 90.1% were using TravisCI.

3.6.6 Institutional Support

QUESTION: Is a project supported by an

open source foundation or by a commercial

entity correlated with faster MTTU?

FINDINGS : Yes and no. We hypothesized that the

additional resources available to commercially or

foundation-supported projects would generally

enable better performance. We based commercial

support on group IDs that begin with “com,” and

foundation support on group IDs associated with

multiple components. To improve the labeling,

researchers filtered out manually identified outliers

such as “com.github,” “org.eclipse,” and “org.web-

jars,” which all host and aggregate components

developed by other groups.

The analysis revealed that Foundation-supported

projects had 7.4% faster MTTU in general (p =

0.0002), where researchers also observed highly

significant differences in team size (32% larger)

and commit frequency (77% faster). By compari-

son, Commercial projects had 8% slower MTTU (p
= 0.0001) and 29% slower commit frequency.

FIG. 3G

Exemplary Development
Teams Di�erentiate
Through These Six

Performance Metrics

18x
faster MTTU

33%
larger

development
teams

4x
more likely to be

managed by
open source
foundations

6x
more popular by
download count

2x
more frequent releases

6.8x
better at fully

updating
dependencies

KEY POINTS

⊲⊲ We were surprised that continuous
integration did not correlate with MTTU.

⊲⊲ Foundation-supported projects
had 7.4% faster MTTU in general
(p = 0.0002), where researchers also
observed highly significant differences
in team size (32% larger) and commit
frequency (77% faster).

212019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 3

:
E

X
E

M
P

L
A

R
Y

 P
R

O
J

E
C

T
 T

E
A

M
S

3.7 Finding Different
Behavioral Groups
Based on what we learned from our hypothesis

testing regarding trends in team composition and

performance, we examined five sub-populations of

the data to characterize differences in approach to

open source software development. The identifi-

cation and characterization of the sub-populations

was driven by a combination of automated cluster-

ing, domain, and attribute knowledge gained from

the hypothesis testing.

3.7.1 Exemplars
We defined Exemplars to be those teams in the

fastest 20% by MTTU, and in the best (lowest)

20% by stale dependency count. Exemplars

demonstrate statistically significant differences as

compared to the rest of the data set in the follow-

ing attributes:

⊲⊲ 18x faster MTTU

⊲⊲ 6.8x better at releasing components where all
dependencies are up to date

⊲⊲ 6x more popular (as measured by average
monthly The Central Repository download counts)

⊲⊲ 2x more frequent component releases

⊲⊲ 33% larger development teams

⊲⊲ 4x more likely to be managed by open source

foundations than by commercial stewards

Within the Exemplars, there were two groups with

significantly different development team sizes:

3.7.1.1 LARGE EXEMPLARS

Large exemplary teams (top 50% by size, with an

average of 8.9 developers committing code on

at least a monthly basis), commit code frequently,

release frequently, and do an excellent job of

managing their dependencies. We can see the

effect of open source foundation support in this

group, as 91% of these projects are associated with

an open source foundation.

3.7.1.2 SMALL EXEMPLARS

The smallest 50% of exemplary teams by number

of developers have an average of less than two

developers, but still manage to run popular, widely

used, and high quality projects. However small in

team size, they still update dependencies 14 times

faster than the rest of the population and stay

fastidiously up to date (91% of dependencies are

brought up to date with each release).

3.7.2 Laggards
The teams in the bottom 20% in MTTU and stale

dependencies are the furthest behind in terms of

update hygiene. These teams release infrequently

(around twice each year) and take on average

almost two years to adopt updates to dependen-

cies. Almost all of their dependencies (98% on

average) are out of date, even after a new release.

They are generally less popular (downloaded as

often as other projects on average). However

there are 67 projects in this group that are among

the top 10% most downloaded projects from The

Central Repository.

3.7.2.1 FEATURES FIRST LAGGARDS

These teams release frequently (top 50%) but oth-

erwise fall into the Laggard category (bottom 20%

MTTU and stale dependencies). They have larger

than average (29% larger) development teams, but

do not prioritize upgrading dependencies. They

release a new version every 50 days on average

but take an average of 603 days to upgrade

dependencies when new versions are released.

As a result, 96% of dependencies are out of date

continues on page 24

at release time. This was a small group, with 2.6%

of the population exhibiting this behavior.

3.7.3 Cautious Teams
We checked to see how many teams were in the

top 50% with respect to MTTU, but the bottom

20% with respect to stale dependencies. These

teams maintain better-than-median update

cadence, yet do not immediately adopt new ver-

sions of dependencies, choosing instead to wait a

few months before moving to a new dependency

release. This was not a sizable group, with only 4%

of our dataset falling into this category.

KEY POINTS

⊲⊲ 91% of Large Exemplars are
associated with an open source
foundation.

⊲⊲ Small Exemplars update dependen-
cies 14 times faster than the rest of
the population and stay fastidiously
up to date (91% of dependencies
are brought up to date with each
release).

⊲⊲ For Laggards, almost all of their
dependencies (98% on average)
are out of date, even after a new
release.

⊲⊲ Features First release a new version
every 50 days on average but take
an average of 603 days to upgrade
dependencies when new versions
are released.

⊲⊲ Cautious teams do not immediately
adopt new versions of dependen-
cies, choosing instead to wait a few
months before moving to a new
dependency release.

222019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 3

:
E

X
E

M
P

L
A

R
Y

 P
R

O
J

E
C

T
 T

E
A

M
S

FIG. 3H Cluster Popularity and Release Speed

10-1

100

101

102

103

104

105

106

107

0 100 200 300 400 500 600

Average Days Between Releases

P
o

p
u

la
ri

ty
 (

M
a

v
e

n
 C

e
n

tr
a

l D
o

w
n

lo
a

d
s)

Large Exemplars

Small Exemplars

Features First

Laggards

Cautious

None of the Above

Cluster Popularity and Release Speed
SOURCE: 2019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

RELEASES FREQUENTLY

L
E

S
S

 P
O

P
U

L
A

R
M

O
R

E
 P

O
P

U
L

A
R

RELEASES SELDOMLY

A few popular
Laggards. but
on the whole
they are less

popular.

Features First
tend to be fairly
popular, despite

poor update
hygiene.

Popularity
trends up as

release speed
increases.

Exemplars tend
to be more

popular.

232019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 3

:
E

X
E

M
P

L
A

R
Y

 P
R

O
J

E
C

T
 T

E
A

M
S

3.8 Guidance for Open Source
Project Owners and Contributors
Given its association with good security practices

and outcomes, we recommend a focus on accel-

erating and maintaining rapid MTTU. In addition

to investing development effort on new features,

bug fixes, etc., projects should commit similar

resources to dependency management. This

means that developers maintaining OSS projects

who are considering adding a new dependency,

and looking for a metric to guide that choice,

would do well to focus on those dependencies

with fast MTTU. Since remediating a vulnerable

dependency typically involves upgrading to a new

dependency version, components with fast TTU

values naturally exhibit faster response to depen-

dency vulnerabilities.

To progress comfortably into the status of

Exemplar (top 80% of Exemplars), teams should

aim for a minimum of four releases annually, and

aim to upgrade at least 80% of their dependencies

with every release. A higher frequency of depen-

dency updates statistically results in higher quality

and more secure code.

3.9 Guidance for Enterprise
Development Teams
Enterprise development teams working with

software supply chains often rely on an unchecked

variety of supply from OSS projects where each

developer or development team can make their

own sourcing and procurement decisions. The

effort of managing 2,778 different projects and

8,200 unique releases (SEE SECTION 4.2.1) can

introduce significant drag on development and is

contrary to an enterprise’s need to develop faster

as part of any agile, continuous delivery or DevOps

practice.

Choosing open source projects should be consid-

ered an important strategic decision for enterprise

software development organizations. Different

components demonstrate healthy or poor per-

formance that impacts the overall quality of their

releases. Therefore, MTTU should be an important

metric when deciding which components to utilize

within your software supply chains. Rapid MTTU

is associated with lower security risk and is also

more accessible from public sources than other

metrics enterprises might want to rely upon such

as vulnerability data.

Just as traditional manufacturing supply chains

intentionally select parts from approved suppliers

and rely upon formalized procurement prac-

tices — enterprise development teams should

adopt similar criteria for their selection of OSS

components. This practice ensures the highest

quality parts are selected from the best and fewest

suppliers — a practice Deming recommended

for decades. Implementing selection criteria and

update practices will not only improve quality, but

can accelerate mean time to repair when suppliers

discover new defects or vulnerabilities. Chapter 4

will further explore the impact of OSS component

selection on overall application quality.

KEY POINTS

⊲⊲ We recommend projects focus on
accelerating and maintaining rapid
MTTU.

⊲⊲ Teams should aim for a minimum
of four releases annually, and aim
to upgrade at least 80% of their
dependencies with every release.

242019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 3

:
E

X
E

M
P

L
A

R
Y

 P
R

O
J

E
C

T
 T

E
A

M
S

»» bz.tsung.android:objectify

»» com.ahome-it:ahome-tooling-server-core

»» com.amazon.device.tools.build:builder

»» com.amazon.device.tools.build:gradle

»» com.amazon.device.tools.lint:lint-checks

»» com.github.japgolly.fork.

scalaz:scalaz-concurrent_sjs0.5_2.11

»» com.github.japgolly.fork.

scalaz:scalaz-xml_sjs0.5_2.11

»» com.github.japgolly.fork.

scalaz:scalaz-iterv_sjs0.5_2.11

»» com.github.japgolly.fork.

scalaz:scalaz-core_sjs0.5_2.11

»» com.aranea-apps.android.libs:android-rest

»» com.ariht:config-generation-maven-plugin

»» com.arasthel:swissknife

»» com.asayama.docs.gwt.angular:gwt-angular-pages

»» com.asayama.gwt:gwt-util

»» com.asayama.gwt.angular:gwt-angular-resources

»» com.asayama.gwt.angular:gwt-angular-masonry

»» com.asayama.gwt.angular:gwt-angular-http

»» com.asayama.gwt.angular:gwt-angular-user

»» com.asayama.gwt.angular:gwt-angular-prettify

»» com.asayama.gwt.angular:gwt-angular-ng

»» com.asayama.gwt.bootstrap:gwt-bootstrap

»» com.asayama.gwt.jquery:gwt-jquery

»» com.automattic:elasticsearch-statsd

»» com.autoscout24.gradle:gradle-monkey-plugin

»» com.damnhandy:handy-uri-templates

»» com.badlogicgames.gdx:gdx-backend-robovm

»» com.badlogicgames.gdx:gdx-backend-lwjgl

»» com.badlogicgames.gdxpay:

gdx-pay-android-googleplay

»» com.badlogicgames.gdxpay:gdx-pay

»» com.erinors:xtend-ioc-core

»» com.bartoszlipinski:parsemodel-compiler

»» com.bazaarvoice.dropwizard:

dropwizard-webjars-bundle

»» com.bazaarvoice.dropwizard:

dropwizard-configurable-assets-bundle

»» com.github.advantageous:qbit-spring

»» com.github.advantageous:qbit-consul-client

»» com.github.advantageous:qbit-eventbus-replicator

»» com.github.advantageous:qbit-vertx

»» com.github.advantageous:qbit-service-discovery

»» com.github.advantageous:qbit-test-support

»» com.github.advantageous:qbit-admin

»» com.github.advantageous:qbit-core

»» com.github.advantageous:qbit-servlet

»» com.github.akarnokd:ixjava

»» com.github.almondtools:rexlex

»» com.github.andreptb:fitnesse-selenium-slim

»» com.github.andrewoma.kommon:kommon

»» com.github.andrewoma.kwery:fetcher

»» com.github.andrewoma.kwery:core

»» com.github.andrewoma.kwery:transactional

»» com.github.andrewoma.kwery:mapper

»» com.github.aro-tech:tdd-mixins-core

»» com.github.aro-tech:extended-mockito

»» com.github.ben-manes.caffeine:guava

»» com.github.chandu0101.

scalajs-react-components:macros_sjs0.6_2.11

»» com.github.czyzby:gdx-lml

»» com.github.danielgindi:helpers

»» com.github.davidmoten:bigsort

»» com.github.davidmoten:rxjava-extras

»» com.github.dblock:oshi-core

»» com.github.ddth:ddth-osgikafka

»» com.github.ddth:ddth-zookeeper

»» com.github.dnvriend:akka-persistence-jdbc_2.10

»» com.github.doctoror.rxcursorloader:library

»» com.github.fbertola:mother-docker

»» com.github.finagle:finch-oauth2_2.10

»» com.github.finagle:finch-demo_2.11

»» com.github.fracpete:screencast4j-weka-package

»» com.github.gabrielemariotti.cards:library-extra

»» com.github.heuermh.

adamexamples:adam-examples_2.11

»» com.github.heuermh.adamplugins:adam-plugins

»» com.github.heuermh.

adamplugins:adam-plugins_2.11

»» com.github.heuermh.

adamplugins:adam-plugins_2.10

»» com.github.j-fischer:rest-on-fire

»» com.github.jinahya:simple-file-back

»» com.github.jodersky:flow_2.11

»» com.github.joschi:dropwizard-elasticsearch

»» com.github.jsonld-java:jsonld-java-sesame

»» com.github.jsurfer:jsurfer-simple

»» com.github.jszczepankiewicz:dynks

»» com.github.jtakakura:gradle-robovm-plugin

»» com.github.kentyeh:sd4j

»» com.github.kzwang:elasticsearch-river-dynamodb

»» com.github.kzwang:elasticsearch-transport-redis

»» com.github.kzwang:elasticsearch-osem

»» com.github.kzwang:elasticsearch-repository-gridfs

»» com.github.mhshams:core

»» com.github.michaelruocco:

wso2-api-publisher-plugin

»» com.github.mictaege:doozer

»» com.github.nkzawa:engine.io-client

»» com.github.nwillc:contracts

»» com.github.oscerd:camel-cassandra

»» com.github.pengrad:java-telegram-bot-api

»» com.github.persapiens:jsf-undertow-

spring-boot-starter

»» com.github.persapiens:jsf-undertow-

bootsfaces-spring-boot-starter

»» com.github.persapiens:jsf-jetty-bootsfaces-

spring-boot-starter

»» com.github.pwittchen:reactivenetwork

»» com.github.pwittchen:reactivebeacons

»» com.github.ratrecommends:gdx-utils

»» com.github.richard-ballard:arbee-test-utils

»» com.github.richard-ballard:arbee-utils

»» com.github.salomonbrys.kodein:kodein

»» com.github.salomonbrys.kodein:kodein-android

»» com.github.scala-blitz:scala-blitz_2.11

»» com.bladecoder.engine:blade-engine-spine-plugin

»» com.bladecoder.engine:blade-engine

»» com.bladejava:blade-jetbrick

»» com.bloidonia:groovy-stream

»» com.github.sd4324530:fastweixin

»» com.github.seratch:ltsv4s_2.11

»» com.github.seratch:scalikesolr_2.10

»» com.github.seratch:jslack

»» com.github.sogyf:goja-qrcode

»» com.github.sv244:torrentstream-android

»» com.braintreepayments.api:braintree

»» com.braintreepayments.api:braintree-api

»» com.github.sviperll:metachicory

»» com.github.sviperll:adt4j-core

»» com.github.thomasnield:rxkotlinfx

»» com.github.tibolte:agendacalendarview

»» com.github.tkurz.sesame:vocab-builder-cli

»» com.github.tkurz.

sesame:vocab-builder-maven-plugin

»» com.github.triceo.splitlog:splitlog-core

»» com.github.vmironov.

jetpack:jetpack-bindings-arguments

»» com.github.webdriverextensions:

webdriverextensions

»» com.github.wnameless:smartcard-reader

»» com.github.xuwei-k:httpz-scalaj_2.11

»» com.github.xuwei-k:msgpack4z-java07

»» com.github.xuwei-k:play23scalacheck111_2.11

»» com.github.xuwei-k:applybuilder71_2.11

»» com.github.xuwei-k:msgpack4z-java

»» com.github.xuwei-k:play23scalaz71_2.11

»» com.github.xuwei-k:play23scalaz70_2.11

»» com.github.xuwei-k:play-twenty-three_2.11

»» com.digitalpebble:storm-crawler-tika

»» com.cedarsoft.commons:configuration

»» com.digitalpebble:storm-crawler

»» com.cedarsoft.commons.history:core

»» com.mailosaur:mailosaur-java

»» com.pengyifan.bioc:pengyifan-bioc

»» com.cloudhopper:ch-smpp

»» com.cocosw:framework

»» com.codeborne:selenide

»» com.codebullets.saga-lib:saga-lib-guice

»» com.puppycrawl.tools:checkstyle

»» com.dimafeng:testcontainers-scala

»» com.redowlanalytics:

swagger2markup-maven-plugin

»» com.rtstatistics:api-client

»» com.craterdog.

java-security-framework:java-digital-notary-api

»» com.cyngn.vertx:vertx-kafka

»» com.ea.orbit:orbit-rest-client

»» com.ea.orbit:orbit-actors-spring

»» com.valchkou.datastax:cassandra-driver-mapping

»» com.ea.orbit:orbit-actors-redis

»» com.eharmony:aloha-vw-jni

»» com.englishtown.vertx:vertx-httpservlet

»» com.englishtown.vertx:vertx-zookeeper

»» com.englishtown.vertx:vertx-guice

»» com.englishtown.vertx:vertx-when

»» info.cukes:cucumber-picocontainer

»» com.erudika:para-dao-cassandra

»» com.eventsourcing:eventsourcing-core

»» com.evernote:android-sdk

»» com.facebook.presto:presto-teradata-functions

»» com.facebook.presto:presto-cli

»» com.facebook.presto:presto-orc

»» com.facebook.presto:presto-blackhole

»» com.facebook.presto:presto-server

»» com.floragunn:search-guard-5

»» com.floragunn:search-guard-ssl

»» com.flozano.statsd-netty:statsd-netty

»» com.gabrielittner.auto.value:auto-value-cursor

»» com.getbase.android.autoprovider:library

»» com.giffing.wicket.spring.boot.

starter:wicket-spring-boot-starter-example

»» de.leanovate.doby:doby_2.11

FIG. 3I The Exemplars: Components Demonstrating the Fastest MTTU and Lowest Stale Dependency Counts
Truncated: for complete list, see Appendix D, page 50

252019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 3

:
E

X
E

M
P

L
A

R
Y

 P
R

O
J

E
C

T
 T

E
A

M
S

CHAPTER 4

Exemplary
Dev Teams
Benefits of DevSecOps
and Automated Open
Source Governance

C
H

A
P

T
E

R
 4

:
E

X
E

M
P

L
A

R
Y

 D
E

V
 T

E
A

M
S

4.1 The Enterprise
Continues to Accelerate
Software innovation has become the last path

to differentiation in most competitive industries.

Companies must transform their approach to digi-

tal innovation or face loss of market share. There is

$2 trillion spent annually in software development,

but most is labor-oriented and there is a growing

need to automate more of the software develop-

ment process. Thus, exemplary engineering teams

are embracing DevOps practices and automated

tools to manage third-party dependencies and

minimize open source risk.

Forty-seven percent of development teams now

deploy to production multiple times a week.21

Furthermore, DORA’s 2018 State of DevOps Report

provides strong evidence that organizations

adopting DevOps practices are experiencing

remarkable results, including:

⊲⊲ DevOps teams deploy code 46x more frequently
— meaning they deploy multiple times per day
instead of once a week or less.

⊲⊲ DevOps teams have a 7x lower change failure
rate — meaning changes to production fail 7.5%
of the time instead of 38.5%.

⊲⊲ High performing DevOps teams are 1.75x more
likely to extensively use open source software
and 1.5 times more likely to expand open source
usage in the future.22

In order to survive and thrive in today’s application

economy the best development teams are actively

embracing open source innovation, dependency

management practices, and automated tooling for

open source governance.

4.2 Analysis of 12,000
Large Enterprises
This year’s research analyzed the Java open source

consumption patterns of 12,000 enterprise devel-

opment teams to understand average consumption

patterns, the diversity of OSS components they

relied upon and the number of releases of those

projects they consumed. Open source component

release download patterns were observed for

calendar year 2018. Downloads were observed

across enterprises representing 173 countries.

4.2.1 Analysis of Open
Source Downloads

QUESTIONS: How many component releases are

downloaded by companies each year? How many

OSS projects and releases are represented?

FINDINGS: In 2018, the average enterprise

downloaded 313,000 open source component

releases — representing an increase of 84% year

over year.

On a country-by-country basis, downloads patterns

revealed interesting variation. For example, the

average organization in Germany downloaded

436,000 component releases, followed by France

with 324,000, the United States with 309,000, and

the United Kingdom with 248,000 downloads.

For the study population, downloads represented

an average of 2,778 open source components,

including 8,200 unique component releases. This

means the enterprises consumes an average

of three releases per component. One the high

end, 243 (2%) organizations used over almost five

(4.61) release versions. On the low end, 1,470 (12%)

organizations averaged below two (1.82) release

versions.

C
H

A
P

T
E

R
 4

:
E

X
E

M
P

L
A

R
Y

 D
E

V
 T

E
A

M
S

KEY POINTS

⊲⊲ There is $2 trillion spent annually
in software development, but most
is labor-oriented and there is a
growing need to automate more of
the software development process.

⊲⊲ In 2018, the average enterprise
downloaded 313,000 open source
component releases.

272019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

Researchers noted that it is not uncommon to

see downloads of 50 – 60 versions of a specific

project over the year long observation period.

4.2.2 Utilization of
Repository Managers

QUESTION: How frequently are repository

managers used in the download process?

FINDINGS: Software developers doubled their

use of repository managers in 2018 as they sought

more efficient and higher velocity practices for

OSS consumption. Over 9 million developers now

use repository managers as part of their develop-

ment tool set.23 Even as the number of repository

manager instances grow, their use as a primary

download path within development teams has

not reached significant levels. Across the 12,000

organizations analyzed, component release

downloads via repository managers totaled 5.3%

(compared to 1.8% globally).

By contrast, 305 (3%) of the 12,000 organizations

demonstrated high utilization of repository

managers for more than 50% of their downloads.

This group was utilizing repository managers 14.2

times more on average the other organizations

observed.

Repository managers not only accelerate the

development process by caching component

releases locally, but they also can be used to limit

the number of paths releases can travel to make

their way into an enterprise. Limiting the number

of paths is one of the first steps toward controlling

and auditing software supply chain behaviors for

an enterprise.

4.3 Component Releases
Make Up 85% of a
Modern Application
Open source components are pervasive in

software development today. An analysis of over

500 applications revealed the average application

contains over 460 software component releases, of

which 85% were open source. In the same study, it

was not uncommon to see applications assembled

from 2,000 – 4,000 OSS component releases.

In JavaScript development, the number of

npm packages per application is even greater.

According to npm.org, “the average modern web

application has over 1,000 modules, and trees of

over 2,000 modules are not uncommon. In fact,

97% of the code in a modern web application

comes from packages downloaded from the npm

repository. An individual developer is responsible

only for the final 3% that makes their application

unique and useful.”24

Percentage of Downloads
via Repository Managers
(12K Organizations Analyzed)

10,363
organizations use a
repository manager

for less than 10%
of downloads.

305
organizations use a
repository manager

for 50-100% of
downloads.

582
organizations use a
repository manager

for 20-49% of
downloads.

750
organizations use a
repository manager

for 10-19% of
downloads.

3% 5% 6% 86%

FIG. 4A Percentage of Downloads
�via Repository Managers �
(12K Organizations Analyzed)

C
H

A
P

T
E

R
 4

:
E

X
E

M
P

L
A

R
Y

 D
E

V
 T

E
A

M
S

KEY POINTS

⊲⊲ Across the 12,000 organizations
analyzed, component release
downloads via repository managers
totaled 5.3%

⊲⊲ The Exemplars were utilizing
repository managers 14.2 times more
on average the other organizations
observed.

⊲⊲ An analysis of over 500 applications
revealed the average application
contains over 460 software
component releases, of which 85%
were open source.

⊲⊲ 97% of the code in a modern web
application comes from packages
downloaded from the npm
repository.

282019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

As development teams strive to deploy new

software faster, the practice of assembling open

source component releases into the form of an

application screams of efficiency. Developers

no longer need to code every line from scratch.

Developers can download component releases

in seconds that deliver new capabilities, built by

experts outside of their organizations who make

their code freely available to others.

While component use proliferates every develop-

ment organization today, management of compo-

nents in these organizations varies considerably.

The best organizations follow software supply

chain management principles to ensure the best

quality component releases are assembled into

their applications.

4.4 Characteristics of Exemplary
Development Teams
Jeremy Long, founder of the OWASP Dependency
Check project once shared, “Good development
teams consider out-of-date libraries a code quality
issue. They build time into their schedule to
upgrade their dependencies. On the other hand,
development teams who do not do this regularly
are often afraid to break their build.”25

When it comes to software development,
exemplary teams are more likely to embrace the
following patterns and practices when it comes to
open source dependency updates.

4.4.1 Dependency Update
Behaviors for Developers
In order to better understand the practices

surrounding open source components within

development, this year’s researchers surveyed

658 developers in April 2019. The developers

were asked to describe their organization’s

practices as well as to describe their feelings of

how those practices impacted their productivity

and enjoyment of work.

Researchers performed an analysis of all the

respondent answers and three distinct clusters

emerged. Broadly speaking, the clusters demon-

strated high, medium, and low (29.3%, 48.6%, and

22.0% of respondents, respectively) degrees of

reported pain associated with updating dependen-

cies and patching. Researchers then compared

the high and low pain clusters to determine what

percentage of respondents answered “strongly

agree” to the survey questions. Stark differences

were found between them (SEE FIGURE 4B).

4.4.1.1 UPDATING OPEN
SOURCE DEPENDENCIES

QUESTION: Is updating dependencies

scheduled as part of your daily work?

FINDINGS : Researchers found that 38% of the

developers surveyed updated dependencies as

part of their daily work, yet Exemplars were 10x

more likely to schedule dependency updates as

part of their daily work.

4.4.1.2 USING THE LATEST
VERSIONS OF DEPENDENCIES

QUESTION: Do you strive to use the latest

version (or latest-N) of all your dependencies?

FINDINGS : From the overall survey population,

46% of developers strove to use the latest version

of all of their open source dependencies. Further

analysis revealed that Exemplars were 6.2x more

likely to use the latest version (or latest-N) of all of

their dependencies.

Using the latest versions of dependencies is its own

reward. As noted previously in Chapter 3, Exemplar

components demonstrated 3.4 times faster MTTR

and were 27% more likely to already be protected

when new vulnerabilities were discovered.

Then, as will be revealed below in section 4.5,

teams using the latest component releases can

reduce the presence of vulnerable component

releases in their applications by 55%. Therefore,

development teams that simultaneously incorpo-

rate the latest versions of component releases

and procure them from exemplary open source

projects can improve the overall quality of their

applications.
continues on page 31

C
H

A
P

T
E

R
 4

:
E

X
E

M
P

L
A

R
Y

 D
E

V
 T

E
A

M
S

KEY POINTS

⊲⊲ Jeremy Long, founder of the OWASP
Dependency Check project once
shared, “Good development teams
consider out-of-date libraries a
code quality issue. They build time
into their schedule to upgrade their
dependencies.”

⊲⊲ Exemplars are 10x more likely to
schedule dependency updates as
part of their daily work.

⊲⊲ Exemplars are 6.2x more likely to
use the latest version (or latest-N) of
all their dependencies.

⊲⊲ Exemplar components demonstrated
3.4 times faster MTTR and were 27%
more likely to already be protected
when new vulnerabilities were
discovered.

292019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

EXEMPLARS:

3.2x less likely to consider updating “painful.”

2.6x less likely to consider updating
vulnerable component releases “painful.”

Schedule update dependencies
as part of daily work.

EXEMPLARS: 10x more likely

Strive to use the latest version
(or latest-N) of all dependencies.

EXEMPLARS: 6.2x more likely

Use some process to add a
new dependency (e.g., evaluate,
approve, standardize, etc.)

EXEMPLARS: 11x more likely

Have automated tools to track,
manage, and/or ensure policy
compliance of dependencies.

EXEMPLARS: 12x more likely

Have a process to proactively
remove problematic or
unused dependencies.

EXEMPLARS: 9.3x more likely

Traits of Exemplary
Development Teams

FIG. 4B Traits of Exemplary
Development Teams �

C
H

A
P

T
E

R
 4

:
E

X
E

M
P

L
A

R
Y

 D
E

V
 T

E
A

M
S

302019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

4.4.1.3 USING PROCESSES TO
ADD A NEW DEPENDENCY

QUESTION: Do you use some process to

add a new dependency (e.g., evaluate,

approve, standardize, etc.)?

FINDINGS : From the overall survey population,

50% of developers said they relied on some

process to add a new open source dependency.

When examining the Exemplar cluster, researchers

found them to be 11x more likely to have a process

in place to add a new dependency (e.g., evaluate,

approve, standardize, etc.).

4.4.1.4 PROACTIVELY REMOVING
DEPENDENCIES

QUESTION: Do you have a process to proactively

remove problematic or unused dependencies?

FINDINGS : When it came to removing problematic

component releases (e.g., those with security

vulnerabilities), only 30% admitted to having a

process in place. Exemplars were 9.3x more likely

to proactively remove problematic or unused

dependencies.

4.4.1.5 USING AUTOMATION TO
MANAGE DEPENDENCIES

QUESTION: Do you have automated tools

to track, manage, and/or ensure policy

compliance of your dependencies?

FINDINGS : Use of automated solutions can

expedite dependency management. This year’s

survey revealed 37% of the overall population

relied on automation to manage dependencies. A

closer look at Exemplars demonstrated that they

were 12x more likely to have automated tools to

track, manage, and/or ensure policy compliance of

their dependencies.

4.4.1.6 CHARACTERIZING THE EFFORT
TO UPDATE DEPENDENCIES

QUESTION: Do you consider

updating dependencies painful?

FINDINGS : Updating dependencies is not a

favorite past time of developers. In the overall

survey population, 51% of developers agreed that

updating was considered painful. The benefit of

applying processes and updating to the latest ver-

sions of dependencies paid off for the Exemplars.

Researchers found Exemplars to be 3.2x less likely

to consider updating dependencies to be “painful.”

4.4.1.7 CHARACTERIZING THE EFFORT TO
UPDATE VULNERABLE COMPONENTS

QUESTION: Do you consider updating

vulnerable component releases to be painful?

FINDINGS : In the survey, 52% reported the prac-

tice of updating vulnerable component releases as

“painful.” Again, the benefit of applying processes,

updating to the latest N-versions, and regularly

removing problematic dependencies paid off for

the Exemplars. Exemplars surveyed were 2.6x less

likely to consider updating vulnerable components

to be “painful.”

4.4.2 Component Management
in the Enterprise
This year, our researchers surveyed 5,558

development and DevOps professionals as part

of the 2019 DevSecOps Community Survey.

Survey participants were asked to self identify their

DevOps maturity level into different categories,

where three clusters emerged. Broadly speaking,

there were those with high levels of DevOps

maturity, those with improving maturity, and those

with low maturity or no DevOps practice.

Stark differences emerged between the high

maturity (Exemplar) and low maturity (No DevOps)

clusters as they responded to questions about

open source component controls, policies, and

breaches as seen across the following practices.

C
H

A
P

T
E

R
 4

:
E

X
E

M
P

L
A

R
Y

 D
E

V
 T

E
A

M
S

KEY POINTS

⊲⊲ When examining the Exemplar
cluster, researchers found them to
be 11x more likely to have a process
in place to add a new dependency.

⊲⊲ Exemplars were 9.3x more likely to
proactively remove problematic or
unused dependencies.

⊲⊲ A closer look at Exemplars
demonstrated that they were 12x
more likely to have automated
tools to track, manage, and/or
ensure policy compliance of our
dependencies.

⊲⊲ Researchers found Exemplars to be
3.2x less likely to consider updating
dependencies to be “painful.”

⊲⊲ Exemplars surveyed were 2.6x
less likely to consider updating
vulnerable components to be
“painful.”

312019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

4.4.2.1 GENERATION OF A SOFTWARE
BILL OF MATERIALS (SBOM)

QUESTION: Does your organization

keep a complete SBOM?

FINDINGS: More rigorous control of open source

component releases used in development and

operations leads to the use of a Software Bill of

Materials (SBOM). SBOMs are used to track and

trace which open source component releases have

been assembled into an application. The survey

revealed that only 53% of Exemplars keep a com-

plete software bill of materials.26 When paired with

vulnerability data about the components, SBOMs

can be used to quickly identify where defective

component releases have been used in applications

— whether under development or in production,

thereby accelerating remediation efforts.

4.4.2.2 CONTROLLING OPEN
SOURCE USED IN DEVELOPMENT

QUESTION: How well does your organization

control which open source component

releases are used in development?

FINDINGS: 2019 saw more organizations invest-

ing in controls that start with keeping an inventory

of all component releases used. When asked how

well their organizations controlled which open

source component releases were used in devel-

opment, 74% of Exemplars in DevOps practices

remarked that their organization was “completely

locked down” or had “some standards” in place.

By contrast, 48% of developers in organizations

without a DevOps practice claimed to have “no

standards” in place.27

4.4.2.3 EMBRACEMENT OF AUTOMATED
TOOLS TO ENFORCE COMPLIANCE
AND INFORM DEVELOPERS

QUESTION: Does your organization have an

open source policy and do you follow it?

FINDINGS: The survey revealed that 57% of orga-

nizations have an open source governance policy

in place.28 These organizations rely on policies

supported by a mix of formal documentation, OSS

governance committees, automated tooling, and

tribal knowledge.

The survey also revealed that automation had a

significant impact on whether or not open source

policies were followed. In Exemplars DevOps

practices where more automated OSS governance

solutions have been deployed, 62% of developers

Adoption of Open Source
Governance Policies

62%
follow their
policy

38%
have no policy
or ignore it

25%
follow their
policy

75%
have no policy
or ignore it

53%
have a complete
SBOM

21%
have a complete
SBOM

79%
do not have
meaningful
component
controls

47%
do not have
meaningful
component
controls

Exemplary
DevOps Practices

Exemplary
DevOps Practices

 No DevOps Practices No DevOps Practices

Adoption of a Software
Bill of Materials (SBOM)

SOURCE: 2019 DEVSECOPS COMMUNITY SURVEY (SONATYPE)

FIG. 4C Adoption of a
Software Bill of Materials �

Adoption of Open Source
Governance Policies

62%
follow their
policy

38%
have no policy
or ignore it

25%
follow their
policy

75%
have no policy
or ignore it

53%
have a complete
SBOM

21%
have a complete
SBOM

79%
do not have
meaningful
component
controls

47%
do not have
meaningful
component
controls

Exemplary
DevOps Practices

Exemplary
DevOps Practices

 No DevOps Practices No DevOps Practices

Adoption of a Software
Bill of Materials (SBOM)

SOURCE: 2019 DEVSECOPS COMMUNITY SURVEY (SONATYPE)

Adoption of Open Source
Governance Policies�

SOURCE: 2019 DEVSECOPS COMMUNITY SURVEY (SONATYPE)

C
H

A
P

T
E

R
 4

:
E

X
E

M
P

L
A

R
Y

 D
E

V
 T

E
A

M
S

KEY POINTS

⊲⊲ The survey revealed that only 53%
of Exemplars keep a complete
software bill of materials.

⊲⊲ 74% of Exemplars in DevOps
practices remarked that standards
were in place for controlling use of
open source components.

⊲⊲ 57% of organizations have an open
source governance policy in place.

322019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

remarked that their organization had a policy and

that it was followed. By comparison, developers in

organizations with little to no DevOps practices, only

25% of their developers were aware of and fol-

lowed the policy. When automation of OSS policies

is present, developer adherence is 150% stronger.29

4.4.2.4 INFORMING DEVELOPERS
OF SECURITY RELATED ISSUES

QUESTION: How are you informed

of InfoSec and AppSec issues?

FINDINGS : One of the reasons why adherence is

stronger in exemplary organizations is that OSS

component attributes (e.g., version numbers,

vulnerability information, license descriptions) and

policy information are delivered inside developer

tooling. For developers in Exemplars DevOps

practices, 63% are informed of application security

issues from within their own development tools —

meaning they don’t have to leave their common

tool sets to receive alerts and information.

Developers inside exemplary teams were 62%

more likely to receive notice of application security

issues from within their tool sets compared to

developers with little to no DevOps practice in

place.30

More than
half (51.3%) of
all available
components
are less than
3 years old.

Components
less than 3 years

old have 65%
fewer known

vulnerabilities.

2010 2011 2012 2013 2014 2015 2016 2017 2018

Percentage of Components
with Known Vulnerabilities

AVG: 15.5%

AVG: 9.3%

0

5%

10%

15%

20%

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

2019

Age of Components Used in Managed Software Supply Chains
(Analysis of Java Components Across 68,000 Applications)

0

5%

10%

15%

20%

25%

30%

More than
half (51.3%) of
all available
components
are less than
3 years old.

Components
less than 3 years

old have 65%
fewer known

vulnerabilities.

2010 2011 2012 2013 2014 2015 2016 2017 2018

Percentage of Components
with Known Vulnerabilities

AVG: 15.5%

AVG: 9.3%

0

5%

10%

15%

20%

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

2019

Age of Components Used in Managed Software Supply Chains
(Analysis of Java Components Across 68,000 Applications)

0

5%

10%

15%

20%

25%

30%

FIG. 4D Age of Components Used in Managed Software Supply Chains
(Analysis of Java Components Across 68,000 Applications)

FIG. 4E Percentage of Components
with Known VulnerabilitiesC

H
A

P
T

E
R

 4
:

E
X

E
M

P
L

A
R

Y
 D

E
V

 T
E

A
M

S

KEY POINTS

⊲⊲ When automation of OSS policies is
present, developer adherence is 150%
stronger.

⊲⊲ For developers in Exemplars in DevOps
practices, 63% are informed of application
security issues from within their own
development tools.

332019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

4.5 Rewards for Exemplary
Development Teams
Development teams who regularly update their

open source dependencies and manage their

software supply chains can dramatically reduce

their risk exposure from the use of vulnerable com-

ponent releases. For 2019, researchers performed

an extensive analysis of open source component

releases used in managed and unmanaged

supply chains.

The first set of analyses focused on managed

software supply chains. The team looked at open

source component releases that were used

within 85,000 applications. Analysis of the Java

open source component releases revealed the

latest versions had the lowest percentage of

known defects. Component releases under three

years in age reflected security defect rates of

9.3% — representing 45% of OSS parts used in the

applications.

Researchers also evaluated older component

releases used within managed software supply

chains. Analysis reveals that component releases

over three years in age demonstrated security

defect rates at 15.3% — or 65% higher defect rates

compared to the newer component. The older

component releases represented 55% of the parts

used within managed software supply chains.

The second set of analyses focused on unmanaged

software supply chains where automated open

source governance solutions were not present.

The average application assembled within this

set revealed a security defect rate of 21%. While

researchers were not able to assess the age of

component releases across the population, defect

rates here were 40 – 100% higher when compared

to components used within managed software

supply chains.

Managed supply chains make better software. For

organizations who tamed their supply chains, the

rewards were impressive: use of known vulnerable

component releases was reduced by 55%.

of component
releases are

vulnerable
within applications

in unmanaged
supply chains

of component
releases are
vulnerable
within applications
in managed
supply chains

reduction

55%

Proportion of Vulnerable Components
in Unmanaged vs. Managed Supply Chains

20.7% 9.3%

FIG. 4F	 Proportion of Vulnerable
Components in Unmanaged
vs. Managed Supply Chains

C
H

A
P

T
E

R
 4

:
E

X
E

M
P

L
A

R
Y

 D
E

V
 T

E
A

M
S

KEY POINTS

⊲⊲ Component releases under three years in
age reflected security defect rates of 9.3%.

⊲⊲ Analysis reveals that component releases
over three years in age demonstrated
security defect rates at 15.3%.

⊲⊲ Applications in unmanaged software supply
chains revealed security defect rates of 21%.

⊲⊲ For organizations who tamed their supply
chains, the rewards were impressive:
use of known vulnerable component
releases was reduced by 55%.

342019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

CHAPTER 5

The Changing
Landscape
Vulnerabilities, Adversaries,
and Government Influence

5.1 Deming Emphasizes
Building Quality In
In 1945, W. Edwards Deming started advising

Japanese manufacturers to detect and fix defects

at the beginning of the manufacturing process.

By the 1960s, Deming’s TQM practices were an

intrinsic part of the Japanese culture and were

playing rise to their global dominance. Now tied

into high-performance production processes,

six-sigma manufacturing today aims a defect rate

goal of 3.4 parts per million.31

Following on the lessons of Deming, Jez Humble

and Dave Farley, in their seminal book Continuous

Delivery (2010), advised development teams to

“build quality in.” Further echoing those remarks

three years later, Gene Kim advised readers to

“emphasize performance of the entire system and

never pass a defect downstream” as he introduced

“the three ways of DevOps” inside The Phoenix

Project.

These recommendations would come to form

the basis for the DevSecOps movement: release

faster, build quality into your applications, and

automate security controls with minimal friction.

In order to survive and thrive in today’s appli-

cation economy the best development teams

are actively pursuing open source fueled

innovations, DevSecOps transformations, and

automation-based controls of component releases

flowing through their software supply chains.

To better understand how defective and known

vulnerable component releases flow through

software supply chains, we first have to look at

public open source repositories. In general, a

public repository is created to serve components

for a given development language. For example,

Python, Java, JavaScript, Ruby, and Rust compo-

nents are all served from repositories specific to

their development language.

The Percentage of Vulnerable Java Components Downloaded Over Four Years
SOURCE: SONATYPE

10.3%

2018

12.1%

2017

5.5%

2016

6.1%

2015

FIG 5A The Percentage of Vulnerable Java Components Downloaded Over Four Years

KEY POINT

⊲⊲ Now tied into high-performance
production processes, six-sigma
manufacturing today aims a defect
rate goal of 3.4 parts per million.

362019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 5

:
T

H
E

 C
H

A
N

G
IN

G
 L

A
N

D
S

C
A

P
E

5.2 Tracing Vulnerable
Component Release Downloads
Across Software Supply Chains
Public open source repositories are immutable by

design. This means, any given public repository is

the home to all good (and bad) versions of open

source component releases. When new vulnerabil-

ities are discovered in component releases, open

source projects cannot simply remove the defective

component release from the repository, and for

good reason. In order for developers to remediate a

vulnerable component release, they need access to

the defective component release. They first rebuild

the application to its original state using the defec-

tive version, and replace the vulnerable component

release with the safe version.

5.2.1 Mutuum Cavete
(Borrower Beware)
It is important to understand that no metadata

about a component release downloaded from the

public repositories is made available to developers

by default (e.g., known security vulnerabilities,

release age, observed licenses, interoperability

changes, etc.).

Without sufficient due diligence by developers on

their component release selections, a vulnerable

component download behaves exactly like a safe

download. Over the past five years that Sonatype

has been tracking downloads from the Central

Repository for this report, the percentage of

vulnerable Java component releases consumed

has ebbed and flowed. In 2018, across billions of

open source component release downloads, 1 in

10 (10.3%) had known security vulnerabilities.

This represents a slight decrease from 2017’s peak

of 12.1% (1 in 8) but when considered as a quality

benchmark for managed supply chains it falls far

short of expectations. As mentioned earlier, six

sigma manufacturing goals aim for defect rates

of 3.4 parts per million. At today’s defect rate of 1

in 10 downloads, software component releases

procured by development teams now sit at one

sigma.

Poor hygiene practices are also well documented

within the JavaScript community. In a 2018 npm

survey of over 33,000 worldwide developers,

83% expressed concern about whether the open

source software they use is secure (up from

77% in 2017), and 58% believe that there aren’t

satisfactory methods for evaluating whether code

is safe.32 Furthermore, an October 2018 report

from npm revealed that 51% of JavaScript package

downloads contained known vulnerabilities.

Eleven percent (11%) of the downloaded compo-

nent releases analyzed were rated critical and 35%

demonstrated high vulnerability ratings.33

At the next stop along the software supply chain,

researchers analyzed downloads to repository

managers. Analysis of downloads to Nexus

and Artifactory repository managers (i.e., the

local warehouses of software supply chains) by

development teams reveals that 7.5% were known

vulnerable. Once cached in a private, local repos-

itory manager, the component release can be

served an unlimited number of times to developers

within that enterprise.

5.2.2 A Faustian Bargain?
The capabilities that make open source libraries

so attractive to development organizations, also

make them risky. While component releases are

free for developers to download, they are not

created equal, and all of them have a cost with

respect to maintenance over time.

FIG 5B Half of JavaScript
Package Downloads Contain
Known Vulnerabilities
SOURCE: NPM QUICK AUDIT (4M SCANS PER WEEK)

Half of JavaScript Package Downloads
Contain Known Vulnerabilities
SOURCE: NPM QUICK AUDIT (4M SCANS PER WEEK)

51%
known

vulnerabilities

1 in 3
rated high

vulnerability.

1 in 10 rated
critical.

KEY POINTS

⊲⊲ In 2018, across billions of open source
component release downloads, 1 in 10
(10.3%) had known security vulnerabilities.

⊲⊲ At today’s defect rate of 1 in 10 downloads,
software component releases procured by
development teams now sit at one sigma.

⊲⊲ 51% of JavaScript package downloads
contained known vulnerabilities.

372019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 5

:
T

H
E

 C
H

A
N

G
IN

G
 L

A
N

D
S

C
A

P
E

Our study of 12,000 enterprise software devel-

opment organizations revealed average annual

component release downloads of 313,000. Further

analysis of those downloads reveals that 27,704

(8.8%) included at least one known security vulner-

abilities. Just as well, not all security vulnerabilities

are created equal. Of the 27,704 vulnerable

downloads, 67% had Common Vulnerability Scoring

System (CVSS) at 7.0 or above on a 10 point scale.

Thirty percent (30%) had CVSS scores above 9.0 on

a 10 point scale.

Minor fluctuations in the percentage of vulnerable

download were seen on a country by country

basis: United States (8.9%), France (8.8%), United

Kingdom (8.8%), and Germany (8.1%).

5.3 Adversaries
Increasingly Target Open
Source Components
The 2019 DevSecOps Community Survey of 5,558

development professionals, highlighted a 71%

increase in confirmed or suspected open source

related breaches since 2014 (the same year the

notorious OpenSSL Heartbleed vulnerability).34

The percentage of open source related breaches

dropped 7% compared to the 2018 survey

responses. The slight decline in breaches between

the two surveys may be attributed to improved

open source hygiene and investments made by

some organizations following the Equifax breach

5%

10%

15%

20%

25%

30%

35%

40%

2014

2017

2018

2019
Heartbleed
was here

Equifax
was here

OSS
Breaches

Peak
1 in 4

breached

suspect or have verified
a breach related to open

source components
in the 2014 survey.

14%
suspect or have verified
a breach related to open

source components
in the 2018 survey.

31%
suspect or have verified
a breach related to open

source components
in the last 12 months.

24%
suspect or have verified
a breach related to open

source components
in the 2017 survey.

20%

Suspected or Verified Open Source Related Breaches Over Four Years

SOURCE: DEVSECOPS COMMUNITY SURVEY (SONATYPE)

FIG 5C Suspected or Verified Open Source Related Breaches Over Four Years
SOURCE: DEVSECOPS COMMUNITY SURVEY (SONATYPE)

KEY POINTS

⊲⊲ Further analysis of downloads
in one study revealed that 8.8%
included at least one known security
vulnerabilities.

⊲⊲ Minor fluctuations in the percentage
of vulnerable download were seen
on a country by country basis: United
States (8.9%), France (8.8%), United
Kingdom (8.8%), and Germany (8.1%).

⊲⊲ The 2019 DevSecOps Community
Survey highlighted a 71% increase in
confirmed or suspected open source
related breaches since 2014.

382019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 5

:
T

H
E

 C
H

A
N

G
IN

G
 L

A
N

D
S

C
A

P
E

— made public in late 2017. Still, with 1 in 4 survey

participants in this year’s reporting breaches in the

past 12 months — breaches remain at epidemic

levels.35

5.3.1 A Post-Equifax Look at
Apache Struts Vulnerabilities
According to Fortinet’s Q4’2018 Threat Report,

vulnerable instances of Apache Struts remain the

most prevalent exploit. “Demonstrating that the

internet never forgets, the Apache Struts exploit

(associated with CVE-2017-5638) has been a top

detection since its role in the infamous Equifax

breach back in 2017. More recently, attackers have

been using this exploit as a way to implement cryp-

to-jacking functions on compromised machines.”36

Even more alarming is the trend in elective down-

loads of vulnerable Struts component releases.

According to Sonatype's analysis of Struts down-

loads from the Central Repository, the volume

of monthly vulnerable downloads continued to

increase following its link to the breach at Equifax.

2.28M 1.01M 1.45M 1.92M 1.76M 1.88M 1.91M 2.14M 2.22M 2.12M1.41M 1.4M 1.78M 1.63M 1.85M 1.86M 1.87M 2.02M 1.98M1.95M 1.82M 2.44M 2.37M

Vulnerable Struts Download Counts January 2017 – November 2018
SOURCE: SONATYPE

.5M

1M

1.5M

2M

2.5M

Jan
2017

Oct
2017

Nov
2017

Dec
2017

Jan
2018

Feb
2018

Mar
2018

Apr
2018

May
2018

Jun
2018

Jul
2018

Aug
2018

Sep
2018

Oct
2018

Nov
2018

Feb
2017

Mar
2017

Apr
2017

May
2017

Jun
2017

Jul
2017

Aug
2017

Sep
2017

Struts
vulnerability
announced

Equifax
breached

12
months

since Equifax
breach

Equifax
breach

announced

Anniversary
of breach

announcement

FIG 5D Vulnerable Struts Download Counts January 2017 – November 2018
SOURCE: SONATYPE

KEY POINT

⊲⊲ One year after the breach
announcement, monthly vulnerable
Struts downloads had increased 11% to
2.1 million.

392019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 5

:
T

H
E

 C
H

A
N

G
IN

G
 L

A
N

D
S

C
A

P
E

One year after the breach announcement, monthly

vulnerable Struts downloads had increased 11% to

2.1 million.

5.3.2 Event-Stream: Malicious Code
Injection Targeting Cryptocurrency
In the 2018 State of the Software Supply Chain

Report, we advised that adversaries had com-

pressed the time between vulnerability announce-

ment and exploit from 45 to 3 days. In some

instances, by injecting malicious code into open

source projects on the supply side, time to exploit

was further reduced to zero.

Such was the case with the socially engineered

code injection for the JavaScript npm package

known as event-stream in November 2018. The

injection of malicious code into event-stream was

accomplished when its developer unwittingly

handed his credentials to an adversary who offered

to take over maintenance responsibilities. The npm

package is downloaded 2 million times per week.37

Further investigation of this exploit determined

it was targeted as a CoPay’s Bitcoin wallet and

“designed to harvest account details and private

keys from accounts having a balance of more than

100 Bitcoin or 1000 Bitcoin Cash.”38

5.3.3 Bootstrap-Sass: Malicious
Injection of a Back Door
Bootstrap-sass is an open source framework that

enables web designers to quickly build a site. With

over 28 million downloads through March 2019, it

is extremely popular among developers.39

On March 27 of this year, Derek Barnes, a software

developer whose code relied on the popular Ruby

Gems bootstrap-sass component had a build fail.

Suspicious, Derek decided to do some research

and noticed that “someone” had removed a

version of the library (Bootstrap-Sass v3.2.0.2) and

immediately released a new version, moments

later, v3.2.0.3. He was suspicious why “someone”

would modify the library on RubyGems — but

not in GitHub, where the library's source code is

managed. What Barnes uncovered was sobering:

another attack on open source and the software

supply chain that underpins so much of modern

innovation.40

Alarmed by the abnormal release, he alerted the

project which led to a backdoor being discovered

in the code. The malicious component version

(3.2.0.3) was then removed from the RubyGems

repository — and the Bootstrap-Sass team revoked

access to RubyGems for the developer whose

account they believed was compromised and

used to push the malicious code.

Before being noticed, the vulnerable version

of bootstrap-sass was downloaded over 1,400

times.41

5.3.4 Agama Malicious Code Injection
In June 2019, the npm, Inc. security team, in

collaboration with Komodo, helped protect over

$13 million USD in cryptocurrency assets by finding

and responding to a malicious code injection

vulnerability targeting the users of a cryptocurrency

wallet called Agama. The attack focused on getting

a malicious package into the build chain for Agama

and stealing the wallet seeds and other login

passphrases used within the application. According

to npm, “the attack was carried out by using a

pattern that is becoming more and more popular;

publishing a ‘useful’ package (electron-native-notify)

to npm, waiting until it was in use by the target, and

then updating it to include a malicious payload.”42

5.3.5 Two Years of Malicious
Code Injection
The mechanics to the bootstrap, event stream, and

electron-native-notify attacks are tricky and yet

effective.

While limited in scope, the potential impact of

similar attacks through a very popular component

can be far-reaching and immediate. When mali-

cious code is injected into software supply chains,

adversaries can attack immediately after the code

is deployed.

Over the past two years, a dangerous new trend

has emerged. Specifically, a series of 16 events

triangulate a serious escalation of software supply

chain attacks. Adversaries are taking advantage

of a new attack vector where they are directly

injecting vulnerabilities into open source project

releases and container images (see FIGURE 5E).

continues on page 42

Over the past two years, a dangerous new trend has
emerged. Adversaries are taking advantage of a new

attack vector where they are directly injecting vulnerabilities
into open source project releases and container images.

402019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 5

:
T

H
E

 C
H

A
N

G
IN

G
 L

A
N

D
S

C
A

P
E

JUN
2019

“I’m harvesting
credit card numbers
and passwords
from your site.
Here’s how.”

David Gilbertson writes
a fictional tale on his
blog about creating a
malicious npm package.

Homebrew repository
compromised.

Accessed in under
30 minutes through an
exposed GitHub API token.

Back-doored npm
package discovered.

npm security team
responds to reports of a
malicious back door in
the get-cookies module,
published in March.
Despite being depre-
cated, mailparser still
receives about 64,000
weekly downloads.

npm credentials
published online.

Affects access to 14% of the
npm repo (79,000 packages).

Malicious npm pack-
aged typosquated.

40 packages harvested
over two weeks, collecting
credentials used to publish to
the npm repository itself.

docker123321 images
created on Docker Hub.

Later accused of poisoning
a Kubernetes honeypot (Jan
2018), and equated to a cryp-
to-mining botnet (May 2018).

Linux distro
hacked on GitHub.

Unknown individuals
gain control of the Github
Gentoo organization, and
modified the content of
repositories as well as
pages within. All code
considered compromised.

Malicious package
injected into event-
stream, a popular
npm package.

The injected code targets
the Copay application and
was designed to harvest
account details and private
keys from accounts having
a balance of more than 100
Bitcoin or 1,000 Bitcoin Cash.

Cryptocurrency
attack via malicious
code injection.

Malicious code
targets users of a
cryptocurrency wallet
called Agama, focusing
on getting into the build
chain and stealing the
wallet seeds and other
login passphrases used
within the application.

npm credentials
intentionally
compromised.

A malicious version
of a package from
a core contributor
to the conventional-
changelog ecosystem
is published. The
package was installed
28,000 times in 35
hours and executed a
Monero crypto miner.

PyPI typosquat:
10 malicious Python
packages found.

Evidence of the fake
packages being
incorporated into
software was noted
multiple times between
June and Sept 2017.

Compromised
JavaScript package
caught stealing
npm credentials.

A hacker gains access to a
developer’s npm account
and injects malicious
code into a popular
JavaScript library called
eslint-scope, a sub-module
of the more famous
ESLint, a JavaScript
code analysis toolkit.

Back-doored Gems
bootstrap-sass RCE
package discovered.

A malicious version of the
popular bootstrap-sass
package, downloaded a
total of 28 million times
to date, and with 1.6K
dependencies, is published
to the RubyGems repository.

Deleted go-bindata
account resurrected
by an unknown user.

After a developer
deleted their GitHub
account, someone
immediately grabbed
the ID — inheriting the
karma instilled in that id
and calling into question
packages and sources.

Back-doored PyPI
package discovered.

Python module
ssh-decorator back-
doored to enable theft
of private ssh keys.

JAN
2018

JUN
2018

AUG
2018

SEP
2017

NOV
2018

MAY
2018

JUL
2017

MAR
2018

FEB
2018

MAR
2019

JUL
2018

FIG 5E A Shifting Battlefront of Attacks: Malicious Code Injection
July 2017 – June 2019

412019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 5

:
T

H
E

 C
H

A
N

G
IN

G
 L

A
N

D
S

C
A

P
E

5.4 Government and Industry
Apply New Standards to Secure
Software Development
While Exemplars are reducing the use of known

vulnerable open source component releases in the

development application, this does not exonerate

them from duties to manage components over

time. Secure software practices extend from early

development through the active life of an applica-

tion in the market.

With an ever increasing number of application

breaches occurring, standards bodies and govern-

ment are stepping in to hold development organi-

zations accountable for the quality and security of

code they assemble and develop.

5.4.1 New PCI Secure Software
Development Standards

In January 2019, the Payment Card Industry

Security Standards Council introduced important

new standards for software development:

⊲⊲ PCI Secure Software Standards,43 and

⊲⊲ PCI Secure Software Lifecycle (Secure SLC)
Standard44

The new standard requires organizations to gov-

ern their use of open source software, and it states

that any application utilized as part of the payment

process, must be secure by design. Specifically,

when it comes to the use of open source compo-

nents and third-party libraries organizations are

responsible for ensuring they, as well as any of

their vendors, have:

⊲⊲ An up to date inventory of open-source compo-
nent releases utilized in the software

⊲⊲ A process for identifying known vulnerabilities
within open source component releases

⊲⊲ 360 degree monitoring of open source compo-
nent releases throughout the SDLC

⊲⊲ A policy and process to immediately remediate
vulnerabilities as they become known.

To effectively utilize open source components at

scale, the PCI standard also advises organizations

to generate a software bill of materials (SBOM)

so they can easily track and trace the location of

every single component release embedded within

their production software applications.

5.4.2 National Telecommunications
and Information Administration’s
(NTIA) SBOM Initiative

The Commerce Department’s National Tele-

communications and Information Administration

(NTIA) is considering requiring companies to list

their sources of software parts to protect the U.S.

software supply chains.

According to the NTIA, their “cybersecurity

multistakeholder process will focus on Software

Component Transparency. Participants will explore

how manufacturers and vendors can communicate

useful and actionable information about the third-

party software components that comprise modern

software and IoT devices, and how this data can

be used by enterprises to foster better security

decisions and practices.”45

The NTIA effort comes as the government agen-

cies grow more suspicious of known vulnerable

software components being used in application

development and increasing awareness of mali-

cious code injection attacks. The NTIA initiative has

broad support across Federal agencies and the

private sector, as they work together to define stan-

dards around a software bill of materials (SBOM).

KEY POINTS

⊲⊲ The SBOM permits organizations to
make informed risk decisions about
which technologies to purchase and
use based on known vulnerability
information.

⊲⊲ When new vulnerabilities are
discovered, an SBOM allows
organizations to quickly identify their
exposure and to take appropriate
steps in response.”

422019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 5

:
T

H
E

 C
H

A
N

G
IN

G
 L

A
N

D
S

C
A

P
E

https://blog.pcisecuritystandards.org/just-published-new-pci-software-security-standards
https://blog.pcisecuritystandards.org/just-published-new-pci-software-security-standards

5.4.4 U.S. House Energy and
Commerce Committee
In December 2018, the U.S. House Energy and

Commerce Committee released its Cybersecurity

Strategy Report. The report details the importance

and priority for utilizing Software Bill of Materials

(SBOM) for minimizing supply chain risks related

to the use of open source software components in

modern application development.46

The report states, the “SBOM becomes an

ingredients list for a given piece of technology,

listing the hardware, software, and other relevant

components that it contains or relies upon. This

creates two primary benefits. First, it permits

organizations to make informed risk decisions

about which technologies to purchase and use

based on known vulnerability information. Second,

when new vulnerabilities are discovered, it allows

organizations to quickly identify their exposure and

to take appropriate steps in response.”

Next the authors from the Energy and Commerce

Committee pointed out that it “was not that

organizations did not know which software was

vulnerable… it was that they did not know which

pieces of technology that they depended on

included it. The SBOM minimizes the number of

unknown unknowns with which organizations

must contend, and greatly increases their ability

to protect themselves, their users, and ultimately

society.”

5.4.5 U.S. Food and Drug
Administration
In October 2018, the FDA released guidance for

cybersecurity management of medical devices.

Similar to recommendations delivered by the

House Energy and Commerce Committee, the

FDA’s report called for a Cybersecurity Bill of

Materials (CBOM).

The aim of the CBOM is to provide a list of “com-

mercial, open source, and off-the-shelf software

and hardware components to enable device users

(including patients, providers, and healthcare deliv-

ery organizations (HDOs) to effectively manage

their assets, to understand the potential impact of

identified vulnerabilities to the device (and the con-

nected system), and to deploy countermeasures to

maintain the device’s essential performance.”

The FDA report also suggested that MDMs may be

subject to legal liabilities tied to the distribution of

a medical device with a known vulnerability. The

report offered, “If a medical device cybersecurity

vulnerability allegedly causes bodily harm, the

victim may bring product liability claims against

the MDM.” The FDA warned that a plaintiff’s claim

could be based on the “failure to provide appro-

priate warnings about the risk of a cybersecurity

vulnerability, or failure to appropriately monitor for

the existence of vulnerabilities and appropriately

address them once identified.”47

KEY POINTS

⊲⊲ In October 2018, the FDA released
guidance for cybersecurity
management of medical devices.
The FDA’s report called for a
Cybersecurity Bill of Materials
(CBOM).

⊲⊲ The FDA report suggests that MDMs
may be subject to legal liabilities tied
to the distribution of a medical device
with a known vulnerability.

432019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

C
H

A
P

T
E

R
 5

:
T

H
E

 C
H

A
N

G
IN

G
 L

A
N

D
S

C
A

P
E

Conclusion
Decades ago, W. Edwards Deming taught key prin-

ciples to significantly improve the effectiveness and

quality of business manufacturing processes. Deming

deftly advocated selecting the best suppliers and

emphasized continuous improvement. He advised

eliminating the need for inspection on a mass basis by

building quality into products.48

Businesses racing to deliver better value to their

customers — and differentiate from competitors — are

embracing Deming’s principles within their open

source based software development practices.

Software development is evolving from artisan based

creations to practices that more closely resemble high

velocity parts assembly. This is reflected in the expo-

nential growth of supply and demand for open source

components. We’ve observed double and triple digit

growth in open source component ecosystems for a

decade, and there is no slowdown in sight.

The purpose of this report was to share with you what

we observed across software supply chains. Our

findings are clear. Velocity does not have to come at

the cost of reduced security.

Exemplary open source project initiatives benefit

tremendously from higher code commit and release

frequencies. They also do an outstanding job of

managing their dependencies. At the same time,

Exemplars in enterprise are benefiting from processes

that support using the latest component versions.

They also embrace automated practices to reduce

the presence of known vulnerabilities.

Our deep examination of consumption patterns,

development practices, and cybersecurity hygiene

revealed:

⊲⊲ 18x faster median time to update dependencies for
exemplary open source components

⊲⊲ 6.2x more likely for exemplary enterprise develop-
ment teams to use the latest open source compo-
nent version (or latest-N)

⊲⊲ 12x higher use of automation to manage open
source dependencies in exemplary enterprise
development teams

⊲⊲ 55% reduction in the use of vulnerable open source
components within managed software supply
chains

Management of software supply chains is not simply

ensuring quality at velocity. Our supply chains are

being attacked by adversaries in new and creative

ways. The result: open source related breaches have

jumped 71% over the past five years.

As enterprises look for guidance to improve their

software development and security practices, industry

standards groups are introducing open source

awareness policies. Simultaneously, we’ve seen

government agencies racing to employ new policies

and legislation to protect citizens, businesses, and

critical infrastructure.

One thing is clear, exemplary software development

practices that deliver high quality, improved security

at high velocity are not rare. They are being employed

today in large numbers and serve as benchmarks for

others to strive for and achieve.

Thank you for reading our 5th annual State of the

Software Supply Chain Report. We hope you found it

useful. And, we welcome your feedback.

442019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

Sources
1 �Sonatype, npmjs.org, pypi.org, NuGet.org

2 hub.docker.com

3 Sonatype and modulecounts.com

4 npmjs.org and modulecounts.com

5 �developers.slashdot.org/story/17/01/14/
0222245/nodejss-npm-is-now-the-largest-
package-registry-in-the-world

6 �www.idc.com/getdoc.
jsp?containerId=US44363318

7 www.oracle.com/java/java9.html

8 �twitter.com/seldo/status/1105987692305604608

9 �9.7M developers use JavaScript:
appdevelopermagazine.com/
9.7m-developers-use-javascript/

10 Sonatype and rubygems.org

11 Sonatype and nuget.org

12 https://chaoss.community

13 https://libraries.io

14 Sonatype.com/nexus-intelligence

15 �The (Application) Patching Manifesto (Jeremy
Long): www.youtube.com/watch?time_
continue=14&v=qVVZrTRJ290

16 �Why and How Java Developers Break APIs
(Aline Brito, Laerte Xavier, Dr. Andre Hora,
Dr. Marco Tulio Valente): arxiv.org/
pdf/1801.05198.pdf

17 �A Pearson correlation is a number between
-1 and 1 that indicates the extent to which two
variables are linearly related. The Pearson
correlation is also known as the “product
moment correlation coefficient” (PMCC) or
simply “correlation.” en.wikipedia.org/wiki/
Pearson_correlation_coefficient

18 �Kendall’s Tau is a non-parametric measure of
relationships between columns of ranked data.
The Tau correlation coefficient returns a value
of 0 to 1, where: 0 is no relationship, and 1 is
a perfect relationship. www.statisticshowto.
datasciencecentral.com/kendalls-tau

19 �statisticssolutions.com/mann-whitney-u-test

20 �“Announcing Accelerate: State of DevOps
2018: Strategies for a New Economy” (Dr.
Nicole Forsgren, Jez Humble, Gene Kim):
devops-research.com/2018/08/announcing-
accelerate-state-of-devops-2018

21 �Sonatype 2019 DevSecOps Community Survey

22 �“Announcing Accelerate: State of DevOps
2018: Strategies for a New Economy” (Dr.
Nicole Forsgren, Jez Humble, Gene Kim):
devops-research.com/2018/08/announcing-
accelerate-state-of-devops-2018

23 �Sonatype and jfrog.com/about/press/jfrog-
secures-165-million-investment-to-lead-
universal-devops-in-the-enterprise

24 �This year in JavaScript: 2018 in review and
npm’s predictions for 2019: www.medium.
com/npm-inc/this-year-in-javascript-2018-
in-review-and-npms-predictions-for-2019-
3a3d7e5298ef

25 �The (Application) Patching Manifesto (Jeremy
Long): www.youtube.com/watch?time_
continue=14&v=qVVZrTRJ290

26 �Sonatype 2019 DevSecOps Community Survey

27 �Sonatype 2019 DevSecOps Community Survey

28 �Sonatype 2019 DevSecOps Community Survey

29 �Sonatype 2019 DevSecOps Community Survey

30 �Sonatype 2019 DevSecOps Community Survey

31 �www.isixsigma.com/new-to-six-sigma/
statistical-six-sigma-definition

32 https://javascriptsurvey.com

33 �npm and the future of JavaScript: slides.com/
seldo/npm-future-of-javascript#/18

34 �Sonatype 2019 DevSecOps Community
Survey and 2014 Open Source and
Application Security Survey

35 �Sonatype 2019 DevSecOps Community Survey

36 Fortinet Threat Report, Q4’2018

37 �Details about the event-stream incident:
blog.npmjs.org/post/180565383195/details-
about-the-event-stream-incident

38 �github.com/urbit/urbit-wallet-generator/
issues/4

39 github.com/twbs/bootstrap-sass

40 �Corrupting the Software Supply Chain:
Lessons from the Bootstrap-sass Hack: blog.
sonatype.com/corrupting-the-software-supply-
chain-lessons-from-the-bootstrap-sass-hack

41 github.com/twbs/bootstrap-sass

42 �Plot to steal cryptocurrency foiled by
the npm security team” blog.npmjs.
org/post/185397814280/plot-to-steal-
cryptocurrency-foiled-by-the-npm

43 �New PCI Software Security Standards: blog.
pcisecuritystandards.org/just-published-new-
pci-software-security-standards

44 �New PCI Software Security Standards:
blog.pcisecuritystandards.org/just-published-
new-pci-software-security-standards

45 �NTIA Software Component Transparency:
www.ntia.doc.gov/SoftwareTransparency

46 �House Energy and Commerce
Cybersecurity Strategies Report:
www.hsdl.org/?view&did=819388

47 �Content of Premarket Submissions for Man-
agement of Cybersecurity in Medical Devices:
www.fda.gov/downloads/MedicalDevices/De-
viceRegulationandGuidance/Guidance
Documents/UCM623529.pdf

48 �Dr. Deming’s 14 Points for Management:
deming.org/explore/fourteen-
points?apartner=aarp

452019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

https://www.sonatype.com/
https://www.npmjs.com/
https://docs.google.com/document/d/1ZMR7b_0fcuNmaRFS7BsRo-VJ7jpXu8F7ep78GMOiMls/edit?ts=5ce2bc86#
https://www.nuget.org/
https://hub.docker.com/
https://www.sonatype.com/
http://www.modulecounts.com/
https://www.npmjs.com/
http://www.modulecounts.com/
https://developers.slashdot.org/story/17/01/14/
0222245/nodejss-npm-is-now-the-largest-package-registry-in-the-world
https://developers.slashdot.org/story/17/01/14/
0222245/nodejss-npm-is-now-the-largest-package-registry-in-the-world
https://developers.slashdot.org/story/17/01/14/
0222245/nodejss-npm-is-now-the-largest-package-registry-in-the-world
https://www.idc.com/getdoc.jsp?containerId=US44363318
https://www.idc.com/getdoc.jsp?containerId=US44363318
https://www.sonatype.com/
https://rubygems.org/
https://www.sonatype.com/
https://www.nuget.org/
https://chaoss.community/
https://libraries.io/
https://www.sonatype.com/nexus-intelligence
https://www.youtube.com/watch?time_continue=14&v=qVVZrTRJ290
https://www.youtube.com/watch?time_continue=14&v=qVVZrTRJ290
https://arxiv.org/pdf/1801.05198.pdf
https://arxiv.org/pdf/1801.05198.pdf
https://arxiv.org/pdf/1801.05198.pdf
https://arxiv.org/pdf/1801.05198.pdf
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://www.statisticshowto.datasciencecentral.com/parametric-and-non-parametric-data/
https://www.statisticshowto.datasciencecentral.com/kendalls-tau/
https://www.statisticshowto.datasciencecentral.com/kendalls-tau/
https://www.statisticssolutions.com/mann-whitney-u-test/
https://devops-research.com/2018/08/announcing-accelerate-state-of-devops-2018/
https://devops-research.com/2018/08/announcing-accelerate-state-of-devops-2018/
https://www.sonatype.com/2019survey
https://devops-research.com/2018/08/announcing-accelerate-state-of-devops-2018/
https://devops-research.com/2018/08/announcing-accelerate-state-of-devops-2018/
https://www.sonatype.com/
https://jfrog.com/about/press/jfrog-secures-165-million-investment-to-lead-universal-devops-in-the-enterprise/
https://jfrog.com/about/press/jfrog-secures-165-million-investment-to-lead-universal-devops-in-the-enterprise/
https://jfrog.com/about/press/jfrog-secures-165-million-investment-to-lead-universal-devops-in-the-enterprise/
https://medium.com/npm-inc/this-year-in-javascript-2018-in-review-and-npms-predictions-for-2019-3a3d7e5298ef
https://medium.com/npm-inc/this-year-in-javascript-2018-in-review-and-npms-predictions-for-2019-3a3d7e5298ef
https://medium.com/npm-inc/this-year-in-javascript-2018-in-review-and-npms-predictions-for-2019-3a3d7e5298ef
https://medium.com/npm-inc/this-year-in-javascript-2018-in-review-and-npms-predictions-for-2019-3a3d7e5298ef
https://www.sonatype.com/2019survey
https://www.sonatype.com/2019survey
https://www.sonatype.com/2019survey
https://www.sonatype.com/2019survey
https://www.sonatype.com/2019survey
https://www.isixsigma.com/new-to-six-sigma/statistical-six-sigma-definition/
https://www.isixsigma.com/new-to-six-sigma/statistical-six-sigma-definition/
https://javascriptsurvey.com/
http://slides.com/seldo/npm-future-of-javascript#/18
http://slides.com/seldo/npm-future-of-javascript#/18
https://www.sonatype.com/2019survey
https://www.sonatype.com/2019survey
https://blog.sonatype.com/2014/04/2014-open-source-survey/
https://blog.sonatype.com/2014/04/2014-open-source-survey/
https://www.sonatype.com/2019survey
https://www.fortinet.com/content/dam/fortinet/assets/threat-reports/threat-report-q4-2018.pdf
https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
github.com/urbit/urbit-wallet-generator/issues/4
github.com/urbit/urbit-wallet-generator/issues/4
https://github.com/twbs/bootstrap-sass
https://blog.sonatype.com/corrupting-the-software-supply-chain-lessons-from-the-bootstrap-sass-hack
https://blog.sonatype.com/corrupting-the-software-supply-chain-lessons-from-the-bootstrap-sass-hack
https://blog.sonatype.com/corrupting-the-software-supply-chain-lessons-from-the-bootstrap-sass-hack
https://github.com/twbs/bootstrap-sass
https://blog.npmjs.org/post/185397814280/plot-to-steal-cryptocurrency-foiled-by-the-npm
https://blog.npmjs.org/post/185397814280/plot-to-steal-cryptocurrency-foiled-by-the-npm
https://blog.npmjs.org/post/185397814280/plot-to-steal-cryptocurrency-foiled-by-the-npm
https://blog.pcisecuritystandards.org/just-published-new-pci-software-security-standards
https://blog.pcisecuritystandards.org/just-published-new-pci-software-security-standards
https://blog.pcisecuritystandards.org/just-published-new-pci-software-security-standards
https://blog.pcisecuritystandards.org/just-published-new-pci-software-security-standards
https://blog.pcisecuritystandards.org/just-published-new-pci-software-security-standards
https://www.ntia.doc.gov/SoftwareTransparency
https://www.hsdl.org/?view&did=819388
https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM623529.pdf
https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM623529.pdf
https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM623529.pdf
https://deming.org/explore/fourteen-points?apartner=aarp
https://deming.org/explore/fourteen-points?apartner=aarp

Appendix A
Acknowledgments
Each year, the State of the Software Supply Chain

report is produced to shed light on the patterns and

practices associated with open source software

development. We began collecting data for our

2019 report from the moment our 2018 report was

published.

The report is made possible thanks to a tremendous

effort put forth by many team members at Sonatype,

including: Derek Weeks, Matt Howard, Joel Orlina,

Bruce Mayhew, Gazi Mahmud, Dariush Griffin, Mike

Hansen, Brian Fox, Ilkka Turunen, Elissa Walters,

Daniel Sauble, Adam Cazzolla, Alex Metry, Andrew

Stein, Ken Duck, Kevin Hayen, Kevin Witten, Shade

Solon, Alvin Gunkel, and Aaron Massey.

We would also like to offer thanks for contributions

big and small from: Hasan Yasar (Carnegie Mellon

University Software Engineering Institute), Laurie Voss

(npm), Brian Dawson (CloudBees), DJ Schleen (Aetna

CVS), Nichole Schimanski (Galois) and Eric Davis

(Galois), James Wickett and others across the DevOps

and open source development community.

A very special thanks goes out to Melissa Schmidt

who created the incredible design for this year’s

report.

Finally, we could not have produced this report with-

out the amazing contributions and countless hours of

deep analysis from our research partners Gene Kim

from IT Revolution and Dr. Stephen Magill, Principal

Scientist at Galois & CEO of MuseDev.

About the Analysis
The authors have taken great care to present statis-

tically significant sample sizes with regard to compo-

nent versions, downloads, vulnerability counts, and

other data surfaced in this year’s report. Specifically

to Chapter 3, all reported differences are statistically

significant (p < 0.05) according to a Mann–Whitney

U test. While Sonatype has direct access to primary

data for Java, JavaScript, Python, .NET and other

component formats, we also reference third-party

data sources as documented.

462019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

Appendix B
23 Metrics Associated with
Open Source Project Health

This year’s analysis includes datasets representing development velocity, team

size, continuous integration (CI) usage, known security vulnerabilities, component

popularity, and other attributes. The objective of this research was to look for top

performing projects and characterize their dimensions of excellence. The research

also suggests factors that architects, developers, and organizations should

consider when making choices about which open source components to use.

Our analysis also took into account over 23 metrics associated with open source

project health including:

1. Component_key: The Maven
Group ID + Artifact ID, e.g. org.
spring-framework:spring-core

2. Median_ttu_median (lower is
better): The median time to upgrade
a dependency. For each depen-
dency D, start the clock when an
update to some new version V of
the dependency is released. Stop it
when the component has a release
where the version of D is >= V.

3. Median_ttu_sec_rel_median
(lower is better): The median TTU
for updates that had a known
vulnerability against them at the
time the new version was released.
This is the best TTR data we have.

4. Median_ttr_median (lower is bet-
ter): A version of TTR that accounts
for vulnerabilities discovered long
after a component is released.
Clock starts when a vulnerability is
reported against a dependency of a
component. Clock stops when that
component updates the dependency.

5. Already_protected_percentage
(higher is better): Records the
percentage of security vulner-
abilities that don’t apply to this
component when they come out
because the component was
up-to-date with dependencies.

6. Max_dependency_count:
The number of dependen-
cies of the component.

7. Avg_not_adopted_avg (lower is
better): The number of dependency
updates that were never applied.

8. Avg_stale_avg (lower is better):
The average percentage of com-
ponent dependencies that are
out of date when a new release
of that component comes out.

9. �Avg_period_when_current (lower
is better): Average time each release
spends as the “current” release.
Reciprocal of release frequency.

10. �Avg_stale_time_avg (lower is
better): Average period when at
least one dependency is out of date.
We can probably drop this one.
I’m not sure it’s that meaningful.

11. �Stale_time_proportion (lower is
better): The percentage of time that
a component spends being out of
date. Can probably drop this too.

12. �Scm_url: The URL where
the code lives.

13. �Two_dots: The first two com-
ponents of the group ID.

14. �Three_dots: The first three
components of the group ID.

15. Central_popularity: The average
number of downloads per day
from The Central Repository.

16. �NexusIQ_popularity: The average
number of IQ scans per day.

17. Stars_count: Number of stars.

18. Forks_count: Number of forks.

19. Ci-found: Whether we
found a CI script.

20. �Avg-commits-per-month: Average
number of commits per month.

21. �Avg-commits-uniq-devs: Average
number of unique developers
committing each month.

22. �Is_commercially_supported:
True if group ID starts with “com”

23. �Is_foundation_supported: True
if there are several projects
managed by the same Group ID.

472019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

Cumulative Histogram of MTTR
For developers wanting to use secure components, having

faster MTTR is desirable. The figures below show a simple

histogram of MTTR and MTTU across all components.

Frequency of Median Time to
Remediate Vulnerability

Frequency of Median Time to Update
Vulnerable Dependencies

Median Days to Update Vulnerability

200

400

600

800

365 730 1,095

 N
u

m
b

e
r

o
f
C

o
m

p
o

n
e

n
ts

Median Days to Update Vulnerability

 N
u

m
b

e
r

o
f
C

o
m

p
o

n
e

n
ts

5K

4K

3K

2K

1K

365 730 1,095 1,460 1,825

Appendix B

482019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

Appendix C
Measures of Different Behavior Clusters

Averages
None Small Exemplars Large Exemplars Laggards Features First Cautious
(8142) (606) (595) (521) (280) (429)

TTU (Days) 245.22 18.74 10.14 692.82 602.94 103.44

Stale Dependency Percentage 0.64 0.11 0.09 0.98 0.96 0.97

Central Popularity (Average Daily Downloads) 425.5 803.67 4681.28 62.4 297.65 1349.16

Stars 907.31 191.07 1150.31 452.92 1289.35 1009.85

Forks 343.84 41.78 651.37 171.51 434.42 351.81

Number of Dependencies 3.91 3.12 6.14 3.11 3.8 4.11

Percent Using CI 0.73 0.57 0.69 0.69 0.71 0.78

Commit Frequency 42.16 19.51 69.34 24.43 56.47 51.25

Number of Developers (Unique Devs Commiting Per Month) 3.89 1.64 8.91 2.87 5.19 4.67

Average Period Between New Versions (Days) 128.43 87.62 45.64 244.25 49.99 72.14

Percent Commercially Supported 0.3 0.25 0.06 0.37 0.31 0.33

Percent Foundation Supported 0.59 0.57 0.91 0.55 0.65 0.6

Average Multiples
(as compared to “None” class)

None Small Exemplars Large Exemplars Laggards Features First Cautious
(8142) (606) (595) (521) (280) (429)

TTU 1 0.08 0.04 2.82 2.45 0.42

Stale Dependency Percentage 1 0.17 0.14 1.55 1.52 1.53

Central Popularity (Average Daily Downloads) 1 – 11 0.15 0.7 –

Stars 1 0.21 1.27 0.5 1.42 –

Forks 1 0.12 1.89 0.5 1.26 –

Number of Dependencies 1 0.8 1.57 0.8 – 1.05

Percent Using CI 1 0.78 0.94 0.94 – 1.06

Commit Frequency 1 0.46 1.64 0.58 1.34 1.22

Number of Developers (Unique Devs Commiting Per Month) 1 0.42 2.29 0.74 1.34 1.2

Average Period Between New Versions (Days) 1 0.68 0.35 1.88 0.39 0.57

Percent Commercially Supported 1 0.85 0.19 1.24 – –

Percent Foundation Supported – 1.54 0.92 1.1 –

A dash (–) indicates that the

observed difference between

groups was not statistically

significant (p > 0.05 with a

Mann–Whitney U test)

492019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

Appendix D
FIG. 3I The Exemplars: Components Demonstrating the Fastest MTTU and Lowest Stale Dependency Counts

»» bz.tsung.android:objectify

»» com.ahome-it:ahome-tooling-server-core

»» com.amazon.device.tools.build:builder

»» com.amazon.device.tools.build:gradle

»» com.amazon.device.tools.lint:lint-checks

»» com.github.japgolly.fork.

scalaz:scalaz-concurrent_sjs0.5_2.11

»» com.github.japgolly.fork.scalaz:scalaz-xml_sjs0.5_2.11

»» com.github.japgolly.fork.scalaz:scalaz-iterv_sjs0.5_2.11

»» com.github.japgolly.fork.

scalaz:scalaz-core_sjs0.5_2.11

»» com.aranea-apps.android.libs:android-rest

»» com.ariht:config-generation-maven-plugin

»» com.arasthel:swissknife

»» com.asayama.docs.gwt.angular:gwt-angular-pages

»» com.asayama.gwt:gwt-util

»» com.asayama.gwt.angular:gwt-angular-resources

»» com.asayama.gwt.angular:gwt-angular-masonry

»» com.asayama.gwt.angular:gwt-angular-http

»» com.asayama.gwt.angular:gwt-angular-user

»» com.asayama.gwt.angular:gwt-angular-prettify

»» com.asayama.gwt.angular:gwt-angular-ng

»» com.asayama.gwt.bootstrap:gwt-bootstrap

»» com.asayama.gwt.jquery:gwt-jquery

»» com.automattic:elasticsearch-statsd

»» com.autoscout24.gradle:gradle-monkey-plugin

»» com.damnhandy:handy-uri-templates

»» com.badlogicgames.gdx:gdx-backend-robovm

»» com.badlogicgames.gdx:gdx-backend-lwjgl

»» com.badlogicgames.

gdxpay:gdx-pay-android-googleplay

»» com.badlogicgames.gdxpay:gdx-pay

»» com.erinors:xtend-ioc-core

»» com.bartoszlipinski:parsemodel-compiler

»» com.bazaarvoice.dropwizard:

dropwizard-webjars-bundle

»» com.bazaarvoice.dropwizard:

dropwizard-configurable-assets-bundle

»» com.github.advantageous:qbit-spring

»» com.github.advantageous:qbit-consul-client

»» com.github.advantageous:qbit-eventbus-replicator

»» com.github.advantageous:qbit-vertx

»» com.github.advantageous:qbit-service-discovery

»» com.github.advantageous:qbit-test-support

»» com.github.advantageous:qbit-admin

»» com.github.advantageous:qbit-core

»» com.github.advantageous:qbit-servlet

»» com.github.akarnokd:ixjava

»» com.github.almondtools:rexlex

»» com.github.andreptb:fitnesse-selenium-slim

»» com.github.andrewoma.kommon:kommon

»» com.github.andrewoma.kwery:fetcher

»» com.github.andrewoma.kwery:core

»» com.github.andrewoma.kwery:transactional

»» com.github.andrewoma.kwery:mapper

»» com.github.aro-tech:tdd-mixins-core

»» com.github.aro-tech:extended-mockito

»» com.github.ben-manes.caffeine:guava

»» com.github.chandu0101.

scalajs-react-components:macros_sjs0.6_2.11

»» com.github.czyzby:gdx-lml

»» com.github.danielgindi:helpers

»» com.github.davidmoten:bigsort

»» com.github.davidmoten:rxjava-extras

»» com.github.dblock:oshi-core

»» com.github.ddth:ddth-osgikafka

»» com.github.ddth:ddth-zookeeper

»» com.github.dnvriend:akka-persistence-jdbc_2.10

»» com.github.doctoror.rxcursorloader:library

»» com.github.fbertola:mother-docker

»» com.github.finagle:finch-oauth2_2.10

»» com.github.finagle:finch-demo_2.11

»» com.github.fracpete:screencast4j-weka-package

»» com.github.gabrielemariotti.cards:library-extra

»» com.github.heuermh.

adamexamples:adam-examples_2.11

»» com.github.heuermh.adamplugins:adam-plugins

»» com.github.heuermh.adamplugins:adam-plugins_2.11

»» com.github.heuermh.adamplugins:adam-plugins_2.10

»» com.github.j-fischer:rest-on-fire

»» com.github.jinahya:simple-file-back

»» com.github.jodersky:flow_2.11

»» com.github.joschi:dropwizard-elasticsearch

»» com.github.jsonld-java:jsonld-java-sesame

»» com.github.jsurfer:jsurfer-simple

»» com.github.jszczepankiewicz:dynks

»» com.github.jtakakura:gradle-robovm-plugin

»» com.github.kentyeh:sd4j

»» com.github.kzwang:elasticsearch-river-dynamodb

»» com.github.kzwang:elasticsearch-transport-redis

»» com.github.kzwang:elasticsearch-osem

»» com.github.kzwang:elasticsearch-repository-gridfs

»» com.github.mhshams:core

»» com.github.michaelruocco:wso2-api-publisher-plugin

»» com.github.mictaege:doozer

»» com.github.nkzawa:engine.io-client

»» com.github.nwillc:contracts

»» com.github.oscerd:camel-cassandra

»» com.github.pengrad:java-telegram-bot-api

»» com.github.persapiens:jsf-undertow-

spring-boot-starter

»» com.github.persapiens:jsf-undertow-

bootsfaces-spring-boot-starter

»» com.github.persapiens:jsf-jetty-bootsfaces-

spring-boot-starter

»» com.github.pwittchen:reactivenetwork

»» com.github.pwittchen:reactivebeacons

»» com.github.ratrecommends:gdx-utils

»» com.github.richard-ballard:arbee-test-utils

»» com.github.richard-ballard:arbee-utils

»» com.github.salomonbrys.kodein:kodein

»» com.github.salomonbrys.kodein:kodein-android

»» com.github.scala-blitz:scala-blitz_2.11

»» com.bladecoder.engine:blade-engine-spine-plugin

»» com.bladecoder.engine:blade-engine

»» com.bladejava:blade-jetbrick

»» com.bloidonia:groovy-stream

»» com.github.sd4324530:fastweixin

»» com.github.seratch:ltsv4s_2.11

»» com.github.seratch:scalikesolr_2.10

»» com.github.seratch:jslack

»» com.github.sogyf:goja-qrcode

»» com.github.sv244:torrentstream-android

»» com.braintreepayments.api:braintree

»» com.braintreepayments.api:braintree-api

»» com.github.sviperll:metachicory

»» com.github.sviperll:adt4j-core

»» com.github.thomasnield:rxkotlinfx

»» com.github.tibolte:agendacalendarview

»» com.github.tkurz.sesame:vocab-builder-cli

»» com.github.tkurz.sesame:

vocab-builder-maven-plugin

»» com.github.triceo.splitlog:splitlog-core

»» com.github.vmironov.

jetpack:jetpack-bindings-arguments

»» com.github.webdriverextensions:

webdriverextensions

»» com.github.wnameless:smartcard-reader

»» com.github.xuwei-k:httpz-scalaj_2.11

»» com.github.xuwei-k:msgpack4z-java07

»» com.github.xuwei-k:play23scalacheck111_2.11

»» com.github.xuwei-k:applybuilder71_2.11

»» com.github.xuwei-k:msgpack4z-java

»» com.github.xuwei-k:play23scalaz71_2.11

»» com.github.xuwei-k:play23scalaz70_2.11

»» com.github.xuwei-k:play-twenty-three_2.11

»» com.digitalpebble:storm-crawler-tika

»» com.cedarsoft.commons:configuration

»» com.digitalpebble:storm-crawler

»» com.cedarsoft.commons.history:core

»» com.mailosaur:mailosaur-java

»» com.pengyifan.bioc:pengyifan-bioc

»» com.cloudhopper:ch-smpp

»» com.cocosw:framework

»» com.codeborne:selenide

»» com.codebullets.saga-lib:saga-lib-guice

»» com.puppycrawl.tools:checkstyle

»» com.dimafeng:testcontainers-scala

»» com.redowlanalytics:swagger2markup-maven-plugin

»» com.rtstatistics:api-client

»» com.craterdog.java-security-framework:

java-digital-notary-api

»» com.cyngn.vertx:vertx-kafka

»» com.ea.orbit:orbit-rest-client

»» com.ea.orbit:orbit-actors-spring

»» com.valchkou.datastax:cassandra-driver-mapping

»» com.ea.orbit:orbit-actors-redis

»» com.eharmony:aloha-vw-jni

»» com.englishtown.vertx:vertx-httpservlet

»» com.englishtown.vertx:vertx-zookeeper

»» com.englishtown.vertx:vertx-guice

»» com.englishtown.vertx:vertx-when

502019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

»» info.cukes:cucumber-picocontainer

»» com.erudika:para-dao-cassandra

»» com.eventsourcing:eventsourcing-core

»» com.evernote:android-sdk

»» com.facebook.presto:presto-teradata-functions

»» com.facebook.presto:presto-cli

»» com.facebook.presto:presto-orc

»» com.facebook.presto:presto-blackhole

»» com.facebook.presto:presto-server

»» com.floragunn:search-guard-5

»» com.floragunn:search-guard-ssl

»» com.flozano.statsd-netty:statsd-netty

»» com.gabrielittner.auto.value:auto-value-cursor

»» com.getbase.android.autoprovider:library

»» com.giffing.wicket.spring.boot.

starter:wicket-spring-boot-starter-example

»» de.leanovate.doby:doby_2.11

»» com.gocardless:gocardless-pro

»» com.godmonth:godmonth-commons

»» com.googlecode.jmapper-framework:jmapper-core

»» es.litesolutions:sonar-sslr-grappa

»» com.hack23.cia:service.external.worldbank

»» com.hack23.cia:model.external.worldbank.data.impl

»» com.hack23.cia:service.data.impl

»» com.hack23.cia:model.external.vdem.indicators.impl

»» com.hack23.cia:citizen-intelligence-agency

»» com.hack23.cia:model.external.val.

landstingvalkrets.impl

»» com.hack23.cia:model.external.riksdagen.

dokumentlista.impl

»» com.hack23.cia:model.external.val.

riksdagsvalkrets.impl

»» com.hack23.cia:model.external.riksdagen.

utskottsforslag.impl

»» com.hack23.cia:service.impl

»» com.hack23.cia:service.component.agent.impl

»» com.hack23.cia:model.external.worldbank.topic.impl

»» com.hack23.cia:model.internal.application.user.impl

»» com.hack23.cia:jms-broker

»» com.hack23.cia:model.external.

worldbank.countries.impl

»» com.hack23.cia:model.external.riksdagen.

dokumentstatus.impl

»» com.hack23.cia:service.external.val

»» com.hack23.cia:model.external.val.

kommunvalkrets.impl

»» com.hack23.cia:service.api

»» com.hack23.cia:model.common.impl

»» com.hack23.cia:model.external.riksdagen.

voteringlista.impl

»» com.hack23.cia:service.external.riksdagen

»» com.hack23.cia:model.external.riksdagen.

documentcontent.impl

»» com.hack23.cia:model.external.

riksdagen.personlista.impl

»» com.hack23.cia:model.external.val.partier.impl

»» com.hack23.cia:model.external.

riksdagen.votering.impl

»» com.hack23.cia:testfoundation

»» com.hannesdorfmann.sqlbrite:dao

»» com.holidaycheck:marathon-maven-plugin

»» com.ibasco.agql:agql-coc-webapi

»» com.intel.jndn.mock:jndn-mock

»» com.jakewharton.espresso:espresso-runner

»» com.jakewharton.espresso:espresso

»» com.jakewharton.sdkmanager:gradle-plugin

»» com.jdroidframework:jdroid-java-firebase

»» com.jetdrone:yoke-extras

»» com.joyent.http-signature:google-http-client-signature

»» com.jtransc:jtransc-rt-core-kotlin

»» com.jtransc:jtransc-gen-haxe

»» com.jtransc:jtransc-utils

»» com.jtransc:jtransc-rt

»» com.khubla.antlr:antlr4test-maven-plugin

»» com.kotcrab.vis:vis-ui

»» com.lapis.jsfexporter:export-type-xml

»» com.leacox.dagger:dagger-servlet

»» io.fabric8:process-spring-boot-starter-activemq

»» com.lihaoyi:utest-runner_2.11

»» com.lihaoyi:utest_sjs0.5_2.11

»» com.lihaoyi:upickle_sjs0.5_2.11

»» com.linecorp.armeria:armeria-retrofit2

»» com.liulishuo.filedownloader:library

»» com.madgag:bfg-parent_2.11

»» com.merapar:spring-boot-starter-graphql

»» io.github.clickscript:clickscript_2.10

»» io.github.gpein:jcache-jee7

»» com.michaelpardo:ollie-compiler

»» io.github.morgaroth:navigator-import-core_2.11

»» io.github.msdk:msdk-spectra-isotopepattern

»» io.github.seleniumquery:seleniumquery

»» com.mobilesolutionworks:works-bolts

»» com.netflix.denominator:denominator-cli

»» com.netflix.evcache:evcache-client

»» com.netflix.evcache:evcache-core

»» com.netflix.hystrix:hystrix-codahale-metrics-publisher

»» com.netflix.iep:iep-governator

»» com.netflix.iep:iep-module-karyon

»» com.netflix.iep:iep-module-eureka

»» com.netflix.iep:iep-module-rxnetty

»» com.netflix.iep:iep-guice

»» com.netflix.iep:iep-module-jmxport

»» com.netflix.iep-shadow:iepshadow-iep-rxhttp

»» com.netflix.nebula:nebula-kotlin-plugin

»» com.netflix.rxjava:rxjava-quasar

»» com.netflix.spectator:spectator-reg-metrics2

»» com.nicta:rng_2.11

»» com.nitorcreations:willow-utils

»» com.nrinaudo:tabulate-cats_2.11

»» com.nrinaudo:tabulate-cats_2.10

»» com.octo.android.robospice:robospice-cache

»» com.octo.android.robospice:robospice-

google-http-client

»» com.octo.android.robospice:robospice-okhttp

»» com.optimaize.soapworks.server.

implgrizzly:soapworks-server-implgrizzly

»» com.oracle.truffle:truffle-tck

»» com.oracle.truffle:truffle-api

»» com.orange.redis-protocol:netty4

»» com.outr.query:outrquery-search_2.11

»» com.palomamobile.android.sdk:core

»» com.palominolabs.http:jetty-http-server-wrapper

»» com.palominolabs.metrics:metrics-new-relic

»» com.paypal:cascade-examples_2.11

»» com.paypal:parent_2.11

»» com.pholser:junit-quickcheck-generators

»» com.r0adkll:postoffice

»» com.sandinh:couchbase-akka-extension_2.11

»» com.sandinh:play-hikaricp_2.11

»» com.sandinh:couchbase-scala_2.10

»» com.scalarx:scalarx_sjs0.5_2.11

»» com.scalatags:scalatags_sjs0.5_2.11

»» com.segment.analytics.android:

analytics-integration-amplitude

»» com.semanticcms:semanticcms-view-tree

»» com.semanticcms:semanticcms-core-view-content

»» com.semanticcms:semanticcms-autogit-servlet

»» com.semanticcms:semanticcms-file-taglib

»» com.semanticcms:semanticcms-view-all

»» com.semanticcms:semanticcms-core-sitemap

»» com.semanticcms:semanticcms-section-taglib

»» com.semanticcms:semanticcms-section-servlet

»» com.semanticcms:semanticcms-dia-model

»» com.semanticcms:semanticcms-news-servlet

»» com.semanticcms:semanticcms-news-model

»» com.semanticcms:semanticcms-view-what-links-here

»» com.semanticcms:semanticcms-autogit-taglib

»» com.semanticcms:semanticcms-file-servlet

»» com.semanticcms:semanticcms-

theme-documentation

»» com.semanticcms:semanticcms-core-taglib

»» com.semanticcms:semanticcms-news-taglib

»» com.semanticcms:semanticcms-file-view

»» io.zipkin.java:zipkin-autoconfigure-

storage-elasticsearch

»» com.sksamuel.scrimage:scrimage_2.11

»» com.sksamuel.scrimage:scrimage-canvas_2.11

»» com.smb-tec.neo4j:neo4j-community

»» com.smb-tec.xo:xo-tinkerpop-blueprints

»» com.smoketurner:dropwizard-swagger

»» com.smoketurner.dropwizard:consul-core

»» com.smoketurner.dropwizard:zipkin-example

»» com.smoketurner.dropwizard:zipkin-core

»» com.smoketurner.dropwizard:dropwizard-riak

»» com.softwaremill:reactive-kafka_2.10

»» com.softwaremill.events:core_2.11

»» com.soywiz:korio-ext-amazon-common

»» com.soywiz:korge-ext-particle

»» jp.vmi:selenese-runner-java

»» com.squareup.burst:burst-android

»» net.danlew:android.joda

»» com.tascape.qa:thx-webservice

»» com.thoughtworks.tools:dependency-check

»» com.threerings:tripleplay-java-swt

»» com.timcharper:cassandra-talks-scala_2.11

»» com.tinkerpop.blueprints:blueprints-sparksee-graph

»» net.osgiliath.framework:net.osgiliath.helpers.camel.

cdi.configadmin

»» com.uwetrottmann:trakt-java

»» com.vaadin:vaadin-client

»» com.vilt-group.minium:minium-core

»» com.vilt-group.minium:minium-script

»» com.vmware.photon.controller:photon-model-security

»» com.vmware.xenon:xenon-slf4j

»» com.wandoulabs.avro:astore_2.11

»» com.wandrell:java-patterns

»» com.weicoder:dao

»» nl.bstoi.jersey.test-framework:jersey-spring-

exposed-test-framework-core

»» no.difi.vefa:validator-core

»» com.semanticcms:semanticcms-autogit-view

»» org.codehaus.sonar-plugins.

java:sonar-findbugs-plugin

»» org.ddogleg:ddogleg

»» org.hypoport:mockito-mockinjector

»» org.jbpm:jbpm-console-ng-generic-forms-api

»» org.passay:passay

»» org.requs:requs-demo

»» org.wicketstuff:wicketstuff-restannotations-examples

»» org.wicketstuff:wicketstuff-selectize

»» org.woodylab.boot:spring-boot-starter-pebble

»» pl.wkr:fluent-exception-rule

»» ru.systemate:morpholog-client

»» su.litvak.chromecast:api-v2

»» am.ik.home:uaa-client

»» am.ik.home:uaa-integration-test

»» at.chrl:chrl-spring

»» at.chrl:chrl-orm

»» biz.gabrys.maven.plugins:css-splitter-maven-plugin

512019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

»» ch.cern.dirq:dirq

»» ch.rasc:embeddedtc

»» ch.rasc:constgen

»» ch.sbb.releasetrain:webui

»» ch.sbb.releasetrain:director

»» ch.sbb.releasetrain:utils

»» ch.sbb.releasetrain:action

»» ch.sbb.releasetrain:mavenmojos

»» ch.sbb.releasetrain:config

»» ch.softappeal.yass:yass

»» cn.dreampie:jfinal-mailer

»» cn.org.zeronote:commondao

»» co.cask.cdap:cdap-notifications-api

»» co.cask.cdap:cdap-explore-client

»» im.chic.crypto:crypto-utils

»» im.chic.weixin:weixin-utils

»» info.android15.satellite:satellite

»» de.ahus1.keycloak.dropwizard:keycloak-dropwizard

»» de.codecentric:spring-boot-admin-starter-client

»» de.codecentric:spring-boot-starter-admin-client

»» de.codecentric:spring-boot-admin-sample

»» de.codecentric:spring-boot-starter-batch-web

»» de.javakaffee:kryo-serializers

»» de.learnlib:learnlib-counterexamples

»» de.learnlib:learnlib-reuse

»» de.learnlib:learnlib-drivers-basic

»» de.learnlib:learnlib-basic-eqtests

»» de.learnlib:learnlib-core

»» de.learnlib:learnlib-algorithm-features

»» de.learnlib:learnlib-parallelism

»» de.learnlib:learnlib-nlstar

»» de.learnlib:learnlib-dhc

»» de.learnlib:learnlib-ttt

»» de.learnlib:learnlib-examples

»» de.learnlib:learnlib-lstar-generic

»» de.learnlib:learnlib-mapper

»» de.learnlib:learnlib-kearns-vazirani

»» de.learnlib:learnlib-acex

»» de.learnlib:learnlib-cache

»» de.learnlib:learnlib-lstar-baseline

»» de.learnlib:learnlib-discrimination-tree

»» de.learnlib.testsupport:learnlib-learning-examples

»» de.otto.edison:togglz

»» de.saly:javamail-mock2-fullmock

»» de.saly:javamail-mock2-halfmock

»» de.svenkubiak:embedded-mongodb

»» de.svenkubiak:jpushover

»» de.svenkubiak:mangooio-mongodb-extension

»» de.taimos:spring-dao-hibernate

»» de.taimos:dvalin-dynamodb

»» de.taimos:daemon-framework-spring

»» de.taimos:spring-cxf-daemon

»» de.taimos:spring-dao-mongo

»» edu.stanford.protege:org.protege.

editor.core.application

»» edu.stanford.protege:protege-owlapi-extensions

»» eu.michael-simons:java-akismet

»» fr.iscpif.gridscale:gridscaleslurm_2.11

»» fr.iscpif.gridscale:gridscalessh_2.11

»» fr.iscpif.gridscale:gridscaleoar_2.11

»» fr.iscpif.gridscale:gridscalepbs_2.11

»» fr.iscpif.gridscale:gridscalesge_2.11

»» fr.iscpif.gridscale:glitesrmexample_2.11

»» fr.iscpif.gridscale:gridscalehttp_2.11

»» fr.iscpif.gridscale:gliteexample_2.11

»» fr.zebasto:spring-postinitialize

»» gr.grnet:pithosj

»» info.ganglia.gmetric4j:gmetric4j

»» info.johtani:elasticsearch-extended-analyze

»» io.advantageous.qbit:qbit-servlet

»» io.advantageous.qbit:qbit-eventbus-replicator

»» io.advantageous.qbit:qbit-boon

»» io.bigio:bigio-benchmark

»» io.buji:buji-pac4j

»» io.sniffy:sniffy

»» io.dropwizard.modules:dropwizard-flyway

»» io.dropwizard.modules:dropwizard-protobuf

»» io.fabric8:gitective-core

»» io.fabric8:fabric-webapp-agent

»» io.fabric8:process-spring-boot-registry

»» io.fabric8:watcher-dozer

»» io.fabric8:fabric-jolokia

»» io.fabric8:swagger-annotator

»» io.fabric8:fabric-camel

»» io.fabric8:console

»» io.fabric8:fabric-git-hawtio

»» io.fabric8:kubernetes-jolokia

»» io.fabric8:gateway-api

»» io.fabric8:fabric-dynamic-jaxb

»» io.fabric8.examples:fabric-camel-cxf

»» io.fabric8.examples:fabric-loanbroker-rateservice

»» io.fabric8.forge:kubernetes

»» io.fabric8.insight:insight-kibana3

»» io.fabric8.insight:insight-eshead

»» io.fabric8.jube:console

»» io.fabric8.jube:core

»» io.fabric8.jube:process-manager

»» io.fabric8.jube.images.

fabric8:quickstart-karaf-camelcbr

»» io.fabric8.jube.images.

fabric8:quickstart-karaf-camellog

»» io.fabric8.jube.images.

fabric8:quickstart-karaf-camelwiki

»» io.fabric8.runtime:fabric8-runtime-

container-tomcat-registration

»» io.gatling:gatling-http

»» io.gatling:gatling-core

»» tv.cntt:netcaty_2.10

»» io.hawt:hawtio-local-jvm-mbean

»» io.hawt:hawtio-web

»» io.konik:itext-carriage

»» io.mangoo:mangooio-test-utilities

»» io.mangoo:mangooio-core

»» io.mangoo:mangooio-integration-test

»» io.mangoo:mangooio-benchmark

»» io.maxthomas:concrete-dictum

»» io.springfox:springfox-staticdocs

»» io.openscore.content:score-ssh

»» io.openscore.content:score-mail

»» io.openscore.lang:score-lang-runtime

»» io.reactivex:rxkotlin

»» io.segment.android:analytics

»» am.ik.home:uaa-server

»» io.taig.android:soap_2.11

»» io.vertigo:vertigo-tempo-impl

»» io.zipkin.java:zipkin-storage-cassandra

»» io.zipkin.java:zipkin-junit

»» io.zipkin.java:zipkin-storage-elasticsearch

»» io.zipkin.java:zipkin-autoconfigure-collector-scribe

»» io.zipkin.java:zipkin-server

»» io.zipkin.java:zipkin-autoconfigure-

storage-cassandra3

»» io.zipkin.java:zipkin-autoconfigure-

metrics-prometheus

»» io.zipkin.java:zipkin-autoconfigure-storage-cassandra

»» io.zipkin.java:zipkin-autoconfigure-ui

»» io.zipkin.java:zipkin-autoconfigure-collector-kafka

»» it.unibo.alchemist:alchemist-engine

»» it.unibo.alchemist:alchemist-incarnation-protelis

»» it.unimi.dsi:webgraph

»» javax.cache:spring-annotations-test-harness

»» javax.cache:guice-annotations-test-harness

»» javax.cache:specific-implementation-tester

»» javax.cache:spring-annotations-tester

»» javax.cache:guice-annotations-tester

»» javax.cache:cdi-annotations-tester

»» me.lessis:zoey-core_2.11

»» me.lessis:zoey-testing_2.11

»» me.mattak:moment

»» net.aequologica.neo:geppaequo-cdi

»» net.aequologica.neo:geppaequo-web

»» net.aequologica.neo:shakuntala-test

»» net.aequologica.neo:buildhub-core

»» net.aequologica.neo:quintessence-core

»» net.aequologica.neo:parole-core

»» net.aequologica.neo:buildhub-persist

»» net.aequologica.neo:buildhub-web

»» net.aequologica.neo:geppaequo-core

»» net.aequologica.neo:parole-web

»» net.aequologica.neo:dagr-model

»» net.aequologica.neo:dagr-web

»» net.anotheria:moskito-webui-jersey

»» net.bytebuddy:byte-buddy-dep

»» net.code-story:http

»» net.imagej:minimaven

»» net.kemitix:kxssh

»» net.kencochrane.raven:raven-appengine

»» net.kencochrane.raven:raven-logback

»» net.liftmodules:omniauth_2.6_2.11

»» net.mostlyoriginal.artemis-odb:contrib-eventbus

»» net.mostlyoriginal.artemis-odb:contrib-core

»» net.osgiliath.features:net.osgiliath.feature.

karaf-enterprise

»» net.osgiliath.framework:net.osgiliath.features.

karaf-features-validation

»» net.osgiliath.framework:net.osgiliath.features.

karaf-features-security

»» net.osgiliath.hello:net.osgiliath.hello.features

»» net.postgis:postgis-jdbc

»» net.postgis:postgis-jdbc-java2d

»» net.sf.derquinsej:derquinsej-hib3

»» net.sf.derquinsej:derquinsej-test-support

»» net.sf.derquinsej:derquinsej-core

»» net.sf.sprockets:sprockets-android

»» net.sf.uadetector:uadetector-core

»» net.wessendorf.websocket:simple-client

»» net.yslibrary.rxrealm:rxrealm

»» nl.komponents.kovenant:kovenant-disruptor

»» no.difi.sdp:sikker-digital-post-java-klient

»» nz.ac.auckland.composite:composite-ebean

»» nz.ac.auckland.composite:composite-jetty

»» nz.co.aetheric.maven:composite-jetty

»» nz.net.osnz.composite:composite-spring

»» nz.net.osnz.composite:composite-spring-jdbc

»» nz.net.osnz.composite:composite-spring-aspects

»» nz.net.osnz.lmz:lmz-runner

»» nz.net.osnz.lmz:lmz-syllabus

»» nz.net.osnz.lmz:lmz-stencil

»» org.agrona:agrona-agent

»» org.akhikhl.gretty:gretty-runner-spring-boot-jetty

»» org.akhikhl.gretty:gretty-helper-commons

»» org.akhikhl.gretty:gretty-plugin-commons

»» org.akhikhl.gretty:gretty-plugin

»» org.akhikhl.rooty:rooty

»» org.akhikhl.unpuzzle:unpuzzle-eclipse2maven

»» org.ansj:ansj_seg

»» org.arquillian.cube:arquillian-cube-containerless

522019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

»» org.arquillian.cube:arquillian-cube-spi

»» org.atmosphere:vibe-platform-bridge-vertx2

»» org.atmosphere:vibe-platform-bridge-grizzly2

»» org.atmosphere:vibe-platform-bridge-play2

»» org.atmosphere:vibe-platform-bridge-atmosphere2

»» org.atmosphere:vibe-platform-action

»» org.atmosphere:vibe-platform-http

»» org.atmosphere:vibe-platform-ws

»» org.atmosphere:vibe-platform-bridge-servlet3

»» org.atmosphere:vibe-platform-bridge-netty4

»» org.blocks4j.commons:blocks4j-commons-metrics3

»» org.boofcv:recognition

»» org.boofcv:evaluation

»» org.boofcv:visualize

»» org.boofcv:processing

»» org.boofcv:applet

»» org.boofcv:geo

»» org.boofcv:io

»» org.boofcv:feature

»» org.boofcv:openkinect

»» org.boofcv:sfm

»» org.boofcv:xuggler

»» org.boofcv:android

»» org.boofcv:ip

»» org.boofcv:calibration

»» org.carewebframework:org.carewebframework.shell

»» org.codelibs:elasticsearch-solr-api

»» org.cogroo:cogroo-nlp

»» org.cometd.java:cometd-websocket-jetty

»» org.cometd.tutorials:cometd-tutorials-skeleton

»» org.cubeengine:pericopist-core

»» org.danilopianini:javalib-java7

»» org.dashbuilder:dashbuilder-services-api

»» org.dashbuilder:dashbuilder-renderer-default

»» org.dashbuilder:dashbuilder-validations

»» org.dashbuilder:dashbuilder-common-client

»» org.dashbuilder:dashbuilder-widgets

»» org.dashbuilder:dashbuilder-dataset-api

»» org.dashbuilder:dashbuilder-displayer-editor

»» org.dashbuilder:dashbuilder-server-all

»» org.dashbuilder:dashbuilder-renderer-chartjs

»» org.dashbuilder:dashbuilder-renderer-google

»» org.dashbuilder:dashbuilder-dataset-client

»» org.dashbuilder:dashbuilder-webapp

»» org.dashbuilder:dashbuilder-client-all

»» org.dashbuilder:dashbuilder-displayer-api

»» org.dashbuilder:dashbuilder-dataset-editor

»» org.dashbuilder:dashbuilder-displayer-screen

»» org.dashbuilder:dashbuilder-dataset-shared

»» org.dashbuilder:dashbuilder-displayer-client

»» org.dbtools:dbtools-gen

»» org.deeplearning4j:dl4j-spark-ml

»» org.deeplearning4j:dl4j-caffe

»» org.deeplearning4j:deeplearning4j-cli-api

»» org.dm.gradle:gradle-bundle-plugin

»» org.drools:drools-decisiontables

»» org.drools:drools-jsr94

»» org.drools:drools-wb-test-scenario-editor-api

»» org.drools:default-kiesession

»» org.drools:cdi-example-with-inclusion

»» org.drools:drools-wb-guided-scorecard-editor-api

»» org.drools:drools-benchmark

»» org.drools:drools-wb-scorecard-xls-editor-api

»» org.drools:droolsjbpm-integration-distribution

»» org.drools:cdi-example

»» org.drools:drools-pmml

»» org.drools:drools-wb-enum-editor-client

»» org.drools:drools-wb-guided-dtable-editor-api

»» org.drools:kiefilesystem-example

»» org.drools:drools-wb-globals-editor-backend

»» org.drools:drools-wb-guided-template-editor-api

»» org.drools:drools-wb-enum-editor-api

»» org.drools:drools-wb-guided-dtable-editor-client

»» org.drools:drools-wb-guided-template-editor-client

»» org.drools:drools-wb-workitems-editor-client

»» org.drools:drools-wb-dsl-text-editor-backend

»» org.drools:drools-wb-dsl-text-editor-client

»» org.drools:drools-wb-test-scenario-editor-backend

»» org.drools:drools-templates

»» org.drools:drools-wb-dtable-xls-editor-api

»» org.drools:drools-wb-factmodel-editor-api

»» org.drools:drools-wb-guided-dtree-editor-api

»» org.drools:drools-workbench-models-datamodel-api

»» org.drools:kie-module-from-multiple-files

»» org.drools:kiebase-inclusion

»» org.drools:default-kiesession-from-file

»» org.drools:droolsjbpm-tools-distribution

»» org.drools:drools-wb-scorecard-xls-editor-backend

»» org.drools:drools-workbench-models-guided-template

»» org.drools:kiemodulemodel-example

»» org.drools:drools-wb-guided-dtable-editor-backend

»» org.drools:drools-workbench-models-guided-dtree

»» org.drools:drools-wb-test-scenario-editor-client

»» org.drools:named-kiesession-from-file

»» org.drools:drools-wb-drl-text-editor-backend

»» org.drools:drools-wb-drl-text-editor-client

»» org.drools:drools-verifier

»» org.drools:drools-wb-workitems-editor-backend

»» org.drools:drools-wb-factmodel-editor-backend

»» org.drools:drools-beliefs

»» org.drools:drools-wb-drl-text-editor-api

»» org.drools:drools-wb-guided-scorecard-editor-client

»» org.drools:drools-wb-workitems-editor-api

»» org.drools:drools-wb-dtable-xls-editor-backend

»» org.drools:kiecontainer-from-kierepo

»» org.drools:droolsjbpm-integration-examples

»» org.drools:drools-workbench-models-guided-dtable

»» org.drools:jbpm-simulation

»» org.drools:drools-examples

»» org.drools:drools-android

»» org.drools:drools-wb-dsl-text-editor-api

»» org.drools:drools-wb-scorecard-xls-editor-client

»» org.drools:drools-reteoo

»» org.drools:drools-scorecards

»» org.drools:drools-wb-jcr2vfs-import

»» org.drools:named-kiesession

»» org.drools:drools-compiler

»» org.drools:drools-wb-globals-editor-client

»» org.drools:drools-persistence-jpa

»» org.drools:drools-wb-globals-editor-api

»» org.drools:drools-wb-guided-rule-editor-backend

»» org.drools:drools-wb-dtable-xls-editor-client

»» org.drools:drools-wb-guided-rule-editor-api

»» org.drools:drools-wb-guided-rule-editor-client

»» org.drools:drools-core

»» org.drools:drools-wb-enum-editor-backend

»» org.drools:drools-workbench-models-test-scenarios

»» org.drools:drools-wb-guided-dtree-editor-backend

»» org.drools:drools-wb-guided-

scorecard-editor-backend

»» org.drools:drools-distribution

»» org.drools:drools-wb-guided-dtree-editor-client

»» org.drools:drools-workbench-models-

guided-scorecard

»» org.drools:drools-jboss-integration

»» org.drools:drools-wb-guided-template-editor-backend

»» org.ehcache.modules:ehcache-management

»» org.ehcache.modules:ehcache-impl

»» org.elasticsearch:elasticsearch-analysis-smartcn

»» org.elasticsearch:elasticsearch-analysis-icu

»» org.elasticsearch:elasticsearch-analysis-stempel

»» org.elasticsearch:elasticsearch-analysis-kuromoji

»» org.elasticsearch:elasticsearch-analysis-phonetic

»» org.elasticsearch:elasticsearch-cloud-gce

»» org.everit.osgi:org.everit.osgi.jdbc.commons.dbcp

»» org.fxmisc.flowless:flowless

»» org.fxmisc.richtext:richtextfx

»» org.gaul:s3proxy

»» org.georegression:georegression

»» org.georegression:experimental

»» org.got5:tapestry5-jquery

»» org.greencheek.related:related-indexing

»» org.greencheek.related:related-domain

»» org.greencheek.related:related-web-indexing

»» org.greencheek.related:related-web-searching

»» org.greencheek.related:related-searching

»» org.greencheek.spray:spray-cache-spymemcached

»» org.guvnor:guvnor-asset-mgmt-backend

»» org.guvnor:guvnor-asset-mgmt-api

»» org.guvnor:guvnor-rest-client

»» org.guvnor:guvnor-services-api

»» org.guvnor:guvnor-workingset-client

»» org.guvnor:guvnor-message-console-backend

»» org.guvnor:guvnor-structure-client

»» org.guvnor:guvnor-project-api

»» org.guvnor:guvnor-m2repo-editor-client

»» org.guvnor:guvnor-project-backend

»» org.guvnor:guvnor-structure-backend

»» org.guvnor:guvnor-m2repo-editor-api

»» org.guvnor:guvnor-m2repo-editor-backend

»» org.guvnor:guvnor-message-console-api

»» org.guvnor:guvnor-services-backend

»» org.guvnor:guvnor-rest-backend

»» org.guvnor:guvnor-project-builder

»» org.guvnor:guvnor-organizationalunit-manager

»» org.guvnor:guvnor-asset-mgmt-client

»» org.guvnor:guvnor-structure-api

»» org.guvnor:guvnor-workingset-api

»» org.guvnor:guvnor-message-console-client

»» org.guvnor:guvnor-project-client

»» org.hawkular.accounts:hawkular-accounts-api

»» org.hawkular.accounts:hawkular-accounts-sample

»» org.hawkular.inventory:hawkular-

inventory-impl-tinkerpop-spi

»» org.hawkular.inventory:hawkular-

inventory-impl-tinkerpop

»» org.hawkular.inventory:hawkular-inventory-

impl-tinkerpop-tinkergraph-provider

»» org.hawkular.inventory:hawkular-inventory-impl-

tinkerpop-sql-provider

»» org.hibernate:hibernate-validator

»» org.hisrc.w3c:atom-v_1_0

»» org.hisrc.w3c:ws-addr-v_1_0-core

»» org.hisrc.w3c:xhtml-v_1_0-strict

»» org.hisrc.w3c:xlink-v_1_0

»» org.hisrc.w3c:xmlschema-v_1_0

»» org.hyperscala:hyperscala-service_2.11

»» org.hyperscala:hyperscala-connect_2.11

»» org.hyperscala:hyperscala-site_2.11

»» org.igniterealtime.smack:smack-debug-slf4j

»» org.incode.module.note:incode-module-note-dom

»» org.infinispan:infinispan-as-client-modules

»» org.infinispan:infinispan-lucene-v4

»» org.isisaddons.module.audit:isis-module-audit-dom

»» org.isisaddons.module.command:

isis-module-command-dom

»» org.isisaddons.module.devutils:

isis-module-devutils-dom

532019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

»» org.isisaddons.module.docx:isis-module-docx-dom

»» org.isisaddons.module.publishmq:

isis-module-publishmq-dom-servicespi

»» org.isisaddons.module.settings:

isis-module-settings-dom

»» org.isisaddons.wicket.fullcalendar2:

isis-wicket-fullcalendar2-cpt

»» org.isisaddons.wicket.summernote:

isis-wicket-summernote-cpt

»» org.isisaddons.wicket.wickedcharts:

isis-wicket-wickedcharts-cpt

»» org.javamoney:moneta

»» org.javamoney:moneta-bp

»» org.javers:javers-persistence-sql

»» org.jboss.aerogear.test:spacelift-jboss-manager

»» org.jboss.aerogear.test.arquillian:arquillian-non-

deploying-container-checks-api

»» org.jboss.aerogear.test.arquillian:

arquillian-non-deploying-container

»» org.jboss.aerogear.test.arquillian:arquillian-non-

deploying-container-checks-impl

»» org.jboss.cdi.tck:cdi-tck-ext-lib

»» org.jboss.cdi.tck:cdi-tck-api

»» org.jboss.gwt.elemento:elemento-core

»» org.jboss.remotingjmx:remoting-jmx

»» org.jboss.resteasy:resteasy-jettison-provider

»» org.jboss.threads:jboss-threads

»» org.jboss.weld.examples:weld-osgi-paint-api

»» org.jboss.weld.module:weld-jta

»» org.jboss.windup.decompiler:decompiler-procyon

»» org.jbpm:jbpm-console-ng-dashboard-backend

»» org.jbpm:jbpm-console-ng-

human-tasks-forms-backend

»» org.jbpm:jbpm-human-task-core

»» org.jbpm:jbpm-console-ng-

process-runtime-admin-client

»» org.jbpm:jbpm-kie-services

»» org.jbpm:jbpm-console-ng-executor-service-client

»» org.jbpm:jbpm-console-ng-generic-api

»» org.jbpm:jbpm-form-modeler-api

»» org.jbpm:jbpm-persistence-jpa

»» org.jbpm:jbpm-console-ng-showcase

»» org.jbpm:jbpm-shared-services

»» org.jbpm:jbpm-form-modeler-document

»» org.jbpm:jbpm-console-ng-dashboard-api

»» org.jbpm:jbpm-services-ejb-api

»» org.jbpm:jbpm-document

»» org.jbpm:jbpm-console-ng-human-tasks-forms-client

»» org.jbpm:jbpm-console-ng-human-

tasks-admin-backend

»» org.jbpm:jbpm-form-modeler-bpmn-form-builder

»» org.jbpm:jbpm-form-modeler-editor-api

»» org.jbpm:jbpm-services-cdi

»» org.jbpm:jbpm-console-ng-business-domain-client

»» org.jbpm:jbpm-designer-backend

»» org.jbpm:jbpm-form-modeler-editor-backend

»» org.jbpm:jbpm-console-ng-business-domain-backend

»» org.jbpm:jbpm-audit

»» org.jbpm:jbpm-console-ng-

human-tasks-forms-modeler-client

»» org.jbpm:jbpm-flow-builder

»» org.jbpm:jbpm-console-ng-human-tasks-backend

»» org.jbpm:jbpm-runtime-manager

»» org.jbpm:jbpm-console-ng-executor-service-backend

»» org.jbpm:jbpm-console-ng-human-tasks-admin-api

»» org.jbpm:jbpm-services-api

»» org.jbpm:jbpm-human-task-audit

»» org.jbpm:jbpm-form-modeler-renderer-backend

»» org.jbpm:jbpm-console-ng-human-tasks-client

»» org.jbpm:jbpm-services-ejb-timer

»» org.jbpm:jbpm-console-ng-business-domain-api

»» org.jbpm:jbpm-console-ng-process-runtime-api

»» org.jbpm:jbpm-executor

»» org.jbpm:jbpm-console-ng-bpm-home-client

»» org.jbpm:jbpm-form-modeler-data-modeler

»» org.jbpm:jbpm-console-ng-human-tasks-admin-client

»» org.jbpm:jbpm-executor-cdi

»» org.jbpm:jbpm-console-ng-process-runtime-backend

»» org.jbpm:jbpm-console-ng-human-tasks-api

»» org.jbpm:jbpm-flow

»» org.jbpm:jbpm-executor-ejb

»» org.jbpm:jbpm-console-ng-

process-runtime-forms-client

»» org.jbpm:jbpm-designer-api

»» org.jbpm:jbpm-form-modeler-editor-client

»» org.jbpm:jbpm-human-task-jpa

»» org.jbpm:jbpm-services-ejb-impl

»» org.jbpm:jbpm-console-ng-generic-forms-client

»» org.jbpm:jbpm-console-ng-

workbench-integration-client

»» org.jbpm:jbpm-console-ng-documents-backend

»» org.jbpm:jbpm-console-ng-generic-client

»» org.jbpm:jbpm-examples

»» org.jbpm:jbpm-form-modeler-renderer-client

»» org.jbpm:jbpm-human-task-workitems

»» org.jbpm:jbpm-console-ng-process-runtime-client

»» org.jbpm:jbpm-console-ng-executor-service-api

»» org.jbpm:jbpm-designer-client

»» org.jbpm:jbpm-bpmn2

»» org.jbpm:jbpm-console-ng-documents-api

»» org.jbpm:jbpm-form-modeler-renderer-api

»» org.jbpm:jbpm-console-ng-documents-client

»» org.jbpm:jbpm-console-ng-dashboard-client

»» org.jbpm:jbpm-form-modeler-showcase

»» org.jnario:org.jnario.lib.maven

»» org.jodd:jodd-mail

»» org.joeyb.undercarriage:grpc

»» org.joinfaces:jsf-jetty-myfaces-

bootsfaces-spring-boot-starter

»» org.joinfaces:jsf-jetty-butterfaces-spring-boot-starter

»» org.joinfaces:jsf-butterfaces-spring-boot-starter

»» org.joinfaces:jsf-undertow-

bootsfaces-spring-boot-starter

»» org.joinfaces:jsf-myfaces-

butterfaces-spring-boot-starter

»» org.joinfaces:jsf-undertow-

butterfaces-spring-boot-starter

»» org.joinfaces:jsf-undertow-myfaces-bootsfaces-

spring-boot-starter

»» org.junit.contrib:junit-theories

»» org.jvnet.ogc:ows-v_1_1_0

»» org.jvnet.ogc:kml-v_2_2_0

»» org.jvnet.ogc:sld-v_1_0_0-geoserver

»» org.jvnet.ogc:wmc-v_1_0_0

»» org.jvnet.ogc:gml-v_3_2_1

»» org.jvnet.ogc:wfs-v_2_0

»» org.jvnet.ogc:sos-v_2_0

»» org.jvnet.ogc:ols-nav-v_1_3

»» org.jvnet.ogc:owc-v_0_3_1

»» org.jvnet.ogc:ows-v_2_0

»» org.jvnet.ogc:wmts-v_1_0

»» org.jvnet.ogc:ols-v_1_1_0

»» org.jvnet.ogc:wcs-v_2_0

»» org.jvnet.ogc:iso19139-v_20070417

»» org.jvnet.ogc:sps-v_1_0_0

»» org.jvnet.ogc:wps-v_1_0_0

»» org.jvnet.ogc:iso19139-v_20060504

»» org.jvnet.ogc:sampling-v_2_0

»» org.jvnet.ogc:wms-v_1_3_0

»» org.jvnet.ogc:wcst-v_1_1

»» org.jvnet.ogc:sampling-v_1_0_0

»» org.jvnet.ogc:sld-v_1_0_0

»» org.jvnet.ogc:wcs-v_1_1

»» org.jvnet.ogc:om-v_2_0

»» org.jvnet.ogc:sld-v_1_1_0

»» org.jvnet.ogc:wfs-v_1_0_0

»» org.jvnet.ogc:wmc-v_1_1_0

»» org.jvnet.ogc:csw-v_2_0_2

»» org.jvnet.ogc:gml-v_3_1_1

»» org.jvnet.ogc:gml-v_3_2_0

»» org.jvnet.ogc:ows-v_1_0_0

»» org.jvnet.ogc:filter-v_1_1_0

»» org.jvnet.ogc:om-v_1_0_0

»» org.jvnet.ogc:swes-v_2_0

»» org.jvnet.ogc:arml-v_2_0

»» org.jvnet.ogc:wps-v_2_0

»» org.jvnet.ogc:indoorgml-v_1_0

»» org.jvnet.ogc:gmlcov-v_1_0

»» org.jvnet.ogc:wcs-v_1_0_0

»» org.jvnet.ogc:omx-v_1_0_0

»» org.jvnet.ogc:citygml-v_1_0

»» org.jvnet.ogc:omeo-v_1_0

»» org.kaazing:robot.all

»» org.kie:kie-drools-wb-webapp

»» org.kie:kie-wb-webapp

»» org.kie:kie-drools-wb-home-page-community

»» org.kie:kie-wb-home-page-community

»» org.kie:kie-identity-session-provider

»» org.kie:kie-ci-osgi

»» org.kie.uberfire:kie-uberfire-social-activities-client

»» org.kie.uberfire:kie-uberfire-social-activities-backend

»» org.kie.uberfire:kie-uberfire-social-activities-api

»» org.kie.workbench.screens:kie-wb-common-

social-home-page-backend

»» org.kie.workbench.screens:kie-wb-common-

social-home-page-api

»» org.kie.workbench.screens:kie-wb-common-

project-imports-editor-api

»» org.kie.workbench.screens:kie-wb-common-

search-screen-api

»» org.kie.workbench.screens:kie-wb-common-

contributors-client

»» org.kie.workbench.screens:kie-wb-common-

default-editor-client

»» org.kie.workbench.screens:kie-wb-common-

project-editor-api

»» org.kie.workbench.screens:kie-wb-common-

server-ui-client

»» org.kie.workbench.screens:kie-wb-common-

project-editor-client

»» org.kie.workbench.screens:kie-wb-common-

default-editor-backend

»» org.kie.workbench.screens:kie-wb-common-

project-explorer-client

»» org.kie.workbench.screens:kie-wb-common-

search-screen-backend

»» org.kie.workbench.screens:kie-wb-common-

data-modeller-api

»» org.kie.workbench.screens:kie-wb-common-

project-explorer-api

»» org.kie.workbench.screens:kie-wb-common-

home-client

»» org.kie.workbench.screens:kie-wb-common-

data-modeller-backend

»» org.kie.workbench.screens:kie-wb-common-

project-editor-backend

»» org.kie.workbench.screens:kie-wb-common-

java-editor-api

»» org.kie.workbench.screens:kie-wb-common-

social-home-page-client

542019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

»» org.kie.workbench.screens:kie-wb-common-

contributors-backend

»» org.kie.workbench.screens:kie-wb-common-

project-imports-editor-client

»» org.kie.workbench.screens:kie-wb-common-

project-explorer-backend

»» org.kie.workbench.screens:kie-wb-common-

search-screen-client

»» org.kie.workbench.screens:kie-wb-common-

default-editor-api

»» org.kie.workbench.screens:kie-wb-common-home-api

»» org.kie.workbench.screens:kie-wb-common-s

erver-ui-backend

»» org.kie.workbench.screens:kie-wb-common-

server-ui-api

»» org.kie.workbench.screens:kie-wb-common-

data-modeller-client

»» org.kie.workbench.screens:kie-wb-common-

java-editor-client

»» org.kie.workbench.services:kie-wb-common-

services-backend

»» org.kie.workbench.services:kie-wb-common-

refactoring-backend

»» org.kie.workbench.services:kie-wb-common-

refactoring-api

»» org.kie.workbench.services:kie-wb-common-

data-modeller-core

»» org.kie.workbench.services:kie-wb-common-

datamodel-backend

»» org.kie.workbench.services:kie-wb-common-

services-api

»» org.kie.workbench.services:kie-wb-common-

datamodel-api

»» org.kie.workbench.widgets:kie-wb-metadata-widget

»» org.kie.workbench.widgets:kie-wb-

decorated-grid-widget

»» org.kie.workbench.widgets:kie-wb-common-ui

»» org.kie.workbench.widgets:kie-wb-config-

resource-widget

»» org.kohsuke.args4j:args4j-maven-plugin

»» org.languagetool:language-uk

»» org.lastaflute:lastaflute

»» org.lumongo:lumongo-storage

»» org.mapsforge:mapsforge-map-android

»» org.mobicents.diameter:jdiameter-ha-api

»» org.monifu:monifu-core-js_2.11

»» org.monifu:monifu-rx_2.11

»» org.nmdp.ngs:ngs-align

»» org.nmdp.ngs:ngs-hml

»» org.nmdp.ngs:ngs-reads

»» org.ocelotds:ocelot-glassfish

»» org.ocelotds:ocelot-wildfly

»» org.openehealth.ipf.platform-

camel:ipf-platform-camel-ihe-fhir

»» org.openfuxml:ofx-xml

»» org.openscience.cdk:cdk-inchi

»» org.openscoring:openscoring-service

»» org.openscoring:openscoring-common

»» org.openscoring:openscoring-common-gwt

»» org.openurp.code:openurp-code-api

»» org.openurp.platform:openurp-platform-ws

»» org.openurp.platform.api:openurp-platform-api-web

»» org.openurp.platform.

kernel:openurp-platform-kernel-core

»» org.openurp.platform.

kernel:openurp-platform-kernel-ws

»» org.openurp.platform.

kernel:openurp-platform-kernel-webapp

»» org.openurp.platform.

security:openurp-platform-security-webapp

»» org.openurp.platform.

security:openurp-platform-security-core

»» org.openurp.platform.

security:openurp-platform-security-app

»» org.optaplanner:optaplanner-core

»» org.optaplanner:optaplanner-wb-solver-editor-api

»» org.parceler:parceler

»» org.rapidpm.microservice:rapidpm-microservice-

modules-persistence-local-hashmap

»» org.requs:requs-exec

»» org.requs:requs-core

»» org.rhq.metrics:rest-servlet

»» org.richfaces:richfaces-core

»» org.rythmengine:spring-rythm

»» org.scala-lang:scala-compiler

»» org.scalastuff:json-parser_2.11

»» org.scalatest:scalatest-core_sjs0.6_2.10

»» org.scalatest:scalatest-core_2.10

»» org.scalikejdbc:scalikejdbc-interpolation-core_2.11

»» org.scalikejdbc:scalikejdbc-async_2.11

»» org.seasar.doma.boot:doma-spring-

boot-sample-simple

»» org.simpleflatmapper:sfm

»» org.skinny-framework:skinny-orm_2.10

»» org.skinny-framework:skinny-orm_2.11

»» org.skinny-framework:skinny-factory-girl_2.11

»» org.skinny-framework:skinny-test_2.11

»» org.skinny-framework:skinny-logback

»» org.spf4j:spf4j-jmh

»» org.springframework.boot:spring-boot-starter-actuator

»» org.springframework.boot:spring-boot-gradle-plugin

»» org.springframework.boot:spring-boot-starter-velocity

»» org.tomitribe:beryllium

»» org.uberfire:uberfire-runtime-plugins-api

»» org.uberfire:uberfire-widgets-service-api

»» org.uberfire:uberfire-nio2-api

»» org.uberfire:uberfire-runtime-plugins-backend

»» org.uberfire:uberfire-widgets-properties-editor-api

»» org.uberfire:uberfire-widgets-core-client

»» org.uberfire:uberfire-backend-cdi

»» org.uberfire:uberfire-security-api

»» org.uberfire:uberfire-runtime-plugins-client

»» org.uberfire:uberfire-nio2-model

»» org.uberfire:uberfire-workbench-

client-views-patternfly

»» org.uberfire:uberfire-apps-client

»» org.uberfire:uberfire-wires-bpmn-api

»» org.uberfire:uberfire-widget-markdown

»» org.uberfire:uberfire-wires-bayesian-parser-backend

»» org.uberfire:uberfire-client-api

»» org.uberfire:uberfire-widgets-properties-editor-client

»» org.uberfire:uberfire-widgets-service-backend

»» org.uberfire:uberfire-api

»» org.uberfire:uberfire-apps-backend

»» org.uberfire:uberfire-security-client

»» org.uberfire:uberfire-commons-editor-api

»» org.uberfire:uberfire-widgets-

roperties-editor-backend

»» org.uberfire:uberfire-wires-bpmn-client

»» org.uberfire:uberfire-backend-server

»» org.uberfire:uberfire-commons-editor-backend

»» org.uberfire:uberfire-testing-utils

»» org.uberfire:uberfire-wires-bayesian-parser-api

»» org.uberfire:uberfire-backend-api

»» org.uberfire:uberfire-distro

»» org.uberfire:uberfire-commons-editor-client

»» org.uberfire:uberfire-apps-api

»» org.uberfire:uberfire-widgets-commons

»» org.walkmod:walkmod-java-formatter-plugin

»» org.wicketstuff:wicketstuff-select2-examples

»» org.wicketstuff:wicketstuff-stateless-examples

»» org.wicketstuff:wicketstuff-datastore-redis

»» org.wicketstuff:wicket-mount

»» org.wicketstuff:wicketstuff-jwicket-tooltip-wtooltips

»» org.wicketstuff:wicketstuff-dropdown-menu

»» org.wicketstuff:wicketstuff-context-examples

»» org.wicketstuff:wicket-facebook

»» org.wicketstuff:tinymce4-examples

»» org.wicketstuff:wicket-mount-core

»» org.wicketstuff:wicketstuff-progressbar

»» org.wicketstuff:wicketstuff-urlfragment-examples

»» org.wicketstuff:wicketstuff-security-wicomsec

»» org.wicketstuff:wicketstuff-jwicket-examples

»» org.wicketstuff:wicketstuff-lazymodel

»» org.wicketstuff:wicketstuff-tinymce

»» org.wicketstuff:javaee-inject-example-war

»» org.wicketstuff:wicketstuff-input-events

»» org.wicketstuff:wicketstuff-logback

»» org.wicketstuff:wicketstuff-twitter

»» org.wicketstuff:wicketstuff-logback-examples

»» org.wicketstuff:wicketstuff-objectautocomplete

»» org.wicketstuff:wicketstuff-openlayers-proxy

»» org.wicketstuff:wicketstuff-servlet3-auth

»» org.wicketstuff:lightbox2

»» org.wicketstuff:wicketstuff-bundle

»» org.wicketstuff:wicketstuff-push-cometd

»» org.wicketstuff:wicketstuff-stateless

»» org.wicketstuff:wicketstuff-htmlcompressor

»» org.wicketstuff:wicketstuff-native-websocket-javax

»» org.wicketstuff:wicketstuff-jwicket-ui-effects

»» org.wicketstuff:wicketstuff-push-core

»» org.wicketstuff:flot-examples

»» org.wicketstuff:wicketstuff-inmethod-grid-examples

»» org.wicketstuff:wicketstuff-push-timer

»» org.wicketstuff:modalx-examples

»» org.wicketstuff:wicketstuff-html5

»» org.wicketstuff:wicketstuff-jwicket-tooltip-walterzorn

»» org.wicketstuff:wicketstuff-restannotations

»» org.wicketstuff:wicketstuff-annotation

»» org.wicketstuff:wicketstuff-jwicket-core

»» org.wicketstuff:wicketstuff-jwicket-ui-dragdrop

»» org.wicketstuff:javaee-inject-example-ejb

»» org.wicketstuff:wicketstuff-mbeanview

»» org.wicketstuff:wicketstuff-whiteboard-examples

»» org.wicketstuff:wicketstuff-jwicket-ui-resize

»» org.wicketstuff:wicketstuff-serializer-kryo

»» org.wicketstuff:wicketstuff-jwicket-ui-tooltip

»» org.wicketstuff:wicketstuff-annotationeventdispatcher

»» org.wicketstuff:wicketstuff-urlfragment

»» org.wicketstuff:modalx

»» org.wicketstuff:javaee-inject-example-ear

»» org.wicketstuff:wicket-osgi-test-web

»» org.wicketstuff:wicket-osgi-test-service

»» org.wicketstuff:wicket-shiro-example-base

»» org.wicketstuff:wicketstuff-progressbar-spring

»» org.wicketstuff:wicketstuff-openlayers

»» org.wicketstuff:wicketstuff-plugin

»» org.wicketstuff:async-task-demo

»» org.wicketstuff:wicketstuff-security-swarm

»» org.wicketstuff:wicketstuff-htmlcompressor-examples

»» org.wicketstuff:wicketstuff-jwicket-ui-sort

»» org.wicketstuff:wicketstuff-security-wasp

»» org.wicketstuff:tinymce3-examples

»» org.wicketstuff:wicketstuff-editable-grid

»» org.wicketstuff:wicketstuff-jslibraries

»» org.wicketstuff:wicketstuff-glassfish4-integration

»» org.wicketstuff:wicketstuff-servlet3

»» org.wicketstuff:wicketstuff-poi

»» org.wicketstuff:wicketstuff-jsr303

»» org.wicketstuff:wicketstuff-wicket7

552019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

»» org.wicketstuff:wicketstuff-googlecharts

»» org.wicketstuff:wicketstuff-serializer-ui

»» org.wicketstuff:wicketstuff-sitemap-xml-examples

»» org.wicketstuff:wicketstuff-gae-initializer

»» org.wicketstuff:wicketstuff-yui-common

»» org.wicketstuff:wicketstuff-closure-compiler

»» org.wicketstuff:wicketstuff-serializer-common

»» org.wicketstuff:wicket-mount-example

»» org.wicketstuff:wicketstuff-jwicket-tooltip-beautytips

»» org.wicketstuff:wicketstuff-datastore-memcached

»» org.wicketstuff:wicketstuff-ioc-bundle

»» org.wicketstuff:wicketstuff-minis

»» org.wicketstuff:wicketstuff-portlet

»» org.wicketstuff:wicketstuff-simile-timeline

»» org.wicketstuff:wicketstuff-yui-calendar

»» org.wicketstuff:wicketstuff-autocomplete-tagit

»» org.wicketstuff:wicketstuff-context

»» org.wicketstuff:wicketstuff-jquery

»» org.wicketstuff:wicketstuff-tinymce4

»» org.wicketstuff:wicketstuff-datastore-cassandra

»» org.wicketstuff:wicketstuff-inmethod-grid

»» org.wicketstuff:wicketstuff-serializer-fast

»» org.wicketstuff:wicket-shiro-example-realm

»» org.wicketstuff:wicketstuff-osgi

»» org.wicketstuff:progressbar-example

»» org.wicketstuff:wicketstuff-dashboard-widgets-ofchart

»» org.wicketstuff:wicketstuff-jwicket-ui-accordion

»» org.wicketstuff:wicketstuff-jee-web

»» org.wicketstuff:wicketstuff-datastore-common

»» org.wicketstuff:async-task-impl

»» org.wicketstuff:wicket-shiro-example-spring-jdbc

»» org.wicketstuff:wicketstuff-tinymce3

»» org.wicketstuff:wicketstuff-javaee-inject

»» org.wicketstuff:wicketstuff-select2

»» org.wicketstuff:wicketstuff-jwicket-ui-datepicker

»» org.wicketstuff:whiteboard-examples

»» org.wicketstuff.foundation:wicket-foundation-core

»» org.wicketstuff.scala:wicketstuff-scala-archetype

»» org.wicketstuff.scala:wicketstuff-scala

»» org.wicketstuff.scala:wicketstuff-sample

»» org.wildfly:wildfly-connector

»» org.wildfly:wildfly-weld

»» org.wildfly:wildfly-naming

»» org.wildfly:wildfly-clustering-spi

»» org.wildfly:wildfly-mod_cluster-extension

»» org.wildfly:wildfly-iiop-openjdk

»» org.wildfly:wildfly-clustering-service

»» org.wildfly:jipijapa-eclipselink

»» org.wildfly:wildfly-messaging-activemq

»» org.wildfly:jipijapa-hibernate5

»» org.wildfly:wildfly-clustering-ejb-spi

»» org.wildfly:wildfly-jacorb

»» org.wildfly:wildfly-pojo

»» org.wildfly:wildfly-web-common

»» org.wildfly:wildfly-clustering-common

»» org.wildfly:jipijapa-hibernate4-1

»» org.wildfly:wildfly-bean-validation

»» org.wildfly:wildfly-jpa

»» org.wildfly:wildfly-messaging

»» org.wildfly:wildfly-webservices-server-integration

»» org.wildfly:wildfly-ee

»» org.wildfly:wildfly-ejb3

»» org.wildfly:wildfly-jsr77

»» org.wildfly:wildfly-jaxrs

»» org.wildfly:wildfly-jsf

»» org.wildfly:wildfly-sar

»» org.wildfly.core:wildfly-domain-http-interface

»» org.wildfly.core:wildfly-server

»» org.wildfly.core:wildfly-jmx

»» org.wildfly.core:wildfly-request-controller

»» org.wildfly.core:wildfly-controller

»» org.wildfly.core:wildfly-patching

»» org.wildfly.core:wildfly-cli

»» org.wildfly.core:wildfly-host-controller

»» org.wildfly.core:wildfly-protocol

»» org.wildfly.core:wildfly-embedded

»» org.wildfly.core:wildfly-version

»» org.wildfly.core:wildfly-discovery

»» org.wildfly.core:wildfly-management-client-content

»» org.wildfly.core:wildfly-controller-client

»» org.wildfly.core:wildfly-io

»» org.wildfly.core:wildfly-remoting

»» org.wildfly.core:wildfly-process-controller

»» org.wildfly.core:wildfly-core-feature-pack

»» org.wildfly.core:wildfly-logging

»» org.wisdom-framework:resource-controller

»» org.wisdom-framework:ehcache-cache-service

»» org.wisdom-framework:application-configuration

»» org.wisdom-framework:hibernate-validation-service

»» org.wisdom-framework:i18n-service

»» org.wisdom-framework:default-error-handler

»» org.wisdom-framework:wisdom-ipojo-module

»» org.xblackcat.sjpu:sjpu-saver

»» org.xhtmlrenderer:flying-saucer-pdf

»» org.xtext:xtext-gradle-lib

»» org.zapodot:jackson-databind-java-optional

»» pl.allegro.tech.boot:handlebars-spring-boot-starter

»» pl.chilldev.commons:commons-text

»» pl.chilldev.commons:commons-jsonrpc

»» pl.wavesoftware:eid-exceptions

»» ru.stqa.selenium:webdriver-expected-conditions

»» ru.stqa.selenium:webdriver-factory

»» ru.stqa.selenium:webdriver-wrapper

»» ru.stqa.selenium:webdriver-logging-wrapper

»» ru.stqa.selenium:webdriver-repeatable-actions

»» ru.vyarus:guice-ext-annotations

»» ru.yandex.qatools.clay:clay-utils

»» ru.yandex.qatools.embed:postgresql-embedded

»» se.culvertsoft:mgen-javagenerator

»» se.culvertsoft:mgen-idlparser

»» se.culvertsoft:mgen-javascriptgenerator

»» se.wfh.libs:beencode

»» si.uom:si-units-java8

»» tech.aroma.banana:banana-thrift

»» tec.units:unit-ri

»» tv.cntt:xitrum-ko_2.11

»» tv.cntt:netcaty_2.11

»» tv.cntt:xitrum-hazelcast2_2.11

»» tv.cntt:xitrum-hazelcast3_2.11

»» tv.cntt:xitrum_2.11

»» uk.co.real-logic:aeron-samples

»» us.eharning.atomun:atomun-mnemonic

»» us.fatehi:schemacrawler-mysql

»» us.fatehi:schemacrawler-h2

»» uy.klutter:klutter-elasticsearch-jdk7

»» uy.klutter:klutter-config-typesafe-jdk6

»» uy.klutter:klutter-json-jackson-jdk6

»» uy.klutter:klutter-json-jackson-jdk8

»» uy.kohesive.injekt:injekt-config-typesafe-jdk7

»» uy.kohesive.injekt:injekt-config-typesafe-jdk6

»» uy.kohesive.kovert:kovert-vertx

»» uy.kohesive.kovert:kovert-vertx-jdk8

562019 STATE OF THE SOFTWARE SUPPLY CHAIN REPORT

Headquarters

8161 Maple Lawn Blvd, Suite 250

Fulton, MD 20759

United States • 1.877.866.2836

Virginia Office

8281 Greensboro Dr Suite 630

McLean, VA 22102

More than 10 million software developers rely on Sonatype to innovate faster

while mitigating security risks inherent in open source. Sonatype’s Nexus

platform combines in-depth component intelligence with real-time remediation

guidance to automate and scale open source governance across every stage of

the modern DevOps pipeline. Sonatype is privately held with investments from

TPG, Goldman Sachs, Accel Partners, and Hummer Winblad Venture Partners.

Visit www.sonatype.com to learn more.

Sonatype Inc.

Copyright ©2019 – present, all rights reserved. Sonatype and Sonatype

Nexus are trademarks of Sonatype, Inc. All other trademarks are the

property of their respective owners.

European Office

199 Bishopsgate

London EC2M 3TY

United Kingdom

APAC Office

5 Martin Place, Level 14

Sydney 2000, NSW

Australia

	Introduction
	CHAPTER 1
	Global Supply of Open Source
	1.3 Suppliers, Components and Releases
	1.1 Supply of Open Source is Massive
	1.2 Supply of Open Source is Expanding Rapidly

	CHAPTER 2
	Global Demand for Open Source
	2.2. Automated Pipelines and DevOps Are Key Drivers
	2.1 Accelerating Demand for Open Source Libraries

	CHAPTER 3
	Exemplary Project Teams
	3.9 Guidance for Open Source Project Owners and Contributors
	3.10 Guidance for Enterprise Development Teams

	3.8 Finding Different Behavioral Groups
	3.7 Hypothesis Testing
	3.6 Exploring the Link Between MTTR and MTTU
	3.5 Stale Dependencies
	3.4 Time to Update Dependencies
	3.3 Time to Remediate Vulnerabilities
	3.1 Research Goals

	CHAPTER 4
	Exemplary Dev Teams
	4.5 Rewards for Exemplary Development Teams
	4.4 Characteristics of Exemplary Development Teams
	4.2 Analysis of 12,000 Large Enterprises
	4.1 The Enterprise Continues to Accelerate
	4.3 Component Releases Make Up 85% of a Modern Application

	CHAPTER 5
	The Changing Landscape
	5.4 Government and Industry Apply New Standards to Secure Software Development
	5.3 Adversaries Increasingly Target Open Source Components
	5.2 Tracing Vulnerable Component Release Downloads Across Software Supply Chains
	5.1 Deming Emphasizes Building Quality In

	Sources
	Appendix A
	Acknowledgments
	About the Analysis
	Appendix B

