
Sonatype’s 2nd annual report on managing
open source components to accelerate innovation.

http://sonatype.com

TABLE OF CONTENTS
INTRODUCTION	 4

SUMMARY	 5

PART 1
A MASSIVE SUPPLY OF
OPEN SOURCE COMPONENTS

The Software Supply Chain Index	 8

PART 2
SUPPLIER NETWORKS ARE GROWING RAPIDLY

Suppliers: The Open Source Projects	 11

Warehouses: Central Component Repositories	 14

Industry Spotlight: J. Paul Reed	 17

Local Warehouses: Repository Managers	 18

PART 3
NOT ALL PARTS ARE CREATED EQUAL

Manufacturers: Software Development Team 	 23

Finished Goods: Software Applications	 25

Industry Spotlight: The Quality of Encryption 	 28

PART 4
SOFTWARE SUPPLY CHAIN MANAGEMENT
PRACTICES ARE GAINING TRACTION

�Industry Spotlight: Global Insurer Boosts Innovation Budget	 30

�Embracing Principles of Automation in the Public	 31

and Private Sectors

Industry Spotlight: Intuit	 34

Calculating the Cost of Rework	 35

CONCLUSION	 38

SOURCES	 39

WELCOME
INTRODUCTION

4State of the Software Supply Chain

INTRODUCTION PART 1 PART 2 PART 4PART 3 SUMMARY

As caretakers of the Central Repository, Sonatype receives more than 31 billion requests per year for open source

components. We literally feed millions of developers the software parts they require to manufacture and continuously

deliver modern applications.

From this unique vantage point, we’ve amassed a great deal of data and we’ve developed deep intelligence with respect

to the staggering volume and variety of open source components flowing through software supply chains into develop-

ment environments.

We’ve studied the patterns and practices exhibited by high-performance organizations. We’ve also documented how

these innovators are utilizing the principles of software supply chain automation to manage the massive flow and variety

of open source components and consistently deliver higher quality applications for less.

The State of the Software Supply Chain Report blends public and proprietary data with expert research and analysis

to reveal the following:

1. �Developers are gorging on an ever expanding supply of open source components.

2. �Vast networks of open source component suppliers are growing rapidly.

3. �Massive variety and volume of software components vary widely in terms of quality.

4. �Top performing enterprises, federal regulators and industry associations have embraced the principles of software

supply chain automation to improve the safety, quality, and security of software.

Read the report and leverage the insights to understand how your organization’s practices compare to others.

Then, let us know what you think @sonatype.

Wayne Jackson

CEO, Sonatype

Introduction

mailto:info%40sonatype.com?subject=

5State of the Software Supply Chain

INTRODUCTION PART 1 PART 2 PART 4PART 3 SUMMARY

directly to security vulnerabilities, licensing risks, enor-

mous rework, and waste. Our analysis of these down-

loads revealed that 6.1% (1-in-16) had a known security

defect.

Furthermore, data from 25,000 applications demonstrated

that 6.8% of components in use had a known security

defect. However, because a single component may

contain multiple vulnerabilities, it’s important to under-

stand that an average application consisting of 106

components — of which 6.8% are known bad — could

contain numerous unique vulnerabilities. 0

4. Software supply chain management

practices are gaining traction.

To counter the effects of massive component consump-

tion, top performing development organizations embrace

supply chain management best practices, including: (1)

procure components from fewer and better suppliers, (2)

procure only the best parts from those suppliers, and (3)

continuously track and trace the precise location of every

component. Furthermore, Federal regulators and industry

associations like FDA, FTC, UL, and FS-ISAC are taking

action to build awareness and establish guidelines for

sound software supply chain management practices.

1. Developers are feasting on a massive

supply of open source components.

The use of open source and third party components is

exploding. In 2015, 31 billion download requests were

recorded from the Central Repository. The trend is

accelerating; the previous year, over 17 billion download

requests were registered.

2. Supplier networks are growing rapidly.

Components are delivered to organizations via software

supply chains that operate with many parallels to tradi-

tional manufacturing supply chains. A vast network of

component suppliers creates 1,000 new projects and

delivers 10,000 new versions per day.

3. Not all component parts are equal.

While parts are the fuel of software supply chains, they

have two big weaknesses: (1) parts are not created

equal, and (2) parts age and grow stale quickly. Last

year, the average enterprise downloaded 229,000 open

source components. If properly sourced and managed,

open source components are a tremendous source

of energy for accelerating innovation. If not, they lead

Summary Good news: enterprises can improve net innovation via improved
software supply chain management practices.

Warehouses Manufacturers Finished Goods

6.1%
Component downloads

are vulnerable

5.6%
Components in repository
managers are vulnerable

6.8%
Components in applications

are vulnerable

Warehouses Manufacturers Finished Goods

6.1%
Component downloads

are vulnerable

5.6%
Components in repository
managers are vulnerable

6.8%
Components in applications

are vulnerable

Warehouses Manufacturers Finished Goods

6.1%
Component downloads

are vulnerable

5.6%
Components in repository
managers are vulnerable

6.8%
Components in applications

are vulnerable

31B
$7.42M

SSC
BYTHE
NUMBERS

COMPONENT
DOWNLOAD
REQUESTS
ANNUALLY

125K

REPOSITORY
MANAGERS
ARE USED TO
IMPROVE BUILD
SPEEDS AND
RELIABILITY

COMPONENT DOWNLOADS
CANNOT BE EASILY TRACED
OR AUDITED

97% 150M

NPM
COMPONENTS
DOWNLOADED
DAILY

229,898
AVERAGE COMPONENT
DOWNLOADS PER COMPANY

OLDER COMPONENTS
IN APPS HAVE 3X HIGHER
RATE OF VULNERABILITIES

ESTIMATED COST
TO REMEDIATE 10%
DEFECTS ACROSS
2000 APPLICATIONS

69
NEW
VULNERABLE
COMPONENTS
DOWNLOADED
TO REPOSITORY
MANAGERS
PER QUARTER

DOWNLOADS
INCLUDED AT LEAST
ONE KNOWN SECURITY
VULNERABILITY

1

16

5.8M

VULNERABLE
BOUNCY CASTLE
LIBRARIES
DOWNLOADED
LAST YEAR

5,275

AVERAGE UNIQUE
COMPONENT VERSIONS (PARTS)

DOWNLOADED ANNUALLY

=

01001010101
101100110101
001010111011

x x

page 9

page 24

page 26

page 28

page 21 page 14

page 19

page 35

page 20

page 23

page 19

6State of the Software Supply Chain

INTRODUCTION PART 1 PART 2 PART 4PART 3 SUMMARY

6State of the Software supply chain

A MASSIVE
SUPPLY OF
OPEN SOURCE
COMPONENTS

PART 1

assembled together through a supply chain-like process

that closely resembles how physical goods, like automo-

biles, are manufactured.

Three principles to improve net innovation

In the wake of massive component consumption, top

performing development organizations are embracing

supply chain management best practices and automation

tools to help (1) procure components from fewer and

better suppliers, (2) procure only the best parts from

those suppliers, and (3) continuously track and trace

the precise location of every component. For these

organizations, automation is not about just going faster

and increasing the number of deploys per day. They

focus on driving value through net innovation as they

balance speed with quality, security, maintainability, and

repeatability.

Enterprises trying to keep pace with consumption

through manual evaluations and governance of compo-

nent quality, risks, and security can not keep pace with

the volume and they inevitably fall behind and become

prone to increased costs associated with rework, bug

fixes, and context switching.

8State of the Software Supply Chain

INTRODUCTION PART 1 PART 2 PART 4PART 3 SUMMARY

Component use is exploding

In 2015, Sonatype measured over 31 billion download

requests from the Central Repository 1 – the largest and

most active public repository of open source components

for the Java development community. Accessed by

over 10 million developers worldwide 2, the data from

this repository reflects a 64x increase in volume of open

source download requests since 2007.

Components minimize the need to code

from scratch

Today, modern applications typically consist of 80% -

90% component parts. 3 And, while it is impossible to

measure the precise productivity gains associated with

componentized software development; it is easy to

imagine how billions of hours have already been saved

due to the simple fact that developers no longer have to

write code from scratch.

Through this lens, it is easy to understand how the

incredible power of open software innovation has been

fueled by an enormous volume and variety of reusable

parts. It’s also easy to see how these parts are being

The Software
Supply Chain
Index

Developers are gorging on an ever expanding supply of open source
components. As consumption volumes continue to skyrocket, three
supply chain automation principles are improving net innovation.

2015

B
IL

LI
O

N

20142013201220112010200920082007

0.5
1

2
4

6

8

13

17

31

THE SSC
INDEX

9State of the Software Supply Chain

INTRODUCTION PART 1 PART 2 PART 4PART 3 SUMMARY

Open Source Component Download

Requests, The Central Repository,

2007 - 2015 4

SUPPLIER
NETWORKS
ARE GROWING
RAPIDLY

PART 2

11State of the Software Supply Chain

INTRODUCTION PART 1 PART 2 PART 4PART 3 SUMMARY

Building on immutable infrastructure

Adron Hall blogged in September 2015, “With the advent

of continuous delivery and integration, application de-

ployment via immutable infrastructure has become a best

practice. This generally involves being able to fully script

and recreate a production (or staging or UAT or other)

environment in minutes. This gives the ability to rollback

and push deployments to production in a matter of

seconds. By proxy of building on immutable infrastructure

like this it dramatically increases the ability for a team to

test deployments without fear.” 5

The importance of immutable parts —

Reflections on npm-gate

In March 2016, a developer named Azur Koculu unpub-

lished all of his packaged software components from the

global npm registry. 6 Among these was a component

containing 17 lines of code that were used by thousands

of development teams across the globe. Within minutes

of unpublishing, builds at companies large and small,

including the likes of Facebook and Spotify, were failing

because the packages were no longer available from

SUPPLIERS

The Open
Source Projects

Millions of developers feed new components into software supply
chains. While pioneers of open source initially focused on Java,
there is a rising tide of components across development languages.

their supplier. The npm-gate issue was quickly resolved

but it highlights the importance of a healthy supply chain

consisting of trustworthy suppliers, and immutable parts.

While some repositories like the Central Repository and

now the npm registry are managed as immutable sources

of parts, other repositories like the NuGet Gallery are

mutable. Modified components can be published on top

of previous components at the same coordinate location.

In these cases, the absence of immutability presents a

challenge for organizations attempting to identify which

version of a component they really have residing within

their software supply chain.

Suppliers fuel innovation

Suppliers of open source software components like Azur

live at the heart of software supply chains. Without them,

the entire supply chain is empty. Azur Koculu represents

one of 3.7 million developers delivering open source

and third party components used across software supply

chains. Sites like Openhub.net count over 672,000 open

source projects across multiple environments. 7

Components are updated 14x per year

An analysis of 380,000 open source projects reveals that components are

updated with new releases an average of 14 times per year. This average is

skewed by over 300 projects that release new versions more that 100 times a

year. Data reveals that 50% of projects release new versions between 3 - 10

times per year, while 17% of projects release new versions once or twice per

year. Just like any supplier offering a product, version updates introduce new

features, boost performance, repair defects, fix security flaws, introduce new

dependencies, etc.

Some suppliers are better than others

Not all parts from these suppliers are created equal. Some are better than

others. And it is not automatically obvious which parts are good and which

parts are bad. While new, more powerful component versions are constantly

made available from active suppliers, older versions are never retired.

Data from last year’s report revealed that 59% of open source projects with

known security vulnerabilities in their dependencies were never repaired;

while newer versions of those components were released, the security defects

in them were never fixed. 8 By contrast, the best suppliers were remediating

flaws within a week of vulnerability disclosures, while the average repair time

for the remaining 41% clocked in at 390 days. More details of this analysis are

available in Dan Geer and Josh Corman’s USENIX article “Almost Too Big to

Fail”. 9

Componentized software development is here to stay. Going forward,

however, the global development community will actively seek information to

determine which suppliers are offering the highest quality components.

12State of the Software Supply Chain

INTRODUCTION PART 1 PART 2 PART 4PART 3 SUMMARY

SUPPLIERS

T
H

O
U

S
A

N
D

S

50

0

100

150

200

250

300

2011 2012 2013 2014 2015 2016

	 npm (node.js)	

	 Maven Central (Java)	

	 GoDoc (Go)	

	 Rubygems.org	

	 Packagist (PHP)	

	 PyPI	

	 nuget (.NET) 	

	 Bower (JS)

	 Drupal (php)	

	 Clojars (Clojure)

Source: Modulecounts.com

The rising tide of components is multilingual

Modulecounts.com tracks component counts available across the software

supply chain for various development languages. The growth leads to an

ever-greater supply of components available to supply chains. Component

formats like npm and Go have experienced significant growth in the number of

parts being created by developers, while Java, RubyGems, PHP, and PyPI also

show steady climbs over time.

MODULE
COUNTS

Deeper analysis of the data available from modulecounts.com reveals the

magnitude of the open source component wave. Approximately 1,000 suppliers

-- open source projects -- join the network each day across all component

formats. When accounting for all of the suppliers across these development

ecosystems, we estimated about 10,000 new component versions are intro-

duced daily.

13State of the Software Supply Chain

INTRODUCTION PART 1 PART 2 PART 4PART 3 SUMMARY

SUPPLIERS

http://modulecounts.com

Sample of
Open Source
Repositories and Registries

2014
Volume of

Download Requests

2015
Volume of

Download Requests
% YOY Growth

Central.sonatype.org 17 billion 31 billion 82%

15 billion 46 billion 306%

280 million 756 million 270%

2.750 million 500 million 18,082%

npmjs.org

NuGetGallery.com

Docker Hub 14

14State of the Software Supply Chain

INTRODUCTION PART 1 PART 2 PART 4PART 3 SUMMARY

The rapid growth of central repositories

In order to facilitate distribution of, and access to, open

source and third party components, central warehouses

have been set up to better serve the development com-

munity. Serving as immutable sources of components

required by development and operations teams, these

warehouses hold millions of components.

The components have all been contributed by open

source projects and third-party developers to be made

freely available to the estimated 18 million developers

worldwide. 10 In 2015, billions upon billions of downloads

were registered. RubyGems.org is now approaching

8.4 billion component downloads over its history 11, and

Bower component downloads are regularly peaking over

80,000 per day. 12 Well-established central warehouses

WAREHOUSES

Central
Component
Repositories

As downloads reach into the billions per year, software quality is
threatened by defect rates and a lack of supply chain management
rigor.

like those for Maven and npm components also grew at

very healthy rates.

Container registries are part of the

software supply chain

In 2015, we also witnessed explosive growth from

relative newcomers like Docker Hub. For Docker, con-

tainerized applications grew from 14,500 in 2014 to over

150,000 by mid-2015 -- a 934% increase. 13 At the same

time, Docker Hub surpassed half a billion downloads.

While open source binaries and containerized applica-

tions are different beasts, the supply chains they utilize

behave with similar participants, flow, work centers, and

controls for those in the development and IT operations

community.

http://central.sonatype.org
http://npmjs.org
https://www.nuget.org/

Each year, development organizations are alerted to numerous discoveries

of security vulnerabilities in open source components including the likes of

handlebars.js, commons collection, and Spring Social Core. In the Central

Repository alone, over 71,000 components had known security vulnerabilities

associated with them. 16 As with all mature warehouses for components,

even though component parts may have a known vulnerability, they cannot

be removed from the warehouse -- and for good reason. Warehouses are

immutable sources of components for development teams. In order to replace

a defective part, developers must first rebuild the original application using all

of the original components including the known vulnerable one. Once recon-

structed, they can then replace the vulnerable component with a known safer

version and release a new version of the application.

2014 2015

6.2% 6.1%

2014 2015

6.2% 6.1%

SSCDEFECT
DOWNLOADRATIO

By the end of calendar 2015, the supply of components available from the

repository grew by 42% over calendar 2014. In May 2016, the component

inventory had reached 1.36 million -- averaging almost 1,400 component

additions each day. 15

834K

1,183K

2014

2015

NUMBEROFUNIQUE
COMPONENTSINTHE
CENTRALREPOSITORY

15State of the Software Supply Chain

INTRODUCTION PART 1 PART 2 PART 4PART 3 SUMMARY

WAREHOUSES

Across the billions of downloads from the Central Re-

pository in 2015 just over 1-in-16 downloads (6.1%) were

components known to have security vulnerabilities. 17

In 2014, the percentage of vulnerable downloads was

only slightly higher at 6.2%. 18

To effectively manage a software supply chain, organi-

zations must improve their visibility, reduce the variety,

and govern the quality of components coming into their

organizations. Enterprises must also seek to control how

and where those components enter the development

process, evolving away from free-for-all consumption

practices.

As software supply chain practices mature, suppliers and

manufacturers will need to share more information. Right

now the communication channel between suppliers and

manufacturers is limited. This lack of communication is a

real problem when you consider the fact that suppliers

release updates to components an average of 14x per

year. The result is that software manufacturers are often

unaware that new and improved versions of components

exist.

16State of the Software Supply Chain

INTRODUCTION PART 1 PART 2 PART 4PART 3 SUMMARY

WAREHOUSES

[...] in 2015 just over 1-in-16 downloads were
components known to have security vulnerabilities.

17State of the Software supply chain

PART 8
BUSINESS
CASE FOR SSC
MANAGEMENT

INDUSTRY
SPOTLIGHT

The value of optimizing software chains for development

and release engineering teams:

“One of the interesting things we’re finding with DevOps is that we can frame

the work we do in the context of a pipeline. By identifying and optimizing some

of the business value within that pipeline, businesses are receptive. Devel-

opers are receptive. Different parts of the business are receptive in ways I’ve

almost never seen in my career, and it’s great to be a part of that.

From a Rugged DevOps or security perspective, I think if we could move that

work into the pipeline, not only do we make it visible in terms of the costs and

trade-offs, but then also we could possibly do more. It’s part of that whole.

When you shift work further upstream, you can address it earlier and actually

have a chance at fixing the problem.

One of the things I wouldn’t think keeps release engineers up at night as

much as it keeps security engineers up at night are the questions: where is our

software coming from, and what issues may it have in it?

That’s not something developers, for whatever reason, traditionally seem to

think about. And that’s not to denigrate them. A lot of times they’re under

deadlines just like release engineering team. They go to the Internet and grab

whatever version of a library suits their need. In fact, the one version I usually

see being used is the upgraded version because there’s some API that they

need.

There’s a concern there -- when you think about it -- of where that’s coming

from. I recently told this story about an engineer who was missing a DLL from a

build. The engineer just Googled for the DLL, downloaded it, and then threw it

on all the build machines. That was pretty scary.

If you have one vulnerable library in your product, that is a security problem.

If you’ve got multiple versions of the same library and multiple versions of those

are vulnerable, that’s a release engineering problem. That’s one of the best

ways upfront that release engineers can contribute to Rugged DevOps and

contribute to the security space in terms of helping to detangle that problem.” 19

J. Paul Reed

Managing Partner

Release Automation Approaches

Our analysis of download patterns in 2015 revealed that

96.7% of all components were sourced by development

teams using a direct connection from their tools to

the Central Repository 20 -- a slight uptick from 2014

where direct connections represented 95.2% of the

consumption 21. The dominant path is also the longest

and least efficient path for sourcing components.

Additionally, when less mature central warehouses like

Bintray, Docker Hub and the NuGet Gallery experience

outages, or in the case of npmjs.org where components

were unpublished during “npm-gate”, development in

organizations relying on components stored in those

warehouses grinds to a halt.

The less popular (but more hygenic) method for sourcing

components is to use local warehouses located inside

the software supply chain -- commonly referred to as

repository managers or container registries. Nexus,

Artifactory, Archiva, and private Docker registries are

common examples of these local warehouses. Locating

components closer to where they are being used

accelerates build and deploy times. These warehouses

also cache the components locally; once components

are downloaded from central warehouses, they can be

accessed an infinite number of times from the repository

18State of the Software Supply Chain

INTRODUCTION PART 1 PART 2 PART 4PART 3 SUMMARY

Improving the flow of components

In any business, dealing with moving parts from one

location to another is vital. Streamlining distribution

involves the planning and efficient use of supply chain

resources and often involves working with intermediaries.

While supply chains represent the organizations, people,

technologies, activities, and resources involved in moving

goods from suppliers to customers, logistics help us

command the efficient and effective flow of those goods.

Two common paths for procurement:

direct and indirect

Enterprise development organizations generally ingest

open source components one of two ways. The more

popular (but less hygienic) method is to ingest compo-

nents directly from cloud based repositories such as the

Central Repository, Docker Hub, the NuGet Gallery and

others described in the previous chapter. The less pop-

ular (but more hygienic) method is to ingest components

from local repositories located inside the organizational

firewall.

LOCAL
WAREHOUSES

Repository
Managers

Use of repository managers improves build reliability and perfor-
mance while also supporting better governance practices. Increased
rigor around inventory management can lead to a substantial
decrease in technical and security debt.

manager. Local repositories enable teams to store open source, third-party, and proprietary components in a private,

secure location -- a capability not offered by most cloud-based public warehouses.

Use of local repository managers grows steadily

The use of local repositories continues to gain traction among DevOps and continuous delivery architects looking to

optimize their software supply chains. It is estimated that over 125,000 repository managers are in use today. 22

Performance benchmarks reveal that sourcing components locally can accelerate builds 10 - 20x. For larger size com-

ponents like a containerized application, the performance benefits can be even greater. Yet downloads from caching

repository managers only represented 3.3% of downloads from the Central Repository in 2015 23.

T
H

O
U

S
A

N
D

S

0

20

40

60

80

100

2014 2015 2016

T
H

O
U

S
A

N
D

S

NEXUS
REPOSITORY
GROWTH24

19State of the Software Supply Chain

INTRODUCTION PART 1 PART 2 PART 4PART 3 SUMMARY

LOCAL
WAREHOUSES

20State of the Software Supply Chain

INTRODUCTION PART 1 PART 2 PART 4PART 3 SUMMARYPART 2

LOCAL
WAREHOUSES

Repository managers improve visibility and control

Organizations seeking greater visibility to the components flowing through

their software supply chains benefit from the use of local repositories and reg-

istries. Some organizations have mandated that downloads from cloud-based,

public repositories must be directed through local repository managers. The

mandates effectively limit the number of doors components can enter through,

giving organizations better visibility and control as to what parts are being used.

These organizations are effectively introducing a standard procurement path,

where free-for-all sourcing from any location is banned.

When consumption follows a free-for-all pattern, 500 developers might equate

to 500 doors through which components can be sourced. With components

entering the organization through hundreds and sometimes thousands of

locations, vetting of component quality, auditing of inventories, and traceability

of components is impossible to achieve.

Newer components in repositories have fewer defects

Just as traditional operations managers monitor the quality of physical parts

they bring into and store in their warehouses, the same practice should hold

true for software components and repository managers. An in-depth analysis

of 1,000 repository managers by Sonatype revealed interesting usage patterns

across component inventories.

Components less than two years old account for over 47% of the parts

accessed by development teams to build their applications. The average

associated defect rates for those components were under 5%. By comparison,

component versions older than two years accounted for 80% of the risk 25.

Capital One, Google, and other leading edge organizations are applying

policies across their development practices to favor newer, higher quality

components in order to reduce unplanned, unscheduled work while also

reducing technical debt.

%

0

30

25

20

15

10

5

1 2

% vulnerable components

3 4 5 6 7 8 9 10 11

% components used

Component Age (Years)

COMPONENTUSE
VSVULNERABILITIES
1000 Repository Managers Analyzed

COMPONENTAGEDISPERSION
INSIDEREPOSITORYMANAGERS

%

0

25

20

15

10

5

1 2

Components in repository manager on the latest version

3 4 5 6 7 8 9 10 11

Component Age (Years)

21State of the Software Supply Chain

INTRODUCTION PART 1 PART 2 PART 4PART 3 SUMMARY

Older parts are often unsupported

Sonatype’s analysis of the inventories across 1,000 repositories also revealed

a high percentage of older projects that have not released newer versions

in years. For example, over 10% of components greater than five years old

housed in repository managers had never released a newer version 26.

Use of outdated, unsupported, and dead projects can be problematic for

DevOps organizations. If a severe defect or security vulnerability were discov-

ered in any of the unsupported or dead projects, organizations would need to

seek out a new supplier or build a new component with the same functionality

from scratch.

The analysis of repository inventories tells us outdated, unsupported, and

vulnerable components are present in significant volumes. Because the inven-

tory analysis represents a single point in time, we thought it important to shed

light on the flow of known vulnerable components into repository managers.

Steady sourcing of components with known defects

In 2015, Sonatype evaluated an even broader set of repository managers.

The evaluation targeted downloads performed by 7,000 repository managers,

spanning a three month period. Each repository manager contained 500 or

more components. During that time, the average number of new vulnerabili-

ties that flowed into the repositories was 69 -- an average of 23 per month

or just over one per workday. Seventy percent (70%) of the components with

known vulnerabilities had a Common Vulnerability Scoring System (CVSS) level

of 5 or greater 27.

Virtually no repository managers were immune from vulnerable downloads.

Analysis revealed that 98.3% consumed at least 1 vulnerable component and

97.7% consumed at least one higher risk (CVSS > 5) component 28.

1000 Repository Managers Analyzed

PART 2

LOCAL
WAREHOUSES

NOT ALL PARTS
ARE CREATED EQUAL

PART 3

downloads were comparable at 240,000 per company. 30

It is important to note that these downloads only account

for Java components; when multiple component formats

(e.g., RubyGems, npm, PyPI, NuGet) are being used, the

overall download volumes per enterprise will be signifi-

cantly higher.

Further study of these downloads reveals an average

of 5,275 unique components downloaded during the

year. This points to an extreme inefficiency in sourcing

behaviors by developers and their tool chains. In fully

optimized software supply chains, a unique component

part only needs to be downloaded once in order to be

reused an unlimited number of times. Yet in 2015, the

average company downloaded each unique compo-

nent 111 times. If companies selected only the best

components from each supplier, they would have only

requested 2,071 components during the year, a reduction

of greater than 50%. 31

23State of the Software Supply Chain

INTRODUCTION PART 1 PART 2 PART 4PART 3 SUMMARY

Component volume and variety at the

heart of development

Very few CIOs, software development executives,

enterprise architects, and especially personnel residing

outside of the IT organization realize the extent of their

organization’s reliance upon open source components.

While legal, security, audit, open source review boards,

and other functional organizations have attempted to

detail and track consumption behaviors, they often fall far

short of gaining full visibility.

In 2015, the global community of software developers

downloaded billions of components from the Central

Repository, npmjs.org, RubyGems.org, Docker Hub and

other public repositories. When performing detailed

assessments of Central Repository downloads from

over 3,000 companies, we saw the average company

consume 229,898 components. 29 In 2014, component

MANUFACTURERS

Software
Development
Teams

Data shows enterprises consumed an average of 229,000 software
components annually, of which 17,000 had a known security
vulnerability.

Orders
(downloads)

Suppliers
(artifacts)

Parts
(versions)

Averages (2015) 229,898 2,071 5,275

24State of the Software Supply Chain

INTRODUCTION PART 1 PART 2 PART 4PART 3 SUMMARY

Average
downloads

with known
vulnerabilities

% with known
vulnerabilities

Downloads to
repository managers

Vulnerable downloads
to repository managers

Orders Quality Control
Quality Control

with repository managers

229,898 17,206 7.48%
Detailed
assessment of
3,000 companies

11,695 5.00%

Sourcing practices pull in components of varying quality

The use of multiple versions of the same components adds complexity to

managing environments while also growing technical debt. Use of multiple

component versions also contributes to greater context switching and compat-

ibility issues for developers.

Assessment of development organizations pulling in well over 200,000 com-

ponents annually showed that 1-in-12 downloads had known security flaws. 32

For many organizations, use of repository managers within the supply chain

improves sourcing efficiencies while also reducing security debt. Only a small

portion (5.08%) of the overall downloads take the efficient path. Within this

path, only 1-in-20 (5.00%) component downloads included a known security

defect. 33

Quality is not a people problem

Most development teams strive for ever-increasing speed and throughput.

Yet the software assembly process remains rife with inefficiencies, largely due

to a lack of enforceable policies and precise data that can help developers

make better, safer decisions. Use of poor quality components is not so much a

people problem as it is a data precision and automation problem. Automating

the availability of information about components is key to quickly making

decisions. Providing precise data about the quality of components in an

automated way, as early in the development lifecycle as possible, offers the

best outcome.

MANUFACTURERS

25State of the Software Supply Chain

INTRODUCTION PART 1 PART 2 PART 4PART 3 SUMMARY

Last year’s State of the Software Supply Chain report

disclosed that an average of 106 components comprise

80 - 90% of a total application, yet few organizations

have visibility into what components are used where. 34

Known defective components lead to quality and security

issues within applications. While developers save tremen-

dous amounts of time by sourcing software components

from outside their organizations, they often don’t have

time to check those component versions against known

vulnerability databases or internal policies.

FINISHED
GOODS

Software
Applications

Analysis of 25,000 applications reveals 6.8% of components used
included known defects. Organizations standardizing on components
between 2 - 3 years of age can decrease defect rates substantially.

An analysis of 25,000 scans reveals that 6.8% of com-

ponents being used in applications contained at least

one known security vulnerability. 35 This finding demon-

strates that defective components are making their way

across the entire software supply chain -- from initial

sourcing to use in finished goods.

Warehouses Manufacturers Finished Goods

6.1%
Component downloads

are vulnerable

5.6%
Components in repository
managers are vulnerable

6.8%
Components in applications

are vulnerable

Warehouses Manufacturers Finished Goods

6.1%
Component downloads

are vulnerable

5.6%
Components in repository
managers are vulnerable

6.8%
Components in applications

are vulnerable

Warehouses Manufacturers Finished Goods

6.1%
Component downloads

are vulnerable

5.6%
Components in repository
managers are vulnerable

6.8%
Components in applications

are vulnerable

26State of the Software Supply Chain

INTRODUCTION PART 1 PART 2 PART 4PART 3 SUMMARY

FINISHED
GOODS

NEWERCOMPONENTS
MAKEBETTERSOFTWARE

%%

0

25

20

15

10

5

1 2 3 4 5 6 7 8 9 10 11

Defect Density Components by year

Component Age (Years)

Analysis of components in 25,000 applications scans

Newer components make better software

Analysis of the scanned applications revealed that the latest versions of

components had the lowest percentage of known defects. Components under

three years in age represented 38% of parts used in the average application

with security defect rates under 5%. By comparison, components between

five and seven years old had 2x the known security defect rate. 36 The 2016

Verizon Data Breach and Investigations Report confirms that the vast majority

of successful exploits last year were from CVE’s (Common Vulnerabilities

and Exposures) published 1998 - 2013. Combining the Verizon data with

Sonatype’s analysis further demonstrates the economic value of using newer,

higher quality components.

In summary, components greater than two years old represent 62% of all com-

ponents scanned and account for 77% of the risk. Better component selection

not only improves the quality of the finished application, it also reduces the

number of break-fixes and unplanned work to remediate the defects. 37

27State of the Software Supply Chain

INTRODUCTION PART 1 PART 2 PART 4PART 3 SUMMARY

FINISHED
GOODS

OLDERCOMPONENTS
DIEOFF

%

0

25

20

15

10

5

1 2

Components in application on the latest version

3 4 5 6 7 8 9 10 11

Component Age (Years)

Analysis of components in 25,000 applications scans

Older components die off

As noted earlier in the report, new versions of components are released an

average of 14x per year. The new versions deliver greater functionality, im-

proved performance, and fewer known defects. Just as in traditional manufac-

turing, using the newest versions of any part typically results in a higher quality

finished product.

Versions that were seven years or older made up approximately 18% of the

component footprint of the 25,000 scans. For the older components, analysis

showed that as many as 23% were on the latest version -- meaning, the open

source projects for those components were inactive, dead, or perhaps incred-

ibly stable. 38 Discovery of components with known security vulnerabilities or

other defects used in applications is not something anyone desires. Unfortu-

nately, when these defects are discovered in older components, chances of

remediating the issue by upgrading to a newer component version are greatly

diminished. If a new version does not exist, only a few options exist: (1) keep

the vulnerable component in the application, (2) switch to a newer like compo-

nent from another open source project, (3) make a software change to add a

mitigating control, or (4) code the functionality required from scratch in order to

replace the defect. None of these options comes without a significant cost.

As discussed in Cisco’s 2015 Midyear Security Report, “With open-source

software in place in many enterprises, security professionals need to gain

a deeper understanding of where and how open-source is used in their

organizations, and whether their open-source packages or libraries are up to

date. This means that, moving forward, software supply chain management

becomes even more critical.” 39

28State of the Software supply chain

PART 8
BUSINESS
CASE FOR SSC
MANAGEMENT

INDUSTRY
SPOTLIGHT

Encryption: the importance of security, privacy

For developers wanting to add cryptographic libraries to their applications, a

number of open source components are available to them. Of course, anyone

seeking to add encryption to an application has an important requirement for

the privacy and security it provides.

One of the more popular components for encryption is known as The Legion

of Bouncy Castle Cryptographic Library. Download records from the Central

Repository reveal that 17.4 million Bouncy Castle components across all

versions were downloaded last year. Of these, 5.8 million (33%) were known

vulnerable versions of Bouncy Castle.

It’s a sobering fact, but it’s true. Last year alone, organizations downloaded

vulnerable versions of the Bouncy Castle cryptographic library 5.8 million

times. The defective components downloads occurred across 93,253 unique IP

addresses from 13,824 organizations in 197 countries. 40

5.8M

x x

SSC MANAGEMENT
PRACTICES ARE GAINING
TRACTION

PART 4

30State of the Software supply chain

PART 8
BUSINESS
CASE FOR SSC
MANAGEMENT

INDUSTRY
SPOTLIGHT

Global Insurer Boosts Innovation Budget by 30%

W. Edwards Deming taught the world that it was possible to sustain compet-

itive advantage by following three basic principles: (1) use fewer and better

suppliers, (2) use higher quality parts, and (3) track what is used and where.

One organization – a global insurer with over $50 billion in revenue – applied

these three principles to their software development lifecycle. They had two

simple goals:

	 1. Reduce defects from 10 per 10,000 lines of code

	 2. Reduce rework and improve productivity by 15%

The insurer’s first step was to minimize complexity in their software supply

chain by moving toward a single supplier (OSS projects) for any one type of

component. By identifying the best suppliers of software components, they

reduced defects per 10,000 lines of code by 60% (from 10 to 4).

Next, equipped with continuous component intelligence the insurer’s devel-

opment team used only the best component versions. Armed with real-time

intelligence about their component quality, the organization reduced defects

per 10,000 lines of code from 4 to 1.

The third step was to track and trace every component across their supply

chain by creating a software bill of materials (BOM). With a BOM in place,

discovery of component defects in the future brings their mean time to

identify issues to near-zero while ensuring corrective measures can be taken

immediately.

Use fewer & better

component

suppliers

Use only

 the highest quality

component parts

Continuously track

when & where

components are used

By applying the three principles, the global insurer improved developer pro-

ductivity by 30%. Reducing the complexity of operations, improving the quality

of components, and maintaining clear visibility to components enabled the

insurer to shift hundreds of millions of dollars from their maintenance budget

to their innovation budget.

31State of the Software Supply Chain

INTRODUCTION PART 1 PART 2 PART 4PART 3 SUMMARY

31State of the Software Supply Chain

Software bill of materials

Based on the volume and velocity of open source and

third-party software components being consumed, it is

impossible to check everything manually. It is simply too

expensive and too slow—especially when considering

the sub-components or dependencies which are less

obvious. For many organizations, tracking a complete

inventory of the component parts used in an application

requires producing a “software bill of materials” (BOM).

Mayo Clinic and Exxon

According to TheHill.com, Mayo Clinic and Exxon are

two examples of organizations that have procurement

policies that force vendors to accept liability for software

flaws that cause a breach. And Mayo Clinic forces

vendors to go through extensive testing and to provide a

bill of materials to insure none of the software has known

vulnerabilities. 41

Embracing
Principles of
Automation

Federal regulators, industry associations and top performing
enterprises have embraced the principles of software supply chain
automation to improve the quality, safety, and security of software.

Financial Services - Information Sharing

and Analysis Center (FS-ISAC)

Those two are not the only organizations enforcing

policies and a software bill of materials. The FS-ISAC

released new guidelines in 2016 that advise organi-

zations to use a software “bill of materials that clearly

identifies the open source code libraries that are part

of a commercially developed software package offered

to financial service firms.” 42 FS-ISAC recommends a

BOM to help prioritize remediation of known security

vulnerabilities, create awareness of potential intellectual

property issues, and improve vendor evaluation criteria.

American Bankers Association (ABA)

The Financial Services Sector Coordinating Council

(FSSCC) in coordination with the ABA produced the 2016

Cyber Insurance Buyer’s Guide. For banks attempting to

identify and mitigate cyber risks, the guide points to new

ways organizations can transfer those risks through the

purchase of insurance products. For companies purchas-

ing software, the guide describes procurement policies

that address the analysis of “all third-party open source

components, and shall, at a minimum, identify all known

materials and what we use to leverage for our particular threats in the vulnera-

bilities within those solutions would be shared.” 48

Underwriters Laboratories (UL)

In April 2016, Underwriters Laboratories, launched the UL Cybersecurity

Assurance Program (UL CAP) that helps software vendors identify security

risks and suggest methods for mitigating those risks in their products. This

program developed a series of standards, under UL 2900, to protect against

32State of the Software Supply Chain

INTRODUCTION PART 1 PART 2 PART 4PART 3 SUMMARY

vulnerabilities.” 43 It also recommends a “Bill of Materials that clearly identifies

all known third-party software components contained in the supplier product”,

including “any changes resulting from product updates, patches, etc.” 44

For business executives considering cyber insurance purchases, the report

advises, “Companies that implement these procurement policies should find

themselves more insurable in the market, both in terms of the dollar amount of

the insurance and scope of coverage.” 45

U.S. Federal Trade Commission (FTC)

Where Mayo Clinic and Exxon have introduced procurement policies to

eliminate software vulnerabilities from entering their software supply chains,

we have also seen government organizations like the FTC file complaints

against companies using known vulnerable software. 46 In February 2016,

ASUSTeK Computer, Inc. settled charges with the FTC related to its use of inse-

cure software in home routers and cloud services that put consumers at risk.47

U.S. Food and Drug Administration (FDA) and

Philips Medical

In January 2016, the conversation on software bill of materials also extended

to the US Food and Drug Administration’s (FDA) discussions titled “Collabora-

tive Approaches to Medical Device Cybersecurity”. The FDA was studying how

to best work with medical device manufacturers to address known vulnerabili-

ties in their software and the need for a software BOM.

In the FDA workshops, Michael McNeil, Global Product Security & Services

Officer at Philips Healthcare was asked if it was Philips’ intention to share

the BOM with provider organizations that are using its products. Mr. McNeil

offered, “I would definitely say that from a Philips perspective, our bill of

ASAMPLESOFTWARE
BILLOFMATERIALS

vulnerabilities and software weaknesses. The standards include identifying

components and mitigating known security vulnerabilities across a wide range

of industry functions, including: industrial control systems, medical devices,

automotive, HVAC, lighting, building automation, and consumer electronics. 49

An anticipated effect of having software supply chain security standards intro-

duced by UL is growing attention from insurance underwriters. With a baseline

for software security testing in place, insurers can begin to establish premiums

that best reflect an organization’s supply chain hygiene.

U.S. Department of Defense (DOD)

The Department of Defense outlines a process similar to UL and ABA in its

February 2016 publication “How to Put Software Assurance into Contracts”.

The document suggests language that may be tailored for use in Request for

Proposal (RFP) packages and contracts with third-parties “to provide assurance

regarding developed software and its ability to meet the mission needs.” The

publication further infuses credibility in the procurement approach by citing

current law: “Common industry practice and Section 933 of the National

Defense Authorization Act for Fiscal Year 2013 [Public Law 113-239], define

‘software assurance’ to mean the level of confidence that software functions

as intended and is free of vulnerabilities, either intentionally or unintentionally

designed or inserted as part of the software, throughout the lifecycle”. 50

Energy Sector Control Systems Working Group	

The Energy Sector Control Systems Working Group’s (ESCSWG) report,

“Cybersecurity Procurement Language for Energy Delivery Systems”, offers

guidance to help protect against cybersecurity threats that pose serious or

ongoing challenges for North America’s energy infrastructure. Procurement

guidance offered in the report includes, “The Supplier shall verify and provide

documentation that procured products (including third-party hardware, soft-

ware, firmware, and services) have appropriate updates and patches installed

prior to delivery to the Acquirer”. The report further recommends that a

“Supplier shall provide appropriate software and firmware updates to reme-

diate newly discovered vulnerabilities” and that “updates to remediate critical

vulnerabilities shall be provided within a shorter period than other updates,

within [a negotiated time period (e.g., 7, 14, or 21 days)].” 51

18F Group

18F is an office inside the U.S. General Services Administration that helps

other federal agencies build, buy, and share efficient and easy-to-use digital

services. The 18F group recommends extensive use of open source compo-

nents anytime a savings of just 20 lines of custom code can be achieved. At

the same time, 18F acknowledges the potential risk of open source component

usage, recommending that developers carefully choose high quality open

source projects that have strong contributing communities, reliable review of

components they release, and a high level of responsiveness when problems

are discovered. 52

National Institute for Standards and Technology (NIST)

Applications destined to run on U.S. government systems are subject to

scrutiny via a Risk Management Framework (RMF). The RMF applies security

controls defined in National Institute for Standards and Technology (NIST)

special publication 800-53, “Security and Privacy Controls for Federal

Information Systems and Organizations”. These controls include developing

and documenting an inventory of information system components, which

could include a bill of material listing open source components used. Another

required control is vulnerability scanning, which should include identification of

vulnerabilities in open source components used. 53

33State of the Software Supply Chain

INTRODUCTION PART 1 PART 2 PART 4PART 3 SUMMARY

34State of the Software supply chain

PART 8
BUSINESS
CASE FOR SSC
MANAGEMENT

INDUSTRY
SPOTLIGHT

The importance of continuous improvement:

“What I really love about the recognition of software supply chains is being

able to manage processes a certain way so that you can reduce defects.

Having worked for Toyota in the past and understanding the supply chain

mentality, you get a sense of how you could put something together better,

incrementally improving on it, and then sharing that process. It really helps

you figure out what things are important. When managing our software supply

chain, introducing the notion of fewer, better suppliers was really a core

concept.”

“I love the idea of transparency. When building things with continuous im-

provement in mind, you need to look at things from an opportunistic perspec-

tive. You’re not just looking to make things perfect, you’re looking for those

opportunities to improve over time.” 54

Shannon Lietz

DevOpsSec Lead

Intuit

35State of the Software Supply Chain

INTRODUCTION PART 1 PART 2 PART 4PART 3 SUMMARY

35State of the Software Supply Chain

Calculating the
Cost of Rework

Eliminating mistakes before they happen is much less expensive
than fixing mistakes after the fact.

Calculating the cost of component rework

The Phoenix Project, a book written by Gene Kim

explains how modern software development closely

resembles the same process utilized by manufacturers of

physical goods.

Whether you’re Toyota manufacturing automobiles, or

a software development team assembling components

into applications; the simple truth is that the flow of work

should move in one direction only: forward. When work

moves backward, it leads to a huge amount of waste.

To help software development organizations calculate

the amount of waste associated with backward flowing

work, we created a free visualization tool (www.sonatype.

com/calculator) that quantifies the value of unscheduled,

unplanned work stemming from the use of defective,

outdated, and risky components. The calculator shows

how time and budget allocated to rework and bug

fixes reduces investments in innovation and negatively

impacts shareholder value.

For example, a company with a portfolio of 2000 applica-

tions that dedicates resources to remediating 10% of their

defective components would rack up $7,420,000 in waste

annually. A company with a portfolio of 500 applications

would rob their innovation budget by $1,800,000 annually

by remediating 15% of their defective components.

Using fewer, better parts at Capital One

When presenting at DevOps Enterprise Summit 2016,

Tapabrata Pal, Director and Platform Engineering Fellow

at Capital One, shared “We found it inevitable to do

DevOps security the right way….when you are transform-

ing the CI/CD pipeline to start it, we said there will be

only open copy of each particular library in the binary

code repositories that we can check for security and

legal vulnerabilities.” 55 His team was able to eliminate

large volumes of defective, outdated, and risky compo-

nents by following the principles of using the highest

quality parts from fewer suppliers. In a large organization

like Capital One they are profiting from taking control of

their software supply chain.

According to Josh Corman, Director of Cyber Statecraft,

Atlantic Council, “The way we can get more safety and se-

curity into digital infrastructure, is to move to the ultimate

evolved posture of software development as a supply

chain. This makes you even faster than DevOps–even

more efficient and with higher quality and risk mitigation

without tradeoffs. If we get better at our component

selection and our traceability of what we’re using where,

we can reduce the number of break-fixes or reduce the

amount of unplanned, unscheduled work”. 56

https://www.youtube.com/watch?v=bbWFCKGhxOs&feature=youtu.be&t=21m17s

SUMMARY

37State of the Software Supply Chain

INTRODUCTION PART 1 PART 2 PART 4PART 3 SUMMARY

Decades ago, W. Edwards Deming taught automobile manufacturers the critical importance of building quality into their

products by more effectively managing suppliers, sourcing parts, and tracking the precise vocation of every part

assembled in every vehicle. Today, these same lessons are being applied to optimize the performance of modern

software supply chains.

It’s true that open source components enable development organizations to deliver software more efficiently by reducing

the amount of code that they need to write. It’s also true that every single component offers potential benefits as well as

risks. Top performing development organizations manage these risks by identifying the best open source suppliers, se-

lecting only the best components, and tracking the precise location of every component assembled in every application.

As caretakers of the Central Repository, we support millions of software developers from around the world. Last year

alone, these developers requested 31 billion downloads of open source components. From this unique vantage point,

we strive to do two things everyday; cultivate a deep understanding with respect to the quality of open source com-

ponents, and study the patterns and practices exhibited by high-performance software development organizations that

consume these components to build applications.

The sole purpose of this report has been to share with you the things that we observe, including:

1. �Developers are gorging on an ever expanding supply of open source components.

2. �Vast networks of open source component suppliers are growing rapidly.

3. �The massive variety and volume of software components vary widely in terms of quality.

4. �Top performing enterprises, federal regulators and industry associations have embraced the principles of software

supply chain automation to improve the safety, quality, and security of software.

We sincerely hope the findings and analysis in this report helped you better understand the impacts of open source

components on your software supply chain.

Thank you.

Team Sonatype

Conclusion

38State of the Software Supply Chain

OUR
SOURCES

0 �State of the Software Supply Chain Report 2015

1 �Analysis of annual download requests from the
Central Repository in calendar year 2015.

2 �Oracle’s estimate for the number of Java
developers worldwide in 2015.

�3 �Sonatype’s 2014 open source development and
application security survey

�4 �Analysis of annual downloads from the Central
Repository in calendar year 2007 - 2015.

�5 �http://thenewstack.io/a-brief-look-at-immutable-
infrastructure-and-why-it-is-such-a-quest/

�6 �http://www.theregister.co.uk/2016/03/23/
npm_left_pad_chaos/

7 https://www.openhub.net

�8 �https://www.usenix.org/system/files/login/
articles/15_geer_0.pdf

9 https://www.usenix.org/system/files/login/
articles/15_geer_0.pdfp17

10 �https://adtmag.com/Blogs/Water-
sWorks/2014/01/Worldwide-Developer-Count.
aspx

�11 RubyGems.org

12 bower.io/stats/

�13 �Docker keynote presentation from DockerCon
2015

�14 �Docker keynote presentation from DockerCon
2015

�15 �https://search.maven.org/#stats and State of the
Software Supply Chain Report 2015

16 �Analysis of annual downloads from the Central
Repository in calendar year 2015.

�17 �Analysis of annual downloads from the Central
Repository in calendar year 2015.

�18 �Analysis of annual downloads from the Central
Repository in calendar year 2014.

19 �Quote comes from video interview at https://
youtu.be/zRfRKA178CM?t=12m6s

�20 �Analysis of annual downloads from the Central
Repository in calendar year 2015.

�21 �Analysis of annual downloads from the Central
Repository in calendar year 2014.

�22 �Analysis of repository manager connections to
the Central Repository 2011 - 2016.

23 �Analysis of annual downloads from the Central
Repository in calendar year 2015.

�24 �Sonatype research andso-co-it.com (http://
bit.ly/1UmkcoD)p23 (F1) Analysis of annual
downloads from the Central Repository in
calendar year 2015.

�25 Sonatype analysis of 1000 repository managers
in May 2016.

�26 �Sonatype analysis of 1000 repository managers
in May 2016.

�27 �http://blog.sonatype.com/2015/11/
nexus-firewall-quality-at-velocity/

�28 �http://blog.sonatype.com/2015/11/
nexus-firewall-quality-at-velocity/

�29 �Analysis of downloads at 3000 organizations
from the Central Repository in Q1’2016, then
annualized.

�30 �Analysis of annual downloads from the Central
Repository in calendar year 2014.

�31 �Analysis of downloads at 3000 organizations
from the Central Repository in Q1’2016, then
annualized.

�32 �Analysis of downloads at 3000 organizations
from the Central Repository in Q1’2016, then
annualized.

�33 �Analysis of downloads at 3000 organizations
from the Central Repository in Q1’2016, then
annualized.

�34 �State of the Software Supply Chain Report 2015

�35 Sonatype research, May 2016

�36 Sonatype research, May 2016

�37 Sonatype research, May 2016

38 Sonatype research, May 2016

39 �Cisco 2015 Midyear Security Report http://www.
cisco.com/web/offers/lp/2015-midyear-securi-
ty-report/index.html

40 �Analysis of annual downloads from the Central
Repository in calendar year 2007 - 2015.

�41 �A new narrative on cyber security, http://
thehill.com/blogs/congress-blog/technolo-
gy/278712-a-new-narrative-on-cyber-security

�42 �Financial Services | Information Sharing & Anal-
ysis Center (FS-ISAC) - https://www.sonatype.
com/software-security-control-white-paper

�43 44 45 �http://www.aba.com/Training/Conferences/
Documents/NCCB16_Mon_Ins%20
and%20Outs%20of%20Cyber%20Insur-
ance_buyers%20guide.pdf

�46 �https://www.ftc.gov/system/files/documents/
cases/160222asuscmpt.pdf

�47 �https://www.ftc.gov/news-events/press-releas-
es/2016/02/asus-settles-ftc-charges-insecure-
home-routers-cloud-services-put

49 �FDA: Collaborative Approaches to Medical
Device Cybersecurity, January 20, 2016 , http://
www.fda.gov/downloads/MedicalDevices/New-
sEvents/WorkshopsConferences/UCM489249.
pdf

�49 �http://www.ul.com/newsroom/pressreleases/
ul-launches-cybersecurity-assurance-program/

50 �How to Put Software Assurance into Contracts:
An Effort of the Department of Defense (DoD)
Software Assurance (SwA) Community of
Practice (CoP) Contract Language Working
Group. February 2016.

51 �Energy Sector Control Systems Working
Group’s, “Cybersecurity Procurement Language
for Energy Delivery Systems”, April 2014.

52 �https://18f.gsa.gov/2014/11/26/
how-to-use-more-open-source/

53 �http://nvlpubs.nist.gov/nistpubs/SpecialPublica-
tions/NIST.SP.800-53r4.pdf

�54 �Quote comes from video interview at https://
youtu.be/zRfRKA178CM?t=12m6s

�55 �https://www.youtube.com/watch?v=bbWFCK-
GhxOs&feature=youtu.be&t=21m17s

�56 �Quote comes from video interview at https://
youtu.be/zRfRKA178CM?t=12m6s

39State of the Software Supply Chain

Thank You

The making of this report was a team effort of employees at Sonatype and

friends of ours within the community. Special thanks for their contributions

-- big and small -- go to Derek Weeks, Joel Orlina, Bruce Mayhew, Matt Howard,

Wayne Jackson, Mike Hansen John Martin, Samantha Mayhew, Nicole

Forsgren, J. Paul Reed, Josh Corman, James Wickett, Paula Thrasher, Shannon

Lietz, Nigel Simpson, Gareth Rushgrove, Shannon Sking, Jessica Dodson,

Eric Bourget, and Clara Charbonneau.

Sample Sizes and Analysis

In any report of this size, there is a risk that sampling issues will arise due to

the nature of the way data was collected. For example, all of the applications

and repositories analyzed for this report came from organizations interested

enough about software supply chain practices to engage Sonatype for an

assessment of their components. We have taken care to present analysis

on statistically significant sample sizes. Additionally, much of the data

about component downloads is specific to Java components and the Central

Repository -- representative of what we believe to be one of the most mature

and managed sources of components for developers.

Because software supply chain management best practices are still in

their early stages of adoption, the report spotlights a number of individual

organizations that have shared their experiences for others to learn from.

A Word from our Legal Team

Copyright © 2016 - present, Sonatype Inc. All rights reserved. Sonatype and

Sonatype Nexus are trademarks of Sonatype, Inc. Apache Maven and Maven

are trademarks of the Apache Software Foundation. M2Eclipse is a trademark

of the Eclipse Foundation. All other trademarks are the property of their

respective owners.

THANKSTO
&LEGALDISCLAIMERS

http://sonatype.com

