
Solving PostgreSQL wicked problems

Alexander Korotkov

Oriole DB Inc.

2021

Alexander Korotkov Solving PostgreSQL wicked problems 1 / 40

PostgreSQL has two sides

Alexander Korotkov Solving PostgreSQL wicked problems 2 / 40

The bright side of PostgreSQL

Alexander Korotkov Solving PostgreSQL wicked problems 3 / 40

PostgreSQL – one of the most popular DBMS’es1

1According to db-engines.com
Alexander Korotkov Solving PostgreSQL wicked problems 4 / 40

https://db-engines.com/en/ranking

PostgreSQL – strong trend2

2https://db-engines.com/en/ranking_trend/system/PostgreSQL
Alexander Korotkov Solving PostgreSQL wicked problems 5 / 40

https://db-engines.com/en/ranking_trend/system/PostgreSQL

PostgreSQL – most loved RDBMS3

3According to Stackoverflow 2020 survey
Alexander Korotkov Solving PostgreSQL wicked problems 6 / 40

https://insights.stackoverflow.com/survey/2020

The dark side of PostgreSQL

Alexander Korotkov Solving PostgreSQL wicked problems 7 / 40

CriƟcism of PostgreSQL (1/2)

https://eng.uber.com/postgres-to-mysql-migration/
Alexander Korotkov Solving PostgreSQL wicked problems 8 / 40

https://eng.uber.com/postgres-to-mysql-migration/

CriƟcism of PostgreSQL (2/2)

https://medium.com/@rbranson/10-things-i-hate-about-postgresql-20dbab8c2791

Alexander Korotkov Solving PostgreSQL wicked problems 9 / 40

https://medium.com/@rbranson/10-things-i-hate-about-postgresql-20dbab8c2791

10 wicked problems of PostgreSQL

Problem name Known for Work started ResoluƟon

1. Wraparound 20 years 15 years ago SƟll WIP
2. Failover Will Probably Lose Data 20 years 16 years ago SƟll WIP
3. Inefficient ReplicaƟon That Spreads CorrupƟon 10 years 8 years ago SƟll WIP
4. MVCC Garbage Frequently Painful 20 years 19 years ago Abandoned
5. Process-Per-ConnecƟon = Pain at Scale 20 years 3 years ago Abandoned
6. Primary Key Index is a Space Hog 13 years — Not started
7. Major Version Upgrades Can Require DownƟme 21 years 16 years ago SƟll WIP
8. Somewhat Cumbersome ReplicaƟon Setup 10 years 9 years ago SƟll WIP
9. Ridiculous No-Planner-Hints Dogma 20 years 11 years ago Extension
10. No Block Compression 12 years 11 years ago SƟll WIP

* Scalability on modern hardware

Alexander Korotkov Solving PostgreSQL wicked problems 10 / 40

https://www.postgresql.org/message-id/397CC53F.FCC0533B%40nmxs.com
https://www.postgresql.org/message-id/20050220022210.BEE108BA51C@svr1.postgresql.org
https://www.postgresql.org/message-id/4.1.20000411064703.00b5f100@pop.mindspring.com
https://www.postgresql.org/message-id/20040423.181942.78702466.t-ishii@sra.co.jp
https://www.postgresql.org/message-id/AANLkTimL1vFdza_NvifEfGzh_RvUGnAywkI6tZON1K8e@mail.gmail.com
https://www.postgresql.org/message-id/201206131327.24092.andres@2ndquadrant.com
https://www.postgresql.org/message-id/Pine.LNX.4.21.0004140232450.27788-100000@poota.cat.org.au
https://www.postgresql.org/message-id/12833.990140724@sss.pgh.pa.us
https://www.postgresql.org/message-id/004401c058fd$fd498d40$f2356880@tracy
https://www.postgresql.org/message-id/9defcb14-a918-13fe-4b80-a0b02ff85527@postgrespro.ru
https://www.postgresql.org/message-id/475FD3B2.7060002@gmail.com
https://www.postgresql.org/message-id/199912261746.MAA21170@candle.pha.pa.us
https://www.postgresql.org/message-id/20040423.181942.78702466.t-ishii@sra.co.jp
https://www.postgresql.org/message-id/710849.8577.qm@web111309.mail.gq1.yahoo.com
https://www.postgresql.org/message-id/m2zkrdg52m.fsf@2ndQuadrant.fr
https://www.postgresql.org/message-id/3899B047.A298F429@alumni.caltech.edu
https://www.postgresql.org/message-id/Pine.LNX.4.64.0910062354510.6801@sn.sai.msu.ru
https://github.com/ossc-db/pg_hint_plan
https://www.postgresql.org/message-id/BLU139-W35E564A24F16472B2A2967CD250@phx.gbl
https://www.postgresql.org/message-id/op.ux8if71gcigqcu@soyouz

The exciƟng moment

▶ PostgreSQL community have proven to be brilliant on solving
non-design issues, providing fantasƟc product to the market.

▶ As a result, PostgreSQL has had a strong upwards trend for many
years.

▶ At the same Ɵme, the PostgreSQL community appears to be
dysfuncƟonal in solving design issues, aƩracƟng severe criƟcism.
Nevertheless, criƟcs not yet break the upwards trend.

▶ It appears to be a unique moment for PostgreSQL redesign!

Alexander Korotkov Solving PostgreSQL wicked problems 11 / 40

The exciƟng moment

▶ PostgreSQL community have proven to be brilliant on solving
non-design issues, providing fantasƟc product to the market.

▶ As a result, PostgreSQL has had a strong upwards trend for many
years.

▶ At the same Ɵme, the PostgreSQL community appears to be
dysfuncƟonal in solving design issues, aƩracƟng severe criƟcism.
Nevertheless, criƟcs not yet break the upwards trend.

▶ It appears to be a unique moment for PostgreSQL redesign!

Alexander Korotkov Solving PostgreSQL wicked problems 11 / 40

The exciƟng moment

▶ PostgreSQL community have proven to be brilliant on solving
non-design issues, providing fantasƟc product to the market.

▶ As a result, PostgreSQL has had a strong upwards trend for many
years.

▶ At the same Ɵme, the PostgreSQL community appears to be
dysfuncƟonal in solving design issues, aƩracƟng severe criƟcism.
Nevertheless, criƟcs not yet break the upwards trend.

▶ It appears to be a unique moment for PostgreSQL redesign!

Alexander Korotkov Solving PostgreSQL wicked problems 11 / 40

The exciƟng moment

▶ PostgreSQL community have proven to be brilliant on solving
non-design issues, providing fantasƟc product to the market.

▶ As a result, PostgreSQL has had a strong upwards trend for many
years.

▶ At the same Ɵme, the PostgreSQL community appears to be
dysfuncƟonal in solving design issues, aƩracƟng severe criƟcism.
Nevertheless, criƟcs not yet break the upwards trend.

▶ It appears to be a unique moment for PostgreSQL redesign!

Alexander Korotkov Solving PostgreSQL wicked problems 11 / 40

How could we solve the PostgreSQL
wicked problems?

Alexander Korotkov Solving PostgreSQL wicked problems 12 / 40

TradiƟonal buffer management

1

2 3

4 5 6 7

Disk
1'

2' 3'

5' 6'

Memory

Buffer
mapping 1 2 3 5 64 7

▶ Each page access requires lookup into buffer mapping data structure.

▶ Each B-tree key lookup takes mulƟple buffer mapping lookups.
▶ Accessing cached data doesn’t scale on modern hardware.

Alexander Korotkov Solving PostgreSQL wicked problems 13 / 40

TradiƟonal buffer management

1

2 3

4 5 6 7

Disk
1'

2' 3'

5' 6'

Memory

Buffer
mapping 1 2 3 5 64 7

▶ Each page access requires lookup into buffer mapping data structure.
▶ Each B-tree key lookup takes mulƟple buffer mapping lookups.

▶ Accessing cached data doesn’t scale on modern hardware.

Alexander Korotkov Solving PostgreSQL wicked problems 13 / 40

TradiƟonal buffer management

1

2 3

4 5 6 7

Disk
1'

2' 3'

5' 6'

Memory

Buffer
mapping 1 2 3 5 64 7

▶ Each page access requires lookup into buffer mapping data structure.
▶ Each B-tree key lookup takes mulƟple buffer mapping lookups.
▶ Accessing cached data doesn’t scale on modern hardware.

Alexander Korotkov Solving PostgreSQL wicked problems 13 / 40

SoluƟon: Dual pointers

1

2 3

5 7

1 2 3 4 5 6 7
Disk

▶ In-memory page refers either in-memory or on-disk page.

▶ Accessing cached data without buffer mapping lookups.
▶ Good scalability!

Alexander Korotkov Solving PostgreSQL wicked problems 14 / 40

SoluƟon: Dual pointers

1

2 3

5 7

1 2 3 4 5 6 7
Disk

▶ In-memory page refers either in-memory or on-disk page.
▶ Accessing cached data without buffer mapping lookups.

▶ Good scalability!

Alexander Korotkov Solving PostgreSQL wicked problems 14 / 40

SoluƟon: Dual pointers

1

2 3

5 7

1 2 3 4 5 6 7
Disk

▶ In-memory page refers either in-memory or on-disk page.
▶ Accessing cached data without buffer mapping lookups.
▶ Good scalability!

Alexander Korotkov Solving PostgreSQL wicked problems 14 / 40

PostgreSQL MVCC = bloat + write-amplificaƟon

▶ New and old row versions shares the same heap.

▶ Non-HOT updates cause index bloat.

Alexander Korotkov Solving PostgreSQL wicked problems 15 / 40

PostgreSQL MVCC = bloat + write-amplificaƟon

▶ New and old row versions shares the same heap.
▶ Non-HOT updates cause index bloat.

Alexander Korotkov Solving PostgreSQL wicked problems 15 / 40

SoluƟon: undo log for both pages and rows

Undo

row1 row4

row1 row2

row3 row4

page

row2v1

row1v1 row1v2

▶ Old row versions form chains in undo log.

▶ Page-level chains evict deleted rows from primary storage.
▶ Update only indexes with changed values.

Alexander Korotkov Solving PostgreSQL wicked problems 16 / 40

SoluƟon: undo log for both pages and rows

Undo

row1 row4

row1 row2

row3 row4

page

row2v1

row1v1 row1v2

▶ Old row versions form chains in undo log.
▶ Page-level chains evict deleted rows from primary storage.

▶ Update only indexes with changed values.

Alexander Korotkov Solving PostgreSQL wicked problems 16 / 40

SoluƟon: undo log for both pages and rows

Undo

row1 row4

row1 row2

row3 row4

page

row2v1

row1v1 row1v2

▶ Old row versions form chains in undo log.
▶ Page-level chains evict deleted rows from primary storage.
▶ Update only indexes with changed values.

Alexander Korotkov Solving PostgreSQL wicked problems 16 / 40

Block-level WAL

Heap
Index #1 Index #2

WAL

▶ Huge WAL traffic.

▶ Problems with parallel apply.
▶ Not suitable for mulƟ-master replicaƟon.

Alexander Korotkov Solving PostgreSQL wicked problems 17 / 40

Block-level WAL

Heap
Index #1 Index #2

WAL

▶ Huge WAL traffic.
▶ Problems with parallel apply.

▶ Not suitable for mulƟ-master replicaƟon.

Alexander Korotkov Solving PostgreSQL wicked problems 17 / 40

Block-level WAL

Heap
Index #1 Index #2

WAL

▶ Huge WAL traffic.
▶ Problems with parallel apply.
▶ Not suitable for mulƟ-master replicaƟon.

Alexander Korotkov Solving PostgreSQL wicked problems 17 / 40

SoluƟon: row-level WAL

Heap
Index #1 Index #2

WAL

▶ Very compact.

▶ Apply can be parallelized.
▶ Suitable for mulƟmaster (row-level conflicts, not block-level).
▶ Recovery needs structurally consistent checkpoints.

Alexander Korotkov Solving PostgreSQL wicked problems 18 / 40

SoluƟon: row-level WAL

Heap
Index #1 Index #2

WAL

▶ Very compact.
▶ Apply can be parallelized.

▶ Suitable for mulƟmaster (row-level conflicts, not block-level).
▶ Recovery needs structurally consistent checkpoints.

Alexander Korotkov Solving PostgreSQL wicked problems 18 / 40

SoluƟon: row-level WAL

Heap
Index #1 Index #2

WAL

▶ Very compact.
▶ Apply can be parallelized.
▶ Suitable for mulƟmaster (row-level conflicts, not block-level).

▶ Recovery needs structurally consistent checkpoints.

Alexander Korotkov Solving PostgreSQL wicked problems 18 / 40

SoluƟon: row-level WAL

Heap
Index #1 Index #2

WAL

▶ Very compact.
▶ Apply can be parallelized.
▶ Suitable for mulƟmaster (row-level conflicts, not block-level).
▶ Recovery needs structurally consistent checkpoints.

Alexander Korotkov Solving PostgreSQL wicked problems 18 / 40

Row-level WAL based mulƟmaster

OrioleDB instance

Storage

WAL

OrioleDB instance

Storage

WAL

OrioleDB instance

Storage

WAL

Raft replication

Alexander Korotkov Solving PostgreSQL wicked problems 19 / 40

Copy-on-write checkpoints (1/4)

1

2 3

5 7

1 2 3 4 5 6 7
Disk

Alexander Korotkov Solving PostgreSQL wicked problems 20 / 40

Copy-on-write checkpoints (2/4)

1

2 3

5 7*

1 2 3 4 5 6 7
Disk

Alexander Korotkov Solving PostgreSQL wicked problems 21 / 40

Copy-on-write checkpoints (3/4)

1*

2 3*

5 7*

1 2 3 4 5 6 7
Disk

7* 3* 1*

Alexander Korotkov Solving PostgreSQL wicked problems 22 / 40

Copy-on-write checkpoints (4/4)

1*

2 3*

5 7*

2 4 5 6
Disk

7* 3* 1*

Alexander Korotkov Solving PostgreSQL wicked problems 23 / 40

What do we need from PostgreSQL extendability?

Backgroud processesBackend

Connection

Parser

Rewriter

Planner

Executor

Autovacuum

Background writer

Checkpointer

WAL writer

PostgreSQL serverFile system

Data files

WAL files

Log files

OrioleDB

extension

OrioleDB
data files

OrioleDB
undo files

......

File system

▶ Extended table AM.

▶ Custom toast handlers.
▶ Custom row idenƟfiers.
▶ Custom error cleanup.
▶ Recovery & checkpointer hooks.

▶ Snapshot hooks.

▶ Some other miscellaneous hooks
total 1K lines patch to PostgreSQL
Core

Alexander Korotkov Solving PostgreSQL wicked problems 24 / 40

What do we need from PostgreSQL extendability?

Backgroud processesBackend

Connection

Parser

Rewriter

Planner

Executor

Autovacuum

Background writer

Checkpointer

WAL writer

PostgreSQL serverFile system

Data files

WAL files

Log files

OrioleDB

extension

OrioleDB
data files

OrioleDB
undo files

......

File system

▶ Extended table AM.
▶ Custom toast handlers.

▶ Custom row idenƟfiers.
▶ Custom error cleanup.
▶ Recovery & checkpointer hooks.

▶ Snapshot hooks.

▶ Some other miscellaneous hooks
total 1K lines patch to PostgreSQL
Core

Alexander Korotkov Solving PostgreSQL wicked problems 24 / 40

What do we need from PostgreSQL extendability?

Backgroud processesBackend

Connection

Parser

Rewriter

Planner

Executor

Autovacuum

Background writer

Checkpointer

WAL writer

PostgreSQL serverFile system

Data files

WAL files

Log files

OrioleDB

extension

OrioleDB
data files

OrioleDB
undo files

......

File system

▶ Extended table AM.
▶ Custom toast handlers.
▶ Custom row idenƟfiers.

▶ Custom error cleanup.
▶ Recovery & checkpointer hooks.

▶ Snapshot hooks.

▶ Some other miscellaneous hooks
total 1K lines patch to PostgreSQL
Core

Alexander Korotkov Solving PostgreSQL wicked problems 24 / 40

What do we need from PostgreSQL extendability?

Backgroud processesBackend

Connection

Parser

Rewriter

Planner

Executor

Autovacuum

Background writer

Checkpointer

WAL writer

PostgreSQL serverFile system

Data files

WAL files

Log files

OrioleDB

extension

OrioleDB
data files

OrioleDB
undo files

......

File system

▶ Extended table AM.
▶ Custom toast handlers.
▶ Custom row idenƟfiers.
▶ Custom error cleanup.

▶ Recovery & checkpointer hooks.

▶ Snapshot hooks.

▶ Some other miscellaneous hooks
total 1K lines patch to PostgreSQL
Core

Alexander Korotkov Solving PostgreSQL wicked problems 24 / 40

What do we need from PostgreSQL extendability?

Backgroud processesBackend

Connection

Parser

Rewriter

Planner

Executor

Autovacuum

Background writer

Checkpointer

WAL writer

PostgreSQL serverFile system

Data files

WAL files

Log files

OrioleDB

extension

OrioleDB
data files

OrioleDB
undo files

......

File system

▶ Extended table AM.
▶ Custom toast handlers.
▶ Custom row idenƟfiers.
▶ Custom error cleanup.
▶ Recovery & checkpointer hooks.

▶ Snapshot hooks.

▶ Some other miscellaneous hooks
total 1K lines patch to PostgreSQL
Core

Alexander Korotkov Solving PostgreSQL wicked problems 24 / 40

What do we need from PostgreSQL extendability?

Backgroud processesBackend

Connection

Parser

Rewriter

Planner

Executor

Autovacuum

Background writer

Checkpointer

WAL writer

PostgreSQL serverFile system

Data files

WAL files

Log files

OrioleDB

extension

OrioleDB
data files

OrioleDB
undo files

......

File system

▶ Extended table AM.
▶ Custom toast handlers.
▶ Custom row idenƟfiers.
▶ Custom error cleanup.
▶ Recovery & checkpointer hooks.

▶ Snapshot hooks.

▶ Some other miscellaneous hooks
total 1K lines patch to PostgreSQL
Core

Alexander Korotkov Solving PostgreSQL wicked problems 24 / 40

What do we need from PostgreSQL extendability?

Backgroud processesBackend

Connection

Parser

Rewriter

Planner

Executor

Autovacuum

Background writer

Checkpointer

WAL writer

PostgreSQL serverFile system

Data files

WAL files

Log files

OrioleDB

extension

OrioleDB
data files

OrioleDB
undo files

......

File system

▶ Extended table AM.
▶ Custom toast handlers.
▶ Custom row idenƟfiers.
▶ Custom error cleanup.
▶ Recovery & checkpointer hooks.

▶ Snapshot hooks.

▶ Some other miscellaneous hooks
total 1K lines patch to PostgreSQL
Core

Alexander Korotkov Solving PostgreSQL wicked problems 24 / 40

OrioleDB = PostgreSQL redesign

PostgreSQL

Block-level WAL Row-level WAL
Buffer mapping Direct page links
Buffer locking Lock-less access

Bloat-prone MVCC Undo log
Cumbersome

block-level WAL
replication

 Raft-based
multimaster

replication of row-
level WAL

Alexander Korotkov Solving PostgreSQL wicked problems 25 / 40

OrioleDB’s answer to 10 wicked problems of PostgreSQL

Problem name SoluƟon

1. Wraparound NaƟve 64-bit transacƟon ids
2. Failover Will Probably Lose Data MulƟmaster replicaƟon
3. Inefficient ReplicaƟon That Spreads CorrupƟon Row-level replicaƟon
4. MVCC Garbage Frequently Painful Non-persistent undo log
5. Process-Per-ConnecƟon = Pain at Scale MigraƟon to mulƟthread model
6. Primary Key Index is a Space Hog Index-organized tables
7. Major Version Upgrades Can Require DownƟme MulƟmaster + per-node upgrade
8. Somewhat Cumbersome ReplicaƟon Setup Simple setup of raŌ-based mulƟmaster
9. Ridiculous No-Planner-Hints Dogma In-core planner hints
10. No Block Compression Block-level compression

* Scalability on modern hardware

Alexander Korotkov Solving PostgreSQL wicked problems 26 / 40

Let’s do some benchmarks! 4

4https://gist.github.com/akorotkov/f5e98ba5805c42ee18bf945b30cc3d67
Alexander Korotkov Solving PostgreSQL wicked problems 27 / 40

https://gist.github.com/akorotkov/f5e98ba5805c42ee18bf945b30cc3d67

OrioleDB benchmark: read-only scalability

0 50 100 150 200 250
Clients

0

200000

400000

600000

800000
TP

S

Read-only scalability test PostgreSQL vs OrioleDB
1 minute of pgbench script reading 9 random values of 100M

PostgreSQL
OrioleDB

OrioleDB: 4X higher TPS!
Alexander Korotkov Solving PostgreSQL wicked problems 28 / 40

OrioleDB benchmark: read-write scalability
in-memory case

0 50 100 150 200 250
Clients

0

100000

200000

300000

400000

TP
S

Read-write scalability test PostgreSQL vs OrioleDB
1 minute of pgbench TPC-B like transactions wrapped into stored procedure

PostgreSQL
OrioleDB

OrioleDB: 3.5X higher TPS!
Alexander Korotkov Solving PostgreSQL wicked problems 29 / 40

OrioleDB benchmark: read-write scalability
external storage case

0 250 500 750 1000 1250 1500 1750 2000
Clients

0

20000

40000

60000

80000

100000

120000

TP
S

pgbench -s 20000 -j $n -c $n -M prepared on odb-node02
mean of 3 3-minute runs with shared_buffers = 32GB(128GB), max_connections = 2500

pgsql-read-write
orioledb-read-write
orioledb-read-write-block-device

OrioleDB: up to 50X higher TPS!
Alexander Korotkov Solving PostgreSQL wicked problems 30 / 40

OrioleDB benchmark: read-write scalability
Intel Optane persistent memory

0 250 500 750 1000 1250 1500 1750 2000
Clients

0

25000

50000

75000

100000

125000

150000

175000

200000
TP

S

pgbench -s 20000 -j $n -c $n -M prepared -f read-write-proc.sql on node03
5-minute run with shared_buffers = 32GB, max_connections = 2500

pgsql
orioledb-fsdax
orioledb-devdax

OrioleDB: up to 50X higher TPS!
Alexander Korotkov Solving PostgreSQL wicked problems 31 / 40

OrioleDB benchmark: write-amplificaƟon & bloat test: CPU

400 600 800 1000 1200 1400 1600
seconds

0

100000

200000

300000

400000

500000

600000

700000

800000

TP
S

Troughtput
PostgreSQL
OrioleDB

400 600 800 1000 1200 1400 1600
seconds

0

20

40

60

80

100

Us
ag

e,
 %

CPU usage
PostgreSQL
OrioleDB

OrioleDB: 5X higher TPS! 2.3X less CPU/TPS!
Alexander Korotkov Solving PostgreSQL wicked problems 32 / 40

OrioleDB benchmark: write-amplificaƟon & bloat test: IO

400 600 800 1000 1200 1400 1600
seconds

0

100000

200000

300000

400000

500000

600000

700000

800000

TP
S

Troughtput
PostgreSQL
OrioleDB

0 250 500 750 1000 1250 1500 1750
seconds

0

5000

10000

15000

20000

25000

30000

35000

IO
PS

IO load
PostgreSQL
OrioleDB

OrioleDB: 5X higher TPS! 22X less IO/TPS!
Alexander Korotkov Solving PostgreSQL wicked problems 33 / 40

OrioleDB benchmark: write-amplificaƟon & bloat test: space

400 600 800 1000 1200 1400 1600
seconds

0
10
20
30
40
50
60
70
80

GB

Space used
PostgreSQL
OrioleDB

OrioleDB: no bloat!

Alexander Korotkov Solving PostgreSQL wicked problems 34 / 40

OrioleDB benchmark: taxi workload (1/3): read

0 500 1000 1500 2000 2500 3000 3500
seconds

0

25

50

75

100

125

150

175

IO
PS

Disk read
PostgreSQL
OrioleDB

OrioleDB: 9X less read IOPS!

Alexander Korotkov Solving PostgreSQL wicked problems 35 / 40

OrioleDB benchmark: taxi workload (2/3): write

0 500 1000 1500 2000 2500 3000 3500
seconds

0

50

100

150

200

250

300

350

IO
PS

Disk write
PostgreSQL
OrioleDB

OrioleDB: 4.5X less write IOPS!

Alexander Korotkov Solving PostgreSQL wicked problems 36 / 40

OrioleDB benchmark: taxi workload (3/3): space

0 500 1000 1500 2000 2500 3000 3500
seconds

0

5

10

15

20

25

30

35

40
GB

Space used
PostgreSQL
OrioleDB

OrioleDB: 8X less space usage!

Alexander Korotkov Solving PostgreSQL wicked problems 37 / 40

OrioleDB = SoluƟon of wicked PostgreSQL
problems + extraordinary performance

Alexander Korotkov Solving PostgreSQL wicked problems 38 / 40

Roadmap

▶ Basic engine features 4

▶ Table AM interface implementaƟon 4

▶ Data compression 4

▶ Undo log 4

▶ TOAST support 4

▶ Parallel row-level replicaƟon 4

▶ ParƟal and expression indexes 4

IniƟal release
▶ GiST/GIN analogues

Alexander Korotkov Solving PostgreSQL wicked problems 39 / 40

OrioleDB status

▶ Release is scheduled for December 1st 2021;
▶ https://github.com/orioledb/orioledb;
▶ If you need more explanaƟon, don’t hesitate to make pull requests.

Alexander Korotkov Solving PostgreSQL wicked problems 40 / 40

https://github.com/orioledb/orioledb

