
Given an image classification ConvNet, we aim to 
answer two questions: 
• What does a class model look like? 
• What makes an image belong to a class? 

To this end, we visualise: 
• Canonical image of a class 
• Class saliency map for a given image and class 

Both visualisations are based on the class score 
derivative w.r.t. the input image (computed using 
back-prop) 

• Derivative of a ConvNet class score w.r.t. the input 
image is useful for visualising: 
• canonical image of a class 
• image-specific class saliency 

• Image-specific class saliency can be further processed 
to perform weakly-supervised object segmentation 
and detection 
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2. CLASS MODEL VISUALISATION 
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• We compute a (regularised) image     with a 
high class score            : 
[Erhan et al., 2009] 

• Optimised using gradient descent, initialised 
with the zero image 

• Gradient                       is computed using  
back-prop 

• Maximising soft-max score                             
leads to worse visualisation 

• We visualise a ConvNet trained on ImageNet 
ILSVRC 2013 (1000 classes) 3. IMAGE-SPECIFIC  

CLASS SALIENCY VISUALISATION 

• Linear approximation of the class score in the 
neighbourhood of an image      : 
 
 
 
 
 

•      has the same size as the image   
• Magnitude of      defines a saliency map for image 

and class 

– computed using back-prop 

– score of   -th class 

Image-Specific Class Saliency Properties: 

• Weakly supervised 

• computed using classification ConvNet, trained 
on image labels 

• no additional annotation required (e.g. boxes 
or masks) 

• Highlights discriminative object parts 

• Instant computation – no sliding window, just a 
single back-prop pass 

• Fires on several object instances 

• Given an image and a saliency map: 

1. Saliency map is thresholded to obtain 
foreground / background masks 

2. GraphCut colour segmentation [Boykov  
and Jolly, 2001] is initialised with the masks 

3. Object localisation: bounding box of the 
largest foreground connected component 

• GraphCut propagates segmentation from the 
most salient areas of the object 

• ILSVRC 2013 localisation accuracy: 46.4% 

• weak supervision: ground-truth bounding 
boxes were not used for training 

• saliency maps for top-5 predicted classes  
were used to compute five bounding box 
predictions 
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4. WEAKLY-SUPERVISED OBJECT LOCALISATION 

5. RELATION TO DECONVOLUTIONAL NETS 6. CONCLUSION 


