
Proceedings on Privacy Enhancing Technologies ..; .. (..):1–21

Ryan Wails*, Andrew Stange, Eliana Troper, Aylin Caliskan, Roger Dingledine, Rob Jansen, and
Micah Sherr

Learning to Behave: Improving Covert Channel
Security with Behavior-Based Designs
Abstract: Censorship-resistant communication systems
generally use real-world cover protocols to establish a
covert channel through which uncensored communica-
tion can occur. Unfortunately, many previously pro-
posed systems use cover protocols inconsistently with
the way humans normally use those protocols, leading
to anomalous network traffic patterns that have been
shown to be discoverable by real-world censors. In this
paper, we argue that censorship-resistant communica-
tion systems should follow two behavior-based design
properties: (i) behavioral independence: systems should
isolate the operation of their covert channels from the
operation of their cover protocols, and (ii) behavioral
realism: systems should either opportunistically use ex-
isting genuine cover protocol instances or run new proto-
col instances that are modeled after genuine ones. These
properties ensure that the behavior of a system’s users
will not degrade its security. We demonstrate how to
achieve these properties through the design and evalua-
tion of Raven, a censorship-resistant messaging system
that uses email cover protocols identically to the way
humans use email. Raven uses a generative adversarial
network that is trained on genuine email data to con-
trol the timing and sizes of the email messages it sends
and receives, and these messages are transferred inde-
pendently of user actions. Our evaluation shows that,
compared to the state-of-the-art email-based Mailet sys-
tem, Raven raises the false-positive rate from 3% to 50%
when detecting covert channel usage with 100% recall.

Keywords: covert communication; Internet censorship

DOI Editor to enter DOI
Received ..; revised ..; accepted ...

*Corresponding Author: Ryan Wails: Georgetown,
U.S. Naval Research Laboratory; ryan.wails@nrl.navy.mil
Andrew Stange: Carnegie Mellon; astange@andrew.cmu.edu
Eliana Troper: Georgetown Univ.; st1038@georgetown.edu
Aylin Caliskan: University of Washington; aylin@uw.edu
Roger Dingledine: The Tor Project; arma@torproject.org
Rob Jansen: U.S. Naval Research Laboratory;
rob.g.jansen@nrl.navy.mil
Micah Sherr: Georgetown Univ.; msherr@cs.georgetown.edu

1 Introduction
Internet freedom worldwide is becoming increasingly
more restricted [24] as new censorship practices are
developed and deployed by nation-states seeking to
control the flow of information for political, social,
or economic gain [51, 53]. To combat internet cen-
sorship, researchers and activists have proposed nu-
merous censorship-resistant tools and techniques that
can help restore access to information online [41, 61].
The proposed systems include those that attempt to
mimic known protocols [16, 17, 48, 66, 68], those that
tunnel covert traffic through multimedia and other
cloud-based channels [6, 11, 37, 43, 46, 48, 66], those
that attempt to obscure the destination at the routing
layer [10, 18, 28, 35, 39, 49, 73, 74], and those that try
to produce polymorphic behavior [4, 69, 70].

Most systems are designed to create a covert com-
munication channel to a proxy server using a cover pro-
tocol that should appear innocuous to any censor that
can observe its execution. The proxy server then assists
in accessing the originally censored information.

Unfortunately, many of the previous systems suffer
from limitations that allow more sophisticated censors
to identify the presence of the covert channel and block
or disrupt it [41, 61]. A primary limitation of previously
proposed systems is that they operate cover protocols
inconsistently with de facto cover protocol operation in
the wild [36]. Recent work has demonstrated how incon-
sistent cover protocol operation can lead to detection
and blocking [15, 19, 25, 29, 36] when the censorship-
resistant system: (i) exhibits non-standard or unusual
responses to errors or other active probes, or (ii) uses
valid but unusual choices in implementation which are
visible to passive observers. Running a genuine applica-
tion to instantiate a cover protocol (rather than mimick-
ing it) is now a generally-recognized requirement [36].

However, even if the cover protocol is perfectly
emulated within a genuine application, the usage of
the covert channel could produce traffic inconsistencies
(e.g., timing and volume) in the cover protocol that ap-
pear anomalous to the censor when compared to the
way other humans normally use that protocol. For ex-

Learning to Behave: Improving Covert Channel Security with Behavior-Based Designs 2

ample, naïvely running a user’s interactive web browsing
session over an email cover protocol [38] could produce
recognizable bursts of emails. Using traffic analysis, a
censor can learn distinguishing features and use them
to discover and block the channel [7, 31, 36, 58, 65].
Ensuring that the covert channel usage behavior that
is observable in the cover protocol is indistinguishable
from normal use of that protocol is an outstanding prob-
lem that recent work does not convincingly solve [7].
Behavior Properties: The traffic analysis issues de-
scribed above lead us to argue for the following proper-
ties when designing censorship-resistant systems. Most
importantly, the goal is to ensure that a censor that
observes the network traffic produced by the operation
of the cover protocol is unable to distinguish it from
other benign executions of that protocol. First, we argue
for behavioral independence: the operation of the covert
channel by the user should be isolated from the oper-
ation of the cover protocol by the censorship-resistant
system software. Isolating user actions from the oper-
ation of the cover protocol ensures that users do not
unintentionally degrade security. Second, we argue for
behavioral realism: the cover protocol should be oper-
ated according to its de facto operation in the real world.
This can be achieved either by opportunistically using
available existing executions of the cover protocol, or by
running new cover protocol instances that are closely
modeled after real world protocol behavior.
Raven: We believe that our behavior-based design
properties would benefit many censorship-resistant com-
munication systems. However, in this paper, we focus
on a narrow set of text-based cover protocols in order
to demonstrate the effectiveness of incorporating be-
havioral independence and realism into a concrete sys-
tem designed for an established use-case. To this end,
we design, implement, and evaluate Raven,1 a proof-of-
concept censorship resistance system that is designed to
operate email cover protocols identically to the way gen-
uine users would operate email protocols while isolating
covert actions from cover protocol execution.

In Raven, clients and proxies use standard en-
crypted email cover protocols (e.g., SMTPS or IMAPS)
and communicate through legitimate email service
providers. Because of the link encryption to the service
provider, the censor is never in a position to observe
email addresses. Further, the client is free to choose
(or switch) its email provider, so completely blocking

1 In Game of Thrones, ravens enable long-distance communica-
tion between communities using complex training methods [30].

Raven requires blocking all email providers outside of
the censor’s control (an action bearing severe economic
impact [11, 23, 28, 34]). The cover email protocols are
executed using popular email clients (e.g., Thunderbird)
which respond as they normally would to malformed
inputs or errors and enable Raven to resist protocol
emulation attacks [15, 44, 45]. The client and a proxy
regulate the frequency and size of emails following the
output of a model that we trained on genuine email
protocol behavior using generative adversarial networks
(GANs) [54], ensuring that they do not produce anoma-
lous transmission patterns that are detectable through
traffic analysis [7, 31, 36, 58, 65].

Raven supports covert interaction with TLS-based
services through the use of Intel processor Software
Guard Extensions (SGX) [3]. More specifically, Raven
enables secure, delay-tolerant TLS communication with
Twitter, an established use-case for censorship circum-
vention tools [42, 59]. In particular, Twitter has become
a recent target of state-sponsored censorship activity
as governments attempt to control the flow of informa-
tion on their networks [76], and Raven could be used
to combat these efforts. Raven clients use SGX to se-
curely establish fully encrypted and authenticated TLS
connections through a proxy server. The proxy fetches
TLS resources on behalf of the client and sends them
over encrypted email but is unable to read or modify
them.
Contributions: We make the following primary con-
tributions. In §2, we analyze previously proposed
censorship-resistant systems for their ability to achieve
behavioral realism and behavioral independence and
find that no previous system simultaneously achieves
both properties. In §3, we further motivate the impor-
tance of considering protocol behavior and demonstrate
how previous email-based censorship-resistant systems
that do not provide behavior independence [38, 42] can
be trivially detected through traffic analysis. We present
the results from a novel internet measurement of the ac-
cessibility of email protocols in censored regions in §4.1,
wherein we find that out-of-country email connections
are allowed to some degree for all tested countries. We
present the design of Raven, a novel censorship-resistant
communication system, in §4.3; we are the first to incor-
porate GANs trained on genuine user behavior in a way
that also prevents the censor from identifying our covert
channels due to behavior emulation flaws, and we are
the first to use SGX to enable delay-tolerant censorship-
resistant communication. Finally, we evaluate Raven in
§5; we find that Raven raises the false-positive rate in
identifying email cover protocols with 100% recall from

Learning to Behave: Improving Covert Channel Security with Behavior-Based Designs 3

Sphere of
Influence

The Free
Internet

Fig. 1. Censorship Model

3% to 50% compared to the state of the art while offer-
ing reasonable performance for periodic use of Twitter.

2 Background and Related Work
Background: The censorship model that we consider
is shown in Figure 1 and is based on standard assump-
tions from previous work [41, 61]. A user in a juris-
diction controlled by the censor (i.e., the sphere of in-
fluence [41]) wishes to communicate with other users
or publishers that exist on the free and open internet
(outside the sphere of influence). The censor’s goal is to
block access to information on the free internet that it
determines is prohibited. The user’s goal is to circum-
vent censorship and restore access to information using
censorship-resistant tools and protocols.

The censor does wish to maintain users’ general con-
nectivity to the internet; although its goal is to block
access to prohibited information, it does not want to
block access to benign information for economic rea-
sons. Hence, the censor attempts to minimize access to
prohibited information (false negatives) while limiting
the collateral damage caused by erroneously blocking
accesses to benign information (false positives).

The censor can passively monitor published infor-
mation from sources outside of its sphere of influence.
Within its sphere of influence, the censor controls the
network over which the user is attempting to commu-
nicate. The censor can passively observe packets, flows,
and hosts within its network; if packet payloads are en-
crypted, the censor can passively observe the ciphertexts
but cannot break encryption. The censor can perform
traffic manipulation and traffic analysis on all traffic it
observes in order to aid the blocking of packets, flows,
or hosts or to discover, inspect, and block censorship
circumvention systems. It can actively probe any host
inside or outside of its sphere of influence, and ana-
lyze distinguishing traffic features such as destination
addressing, size, timing, payload content, protocol se-
mantics, and user behavior semantics.
Related Work: Numerous systems have been proposed
to resist censorship [41, 61]. These systems include those

Table 1. Survey of behavioral independence and realism in
tunnel-based censorship-resistant systems.

Ca
st

le

Co
ve

rt
Ca

st

Cl
ou

dT
ra

ns
po

rt
D

elt
aS

ha
pe

r

Fr
ee

wa
ve

H
TT

PT

M
ai

let
Pr

ot
oz

oa
Ro

ok

Sk
yp

eM
or

ph

SW
EE

T
Ra

ve
n

Independence # # # G# # # # # G# #
Realism # # # # # # # # #
Citation [33] [46] [11] [6] [37] [26] [42] [8] [64] [48] [38] —
 the property is fully satisfied by the system
G# attempted, but the property is only partially satisfied
the property is not satified by the system

based on protocol mimicry [16, 17, 48, 66, 68], protocol
tunneling [6, 11, 26, 37, 43, 46, 48, 66], polymorphism [4,
69, 70], browser-based or scalable proxy systems [20–22,
50], refraction networking [10, 18, 27, 28, 35, 39, 49, 63,
73, 74], and cloud fronting systems [11, 23, 34, 77]. Many
of these approaches are vulnerable to traffic analysis [7,
25, 31, 36, 65] and other active attacks [15, 19, 29, 57].
We believe that most of these systems would improve
if they adopted techniques for behavioral independence
and realism, and we enable new opportunities for future
work to explore this space.

Tunnel-based censorship-resistant systems are par-
ticularly relevant to the design of Raven, which tun-
nels covert traffic over email (see §4.3). As shown in
Table 1, most previously-proposed tunnel-based sys-
tems, including Castle [33], CovertCast [46], Cloud-
Transport [11], Freewave [37], HTTPT [26], Mailet [42],
and SWEET [38], achieve neither behavioral indepen-
dence nor behavioral realism. These systems do not re-
alistically model human behavior, and user actions in
the covert channel may leak a significant amount of in-
formation when executing their cover protocols.

No system surveyed fully achieves behavioral inde-
pendence and behavioral realism. However, four previ-
ous systems do make some attempt at achieving these
properties: Protozoa [8] and Rook [64] achieve behav-
ioral independence and behavior realism, respectively,
while not supporting the other property. DeltaShaper [6]
attempts to adjust cover traffic to avoid introducing
new signals, but the adjustment process is heuristic and
user actions could still leak through to the cover proto-
col. SkypeMorph [48] sends traffic according to a shap-
ing oracle that is trained on the distribution of Skype
messages’ sizes and times. Strictly following the shap-
ing oracle’s decisions when shaping traffic would pro-
duce behavior-realistic traffic. However, SkypeMorph
violates behavioral independence because it (i) imme-

Learning to Behave: Improving Covert Channel Security with Behavior-Based Designs 4

diately sends packets as covert messages arrive and
(ii) does not send packets when there are no covert
messages to send. The traffic morphing mode of Skype-
Morph is a promising method to achieve traffic analysis
resistance, but security relies on the choice of a realistic
target (cover) distribution [72].

Systems that use email as a cover protocol (as Raven
does) include SWEET [38] and Mailet [42]. SWEET
proposes to use email to transport both upstream and
downstream traffic while covertly web browsing [38],
while Mailet is designed to use email to communicate
with proxies that access social sites such as Twitter [42].
Neither SWEET nor Mailet achieve behavioral indepen-
dence or provide a way to produce behavioral-realistic
email sending and receiving patterns, making them vul-
nerable to detection by traffic analysis. We show in
§3.1.3 how Mailet’s traffic patterns are distinguishable
from genuine email patterns.

3 Behavior-Based Protocols
In this section, we discuss the basic properties of behav-
ior modeling that generally apply to censorship circum-
vention systems.

3.1 Properties of Behavior Modeling

Traffic analysis attacks pose a serious threat to censor-
ship circumvention techniques. In practice today, cen-
sors tend to favor cheaper approaches (for example, ac-
tive probing) to identify and block hosts participating
in censorship circumvention protocols. But, new circum-
vention systems are being designed to frustrate these
cheaper attacks [17, 26], which may force a censor to
instead rely on traffic analysis to detect these hosts.
Moreover, traffic analysis attacks using machine learn-
ing classifiers have been shown to be highly effective at
detecting network protocol obfuscation [7, 65].

Traffic analysis attacks search through protocol traf-
fic for a signal that enables an attacker to distinguish
and separate ordinary, benign protocol traffic flows from
those used as cover traffic for censorship circumvention.
This signal often takes the form of network packets’
transmission times and sizes. For example, Wang et al.
found that meek, a circumvention system, produced
traffic that exhibited unusual TCP ACK transmission
times. A machine learning classifier given ACK inter-
vals as a feature is able to distinguish meek traffic from
among ordinary HTTPS traffic (meek’s cover protocol)
[65]. Many prior works haphazardly model cover proto-

col behavior, or do not model behavior at all, rendering
them susceptible to detection through traffic analysis.

We argue that realistic behavior modeling is a cru-
cial component of censorship circumvention systems. We
focus on two key properties of behavior modeling that
are often overlooked: (i) behavioral independence, and
(ii) behavioral realism.

3.1.1 Behavioral Independence

Behavioral independence is satisfied if inputs to and ac-
tions made by the covert channel do not affect the ob-
servable behavior of the cover protocol; e.g., the usage
behavior of Twitter (the covert channel) is independent
of the operation of the email cover protocols. In other
words, behavioral independence is achieved if the cover
protocol behaves identically, regardless of which covert
channel inputs are given. This property alone is not suf-
ficient for covertness, but does provide a type of traffic
analysis resistance—if cover protocol traffic is indepen-
dent of covert channel traffic, then the censor cannot
learn anything about the behavior of the covert channel
by observing the cover protocol.

System security can be degraded in two ways when
behavioral independence is not achieved. First, the
covert channel behavior may introduce artifacts into the
cover protocol messages that do not occur frequently
with ordinary cover protocol operation, which may serve
as a signal to detect the presence of the covert traffic.
This degradation is particularly problematic when user
actions (for example, clicking HTTP links in a covert
web-browsing session) affect cover protocol behavior,
because it is impractical to rely on users to provide ac-
tion sequences that result in realistic cover behavior. A
case of this reliance is seen in the SWEET email-based
censorship circumvention system, where it is assumed
that users make only up to 70 webpage fetches per day
as to not transmit emails too frequently [38]. Second,
if the censor is able to identify and monitor a covert
channel within a cover medium, then the censor may
be able to infer the contents of covert messages through
the information leaked by the cover protocol.

3.1.2 Behavioral Realism

As stated above, behavioral independence is not suffi-
cient to provide channel covertness—an important de-
sign question remains: which actions should the cover
protocol make? Using the wrong choice of inputs may

Learning to Behave: Improving Covert Channel Security with Behavior-Based Designs 5

lead to out-of-the-ordinary cover protocol behavior (for
example, sending messages too quickly) that can be used
by the censor to identify channel usage. Behavioral real-
ism requires that the distribution of observable behavior
exhibited by the cover protocol is similar to the distribu-
tion of behaviors exhibited by typical, genuine usage of
the protocol. This property may be achieved by measur-
ing the distribution of inputs to the cover protocol dur-
ing genuine executions, and sampling new sequences of
inputs from the learned distribution. Some previously-
proposed censorship circumvention systems use heuris-
tic approaches to achieve realism, like rate limiting pro-
tocol inputs [33, 38]. However, the choice of parameters
in the heuristics are made haphazardly. Instead, we rec-
ommend that user actions be explicitly modeled from
genuine protocol inputs. In §3.2, we discuss techniques
that can be used to model these distributions.

3.1.3 A Study of Mailet

To study the effects that behavior modeling can have
on a censorship circumvention system, we examine the
Mailet censorship circumvention system which is de-
signed to provide Twitter microblogging services over
email [42]. All covert protocol messages are carried
within emails, which are encrypted using TLS when
transferred between email clients and servers.

In Mailet’s design, user actions determine the sizes
and times of emails sent through the system. For ex-
ample, when a user wishes to Tweet, the Mailet client
immediately sends an email containing the Tweet con-
tents to a Mailet server—there is no queuing or shaping
applied to the email. Upon posting a Tweet successfully,
the Mailet server immediately responds with a 7 byte
success string. Li and Hopper argue that Mailet behav-
iors do not significantly differ from typical email behav-
iors; i.e., that Mailet behavior is, by nature, difficult to
distinguish from genuine email behavior. However, note
that Mailet violates behavioral independence, and can
violate behavioral realism (if Tweet sizes and times vary
significantly from genuine emails). Through a simple
traffic analysis attack, we will demonstrate that covert
traffic sent by Mailet is easily detected and blocked.
Simulated Dataset: Mailet is not a publicly deployed
system, so to analyze its behavior we simulate its us-
age using the open-source Mailet implementation [2].
Following Li and Hopper, we consider a scenario where
Mailet users can (i) post Tweets and (ii) search key-
words. We used archived data from August 2019 of
Twitter’s “Spritzer” stream, a 1% sample of all pub-

lic Tweets [67]. The corpus contains 97,261,581 Tweets
made by 28,564,408 users. From this corpus of Tweets
and users, we sampled 100 verified users at random.2

To simulate Mailet Tweet behavior, we obtained
each user’s complete Tweet history from August 1 2019
to October 1 2019 and recorded Tweet sizes and times-
tamps. To simulate Mailet searches, we identified 250
popular hashtags in the corpus. We obtained Twitter’s
search results for each keyword with contents from Au-
gust 1 2019 to October 1 2019. Following Li and Hop-
per, we assume an average of 4–5 searches are made
by each user for each Tweet. We assume the Twitter
server responds with between 1 and 100 (the maximum
response size) search results, chosen at random. We run
the Mailet code to obtain the Mailet emails sent for each
Tweet and search.
Evaluation: We treat the task of identifying Mailet
emails from among genuine emails as a supervised bi-
nary classification machine learning task. Each day of
email behavior constitutes a single input example. We
use a 30-dimensional feature space where each feature
is a summary statistic (count, mean, standard devia-
tion, skewness, kurtosis, minimum, maximum, and per-
centiles 0.1–0.9) describing the distribution of sizes for
emails that were sent and received on a day. These fea-
tures have been shown to be informative when detecting
covert channels [7].

From a corpus of genuine email usage collected from
this paper’s authors, (discussed further in §5.2) we ran-
domly select six genuine email users and six Mailet
users to constitute the training dataset. From each of
these twelve users, we sample 60 days worth of input
examples. On this training data, we train a random for-
est classifier (with 100 trees) using the scikit-learn
Python package. Then, we evaluate classifier perfor-
mance on a test set of 60 examples taken from one gen-
uine mail user and one Mailet user (distinct from the
training users). We used k-fold cross validation and re-
peated this process for k = 7 different folds of training
and testing data.

A summary of classifier performance is given as
follows. On average, the classifier was able to
achieve 100% recall, i.e., T P

P where TP is the num-
ber of true positives (correctly labeled Mailet examples)
and P is the total number of positive/Mailet examples

2 During this sampling, users were partitioned into 20 evenly-
spaced percentiles based upon their Tweet frequencies. 5 users
were sampled uniformly from each part to ensure we obtained a
range of Twitter behaviors.

Learning to Behave: Improving Covert Channel Security with Behavior-Based Designs 6

100 102 104 106 108

Email Size (bytes)

0.0

0.5

1.0
Cu

m
ul

at
iv

e
D

en
sit

y

Authors, Incoming
Authors, Outgoing
Mailet, Incoming
Mailet, Outgoing

Fig. 2. Distribution of genuine vs. Mailet email sizes.

in the test set. The classifier achieved a relatively-low
3% false positive rate, i.e., F P

N where FP is the num-
ber of false positives (genuine examples predicted to be
Mailet) and N is the total number of negative/genuine
examples in the test set. In other words, on average,
the trained classifier was able to identify all instances
of Mailet usage, while incorrectly labeling only 3% of
genuine email examples as originating from Mailet.

This relatively strong classifier performance is due
to Mailet’s distinctive email sizes. Figure 2 shows the
distribution of all email sizes in the genuine email
dataset we collected and the simulated Mailet dataset.
Mailet email traffic has unique characteristics: (i) there
is a high prevalence of small, incoming emails in Mailet
due to the broker sending a 7 byte success string upon
each successful Tweet; and (ii) most outgoing email is
small relative to ordinary email, as it contains only a
short Tweet or keyword to search.

Both of these unique characteristics highlight the
importance of behavior modeling. By definition, a sys-
tem with behavioral independence cannot leak covert-
channel behavior, such as the transmission of small con-
trol messages, through the cover protocol. A system
achieving behavior realism must transmit emails with
sizes that are in accord with the genuine email patterns,
precluding the case seen in Mailet where unusually-
many small emails are sent.

3.2 Methods for Behavior Modeling

Traffic analysis vulnerabilities, such as the one observed
in Mailet, emphasize the need to adopt behavioral in-
dependence and realism in covert channel design. Two
techniques can be used to achieve these properties.

To satisfy behavioral independence, cover proto-
col inputs can be scheduled and executed regardless of
which covert channel behaviors need to occur. (These
inputs should be scheduled according to a distribution
of realistic user behavior, described further below.) Mis-
matches between cover protocol performance limitations

and covert channel performance requirements can lead
to poor covert channel goodput. In §3.3, we discuss de-
sign choices that can be used to improve performance.

A model of the distribution of typical cover proto-
col inputs can be used to achieve behavioral realism.
Learning such a distribution consists of two tasks: (i)
gathering genuine user inputs, and (ii) building a model
to encode the distribution of inputs. Once inputs are
gathered, generative machine learning models can be a
useful tool for learning distributions—given a number
of unlabled input examples x1, x2, . . . , xn from a dis-
tribution D, a generative model can learn a synthetic
distribution D̂ ≈ D and produce a new synthetic exam-
ple x̂ ∼ D̂ such that x̂ ̸= xi for all 1 ≤ i ≤ n. Generative
models based on deep neural networks, such as genera-
tive adversarial networks (GANs), have been trained to
accurately model highly complex distributions, such as
images of human faces [32, 40]. Using generative mod-
els, as opposed to replaying behaviors from a corpus of
user behavior, prevents the censor from obtaining the
corpus and testing if behaviors are contained within the
corpus. In §5, we show how we trained GANs to learn
and produce email behaviors.

3.3 Considerations of Modeling

Although behavior modeling can improve
circumvention-system covertness, it can also degrade
performance. The rigid schedule of inputs given to the
cover protocol (e.g., “send the next email 3 hours from
now”) may disagree with the performance desiderata
of the covert channel (e.g., “post a Tweet now”). In
particular, high latency cover protocols cannot be used
naïvely for low-latency applications. For example, a
TCP connection cannot be tunneled over email with
human-scale delays inserted without experiencing time-
outs. Similarly, low bandwidth cover protocols (e.g.,
VoIP) cannot be used to realize high bandwidth covert
channels (e.g., streaming HD video) without violating
behavior modeling principles.

To realize useful functionalities over high-latency
channels, application proxies can be used. For ex-
ample, instead of trying to tunnel raw TCP pay-
loads from a client to a web server over email, an
HTTP proxy can receive a short command (e.g., “fetch
https://example.com”) and dispatch the command on
behalf of the client. Unfortunately, most designs for ap-
plication proxying require trust in the proxy to exe-
cute the functionality correctly, introducing an addi-
tional point of failure. Instead, we recommend proxy

Learning to Behave: Improving Covert Channel Security with Behavior-Based Designs 7

designs that implement these functionalities securely. In
the case study that follows, we show that secure hard-
ware enclaves can be used to securely implement the
transmission of TLS-protected HTTP commands.

4 Case Study: Communicating
over Email Cover Protocols

In this section, we present a case-study in design-
ing a censorship-resistant communication system called
Raven that uses email cover protocols and our behavior-
based protocol design principles from §3 after first
demonstrating the feasibility of using encrypted email
as cover protocols in the real world.

4.1 Accessibility of Email Protocols

We conduct real world internet measurements to inform
our use of email cover protocols for censorship resis-
tance. We consider the use of email service providers
that are located outside of the censor’s sphere of influ-
ence, which is advantageous because it prevents the cen-
sor from directly observing email headers and content.
We thus consider the question: is it possible to access
out-of-country email services using encrypted IMAP and
SMTP from within censored regions?

Towards answering this question, we first formed
a baseline of countries that perform censorship. Us-
ing RIPE Atlas [55] probes distributed among 169
countries, we attempt HTTPS connections to Face-
book, Google, Reddit, the National Democratic Insti-
tute (NDI), and the Tor Project—websites that the
ICLab censorship measurement platform [51] report as
being often subject to censorship. Prior work has shown
that RIPE Atlas probes are largely located at service
provider networks and are suitable for performing mea-
surements from within provider networks [5]. We con-
sider the 32 countries where we encountered the great-
est number of unsuccessful HTTPS requests, where a
request is considered unsuccessful if it either fails to
connect or cannot validate the certificate, for example,
due to TLS man-in-the-middle (MitM). Certificate vali-
dation was performed using the default trust roots pack-
aged with Ubuntu Linux. The 32 countries that exhib-
ited the most censorship are listed in Table 2 (see Ap-
pendix D). This set represents the regions that could
potentially benefit the most from the use of email cover
protocols given their prevalence of censorship.

We next determine the accessibility of email pro-
tocols in these regions. We attempted approximately
14,000 connections from RIPE Atlas probes located in
these 32 countries to the SMTPS (465) and IMAPS
(993) servers hosted by Gmail, Yahoo!, Riseup, and an
email server operated by an author in North America.
We include Gmail and Yahoo! since they represent ma-
jor email providers with large numbers of users. Riseup
is an organization that provides tools for “people and
groups working on liberatory social change” [56], and
thus we expect it to be particularly prone to blocking.
Finally, the small single-user email server is included
to measure whether countries block access to unknown
email services. We consider a connection to be success-
ful if and only if (i) the probe is able to connect to
both the SMTPS and IMAPS ports and (ii) we are able
to authenticate the certificate. We performed certifi-
cate verification at our institution (by post-processing
the observed certificates) to mitigate the effects of cor-
rupted roots of trust at the probes. Conceptually, our
success criteria indicates instances in which a user could
both send (SMTPS) and receive (IMAPS) email with
the email server, without being subject to MitM. Since
RIPE Atlas is incompatible with STARTTLS, our re-
sults are conservative, since some regions may support
STARTTLS but not SMTPS.

From this measurement, we found that the country-
averaged probe connection success rate to Gmail, Ya-
hoo!, Riseup, and the personal email server were 86%,
87%, 84%, and 90%, respectively. The full set of mea-
surement results is given in Table 2. Note that it is pos-
sible to use email protocols as cover protocols whenever
a connection to any email service succeeds. For exam-
ple, in China, only 45% of probes were able to connect
to Gmail, but 85% could connect to Yahoo. Iran blocked
11% of probes’ connections to Yahoo!, but did not block
any connections to either Gmail or Riseup. Uganda and
Kyrgyzstan exhibited the most blocking, but in both
cases 50% or more of probes succeeded in establishing
secure connections to out-of-country email servers.

Overall, we find that all tested countries allow some
degree of out-of-country IMAPS and SMTPS, and that
in most countries, the vast majority (> 85%) of our
probes could securely connect to the email servers. Our
results also show that blocking unknown email servers
(i.e., our local server) is rare.

Learning to Behave: Improving Covert Channel Security with Behavior-Based Designs 8

4.2 Design Preliminaries

Assumptions: We derive three key assumptions based
on our measurement study in §4.1 and the censorship
model from §2 that will inform the design of our email-
based communication channel in §4.3. First, we consider
a blocklisting adversary that does not block all email
protocols, but may block specific email service providers
or individual servers. Second, we assume that any ser-
vice located inside the censor’s sphere of influence is
untrusted and can be manipulated or otherwise com-
promised by the censor. And third, any service outside
of the censor’s sphere of influence is also untrusted and
uncooperative: it cannot be directly manipulated, but
the censor can pressure it. In particular, outside ser-
vices may seek to discover and block service usage that
does not comply with their terms of service agreements
(as has happened in the case of domain fronting [60]).
However, we assume that not all service providers will
participate in both discovery and blocking.
Goals: Our primary design goal is to ensure that a cen-
sor that observes the network traffic produced by the op-
eration of email cover protocols is unable to distinguish
them from other benign executions of those protocols.
If the censor suspects that some users within its sphere
of influence are sending covert messages over email, it
should be unable to detect those users with certainty.
(Recall from §2 that the censor is unwilling to block
broad email usage due to a high collateral damage that
it would incur.) Guided by our behavioral realism and
behavioral independence principles discussed in §3, we
aim to achieve our indistinguishability goal by ensur-
ing that the operation of the cover protocol is realistic
and independent of user actions. Note that we aim to
support high-latency, low-volume applications like Twit-
ter; we explicitly consider low-latency, high-volume, and
anonymous communication as out of scope.

4.3 Raven Design

We now present the design of Raven, an email-based
censorship-resistant communication channel that pro-
vides independence between covert and cover protocols,
uses generative adversarial networks (GANs) [54] to
enforce behavior-realistic communication patterns, and
uses SGX [3] to enable delay-tolerant TLS communica-
tion with Twitter (or other TLS-based services).

Fig. 3. To bootstrap, a single message is sent from the client to
the broker and includes channel configuration parameters. The
broker assigns the channel to a proxy, which responds to the
client to form the Raven channel.

4.3.1 Operation of the Cover Protocols

Parties: Figure 3 shows the parties involved in Raven.
The primary parties that run Raven software include
a client that wants to circumvent censorship, and bro-
ker and proxy servers that facilitate circumvention to
enable the user to access the free internet. Raven also
utilizes third-party email service providers to facilitate
communication between nodes. Our use of the email ser-
vice providers aligns with the way normal humans use
them; i.e., we use them to transport encrypted Raven
messages while mimicking the stochastic traffic patterns
of plausible email users. The service providers allow us
to obfuscate the Raven servers as the destinations of
Raven messages within the censor’s sphere of influence,
as traffic to and from the Raven servers would not be di-
rectly observable by the censor when using email service
providers as intermediaries.
Bootstrapping: The bootstrapping process is shown
in Figure 3. A user obtains the Raven client software
and configures it to connect to a new client-side email
account that is independent of the user’s identity via
the standard encrypted email protocols SMTPS and
IMAPS. The client uses this account to send and re-
ceive email messages to and from a third-party email
provider located outside of the sphere of influence.

We use a modular design for the Raven servers,
which is possible due to the asymmetric and location-
independent nature of email. The broker registers an
email account with a public email service provider (e.g.,
Gmail). This account is only used to receive a single
handshake message for each Raven client that wants to
bootstrap a Raven channel, but not to send messages.
This design choice allows new clients to reach the broker
via a well-known public email address while the broker
remains a low-volume user of the email service. On the
other hand, the proxy uses a Raven mailserver that is ca-
pable of interacting with other email service providers.
We run this mailserver so we can support higher volumes
than some email service providers would find acceptable,

Learning to Behave: Improving Covert Channel Security with Behavior-Based Designs 9

G

Noise
Generator

Discriminator

D

Genuine
Samples

Generate normal-
looking data

Synthetic
Samples

Feedback
Training

Is D
correct?

Determine whether generated
data is genuine or synthetic

Fig. 4. The generator is trained using genuine email samples and
a feedback loop with a discriminator.

and we can dynamically provision higher-volume ser-
vices to carry the load from the interaction with clients
over the covert channel. The Raven servers can tem-
porarily go offline or migrate to different hosts if neces-
sary; as long as their mail user agents can access their
email providers, they are location-independent. This de-
sign is based on our initial deployment experiences,
which we detail in Appendix B.

To bootstrap the Raven channel, the client sends
an initial handshake request message (including chan-
nel configuration parameters) to the broker at its public
email address. Upon receiving a handshake request from
a client, the broker assigns the new request to a proxy.
The proxy uses the client’s choice of parameters to ini-
tialize a sending process that is synchronized with the
client’s receiving process, and then sends a handshake
response to the client using the proxy’s email service.
After receiving the response, the client and proxy can
continue communicating over the channel.
Behavioral Realism: Raven uses a behavior genera-
tor that is trained using generative adversarial networks
(GANs) [54] to determine realistic email timings and
sizes. GANs are trained to model a distribution over the
training data and can efficiently generate new, synthetic
samples from the learned distribution. The GAN train-
ing process consists of a game played between a genera-
tor that produces synthetic samples, and a discrimina-
tor that evaluates the samples. The goal of the generator
is to produce samples that the discriminator is unable to
distinguish from true data elements during evaluation.
As shown in Figure 4, the generator is trained using gen-
uine, human-generated email meta-data (email sending
times and sizes) and a feedback loop with the discrimi-
nator to produce new sending patterns that are difficult
to distinguish from genuine user behavior.

Raven requires genuine email meta-data (email
times and sizes) for training the GAN, but our de-
sign offers flexibility on the data source. Some example
sources include public email datasets such as the En-
ron [1] and Avocado [52] sets, email meta-data collected
by a trusted organization such as a university or non-

profit, or even users of Raven themselves. The choice of
data source should consider the risk of a censor poison-
ing the data to inject a signal that could later be used
to detect Raven traffic; some data sources are much less
susceptible to such an attack. This issue is discussed
further in § 5.1.

The email meta-data is distilled through a training
process into a behavior generator model that contains
a set of user profiles P that encompass the email send-
ing patterns of one or more users. Depending on the
data source, the model could be trained either (i) by
the Raven deployment team or trusted affiliate and dis-
tributed with the Raven software (and model updates
sent as compressed email attachments of a few MB), or
(ii) by the Raven client on first start. Once trained (see
§5.2), the generator model is used by a message handler
component to shape email cover traffic, i.e., to deter-
mine precisely when to send email messages and how
large they should be.
Behavioral Independence: Raven buffers user-
initiated requests to send covert messages in order to en-
force independence between the covert channel and the
email cover protocols. When the behavior generator in-
dicates that it is time to send an email, the message han-
dler checks the outgoing user buffer; if application data
is present in the buffer, the message handler will pack,
fragment, and pad it to the correct size as instructed by
the behavior generator. Otherwise, the handler gener-
ates a dummy message of the correct size. To obfuscate
the message content, the message handler then GPG-
encrypts the message (a standard method of encrypting
email content) before passing it to the mail user agent
(e.g., Thunderbird). The mail user agent writes the en-
crypted message into the body of a new email that it
sends to the proxy’s email address using an encrypted
SMTPS connection to the email service provider.

When messages from the client are delivered to its
inbox, the proxy receives them through an encrypted
IMAPS connection with the proxy’s mailserver. From
here, the message moves through the reverse process
that was applied at the client: the message is decrypted,
stripped, extracted, and reassembled. Dummy messages
are discarded, and legitimate application data is passed
up to an incoming buffer that is read by the proxy’s
side of the Raven plugin. Once an initial message is
received from the client, an analogous process to the
one we described above (and in Figure 5) operates in the
reverse direction (from proxy to client) in parallel on the
proxy in order to support bidirectional communication.
Tuning Raven: Raven is tunable with respect to the
user profiles: it allows clients to operate i user profiles in

Learning to Behave: Improving Covert Channel Security with Behavior-Based Designs 10

Fig. 5. The Raven channel design. Sending and receiving through
the channel is analogous in both directions.

parallel such that 1 ≤ i ≤ |P|. The i profiles are chosen
at random from all possible combinations, and fixed for
the duration of Raven usage. Larger values of i result in
Raven sending and receiving more email traffic, which
will increase the capacity of the covert channel but may
also increase the suspicion of a network adversary ob-
serving the channel. Raven uses i = 1 as the default (the
most secure setting), however, we consider that choos-
ing i > 1 is reasonable since the network traffic that
would result could have plausibly been created by mul-
tiple genuine email users who share an IP address due
to network address translation (NAT) devices like home
or commercial routers.3

4.3.2 Using the Covert Channel

Overview: Raven enables covert communication be-
tween its clients and proxies, which can support gen-
eral, plug-in functionalities. Malicious proxies constitute
a serious threat in this design. Tunneling HTTPS/TLS
connections through Raven is not an option due to the
timeouts that would occur as a result of the high la-
tency of its email cover protocols. Instead, we design a
secure, delay-tolerant proxy in a trusted execution envi-
ronment (Intel SGX) that can verifiably transmit TLS
messages, such as Twitter feeds, specified confidentially
by the client and return the contents with confidential-
ity and integrity guarantees.

3 A recent report from the U.N. explains that the average house-
hold size across 153 countries ranges from 2.1 to over 8 persons
per household [62]; those users may have several devices that
send and receive email and that are sporadically connected to
the internet, and they may frequently host guests that use email.

Raven Client Raven Proxy IAS Website

SGX Handshake
(Requires 4 roundtrips)

Shared Secret Established / Resumption Point

Fetch URL

Resp. URL

Resp. URL

URL

Email Direct SGX-encrypted

Fig. 6. A Raven client performs SGX remote attestation with a
Raven proxy, and then remotely fetches TLS resources using the
SGX-encrypted secure enclave.

Software Guard Extensions: Intel SGX is a recent,
popular trusted computing platform proposed by In-
tel [14]. SGX allows for trusted code to be verifiably
and confidentially executed inside of a secure enclave
process on an otherwise untrusted host; any other pro-
cess (including kernel/ring-0 processes) cannot read or
write enclave memory and cannot modify instructions
executed inside the enclave. These properties are sup-
ported by the CPU and motherboard—special assembly
instructions are used to enter and leave a protected en-
clave process, and the CPU and memory-management
unit ensure that enclave memory is only decrypted and
accessible when the enclave is running.

The SGX platform includes a remote attestation
procedure that allows an external process (in partic-
ular, a non-enclave process running on another host)
to (i) establish a shared-secret with an enclave process,
and (ii) become convinced that the enclave process is
correctly running an unmodified version of a known,
trusted program. The shared-secret is established using
a Diffie-Hellman handshake that is partially executed
inside the enclave. To prove program correctness, the
enclave produces a “quote”, i.e., a cryptographic hash of
the enclave’s code and data memory pages. This quote is
checked and signed by Intel’s Attestation Service (IAS)
and presented to the client.4

Note that Intel SGX is a relatively new crypto-
graphic technology, and there have been some side-
channel attacks published affecting SGX security (e.g.,
SgxPectre [12]) which should be addressed in any real-
world systems depending on SGX.
SGX-Protected Proxy: The ability to delegate sen-
sitive tasks to the trusted SGX enclave enables se-

4 The remote-attestation process requires trust in Intel’s public-
key infrastructure, in which Intel is the root of trust.

Learning to Behave: Improving Covert Channel Security with Behavior-Based Designs 11

cure functionalities that otherwise would be difficult to
achieve in a high-latency setting. The Raven client first
needs to establish a shared secret with the proxy. The
Raven client performs remote attestations with the en-
clave to receive proof that the enclave is running cor-
rectly and establishes a persistent symmetric key sk.
(Note that all messages sent to/from the client are trans-
ferred through Raven). This process requires four round-
trips between the Raven client and proxy (shown above
the dashed line in Figure 6). Once a shared secret be-
tween the Raven client and proxy has been established,
the client can send any number of messages (shown be-
low the dashed line in Figure 6) without reestablishing
the secret.

To perform a URL fetch operation, the client en-
crypts a URL under sk with an authenticated encryp-
tion scheme and sends it to the enclave. Then, the en-
clave decrypts the URL, and while remaining inside the
enclave, establishes a TLS connection with the spec-
ified web host and fetches the resource. Crucially, all
cryptographic operations occur within the enclave; the
URL, GET request, and fetched resource are inaccessi-
ble and unmodifiable from outside the trusted enclave.
(The untrusted host running the SGX proxy does learn
the identity of the web host, as do Tor exit relays and
all proxies fetching web resources in other proxy sys-
tems.) Once the resource has been fetched, the enclave
encrypts it with sk and sends it to the client (over the
Raven channel). The overall process is shown as a mes-
sage sequence diagram in Figure 6.

4.4 Sketch of Raven’s Security Properties

We briefly summarize Raven’s security properties with
respect to their effect on the protocol parties.
The Censor: The censor observes TLS connections
between email clients and providers. The censor can
prevent availability by uniformly blocking SMTPS and
IMAPS connections, but will have difficultly selectively
blocking only Raven users. Since Raven uses real email
applications, it resists probing attacks.
The Provider: All communications between parties
are GPG-encrypted using our simple PKI (the broker
is a known entity with a global public key); this pro-
vides point-to-point secure channels between the client,
broker, and proxies. The email provider can detect the
presence of Raven messages, but cannot read the con-
tents of messages or modify them. By assumption (see
§4.2), there exists at least one provider that does not
attempt to deny service to each protocol participant.

The Proxy: As stated above, we assume GPG provides
a secure channel between the client and the proxy’s un-
trusted operating system. The remote attestation pro-
cess negotiates a secure channel between the client and
the secure enclave running on the untrusted proxy. The
proxy’s untrusted components (and by extension, the
broker—see below) can learn the network identity (IPv4
or IPv6 address) of the website contacted, but can-
not view or modify the contents of TLS fetches made
through the secure enclave.
The Broker: A malicious broker can redirect the client
to any proxy that the broker desires. However, the SGX
client will only use proxies that can perform the Intel
SGX remote attestation process, which guarantees the
client access to a secure enclave. The broker can deny
service by ignoring client connection requests. However,
in practice, we assume the broker will be run by a known
trusted party (or parties), similar to Tor’s directory au-
thorities.

We remark that, because Raven is probe-resistant,
behavior-realistic, and behavior-independent, the censor
will be required to rely on behavior analysis and traffic
analysis in order to attempt to distinguish Raven from
genuine use of email on its networks. We evaluate the
effectiveness of Raven against such analysis in §5.

5 Evaluation
In this section, we demonstrate the benefits of apply-
ing our behavior-based design principles through an in-
depth evaluation of Raven. Note that our evaluation
additionally includes a real world deployment of a pro-
totype implementation of Raven, the details of which
we present in Appendix B due to space constraints.

5.1 Data Methodology

To maintain covertness, Raven connections need to be
modeled realistically after genuine email behavior. Pro-
ducing such a model requires a dataset of email sending
and receiving behavior. In a real world deployment, this
data could be collected from a variety of sources, but the
choice of the source of email meta-data should consider
the ability for an adversary to poison the data in order
to inject a signal that could later be used to detect the
presence of Raven clients. Datasets that were created
prior to Raven have a very low risk of being poisoned
specifically against Raven. Similarly, there is little risk

Learning to Behave: Improving Covert Channel Security with Behavior-Based Designs 12

of data poisoning for Raven users that provide their own
personal email meta-data to privately train a behavior
model locally before using Raven. There may be more
risk associated with data provided by volunteers; this
risk could be mitigated by accepting data only from
trusted volunteers, or by forgoing volunteers and work-
ing directly with email providers to obtain meta-data.

For the purposes of evaluating Raven in this paper,
we use two sources of email behavior: (1) email data col-
lected from this paper’s authors, and (2) archived email
data, made available through the Linguistic Data Con-
sortium5, gathered from the “Avocado” IT Company.
Author Dataset: Our first dataset, the Author
dataset, was collected voluntarily from the seven au-
thors of this paper. We collected the timestamps and
sizes of emails sent and received during the six year pe-
riod starting on Jan. 01, 2014. In total, we collected (i)
66,327 sent emails with an average of 4 emails sent per
volunteer-day and an average size of 173 KiB, and (ii)
605,250 received emails with an average of 40 emails re-
ceived per volunteer-day and an average size of 88 KiB.

We use the email data from our limited set of 7 au-
thors to simulate a more realistic scenario where many
volunteers provide fewer data points. To do this, we or-
ganize each distinct week of genuine data from each au-
thor into a user profile; i.e., each user profile corresponds
to the email behavior of a particular author during a sin-
gle week. This process results in the creation of a total
of 2,620 user profiles. Raven is evaluated on the basis of
these profiles, explained later in this section.
Avocado Dataset: Although the Author dataset does
contain a large volume of modern email behavior, it is
limited due to the small number of authors whose data
comprises the dataset. In order to supplement our data,
we also ran our system evaluation on a second, older
email dataset. The Avocado Research Email Collection
(the Avocado dataset) is a collection of real users’ emails
from a now-defunct, pseudonymous “Avocado” IT com-
pany. “Avocado was an Information Technology soft-
ware and services firm developing products for the mo-
bile Internet market, operating from the late 1990s to
the middle of the first decade of the 21st century” [52].

The dataset contains 279 cleaned and privatized6

Microsoft Outlook mailbox files. We found that 273 of
these mailbox files contained email files (several con-

5 https://www.ldc.upenn.edu/
6 See https://catalog.ldc.upenn.edu/docs/LDC2015T03/
README.txt Section 5 for the procedures used to remove
personally-identifiable information from the dataset.

tained only contact files, for example). We assume that
each Outlook mailbox file corresponds to a unique user
(in the dataset documentation, it is said that “[m]ost of
the accounts are those of Avocado employees”). How-
ever, unlike our author dataset, we did not know during
which time periods each user was active and using email.
In particular, accurately identifying periods of inactiv-
ity is challenging: for example, if no emails are present
during a given time, we do not know if this is due to
the user being inactive, or if the user was active but no
emails were transmitted. To infer periods of activity, we
look for sent emails as a sign that the user was active.
On days when a user sent an email, we collect the user’s
incoming and outgoing email activity on that day, as
well as the activity on the prior and next days.

In total, we collected (i) 145,320 sent emails with
an average of 5.1 emails sent per employee-day and an
average size of 85 KiB, and (ii) 481,401 received emails
with an average of 17 emails received per employee-day
and an average size of 53 KiB. The dataset contains
28,630 total days of activity for 218 users (profiles).
Features: We process the email data into a represen-
tation that is appropriate for the modeling task. We
aggregate the email data into day-long periods of be-
havior and summarize the daily sending and receiving
behavior with 12 hand-picked features: the volunteer ID,
day of week, number of emails transmitted, and 5 per-
centiles (0th, 20th, 50th, 80th, and 100th) of the email
size and transmission time distributions. These features
have been shown to be highly informative when charac-
terizing encrypted network traffic [7].

5.2 GAN Evaluation

CTGAN: We train a conditional tabular generative
adversarial network (CTGAN) [75] to learn and imi-
tate email transmission patterns. (In particular, we use
the CopulaGAN model provided by the Synthetic Data
Vault project7.) The CTGAN is a state-of-the-art gen-
erative network that uses an efficient fully connected
neural network to handle the tabular feature space as-
sociated with our user profiles.

Our selection of CTGANs over more traditional
GANs or conditional GANs is due to two factors. First,
although GANs have been found to be effective at
generating fake images for the computer vision do-
main [13, 32, 47], they perform poorly when operat-
ing on lower dimensional, tabular data that is char-

7 https://sdv.dev/

https://www.ldc.upenn.edu/
https://catalog.ldc.upenn.edu/docs/LDC2015T03/README.txt
https://catalog.ldc.upenn.edu/docs/LDC2015T03/README.txt
https://sdv.dev/

Learning to Behave: Improving Covert Channel Security with Behavior-Based Designs 13

0.0 0.5 1.0
Day of Week

Time Max
Time Pctl 50
Time Pctl 20

Time Min
N. Emails

Time Pctl 80
Size Max

Size Pctl 80
Size Pctl 50
Size Pctl 20

Size Min
Authors

Incoming
Outgoing

0.0 0.5 1.0

Avocado

Bhattacharyya Coefficient

Fig. 7. The Bhattacharyya coefficient of samples drawn from
the genuine and synthetic univariate distributions over features.
The coefficient achieves a maximal value of 1.0 when the syn-
thetic samples’ density matches the genuine samples’. The left
plot shows the results for the Author dataset and the right plot
shows the Avocado dataset.

acteristic of our email dataset. Second, CTGANs are
more amenable than traditional GANs for inputs that
have a non-Gaussian multimodal distribution of con-
tinuous features and imbalanced discrete features. Our
dataset contains data from different email users, each of
whom exhibits email behavior that does not necessar-
ily follow a Gaussian distribution. (More precisely, the
distribution of their continuous feature values is often
non-Gaussian.) CTGAN effectively detects continuous
features and represents features from different distribu-
tions by applying mode-specific normalization. For dis-
crete data, CTGAN learns via the training-by-sampling
method.
Training and Evaluation: Using the CTGANs, we
preserve the original dataset size while generating syn-
thetic incoming email samples and outgoing email sam-
ples from the incoming and outgoing data points (i.e.,
days) in our datasets. Overall, the learned behavior
model overall consists of four GANs: two GANs trained
on the “number of emails” field in the incoming and
outgoing direction, and two GANs trained on the email
size/time distribution fields in the incoming and out-
going directions. We evaluate the output of the model
after each GAN for 500 epochs, which we empirically
determined was the point of diminishing returns.

To evaluate the quality of the training process, we
take synthetic examples produced by the trained model
and compare them to original points in the Author and
Avocado datasets. More specifically, we look at the uni-
variate distribution the generator learned for each nu-
meric feature and compute the Bhattacharyya coeffi-
cient between this learned distribution and the origi-
nal distribution [9]. The Bhattacharyya coefficient es-

timates the similarity of two samples by partitioning
points into non-overlapping regions and comparing sam-
ple density in these regions. The coefficient equals 1.0
when the density is equal in all regions (i.e., when the
samples are distributed equivalently). The coefficient
equals 0.0 when the samples disagree entirely (i.e., when
each region contains density from only one sample).
Results: Figure 7 shows the results of this comparison.
The accuracy of the learned univariate distributions is
high (greater than 0.8) in all features for both datasets,
indicating that the distribution of outputs produced by
the model is similar to the distribution of inputs when
compared on a per-feature basis. Note that we do not
analyze the accuracy of the multivariate distributions
learned over related features, but we will quantify the
overall quality of the synthetic distribution when eval-
uating Raven’s security in §5.3. Additional results are
provided in C, e.g., exploring the amount of time re-
quired to train the GAN and the effect of number of in-
put features on the GAN’s output. In general, we found
that training the CTGAN model was relatively inex-
pensive (required fewer than 10 minutes) on a server
configured with a GPU.

5.3 Security Evaluation

In this section, we evaluate Raven’s susceptibility to
traffic analysis. In particular, we estimate the degree to
which Raven is able to achieve behavioral realism, be-
cause Raven’s design already incorporates independence
between the covert and cover channels (message pat-
terns are determined by only the output of the GAN).

Similar to our study of Mailet (§3.1.3), we view the
problem of identifying Raven traffic as a binary classifi-
cation machine learning task. Our evaluation considers
the scenario in which a network-layer adversary with
white-box access to Raven attempts to identify Raven
users from among genuine email users.
Features: Similar to the GAN training process, we
treat each day of email sending and receiving as a single
input example to the classifier. When performing clas-
sification in these experiments, we use an expanded 93-
dimensional feature space—the day of week, the num-
ber of emails sent and received that day, 15×2 sum-
mary statistics8 describing the size of emails sent and
received, 15×2 summary statistics describing the times

8 The distribution’s mean, standard deviation, skewness, kur-
tosis, min., max., and percentiles 10–90 (in steps of 10).

Learning to Behave: Improving Covert Channel Security with Behavior-Based Designs 14

that emails are sent and received, and 15×2 summary
statistics describing email interarrival times.
Classification: This classification experiment is de-
signed to evaluate the degree to which the output from
the GAN (i.e., the behavior of Raven users) is realistic
among genuine email users outside of the GAN training
set. (In contrast, in §5.2, we presented an evaluation of
the extent to which the GAN is able to learn the distri-
bution of behavior within the training set.)

In each trial, profiles are randomly shuffled evenly
into two sets: (1) GAN-Train, and (2) Classify. For
the profiles in the GAN-Train set, we train sending
and receiving GANs, consistent with our methodology
described in §5.2. Then, we sample 1,000 synthetic ex-
amples from the trained GAN and 1,000 examples from
the profiles in the Classify set. We use this set of 2,000
examples for classification. We split this classification
dataset into a training set with 1,000 examples and a
testing set with 1,000 examples. The training set and
testing set are balanced with an equal number of genuine
and synthetic examples. We fit a random forest classi-
fier (100 trees, python’s sklearn implementation) on
the training set. The classifier’s goal is to correctly la-
bel examples as genuine or synthetic (i.e., Raven be-
havior). We then evaluate classifier performance on the
examples in the test set. We repeated for 5 samples of
the GAN-Train and Classify sets and for 10 random
folds of the Train/Test splits, resulting in 50 total trials.

Random forest classifiers perform classification by
training an ensemble of individual decision trees and
having the individual decision trees vote on the correct
classification. Classifier performance can be tuned by
applying a threshold τ such that examples are consid-
ered synthetic only if the synthetic label receives at
least τ votes. Applying a high threshold will limit the
amount of false positive classifications made (genuine
examples labeled as synthetic), but also decreases the
recall of the classifier (the proportion of synthetic sam-
ples correctly detected).
Results: Figure 8 shows the receiver operating charac-
teristic (ROC) curve of classifier performance. The ROC
curve shows the trade-off between the false-positive rate
(FPR, i.e., the fraction of genuine examples mislabeled
synthetic) on the x-axis and true-positive rate (TPR,
i.e., the fraction of synthetic examples labeled correctly)
on the y-axis as the threshold τ is adjusted. The red and
blue shaded regions show the minimum and maximum
TPRs achieved at a given FPR across the trials for the
Author and Avocado datasets, respectively. The green
dotted line shows the baseline performance of a classi-
fier that makes completely random guesses, which repre-

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

Po
sit

iv
e

Ra
te

(R
ec

al
l)

Authors (AUC=0.93)
Avocado (AUC=0.90)
Random Guessing (AUC= 0.5)

Fig. 8. ROC curves showing classification performance across
different classification thresholds. The shaded regions show the
minimum and maximum TPR achieved at a given FPR, and the
bold lines show the average TPR vs. FPR curve over all trials.

0.0 0.2 0.4 0.6 0.8 1.0
Recall (TPR)

0.0

0.5

1.0
Pr

ec
isi

on

Authors (P:N Ratio=1:1)
Authors (P:N Ratio=1:10)
Authors (P:N Ratio=1:100)

Avocado (P:N Ratio=1:1)
Avocado (P:N Ratio=1:10)
Avocado (P:N Ratio=1:100)

Fig. 9. Average classifier precision plotted versus classifier re-
call for different ratios of positive/synthetic (P) to nega-
tive/genuine (N) examples in the test set.

sents the worst possible performance of a classifier. Clas-
sification performance is optimal when the true-positive
rate is high and the false-positive rate is low—this oc-
curs when the ROC curve is in the top-left corner of the
plot and the area under the curve (AUC) is close to 1.0.

The random forest classifier is able to accurately
identify some Raven usage: on average, the AUC is rela-
tively high (0.93 and 0.90). However, for any high rate of
recall (e.g., ≥ 0.8), the false positive rate is prohibitively
expensive (e.g., ≥ 0.1). In our Mailet study, we found
that Mailet usage could be detected with 100% recall at
a FPR of only 3%. In contrast, to achieve 100% recall
on Raven traffic, the classifier would incur an FPR of
at least 50%. We believe these results are promising, as
high false-positive rates correspond to high rates of col-
lateral damage, especially when the incidence of Raven
traffic is low relative to the rate of genuine email traffic.

To further explore the effect of false positives on
classifier utility, we run an additional set of experiments.
The setup is the same as previously described, except we
vary the ratio of positive (synthetic) examples to neg-
ative (genuine) examples in the test set only (the classi-

Learning to Behave: Improving Covert Channel Security with Behavior-Based Designs 15

fier was trained on a balanced training set). In addition
to the 500-positive to 500-negative ratio we used previ-
ously, we ran experiments for 50-positive to 500-negative
and 5-positive to 500-negative ratios. In these experi-
ments, classifier precision and recall (TPR) is recorded.
Precision is defined as T P

T P +F P , where TP is the number
of true positives (correctly labeled synthetic examples)
and FP is the number of false positives (genuine exam-
ples that were labeled as synthetic) and indicates the
fraction of predictions that are correct from among all
examples that the classifier labeled synthetic.

Figure 9 shows the results of this experiment. Each
line in the graph shows classifier precision versus re-
call as the classifier threshold τ is adjusted, averaged
across the 50 trials at a particular positive-negative ra-
tios. Notice that when negative examples largely outnum-
ber positive examples (which is expected in realistic de-
ployments), false-positive classifications erode classifier
utility. For example, even at just a 20% recall rate, the
classifier achieves only 32% (Authors) or 39% (Avocado)
precision (meaning ≥ 60% of synthetic label predic-
tions are mis-labeled) at a 1% base rate. These results
are encouraging, and suggest that Raven usage may be
difficult to classify precisely at realistic base rates.

We refer an interested reader to Appendix A, which
explores the effects of having the censor augmenting its
classifier with additional data from an auxiliary dataset.

5.4 Performance Analysis

To evaluate Raven’s performance, we run simulations in
which Raven users (i) post Tweets and (ii) access their
Twitter feeds. We simulate the use of the SGX-protected
proxy to securely delegate TLS connections, which are
necessary for Twitter’s REST-based API, and use the
email profiles produced by the GAN as described in §5.2
to regulate the times and sizes of transmitted emails.

To determine the number of bytes required to post
and retrieve Tweets, we use the official Twitter API
and empirically measure the size of requests and re-
sponses. Our measurements conservatively use Tweets
of 280 characters (the maximum length). We multiply
required message sizes by 4/3 to adjust for the use of
base64-encoding in our implementation of Raven (due
to GPG; see Appendix B).

Raven allows the user to select a variable number
of profiles to use, where each profile corresponds to a
mimicked user (e.g., a user behind a NAT). Intuitively,
the more users the Raven client mimics, the better the
system’s performance since there will be more oppor-

1 2 3 4 5 6 7
Num. Simulated Users behind NAT

0

2

4

6

8

10

Ti
m

e
to

Po
st

Tw
ee

t
(H

ou
rs

) Authors
Avocado

Fig. 10. Time required to post a Tweet, for various values of |P|.

1 2 3 4 5 6 7
Num. Simulated Users behind NAT

100

101

102

103

104

105

Tw
ee

ts
Re

ce
iv

ed
pe

rD
ay

Authors
Avocado

Fig. 11. The number of Tweets that can be retrieved per day
(log-scale), for various values of |P|.

tunities to send and receive messages. We denote the
profiles in use by the client as P.

Using the GAN described in §5.2, we generate for
each user profile in P ordered sets of incoming and out-
going email descriptors. Each email descriptor consists
of a timestamp (the transmission time of the email) and
the size of the email (excluding headers). We combine
the sets of outgoing emails for all of the profiles in P and
label it as OUT; we do the same for the incoming emails
and label this combined set as IN. Finally, we order IN
and OUT by time.
Tweeting or Sending a Direct Message: We simu-
late sending a Tweet (or equivalently, a direct message)
as follows: we select a random day and choose a time
uniformly at random from 9 a.m. to 5 p.m. on that day.
We consider this to be the decision time (tdec) in which a
user opts to use Raven to send a Tweet. The simulator
then determines the first email in OUT whose times-
tamp (tsend) is greater or equal to tdec. This reflects the
earliest opportunity for the user to send the Tweet (via
email). The time required to Tweet is thus tsend − tdec.

Learning to Behave: Improving Covert Channel Security with Behavior-Based Designs 16

We vary the size of |P| from 1 to 7, and for each
number of emulated users, we repeat the Tweeting ex-
periment 2500 times. Figure 10 shows the time required
to post a Tweet for various values of |P|. Each box
depicts the interquartile range and whiskers show the
range of the data. When emulating one user (|P| = 1),
the median time to post the Tweet is 2.5 hours (Au-
thors) and 2.2 hours (Avocado); emulating 7 users be-
hind the NAT reduces the time to less than 45 minutes.
Retrieving Tweets: We simulate a Raven instance in
which the SGX-protected proxy periodically retrieves
Tweets (e.g., corresponding to the Raven user’s Tweet
feed) on behalf of the user, and then relays these Tweets
via emails back to the user. We select a random day
and consider all emails in IN—that is, all of the Raven-
generated emails that the user receives that day. The
number of bytes required to carry a maximum-length
Tweet message is 635 B (847 B after base64-encoding),
as determined empirically using the Twitter API. The
number of Tweets retrieved per day is the sum of the
body sizes of the messages in IN divided by 847.

The number of incoming Tweets that can be re-
trieved per day using Raven is shown in Figure 11. As
before, we repeat each configuration 2,500 times and
plot the interquartile ranges. The median number of re-
trieved Tweets per day is 3,606 (Authors) and 475 (Avo-
cado) at the median when |P| = 1. This increases by two
orders of magnitude to approximately 44,000 (Authors)
/ 11,000 (Avocado) when |P| = 7.
Summary: Our simulation-based performance evalua-
tion shows that the performance of Tweeting is domi-
nated by the time between deciding when to Tweet and
having the GAN signify that it is safe to do so. This can
incur delays measured in hours, but as we argue in §5.3,
such delays may provide much stronger security protec-
tions than those of existing schemes that fail to model
realistic human behavior. On the other hand, incoming
email volumes are sufficient to retrieve a large number
of Tweets per day, suggesting that Raven is especially
well-suited for privately accessing Twitter feeds.

6 Conclusion
In this work, we argue the importance of behavioral real-
ism and behavioral independence, two important prop-
erties that are often overlooked in the design of cen-
sorship circumvention systems. These properties pro-
vide protections against traffic analysis attacks aimed
at revealing the presence of a covert channel within

a cover protocol. However, covert channel designs sat-
isfying these properties must cope with increased im-
plementation costs and weak performance guarantees.
To study how these properties affect real systems, we
prototyped Raven, a covert channel designed to sat-
isfy behavioral realism and independence. Raven was
designed to be practical and follow best practices iden-
tified by the community. For instance, we use a ubiq-
uitous cover channel that is accessible in many differ-
ent regions, which we verified in a measurement study.
Also, we tunnel traffic through real email client software,
avoiding issues related to protocol mimicry. Our eval-
uations show that Raven significantly raises the false-
positive rate during traffic analysis when compared to
previous state-of-the-art systems, while securely provid-
ing acceptable application performance.
Future Work: Protocol emulation by itself is insuf-
ficient for covert communication because anomalous
cover channel usage can produce traffic inconsistencies
that are detectable by a censor. We recommend that
future designs for censorship circumvention systems di-
rectly incorporate designs supporting behavioral inde-
pendence and realism. Although we focused on email,
these properties are general and can be applied in other
channels. For example, our approach could be translated
to emulate genuine user behavior for instant messaging,
web browsing, or video conferencing. Porting behavior-
based design principles to these and other cover channels
is a promising direction for future work, as well as eval-
uating behavior-based designs against adversaries em-
ploying more sophisticated machine-learning models.

This paper is focused on evaluating email behav-
ior and, like previous work, does not consider behavior
across applications, devices, or networks. However, com-
posed behavior could leak information about the pres-
ence of a covert channel on a user’s network and should
be considered when designing new anti-censorship tech-
niques in future work. In Raven, for example, running
multiple email profiles could lead to inconsistencies be-
tween email and non-email usage patterns; consistency
could be improved by simultaneously running non-email
applications along with Raven to better emulate the
presence of additional users on the network.

When gathering data for training, capturing all im-
portant email patterns including weekends, holidays,
and cultural differences (such as different dates for hol-
idays in different countries), and constructing more di-
verse email datasets that include email dependencies
(e.g., I only receive after I send) represent opportuni-
ties for future work.

Learning to Behave: Improving Covert Channel Security with Behavior-Based Designs 17

7 Acknowledgements
This work is partially funded by the Office of Naval Re-
search (ONR), the Defense Advanced Research Projects
Agency (DARPA) (under Contract No. FA8750-19-C-
0500), and the Georgetown University Callahan Family
Professor Chair Fund. Any opinions, findings, and con-
clusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect
the views of the funding agencies.

We would like to thank Aaron Johnson for reviewing
this work and helping us reason about Raven’s security.
We would like to thank Diogo Barradas for help shep-
herding this work. Finally, we would like to thank Paul
Syverson for reviewing this work and providing useful
feedback.

References
[1] Enron Email Dataset. https://www.cs.cmu.edu/~./enron,

2015. Accessed: 2020-10-03.
[2] Mailet Source Code. https://github.com/magicle/Mailet,

2016. Accessed: 2022-03-10.
[3] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scar-

lata. nnovative Technology for CPU Based Attestation and
Sealing. In Proceedings of the 2nd International Workshop
on Hardware and Architectural Support for Security and
Privacy, volume 13, 2013.

[4] Yawning Angel and Contributors. obfs4 Specification. https:
//github.com/Yawning/obfs4/blob/master/doc/obfs4-spec.
txt, 2019. Accessed: 2021-05-31.

[5] Vaibhav Bajpai, Steffie Jacob Eravuchira, and Jürgen Schön-
wälder. Lessons Learned from using the RIPE Atlas Platform
for Measurement Research. ACM SIGCOMM Computer
Communication Review, 45(3):35–42, 2015.

[6] Diogo Barradas, Nuno Santos, and Luís E. T. Rodrigues.
DeltaShaper: Enabling Unobservable Censorship-resistant
TCP Tunneling over Videoconferencing Streams. Proceed-
ings on Privacy Enhancing Technologies Symposium, 2017
(4):5–22, 2017. 10.1515/popets-2017-0037.

[7] Diogo Barradas, Nuno Santos, and Luís E. T. Rodrigues.
Effective Detection of Multimedia Protocol Tunneling using
Machine Learning. In Proc. of the 27th USENIX Security
Symposium, USENIX Security 2018, Baltimore, MD, USA,
August 15-17, 2018. USENIX Association, 2018.

[8] Diogo Barradas, Nuno Santos, Luís E. T. Rodrigues, and Ví-
tor Nunes. Poking a Hole in the Wall: Efficient Censorship-
Resistant Internet Communications by Parasitizing on We-
bRTC. In Proc. of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2020. ACM,
2020.

[9] Anil Bhattacharyya. On a measure of divergence between
two statistical populations defined by their probability distri-
butions. Bull. Calcutta Math. Soc., 35:99–109, 1943.

[10] Cecylia Bocovich and Ian Goldberg. Slitheen: Perfectly
Imitated Decoy Routing through Traffic Replacement. In
Proc. of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2016, Vienna, Austria,
Oct. 24–28, 2016. ACM. 10.1145/2976749.2978312.

[11] Chad Brubaker, Amir Houmansadr, and Vitaly Shmatikov.
CloudTransport: Using Cloud Storage for Censorship-
Resistant Networking. In Proc. of the 14th Privacy En-
hancing Technologies Symposium, 2014.

[12] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang,
Zhiqiang Lin, and Ten H Lai. SgxPectre: Stealing Intel
Secrets from SGX Enclaves Via Speculative Execution. In
Proc. of the 2019 IEEE European Symposium on Security
and Privacy, 2019.

[13] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya
Sutskever, and Pieter Abbeel. InfoGAN: Interpretable Rep-
resentation Learning by Information Maximizing Generative
Adversarial Nets. In Advances in Neural Information Pro-
cessing Systems 29 (NIPS 2016), 2016.

[14] Victor Costan and Srinivas Devadas. Intel SGX Explained.
IACR Cryptol. ePrint Arch., 2016.

[15] Arun Dunna, Ciarán O’Brien, and Phillipa Gill. Analyzing
China’s Blocking of Unpublished Tor Bridges. In Proceed-
ings of the 8th USENIX Workshop on Free and Open Com-
munications on the Internet (FOCI), 2018.

[16] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and
Thomas Shrimpton. Protocol Misidentification Made Easy
with Format-Transforming Encryption. In Proc. of the 2013
ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2013, Berlin, Germany, Nov. 4–8, 2013.
ACM, 2013. 10.1145/2508859.2516657.

[17] Kevin P. Dyer, Scott E. Coull, and Thomas Shrimpton. Mar-
ionette: A Programmable Network Traffic Obfuscation Sys-
tem. In Proc. of the 24th USENIX Security Symposium,
Washington, D.C., USA, Aug. 12–14, 2015. USENIX Associ-
ation, 2015.

[18] D. Ellard, C. Jones, V. Manfredi, W. T. Strayer, B. Thapa,
M. Van Welie, and A. Jackson. Rebound: Decoy routing
on asymmetric routes via error messages. In 2015 IEEE
40th Conference on Local Computer Networks (LCN), pages
91–99, 2015.

[19] Roya Ensafi, David Fifield, Philipp Winter, Nick Feamster,
Nicholas Weaver, and Vern Paxson. Examining How the
Great Firewall Discovers Hidden Circumvention Servers.
In Proceedings of the 2015 ACM Internet Measurement
Conference, 2015.

[20] Serene Han et al. Snowflake Technical Overview. https:
//keroserene.net/snowflake/technical/, 2017. Accessed:
2021-05-31.

[21] David Fifield. Threat modeling and circumvention of Inter-
net censorship. PhD thesis, University of California, Berke-
ley. URL https://www.bamsoftware.com/papers/thesis/.

[22] David Fifield, Nate Hardison, Jonathan Ellithorpe, Emily
Stark, Dan Boneh, Roger Dingledine, and Phillip A. Por-
ras. Evading Censorship with Browser-Based Proxies. In
Proceedings of the 2012 Privacy Enhancing Technologies
Symposium, 2012.

[23] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and
Vern Paxson. Blocking-resistant communication through
domain fronting. Proceedings on Privacy Enhancing Tech-

https://www.cs.cmu.edu/~./enron
https://github.com/magicle/Mailet
https://github.com/Yawning/obfs4/blob/master/doc/obfs4-spec.txt
https://github.com/Yawning/obfs4/blob/master/doc/obfs4-spec.txt
https://github.com/Yawning/obfs4/blob/master/doc/obfs4-spec.txt
https://doi.org/10.1515/popets-2017-0037
https://doi.org/10.1145/2976749.2978312
https://doi.org/10.1145/2508859.2516657
https://keroserene.net/snowflake/technical/
https://keroserene.net/snowflake/technical/
https://www.bamsoftware.com/papers/thesis/

Learning to Behave: Improving Covert Channel Security with Behavior-Based Designs 18

nologies, 2015, 2015.
[24] Freedom House. Freedom House. https://freedomhouse.org.

Accessed Feb. 07, 2022.
[25] Sergey Frolov and Eric Wustrow. The use of TLS in Cen-

sorship Circumvention. In Proc. of the 26th Annual Network
and Distributed System Security Symposium, NDSS 2019,
San Diego, California, USA, Feb. 24–27, 2019. The Internet
Society, 2019. 10.14722/ndss.2019.23511.

[26] Sergey Frolov and Eric Wustrow. HTTPT: A Probe-
Resistant Proxy. In 10th USENIX Workshop on Free and
Open Communications on the Internet, FOCI. USENIX As-
sociation, 2020.

[27] Sergey Frolov, Frederick Douglas, Will Scott, Allison Mc-
Donald, Benjamin VanderSloot, Rod Hynes, Adam Kruger,
Michalis Kallitsis, David G. Robinson, Steve Schultze, Nikita
Borisov, J. Alex Halderman, and Eric Wustrow. An ISP-
Scale Deployment of TapDance. In Proc. of the 7th USENIX
Workshop on Free and Open Communications on the Inter-
net, FOCI 2017, Vancouver, BC, Canada, Aug. 14, 2017.
USENIX Association, 2017.

[28] Sergey Frolov, Jack Wampler, Sze Chuen Tan, J. Alex Hal-
derman, Nikita Borisov, and Eric Wustrow. Conjure: Sum-
moning Proxies from Unused Address Space. In Proc. of the
2019 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2019, London, UK, Nov. 11–15, 2019.
ACM, 2019. 10.1145/3319535.3363218.

[29] Sergey Frolov, Jack Wampler, and Eric Wustrow. Detecting
Probe-resistant Proxies. In Proceedings of the 27th Annual
Network and Distributed System Security Symposium, 2020.

[30] Game of Thrones Wiki. “Game of Thrones Wiki: Raven”.
https://gameofthrones.fandom.com/wiki/Raven. Accessed
Feb. 07, 2022.

[31] John Geddes, Max Schuchard, and Nicholas Hopper. Cover
Your ACKs: Pitfalls of Covert Channel Censorship Circum-
vention. In Proceedings of the 2013 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2013.

[32] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative Adversarial Nets. In Advances
in Neural Information Processing Systems 27 (NIPS 2014),
2014.

[33] Bridger Hahn, Rishab Nithyanand, Phillipa Gill, and Rob
Johnson. Games without Frontiers: Investigating Video
Games as a Covert Channel. In IEEE European Symposium
on Security and Privacy, EuroS&P. IEEE, 2016.

[34] John Holowczak and Amir Houmansadr. CacheBrowser: By-
passing Chinese Censorship without Proxies Using Cached
Content. In Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security, 2015.

[35] Amir Houmansadr, Giang T. K. Nguyen, Matthew Caesar,
and Nikita Borisov. Cirripede: Circumvention Infrastruc-
ture using Router Redirection with Plausible Deniability. In
Proceedings of the 18th ACM Conference on Computer and
Communications Security, 2011.

[36] Amir Houmansadr, Chad Brubaker, and Vitaly Shmatikov.
The Parrot Is Dead: Observing Unobservable Network
Communications. In Proc. of the 2013 IEEE Sympo-
sium on Security and Privacy, S&P 2013, Berkeley, CA,
USA, May 19-22, 2013. IEEE Computer Society, 2013.
10.1109/SP.2013.14.

[37] Amir Houmansadr, Thomas J. Riedl, Nikita Borisov, and
Andrew C. Singer. I want my voice to be heard: IP over
Voice-over-IP for unobservable censorship circumvention. In
20th Annual Network and Distributed System Security Sym-
posium, NDSS 2013, San Diego, California, USA, February
24-27, 2013. The Internet Society, 2013.

[38] Amir Houmansadr, Wenxuan Zhou, Matthew Caesar, and
Nikita Borisov. SWEET: Serving the Web by Exploiting
Email Tunnels. IEEE/ACM Transactions on Networking, 25
(3):1517–1527, 2017. 10.1109/TNET.2016.2640238.

[39] Josh Karlin, Daniel Ellard, Alden W Jackson, Christine E
Jones, Greg Lauer, David Mankins, and W Timothy Strayer.
Decoy Routing: Toward Unblockable Internet Communica-
tion. In USENIX Workshop on Free and Open Communi-
cations on the Internet, FOCI ’11, San Francisco, CA, USA,
August 8, 2011. USENIX Association, 2011.

[40] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and Improving
the Image Quality of StyleGAN. In 2020 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, CVPR.
IEEE, 2020.

[41] Sheharbano Khattak, Tariq Elahi, Laurent Simon,
Colleen M. Swanson, Steven J. Murdoch, and Ian Gold-
berg. SoK: Making Sense of Censorship Resistance Systems.
Proceedings on Privacy Enhancing Technologies Symposium,
2016(4), 2016. 10.1515/popets-2016-0028.

[42] Shuai Li and Nicholas Hopper. Mailet: Instant Social Net-
working under Censorship. Proceedings on Privacy Enhanc-
ing Technologies Symposium, 2016(2), 2016.

[43] Shuai Li, Mike Schliep, and Nick Hopper. Facet: Streaming
over Videoconferencing for Censorship Circumvention. In
Proceedings of the 13th Workshop on Privacy in the Elec-
tronic Society, 2014.

[44] Zhen Ling, Junzhou Luo, Wei Yu, Ming Yang, and Xinwen
Fu. Extensive Analysis and Large-Scale Empirical Evaluation
of Tor Bridge Discovery. In Proc. of the IEEE INFOCOM
2012, Orlando, FL, USA, Mar. 25–30, 2012. IEEE, 2012.
10.1109/INFCOM.2012.6195627.

[45] Srdjan Matic, Carmela Troncoso, and Juan Caballero. Dis-
secting Tor Bridges: a Security Evaluation of Their Private
and Public Infrastructures. In Proc. of the 24th Annual Net-
work and Distributed System Security Symposium, NDSS
2017, San Diego, California, USA, Feb. 26–Mar. 01, 2017.
The Internet Society, 2017. 10.14722/ndss.2017.23345.

[46] Richard McPherson, Amir Houmansadr, and Vitaly
Shmatikov. CovertCast: Using Live Streaming to Evade
Internet Censorship. Proceedings on Privacy Enhancing
Technologies, 2016.

[47] Mehdi Mirza and Simon Osindero. Conditional Generative
Adversarial Nets. CoRR, abs/1411.1784, 2014. URL http:
//arxiv.org/abs/1411.1784.

[48] Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad De-
rakhshani, and Ian Goldberg. SkypeMorph: Protocol Ob-
fuscation for Tor Bridges. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security,
2012.

[49] Milad Nasr, Hadi Zolfaghari, and Amir Houmansadr. The
Waterfall of Liberty: Decoy Routing Circumvention that
Resists Routing Attacks. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications

https://freedomhouse.org
https://doi.org/10.14722/ndss.2019.23511
https://doi.org/10.1145/3319535.3363218
https://gameofthrones.fandom.com/wiki/Raven
https://doi.org/10.1109/SP.2013.14
https://doi.org/10.1109/TNET.2016.2640238
https://doi.org/10.1515/popets-2016-0028
https://doi.org/10.1109/INFCOM.2012.6195627
https://doi.org/10.14722/ndss.2017.23345
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784

Learning to Behave: Improving Covert Channel Security with Behavior-Based Designs 19

Security, 2017.
[50] Milad Nasr, Hadi Zolfaghari, Amir Houmansadr, and

Amirhossein Ghafari. MassBrowser: Unblocking the Cen-
sored Web for the Masses, by the Masses. In Proceedings of
the 27th Annual Network and Distributed System Security
Symposium, 2020.

[51] Arian Akhavan Niaki, Shinyoung Cho, Zachary Wein-
berg, Nguyen Phong Hoang, Abbas Razaghpanah, Nicolas
Christin, and Phillipa Gill. ICLab: A Global, Longitudinal
Internet Censorship Measurement Platform. In IEEE Sympo-
sium on Security and Privacy (SP), May 2020.

[52] Douglas Oard, William Webber, David A. Kirsch, and
Sergey Golitsynskiy. Avocado Research Email Collection.
Web Download, 2015. https://catalog.ldc.upenn.edu/
LDC2015T03.

[53] Ram Sundara Raman, Adrian Stoll, Jakub Dalek, Reethika
Ramesh, Will Scott, and Roya Ensafi. Measuring the De-
ployment of Network Censorship Filters at Global Scale.
In Proc. of the 27th Annual Network and Distributed Sys-
tem Security Symposium, NDSS 2020, San Diego, Califor-
nia, USA, Feb. 23–26, 2020. The Internet Society, 2020.
10.14722/ndss.2020.23099.

[54] Maria Rigaki and Sebastian Garcia. Bringing a GAN to a
Knife-Fight: Adapting Malware Communication to Avoid De-
tection. In Proceedings of 2018 IEEE Security and Privacy
Workshops, 2018.

[55] RIPE Network Coordination Centre. RIPE Atlas. https:
//atlas.ripe.net/, 2020.

[56] Riseup. riseup.net. https://riseup.net/, 2021.
[57] Max Schuchard, John Geddes, Christopher Thompson, and

Nicholas Hopper. Routing Around Decoys. In Proceedings
of the 2012 ACM Conference on Computer and Communica-
tions Security, 2012.

[58] Roei Schuster, Vitaly Shmatikov, and Eran Tromer. Beauty
and the Burst: Remote Identification of Encrypted Video
Streams. In 26th USENIX Security Symposium, USENIX
Security 2017, 2017.

[59] Rima S. Tanash, Zhouhan Chen, Tanmay Thakur, Dan S.
Wallach, and Devika Subramanian. Known Unknowns: An
Analysis of Twitter Censorship in Turkey. In Proceedings
of the 14th ACM Workshop on Privacy in the Electronic
Society, WPES 2015, Denver, Colorado, USA, October 12,
2015. ACM, 2015. 10.1145/2808138.2808147.

[60] Telegram from Russia: compliance and complicity in the
Russian government’s attack on privacy. “Telegram from
Russia: compliance and complicity in the Russian govern-
ment’s attack on privacy”. https://privacyinternational.org/
long-read/2026/telegram-russia-compliance-and-complicity-
russian-governments-attack-privacy. Publication date May
14, 2018.

[61] Michael Carl Tschantz, Sadia Afroz, anonymous, and Vern
Paxson. SoK: Towards Grounding Censorship Circumvention
in Empiricism. In IEEE Symposium on Security and Pri-
vacy, SP 2016, San Jose, CA, USA, May 22-26, 2016. IEEE
Computer Society, 2016. 10.1109/SP.2016.59.

[62] United Nations, Department of Economic and Social Affairs,
Population Division. Patterns and trends in household size
and composition: Evidence from a United Nations dataset.
Technical Report ST/ESA/SER.A/433, 2019.

[63] Benjamin VanderSloot, Sergey Frolov, Jack Wampler,
Sze Chuen Tan, Irv Simpson, Michalis Kallitsis, J. Alex
Halderman, Nikita Borisov, and Eric Wustrow. Running
Refraction Networking for Real. Proceedings on Privacy En-
hancing Technologies Symposium, 2020(4):321–335, 2020.
10.2478/popets-2020-0075.

[64] Paul Vines and Tadayoshi Kohno. Rook: Using Video Games
as a Low-Bandwidth Censorship Resistant Communication
Platform. In Proceedings of the 14th ACM Workshop on
Privacy in the Electronic Society, WPES. ACM, 2015.

[65] Liang Wang, Kevin P. Dyer, Aditya Akella, Thomas Risten-
part, and Thomas Shrimpton. Seeing through Network-
Protocol Obfuscation. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Se-
curity, 2015.

[66] Qiyan Wang, Xun Gong, Giang T. K. Nguyen, Amir
Houmansadr, and Nikita Borisov. CensorSpoofer: Asym-
metric Communication using IP Spoofing for Censorship-
Resistant Web Browsing. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security,
2012.

[67] Yazhe Wang, Jamie Callan, and Baihua Zheng. Should We
Use the Sample? Analyzing Datasets Sampled from Twit-
ter’s Stream API. ACM Transactions on the Web (TWEB),
9, 2015.

[68] Zachary Weinberg, Jeffrey Wang, Vinod Yegneswaran,
Linda Briesemeister, Steven Cheung, Frank Wang, and
Dan Boneh. StegoTorus: A Camouflage Proxy for the
Tor Anonymity System. In Proc. of the ACM Confer-
ence on Computer and Communications Security, CCS
2012, Raleigh, NC, USA, Oct. 16–18, 2012. ACM, 2012.
10.1145/2382196.2382211.

[69] Brandon Wiley. Dust: A blocking-resistant internet transport
protocol. Technical report, University of Texas at Austin,
2011.

[70] Philipp Winter, Tobias Pulls, and Jürgen Fuß. Scramblesuit:
A polymorphic network protocol to circumvent censorship.
In Proceedings of the 12th Annual ACM Workshop on Pri-
vacy in the Electronic Society, 2013.

[71] wolfSSL Inc. wolfSSL TLS Library. https://www.wolfssl.
com/, 2021.

[72] Charles V. Wright, Scott E. Coull, and Fabian Monrose.
Traffic Morphing: An Efficient Defense Against Statistical
Traffic Analysis. In Proceedings of the Network and Dis-
tributed System Security Symposium, NDSS. The Internet
Society, 2009.

[73] Eric Wustrow, Scott Wolchok, Ian Goldberg, and J. Alex
Halderman. Telex: Anticensorship in the Network Infrastruc-
ture. In Proc. of the 20th USENIX Security Symposium, San
Francisco, CA, USA, Aug. 8–12, 2011. USENIX Association,
2011.

[74] Eric Wustrow, Colleen Swanson, and J. Alex Halderman.
TapDance: End-to-Middle Anticensorship without Flow
Blocking. In Proceedings of the 23rd USENIX Security Sym-
posium, San Diego, CA, USA, Aug. 20–22, 2014. USENIX
Association, 2014.

[75] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and
Kalyan Veeramachaneni. Modeling Tabular data using Con-
ditional GAN. In Advances in Neural Information Processing
Systems 32 (NeurIPS 2019), 2019.

https://catalog.ldc.upenn.edu/LDC2015T03
https://catalog.ldc.upenn.edu/LDC2015T03
https://doi.org/10.14722/ndss.2020.23099
https://atlas.ripe.net/
https://atlas.ripe.net/
https://riseup.net/
https://doi.org/10.1145/2808138.2808147
https://privacyinternational.org/long-read/2026/telegram-russia-compliance-and-complicity-russian-governments-attack-privacy
https://privacyinternational.org/long-read/2026/telegram-russia-compliance-and-complicity-russian-governments-attack-privacy
https://privacyinternational.org/long-read/2026/telegram-russia-compliance-and-complicity-russian-governments-attack-privacy
https://doi.org/10.1109/SP.2016.59
https://doi.org/10.2478/popets-2020-0075
https://doi.org/10.1145/2382196.2382211
https://www.wolfssl.com/
https://www.wolfssl.com/

Learning to Behave: Improving Covert Channel Security with Behavior-Based Designs 20

[76] Diwen Xue, Reethika Ramesh, Valdik S. S, Leonid Ev-
dokimov, Andrey Viktorov, Arham Jain, Eric Wustrow,
Simone Basso, and Roya Ensafi. Throttling Twitter: An
Emerging Censorship Technique in Russia. In Proc. of
the ACM Internet Measurement Conference (IMC’21),
Virtual Event, USA, November 2–4, 2021. ACM, 2021.
10.1145/3487552.3487858.

[77] Hadi Zolfaghari and Amir Houmansadr. Practical Censorship
Evasion Leveraging Content Delivery Networks. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016.

A Security Evaluation: Training
Dataset Augmentation

In this Appendix, we provide supplementary security
evaluation results to those presented in Section 5.3. In
particular, we replicate the classification experiment on
the Author dataset described in Section 5, but with
one modification: instead of the adversary training on
outputs from the behavior model trained on profiles in
the GAN-Train set, we give the adversary a behav-
ior model trained on both GAN-Train profile data and
Avocado profile data (see Appendix 5.1), which can con-
sidered to be an auxiliary dataset. Otherwise, the rest
of the experiment is the same—the adversary uses the
trained classifier to separate instances of behavior gen-
erated by the Raven behavior model (trained on only
GAN-Train profile data) from instances of user behav-
ior sampled from the Classify set.

Figure 12 shows the result of this experiment.
We find that adding auxiliary data to the adver-
sary’s behavior model degrades classification perfor-
mance. This is because the adversary is given an in-

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
R

e
c
a

ll)

Individual Trial ROC

Mean ROC (AUC=0.80)

Random Guessing (AUC=0.50)

Fig. 12. (ROC) curves showing classification performance across
different classification thresholds for the classifier using an aug-
mented training dataset.

stance of the exact model assumed to be used by Raven
clients in the Section 5.3 experiments, which is the
most advantageous setting for the adversary. By adding
differently-distributed data to the adversary’s model,
it becomes more difficult to learn the distinctions of
Raven-produced email behavior from genuine behavior.

B Software Details
To test the real-world efficacy of Raven, we built a pro-
totype implementation of Raven.
Implementation: Our implementation of the Raven
client consists of Python controllers, the CTGAN [75],
SGX client code, an unmodified Thunderbird version 75,
and a custom extension to Thunderbird. To make Raven
accessible to a wide variety of platforms, we packaged
the Raven client as a Docker container, using the X vir-
tual framebuffer (Xvfb) display server to support non-
GUI modes of operation. The broker-side components
of Raven include Python controllers, CTGAN, and the
SGX enclave code. We will release all Raven components
as free and open software concurrent with publication.

We use GPG 2.2 with elliptical curve Diffie-Hellman
Curve25519 keys to encrypt Raven messages before they
are written to the body of an email. We apply padding
to the plaintext (before GPG-encryption) to achieve the
desired email size, as determined by either the client’s
or the proxy’s GAN (depending upon the direction of
traffic). The encrypted messages from the Raven client
include a profile identifier that allows the proxy to select
the matching GAN profile.

On the client side, the user configures Raven with
the broker’s email address and public key. Raven oper-
ates a local controller daemon that allows multiple net-
work applications to use Raven while ensuring that com-
munication never deviates from the client’s GAN pro-
file. To communicate over Raven, an application opens
a connection to the Raven controller and sends and re-
ceives network communication using a standard socket
interface. The controller multiplexes applications’ re-
quests and relays their communications in accordance
with the schedule produced by the GAN.

The SGX proxy component is based on the WolfSSL
library [71] and supports TLS 1.3. Although certificate
validation is performed by the broker, this occurs within
the SGX enclave, and SGX attestation provides assur-
ances to the client that both the broker-side software
and the root certificates have not been modified.

https://doi.org/10.1145/3487552.3487858

Learning to Behave: Improving Covert Channel Security with Behavior-Based Designs 21

0 20 40 60 80 100
Num. Features

0.96

0.97

0.98

0.99

1.00
Bh

at
ta

ch
ar

yy
a

Co
effi

cie
nt

Bhattacharyya Coefficient

0

100

200

300

400

500

600

Tr
ai

n
Ti

m
e

(s
)

Train Time

Fig. 13. Average Bhattacharyya coefficient and train time versus
the number of features input to the CopulaGAN.

101 102 103 104

Num. Samples

0

20

40

60

80

Tr
ai

n
Ti

m
e

(s
)

Fig. 14. Train time versus the number of training samples input
to the CopulaGAN.

C GAN Training Performance
In this appendix, we share additional results about the
process of training the CopulaGAN.

In Figure 13, the average Bhattacharyya coefficient
computed over features is shown as the number of fea-
tures in the training set is varied. In this experiment,
each feature’s distribution is chosen to be normal with
random mean and variance. Note that the minimum
value plotted is ≥ 0.96, indicating that, for any number
of features, the GAN is accurately reproducing the in-
put distribution. However, the training process becomes
more expensive as the number of features is increased.
The red dashed line plots training time, which increases
approximately linearly with the number of features in-
put to the GAN. The training time measurements were
performed on an AMD EPYC 7551 32-Core Processor
and accelerated with a Nvidia Quadro RTX 8000 GPU.
(The GAN was configured to train for 100 epochs and
was given 10,000 samples of each feature).

Figure 14 shows how training time is affected by
the number of input samples. In this plot, the number

Table 2. Success rates for establishing secure TLS connections
with IMAPS and SMTPS servers from various locations. “Local”
denotes a single-user email server located in the US.

Country Gmail Yahoo! Riseup Local

Multiple Countries† 1.00 1.00 1.00 1.00
Lebanon & United Kingdom 1.00 1.00 0.90 1.00

South Africa & Turkey 1.00 0.90 1.00 1.00
Czech Republic 1.00 0.80 0.90 1.00

Sri Lanka 0.83 1.00 1.00 1.00
Rwanda 1.00 1.00 0.67 1.00

Peru 1.00 1.00 0.83 0.83
Hungary 0.90 0.90 1.00 0.90
Ecuador 0.89 1.00 0.89 0.89

Serbia 0.84 0.89 0.89 0.89
Korea, Republic of 0.94 0.94 0.94 0.94
Russian Federation 1.00 1.00 1.00 0.90

Latvia 0.94 0.91 0.91 0.94
Panama 0.80 0.80 0.80 1.00
Armenia 0.89 0.89 0.89 0.89
Morocco 0.67 0.67 1.00 1.00

Saudi Arabia 0.88 1.00 0.88 1.00
Uzbekistan 1.00 1.00 0.83 1.00

Sudan 0.67 0.67 0.67 0.67
Belize 0.75 0.75 0.75 0.75

Paraguay 0.71 0.57 0.71 0.71
Kyrgyzstan & Uganda 0.50 0.50 0.50 0.50

Iran, Islamic Republic of 1.00 0.89 1.00 0.90
China 0.45 0.85 0.18 0.82

† Domin. Repub., Burundi, Ethiopia, Azerbaijan, Egypt, Angola

of features is fixed to ten, and the GAN is trained for
100 epochs. Note that the x-axis is log-scale; overall, our
results show that the GAN’s training time is not very
sensitive to the number of samples input to the GAN.

D Email Measurement
This appendix gives the full results from our email acces-
sibility measurement, described in §4.1. The full table
of results is shown in Table 2.

	Learning to Behave: Improving Covert Channel Security with Behavior-Based Designs
	1 Introduction
	2 Background and Related Work
	3 Behavior-Based Protocols
	3.1 Properties of Behavior Modeling
	3.1.1 Behavioral Independence
	3.1.2 Behavioral Realism
	3.1.3 A Study of Mailet

	3.2 Methods for Behavior Modeling
	3.3 Considerations of Modeling

	4 Case Study: Communicating over Email Cover Protocols
	4.1 Accessibility of Email Protocols
	4.2 Design Preliminaries
	4.3 Raven Design
	4.3.1 Operation of the Cover Protocols
	4.3.2 Using the Covert Channel

	4.4 Sketch of Raven's Security Properties

	5 Evaluation
	5.1 Data Methodology
	5.2 GAN Evaluation
	5.3 Security Evaluation
	5.4 Performance Analysis

	6 Conclusion
	7 Acknowledgements
	A Security Evaluation: Training Dataset Augmentation
	B Software Details
	C GAN Training Performance
	D Email Measurement

