
Once is Never Enough: Foundations for Sound
Statistical Inference in Tor Network Experimentation

Rob Jansen
U.S. Naval Research Laboratory

rob.g.jansen@nrl.navy.mil

Justin Tracey
University of Waterloo
j3tracey@uwaterloo.ca

Ian Goldberg
University of Waterloo

iang@uwaterloo.ca

Abstract
Tor is a popular low-latency anonymous communication sys-
tem that focuses on usability and performance: a faster net-
work will attract more users, which in turn will improve the
anonymity of everyone using the system. The standard prac-
tice for previous research attempting to enhance Tor perfor-
mance is to draw conclusions from the observed results of
a single simulation for standard Tor and for each research
variant. But because the simulations are run in sampled Tor
networks, it is possible that sampling error alone could cause
the observed effects. Therefore, we call into question the
practical meaning of any conclusions that are drawn without
considering the statistical significance of the reported results.

In this paper, we build foundations upon which we improve
the Tor experimental method. First, we present a new Tor
network modeling methodology that produces more repre-
sentative Tor networks as well as new and improved experi-
mentation tools that run Tor simulations faster and at a larger
scale than was previously possible. We showcase these con-
tributions by running simulations with 6,489 relays and 792k
simultaneously active users, the largest known Tor network
simulations and the first at a network scale of 100%. Second,
we present new statistical methodologies through which we:
(i) show that running multiple simulations in independently
sampled networks is necessary in order to produce informa-
tive results; and (ii) show how to use the results from multiple
simulations to conduct sound statistical inference. We present
a case study using 420 simulations to demonstrate how to
apply our methodologies to a concrete set of Tor experiments
and how to analyze the results.

1 Introduction
Tor [15] is a privacy-enhancing technology and the most pop-
ular anonymous communication system ever deployed. Tor
consists of a network of relays that forward traffic on be-
half of Tor users (i.e., clients) and Internet destinations. The
Tor Project estimates that there are about 2M daily active Tor
users [49], while recent privacy-preserving measurement stud-
ies estimate that there are about 8M daily active users [51]

and 792k simultaneously active users [38]. Tor is used for
a variety of reasons, including blocking trackers, defending
against surveillance, resisting fingerprinting and censorship,
and freely browsing the Internet [69].

The usability of the Tor network is fundamental to the secu-
rity it can provide [14]; prior work has shown that real-world
adversaries intentionally degrade usability to cause users to
switch to less secure communication protocols [6]. Good us-
ability enables Tor to retain more users [18], and more users
generally corresponds to better anonymity [1]. Tor has made
improvements in three primary usability components: (i) the
design of the interface used to access and use the network
(i.e., Tor Browser) has been improved through usability stud-
ies [11, 46, 58]; (ii) the performance perceived by Tor users
has improved through the deployment of new traffic schedul-
ing algorithms [37, 65]; and (iii) the network resources avail-
able for forwarding traffic has grown from about 100 Gbit/s
to about 400 Gbit/s in the last 5 years [67]. Although these
changes have contributed to user growth, continued growth in
the Tor network is desirable—not only because user growth
improves anonymity [1], but also because access to informa-
tion is a universal and human right [72] and growth in Tor
means more humans can safely, securely, privately, and freely
access information online.

Researchers have contributed numerous proposals for im-
proving Tor performance in order to support continued growth
in the network, including those that attempt to improve Tor’s
path selection [5, 7, 13, 24, 28, 42, 47, 53, 59, 61, 62, 74, 76],
load balancing [22, 27, 31, 34, 41, 54], traffic admission con-
trol [2, 16, 21, 23, 33, 35, 37, 43, 48, 75], and congestion con-
trol mechanisms [4, 20]. The standard practice when propos-
ing a new mechanism for Tor is to run a single experiment
with each recommended configuration of the mechanism and
a single experiment with standard Tor. Measurements of a
performance metric (e.g., download time) are taken during
each experiment, the empirical distributions over which are
directly compared across experiments. Unfortunately, the ex-
periments (typically simulations or emulations [63]) are done
in scaled-down Tor test networks that are sampled from the

1



state of the true network at a static point in time [32]; only a
single sample is considered even though in reality the network
changes over time in ways that could change the conclusions.
Moreover, statistical inference techniques (e.g., repeated tri-
als and interval estimates) are generally not applied during
the analysis of results, leading to questionable conclusions.
Perhaps due in part to undependable results, only a few Tor
performance research proposals have been deployed over the
years [37, 65] despite the abundance of available research.
Contributions: We advance the state of the art by building
foundations for conducting sound Tor performance research
in two major ways: (i) we design and validate Tor experi-
mentation models and develop new and improved modeling
and experimentation tools that together allow us to create
and run more representative Tor test networks faster than was
previously possible; and (ii) we develop statistical method-
ologies that enable sound statistical inference of experimenta-
tion results and demonstrate how to apply our methodologies
through a case study on a concrete set of Tor experiments.
Models and Tools: In §3 we present a new Tor network mod-
eling methodology that produces more representative Tor net-
works by considering the state of the network over time rather
than at a static point as was previously standard [32]. We
designed our modeling methodology to support the flexible
generation of Tor network models with configurable network,
user, traffic load, and process scale factors, supporting ex-
periments in computing facilities with a range of available
resources. We designed our modeling tools such that expen-
sive data processing tasks need only occur once, and the result
can be distributed to the Tor community and used to efficiently
generate any number of network models.

In §4 we contribute new and improved experimentation
tools that we optimized to enable us to run Tor experiments
faster and at a larger scale than was previously possible. In
particular, we describe several improvements we made to
Shadow [29], the most popular and validated platform for
Tor experimentation, and demonstrate how our Tor network
models and improvements to Shadow increase the scalability
of simulations. We showcase these contributions by running
the largest known Tor simulations—full-scale Tor networks
with 6,489 relays and 792k simultaneously active users. We
also run smaller-scale networks of 2,000 relays and 244k
users to compare to prior work: we observe a reduction in
RAM usage of 1.7 TiB (64%) and a reduction in run time of
33 days, 12 hours (94%) compared to the state of the art [38].
Statistical Methodologies: In §5 we describe a methodology
that enables us to conduct sound statistical inference using the
results collected from scaled-down (sampled) Tor networks.
We find that running multiple simulations in independently
sampled networks is necessary in order to obtain statistically
significant results, a methodology that has never before been
implemented in Tor performance research and causes us to
question the conclusions drawn in previous work (see §2.4).
We describe how to use multiple networks to estimate the

distribution of a random variable and compute confidence
intervals over that distribution, and discuss how network sam-
pling choices would affect the estimation.

In §6 we present a case study in order to demonstrate how to
apply our modeling and statistical methodologies to conduct
sound Tor performance research. We present the results from
a total of 420 Tor simulations across three network scale
and two traffic load factors. We find that the precision of the
conclusions that can be drawn from the networks used for
simulations are dependent upon the scale of those networks.
Although it is possible to derive similar conclusions from
networks of different scales, fewer simulations are generally
required in larger-scale than smaller-scale networks to achieve
a similar precision. We conclude that one simulation is never
enough to achieve statistically significant results.
Availability: Through this work we have developed new mod-
eling tools and improvements to Shadow that we have released
as open-source software as part of OnionTrace v1.0.0, TorNet-
Tools v1.1.0, TGen v1.0.0, and Shadow v1.13.2.1 We have
made these and other research artifacts publicly available.2

2 Background and Related Work

We provide a brief background on Tor before describing prior
work on Tor experimentation, modeling, and performance.

2.1 Tor

A primary function of the Tor network is to anonymize
user traffic [15]. To accomplish this, the Tor network is com-
posed of a set of Tor relays that forward traffic through the
network on behalf of users running Tor clients. Some of the
relays serve as directory authorities and are responsible for
publishing a network consensus document containing relay
information that is required to connect to and use the network
(e.g., addresses, ports, and fingerprints of cryptographic iden-
tity keys for all relays in the network). Consensus documents
also contain a weight for each relay to support a weighted
path selection process that attempts to balance traffic load
across relays according to relay bandwidth capacity. To use
the network, clients build long-lived circuits through a tele-
scoping path of relays: the first in the path is called the guard
(i.e., entry), the last is called the exit, and the remaining are
called middle relays. Once a circuit is established, the client
sends commands through the circuit to the exit instructing it to
open streams to Internet destinations (e.g., web servers); the
request and response traffic for these streams are multiplexed
over the same circuit. Another, less frequently used function
of the network is to support onion services (i.e., anonymized
servers) to which Tor clients can connect (anonymizing both
the client and the onion service to the other).

1https://github.com/shadow/{oniontrace,tornettools,tgen,shadow}
2https://neverenough-sec2021.github.io

2

https://github.com/shadow/oniontrace
https://github.com/shadow/tornettools
https://github.com/shadow/tgen
https://github.com/shadow/shadow
https://neverenough-sec2021.github.io


2.2 Tor Experimentation Tools

Early Tor experimentation tools included packet-level sim-
ulators that were designed to better understand the effects of
Tor incentive schemes [31, 57]. Although these simulators
reproduced some of Tor’s logic, they did not actually use Tor
source code and quickly became outdated and unmaintained.
Recognizing the need for a more realistic Tor experimentation
tool, researchers began developing tools following two main
approaches: network emulation and network simulation [63].
Network Emulation: ExperimenTor [8] is a Tor experimenta-
tion testbed built on top of the ModelNet [73] network emula-
tion platform. ExperimenTor consists of two components that
generally run on independent servers (or clusters): one com-
ponent runs client processes and the other runs the ModelNet
core emulator that connects the processes in a virtual network
topology. The performance of this architecture was improved
in SNEAC [64] through the use of Linux Containers and the
kernel’s network emulation module netem, while tooling and
network orchestration were improved in NetMirage [71].
Network Simulation: Shadow [29] is a hybrid discrete-event
network simulator that runs applications as plugins. We pro-
vide more background on Shadow in §4.1. Shadow’s origi-
nal design was improved with the addition of a user-space
non-preemptive thread scheduler [52], and later with a high
performance dynamic loader [70]. Additional contributions
have been made through several research projects [35, 37, 38],
and we make further contributions that improve Shadow’s ef-
ficiency and correctness as described in §4.2.

2.3 Tor Modeling
An early approach to model the Tor network was devel-

oped for both Shadow and ExperimenTor [32]. The modeling
approach produced scaled-down Tor test networks by sam-
pling relays and their attributes from a single true Tor network
consensus. As a result, the models are particularly sensitive
to short-term temporal changes in the composition of the
true network (e.g., those that result from natural relay churn,
network attacks, or misconfigurations). The new techniques
we present in §3.2 are more robust to such variation because
they are designed to use Tor metrics data spanning a user-
selectable time period (i.e., from any chosen set of consensus
files) in order to create simulated Tor networks that are more
representative of the true Tor network over time.

In previous models, the number of clients to use and their
behavior profiles were unknown, so finding a suitable com-
bination of traffic generation parameters that would yield an
appropriate amount of background traffic was often a chal-
lenging and iterative process. But with the introduction of
privacy-preserving measurement tools [17, 19, 30, 50] and
the recent publication of Tor measurement studies [30, 38, 51],
we have gained a more informed understanding of the traf-
fic characteristics of Tor. Our new modeling techniques use
Markov models informed by (privacy-preserving) statistics

from true Tor traffic [38], while significantly improving ex-
periment scalability as we demonstrate in §4.3.

2.4 Tor Performance Studies
The Tor experimentation tools and models described above

have assisted researchers in exploring how changes to Tor’s
path selection [5, 7, 13, 24, 28, 42, 47, 53, 59, 61, 62, 74, 76],
load balancing [22, 27, 31, 34, 41, 54], traffic admission con-
trol [2, 16, 21, 23, 33, 35, 37, 43, 48, 75], congestion con-
trol [4, 20], and denial of service mechanisms [12, 26, 36,
39, 60] affect Tor performance and security [3]. The standard
practice that has emerged from this work is to sample a single
scaled-down Tor network model and use it to run experiments
with standard Tor and each of a set of chosen configurations
of the proposed performance-enhancing mechanism. Descrip-
tive statistics or empirical distributions of the results are then
compared across these experiments. Although some stud-
ies use multiple trials of each experimental configuration in
the chosen sampled network [34, 41], none of them involve
running experiments in multiple sampled networks, which is
necessary to estimate effects on the real-world Tor network
(see §5). Additionally, statistical inference techniques (e.g.,
interval estimates) are not applied during the analysis of the
results, leading to questions about the extent to which the con-
clusions drawn in previous work are relevant to the real world.
Our work advances the state of the art of the experimental
process for Tor performance research: in §5 we describe new
statistical methodologies that enable researchers to conduct
sound statistical inference from Tor experimentation results,
and in §6 we present a case study to demonstrate how to put
our methods into practice.

3 Models for Tor Experimentation

In order to conduct Tor experiments that produce meaningful
results, we must have network and traffic models that accu-
rately represent the composition and traffic characteristics of
the Tor network. In this section, we describe new modeling
techniques that make use of the latest data from recent privacy-
preserving measurement studies [30, 38, 51]. Note that while
exploring alternatives for every modeling choice that will be
described in this section is out of scope for this paper, we will
discuss some alternatives that are worth considering in §7.

3.1 Internet Model
Network communication is vital to distributed systems;

the bandwidth and the network latency between nodes are
primary characteristics that affect performance. Jansen et
al. have produced an Internet map [38] that we find useful
for our purposes; we briefly describe how it was constructed
before explaining how we modify it.

To produce an Internet map, Jansen et al. [38] conducted In-
ternet measurements using globally distributed vantage points

3



(called probes) from the RIPE Atlas measurement system
(atlas.ripe.net). They assigned a representative probe for each
of the 1,813 cities in which at least one probe was available.
They used ping to estimate the latency between all of the
1,642,578 distinct pairs of representative probes, and they
crawled speedtest.net to extract upstream and downstream
bandwidths for each city.3 They encoded the results into an
Internet map stored in the graphml file format; each vertex
corresponds to a representative probe and encodes the band-
width available in that city, and each edge corresponds to a
path between a pair of representative probes and encodes the
network latency between the pair.

Also encoded on edges in the Internet map were packet
loss rates. Each edge e was assigned a packet loss rate pe
according to the formula pe← 0.015 ·Le/300 where Le is the
latency of edge e. This improvised formula was not based
on any real data. Our experimentation platform (described in
§4) already includes for each host an edge router component
that drops packets when buffers are full. Because additional
packet loss from core routers is uncommon [45], we modify
the Internet map by setting pe to zero for all edges.4 We use
the resulting Internet model in all simulations in this paper.

3.2 Tor Network Model
To the Internet model we add hosts that run Tor relays

and form a Tor overlay network. The Tor modeling task is to
choose host bandwidths, Internet locations, and relay configu-
rations that support the creation of Tor test networks that are
representative of the true Tor network.

We construct Tor network models in two phases: staging
and generation. The two-phase process allows us to perform
the computationally expensive staging phase once, and then
perform the computationally inexpensive generation phase
any number of times. It also allows us to release the staging
files to the community, whose members may then use our Tor
modeling tools without first processing large datasets.

3.2.1 Staging

Ground truth details about the temporal composition and
state of the Tor network are available in Tor network data
files (i.e., hourly network consensus and daily relay server
descriptor files) which have been published since 2007. We
first gather the subset of these files that represents the time
period that we want to model (e.g., all files published in Jan-
uary 2019), and then extract network attributes from the files
in the staging phase so that we can make use of them in the
networks we later generate. In addition to extracting the IP
address, country code, and fingerprint of each relay i, we com-
pute the per-relay and network summary statistics shown in
Table 1. We also process the Tor users dataset containing
per-country user counts, which Tor has published daily since

3speedtest.net ranks mobile and fixed broadband speeds around the world.
4Future work should consider developing a more realistic packet loss

model that is, e.g., based on measurements of actual Tor clients and relays.

Table 1: Statistics computed during the staging phase.

Stat. Description

ri the fraction of consensuses in which relay i was running
gi the fraction of consensuses in which relay i was a guard
ei the fraction of consensuses in which relay i was an exit
wi the median normalized consensus weight of relay i
bi the max observed bandwidth of relay i
λi the median bandwidth rate of relay i
βi the median bandwidth burst of relay i

Cρ median across consensuses of relay count for each position ρ†

Wρ median across consensuses of total weight for position ρ†

Uc median normalized probability that a user is in country c‡

† Valid positions are D: exit+guard, E: exit, G: guard, and M: middle.
‡ Valid countries are any two-letter country code (e.g., us, ca, etc.).

2011 [67]. From this data we compute the median normalized
probability that a user appears in each country. We store the
results of the staging phase in two small JSON files (a few
MiB each) that we use in the generation phase. Note that we
could make use of other network information if it were able
to be safely measured and published (see Appendix A for an
ontology of some independent variables that could be useful).

3.2.2 Generation

In the generation phase, we use the data extracted dur-
ing the staging phase and the results from a recent privacy-
preserving Tor measurement study [38] to generate Tor net-
work models of a configurable scale. For example, a 100%
Tor network represents a model of equal scale to the true Tor
network. Each generated model is stored in an XML configura-
tion file, which specifies the hosts that should be instantiated,
their bandwidth properties and locations in the Internet map,
the processes they run, and configuration options for each
process. Instantiating a model will result in a Tor test network
that is representative of the true Tor network. We describe the
generation of the configuration file by the type of hosts that
make up the model: Tor network relays, traffic generation,
and performance benchmarking.
Tor Network Relays: The relay staging file may contain
more relays than we need for a 100% Tor network (due to
relay churn in the network during the staged time period),
so we first choose enough relays for a 100% Tor network
by sampling n← ∑ρ Cρ relays without replacement, using
each relay’s running frequency ri as its sampling weight.5 We
then assign the guard and exit flag to each of the n sampled
relays j with a probability equal to the fraction of consensuses
in which relay j served as a guard g j and exit e j, respectively.

To create a network whose scale is 0 < s ≤ 1 times the
size of the 100% network,6 we further subsample from the

5Alternatives to weighted sampling should be considered if staging time
periods during which the Tor network composition is extremely variable.

6Because of the RAM and CPU requirements (see §4), we expect that
it will generally be infeasible to run 100% Tor networks. The configurable
scale s allows for tuning the amount of resources required to run a model.

4

https://atlas.ripe.net
https://www.speedtest.net
https://www.speedtest.net


sampled set of n relays to use in our scaled-down network
model. We describe our subsampling procedure for middle re-
lays for ease of exposition, but the same procedure is repeated
for the remaining positions (see Table 1 note†). To subsample
m← s ·CM middle relays, we: (i) sort the list of sampled mid-
dle relays by their normalized consensus weight w j, (ii) split
the list into m buckets, each of which contains as close as
possible to an equal number of relays, and (iii) from each
bucket, select the relay with the median weight w j among
those in the bucket. This strategy guarantees that the weight
distribution across relays in our subsample is a best fit to the
weight distribution of relays in the original sample [32].

A new host is added to the configuration file for each sub-
sampled relay k. Each host is assigned the IP address and
country code recorded in the staging file for relay k, which
will allow it to be placed in the nearest city in the Internet
map. The host running relay k is also assigned a symmetric
bandwidth capacity equal to bk; i.e., we use the maximum ob-
served bandwidth as our best estimate of a relay’s bandwidth
capacity. Each host is configured to run a Tor relay process
that will receive the exit and guard flags that we assigned (as
previously discussed), and each relay k sets its token bucket
rate and burst options to λk and βk, respectively. When exe-
cuted, the relay processes will form a functional Tor overlay
network capable of forwarding user traffic.
Traffic Generation: A primary function of the Tor network
is to forward traffic on behalf of users. To accurately charac-
terize Tor network usage, we use the following measurements
from a recent privacy-preserving Tor measurement study [38]:
the total number of active users φ = 792k (counted at guards)
and the total number of active circuits ψ = 1.49M (counted
at exits) in an average 10 minute period.

To generate a Tor network whose scale is 0 < s≤ 1 times
the size of the 100% network, we compute the total number
of users we need to model as u← s ·φ. We compute the total
number of circuits that those u users create every 10 minutes
as c← ` · s ·ψ, where ` ≥ 0 is a load factor that allows for
configuration of the amount of traffic load generated by the u
users (`= 1 results in “normal” traffic load). We use a process
scale factor 0< p≤ 1 to allow for configuration of the number
of Tor client processes that will be used to generate traffic
on the c circuits from the u users. Each of p · u Tor client
processes will support the combined traffic of 1/p users, i.e.,
the traffic from τ← c/p ·u circuits.

The p factor can be used to significantly reduce the amount
of RAM and CPU resources required to run our Tor model;
e.g., setting p = 0.5 means we only need to run half as many
Tor client processes as the number of users we are simulating.7

At the same time, p is a reciprocal factor w.r.t. the traffic that
each Tor client generates; e.g., setting p = 0.5 causes each
client to produce twice as many circuits (and the associated
traffic) as a single user would.

7A primary effect of p < 1 is fewer network descriptor fetches, the net-
work impact of which is negligible relative to the total traffic generated.

We add p ·u new traffic generation client hosts to our con-
figuration file. For each such client, we choose a country
according to the probability distribution U , and assign the
client to a random city in that country using the Internet map
in §3.1.8 Each client runs a Tor process in client mode config-
ured to disable guards9 and a TGen traffic generation process
that is configured to send its traffic through the Tor client
process over localhost (we significantly extend a previous ver-
sion of TGen [38, §5.1] to support our models). Each TGen
process is configured to generate traffic using Markov models
(as we describe below), and we assign each host a bandwidth
capacity equal to the maximum of 10/p Mbit/s and 1 Gbit/s to
prevent it from biasing the traffic rates dictated by the Markov
models when generating the combined traffic of 1/p users.
Server-side counterparts to the TGen processes are also added
to the configuration file (on independent hosts).

Each TGen process uses three Markov models to accu-
rately model Tor traffic characteristics: (i) a circuit model,
which captures the circuit inter-arrival process on a per-user
basis; (ii) a stream model, which captures the stream inter-
arrival process on a per-circuit basis; and (iii) a packet model,
which captures the packet inter-arrival process on a per-stream
basis. Each of these models are based on a recent privacy-
preserving measurement study that used PrivCount [30] to
collect measurements of real traffic being forwarded by a set
of Tor exit relays [38]. We encode the circuit inter-arrival
process as a simple single state Markov model that emits new
circuit events according to an exponential distribution with
rate 1/µ/τ microseconds, where µ← 6 · 108 is the number
of microseconds in 10 minutes. New streams on each circuit
and packets on each stream are generated using the stream
and packet Markov models, respectively, which were directly
measured in Tor and published in previous work [38, §5.2.3].

The rates and patterns of the traffic generated using the
Markov models will mimic the rates and patterns of real Tor
users: the models encode common distributions (e.g., expo-
nential and log-normal) and their parameters, such that they
can be queried to determine the amount of time to wait be-
tween the creation of new circuits and streams and the transfer
of packets (in both the send and receive directions).

Each TGen client uses unique seeds for all Markov models
so that it generates unique traffic characteristics.10 Each TGen
client also creates a unique SOCKS username and password for
each generated circuit and uses it for all Tor streams generated
in the circuit; due to Tor’s IsolateSOCKSAuth feature, this
ensures that streams from different circuits will in fact be
assigned to independent circuits.

8Shadow will arbitrarily choose an IP address for the host such that it can
route packets to all other simulation hosts (clients, relays, and servers).

9Although a Tor client uses guards by default, for us it would lead to
inaccurate load balancing because each client simulates 1/p users. Support
in the Tor client for running multiple (1/p) parallel guard “sessions” (i.e.,
assigning a guard to each user “session”) is an opportunity for future work.

10The Markov model seeds are unique across clients, but generated from
the same master seed in order to maintain a deterministic simulation.

5



We highlight that although prior work also made use of the
stream and packet Markov models [38, §5.2.3], we extend
previous work with a circuit Markov model that can be used
to continuously generate circuits independent of the length
of an experiment. Moreover, previous work did not consider
either load scale ` or process scale p; ` allows for research
under varying levels of congestion, and our optimization of
simulating 1/p users in each Tor client process allows us to
more quickly run significantly larger network models than we
otherwise could (as we will show in §4.3).
Performance Benchmarking: The Tor Project has published
performance benchmarks since 2009 [67]. The benchmark
process downloads 50 KiB, 1 MiB, and 5 MiB files through
the Tor network several times per hour, and records various
statistics about each download including the time to download
the first and last byte of the files. We mirror this process in our
models; running several benchmarking clients that use some
of the same code as Tor’s benchmarking clients (i.e., TGen)
allows us to directly compare the performance obtained in
our simulated Tor networks with that of the true Tor network.

3.2.3 Modeling Tools

We implemented several tools that we believe are funda-
mental to our ability to model and execute realistic Tor test
networks. We have released these tools as open source soft-
ware to help facilitate Tor research: (i) a new Tor network
modeling toolkit called TorNetTools (3,034 LoC) that imple-
ments our modeling algorithms from §3.2.2; (ii) extensions
and enhancements to the TGen traffic generator [38, §5.1]
(6,531 LoC added/modified and 1,411 removed) to support
our traffic generation models; and (iii) a new tool called Onion-
Trace (2,594 LoC) to interact with a Tor process and improve
reproducibility of experiments. We present additional details
about these tools in the extended version of this paper [40,
Appendix B].

4 Tor Experimentation Platform

The models that we described in §3 could reasonably be in-
stantiated in a diverse set of experimentation platforms in
order to produce representative Tor test networks. We use
Shadow [29], the most popular and validated platform for Tor
experimentation. We provide a brief background on Shadow’s
design, explain the improvements we made to support accu-
rate experimentation, and show how our improvements and
models from §3 contribute to the state of the art.

4.1 Shadow Background
Shadow is a hybrid experimentation platform [29]. At its

core, Shadow is a conservative-time discrete-event network
simulator: it simulates hosts, processes, threads, TCP and
UDP, routing, and other kernel operations. One of Shadow’s
advantages is that it dynamically loads real applications as
plugins and directly executes them as native code. In this

regard, Shadow emulates a network and a Linux environment:
applications running as plugins should function as they would
if they were executed on a bare-metal Linux installation.

Because Shadow is a user-space, single process application,
it can easily run on laptops, desktops, and servers with mini-
mal configuration (resource requirements depend on the size
of the experiment model). As a simulator, Shadow has com-
plete control over simulated time; experiments may run faster
or slower than real time depending on: (i) the simulation load
relative to the processing resources available on the host ma-
chine, and (ii) the inherent parallelizability of the experiment
model. This control over time decouples the fidelity of the
experiment from the processing time required to execute it,
and allows Shadow to scale independently of the processing
capabilities of the host machine; Shadow is usually limited
by the RAM requirements of its loaded plugins.

Shadow has numerous features that allow it to achieve
its goals, including dynamic loading of independent names-
paces for plugins [70], support for multi-threaded plugins via
a non-preemptive concurrent thread scheduling library (GNU
Portable Threads11) [52], function interposition, and an event
scheduler based on work stealing [9]. The combination of its
features makes Shadow a powerful tool for Tor experimenta-
tion, and has led it to become the most popular and standard
tool for conducting Tor performance research [63].

4.2 Shadow Improvements
After investigation of the results from some early exper-

iments, we made several improvements to Shadow that we
believe cause it to produce significantly more accurate results
when running our Tor network models from §3.2. Our im-
provements include run-time optimizations, fixes to ensure de-
terministic execution, faster Tor network bootstrapping, more
realistic TCP connection limits, and several network stack
improvements (see the extended version of this paper for
more details [40, Appendix C]). Our improvements have been
incorporated into Shadow v1.13.2.

4.3 Evaluation
We have thus far made two types of foundational contribu-

tions: those that result in more representative Tor networks,
and those that allow us to run more scalable simulations
faster than was previously possible. We demonstrate these
contributions through Tor network simulations in Shadow.
Representative Networks: We produce more representa-
tive networks by considering the state of the network over
time rather than modeling a single snapshot as did previous
work [32, 38]. We consider relay churn to demonstrate how
the true Tor network changes over time. Figure 1 shows the
rate of relay churn over all 744 consensus files (1 per hour) in
Tor during January 2019. After 2 weeks, fewer than 75% of re-
lays that were part of the network on 2019-01-01 still remain

11https://www.gnu.org/software/pth

6

https://www.gnu.org/software/pth


2019-01-01

2019-01-05

2019-01-09

2019-01-13

2019-01-17

2019-01-21

2019-01-25

2019-01-29

2019-02-01

0

2000

4000

6000
R

el
ay

C
o

u
n

t

Remaining from 2019-01-01

Newly Joined since 2019-01-01

Figure 1: The rate of Tor relay churn over all 744 consensuses from
January 2019. Shown are the number of Tor relays that existed on
2019-01-01 that remain and the number of relays that did not exist
on 2019-01-01 that joined (and possibly left again) over time.

while more than 3,000 new relays joined the network. After
3 weeks, more new relays had joined the network than had
remained since 2019-01-01. Our models account for churn by
sampling from all such relays as described in §3.2.

In addition to producing more representative models, our
Shadow network stack enhancements further improve network
accuracy. To demonstrate these contributions, we simulate
ten Tor network models that were generated following the
methods in §3.2 (using Tor network state from 2019-01). We
model Tor at the same s= 0.31 scale that was used in previous
work [38] (i.e., ≈2k relays and ≈250k users) using a process
scale factor of p = 0.01 (i.e., each TGen process simulated
1/0.01 = 100 Tor users). We compare our simulation results
to those produced by state-of-the-art methods [38] (which
used Tor network state from 2018-01) and to reproducible
Tor metrics [67, 68] from the corresponding modeling years
(2019 for our work, 2018 for the CCS 2018 work).12

The results in Figure 2 generally show that previous work
is noticeably less accurate when compared to Tor 2018 than
our work is compared to Tor 2019. We notice that previous
work exhibited a high client download error rate in Figure 2c
and significantly longer download times in Figures 2e–2g
despite the network being appropriately loaded as shown in
Figure 2h. We attribute these errors to the connection limit and
network stack limitations that were present in the CCS 2018
version of Shadow (the errors are not present in this work due
to our Shadow improvements from §4.2). Also, we remark
that the relay goodput in Figure 2h exhibits more variance in
Tor than in Shadow because the Tor data is being aggregated
over a longer time period (1 year for Tor vs. less than 1 hour
for Shadow) during which the Tor network composition is
significantly changing (see Figure 1).
Scalable Simulations: Our new models and Shadow enhance-
ments enable researchers to run larger networks faster than
was previously possible. We demonstrate our improvements
to scalability in two ways. First, we compare in the top part
of Table 2 the resources required for the 31% experiments
described above. We distinguish total run time from the time

12Although the models used Tor data spanning one month, we consider it
reasonable to reflect the general state of Tor throughout the respective year.

Tor 2019 This Work (s=0.31) Tor 2018 CCS 2018 (s=0.31)

C
D

F

0 5 10

Time (sec)

0.00

0.25

0.50

0.75

1.00

(a) Circuit Build

0 6 12

Time (sec)

0.00

0.25

0.50

0.75

1.00

(b) Circuit RTT

100 101 102

Error Rate (%)

0.00

0.25

0.50

0.75

1.00

(c) DL Error Rate

0 20 40

Goodput (Mbit/s) .

0.00

0.25

0.50

0.75

1.00

(d) DL Goodput

C
D

F

0 8 16

Time (sec)

0.00

0.25

0.50

0.75

1.00

(e) TTLB 50 KiB

0 25 50

Time (sec)

0.00

0.25

0.50

0.75

1.00

(f) TTLB 1 MiB

0 40 80

Time (sec)

0.00

0.25

0.50

0.75

1.00

(g) TTLB 5 MiB

120 160 200

Goodput (Gbit/s)

0.00

0.25

0.50

0.75

1.00

(h) Relay Goodput

Figure 2: Results from 10 simulations at network scale s = 0.31
(modeled using Tor network state from 2019-01) and 1 simulation
using state-of-the-art methods from CCS 2018 [38] (modeled us-
ing Tor network state from 2018-01) compared to reproducible Tor
metrics [68] during the respective years. Shown are benchmark
client metrics for: (a) circuit build times; (b) round trip times (time
from data request to first byte of response); (c) download error rate;
(d) download goodput (i.e., transfer rate for range [0.5 MiB, 1 MiB]
over 1 MiB and 5 MiB transfers), and (e)–(g) download times for
transfers of size 50 KiB, 1 MiB, and 5 MiB. Relay goodput in (h) is,
for each second, the sum over all relays of application bytes written
(extrapolated by a 1/0.31 factor to account for scale). (Note that
circuit times in (a) are unavailable in the CCS 2018 model [38].)
The shaded areas represent 95% confidence intervals (CIs) that were
computed following our method from §5.

required to bootstrap all Tor relays and clients, initialize all
traffic generators, and reach steady state. We reduced the
time required to execute the bootstrapping process by 2 days,
18 hours, or 80%, while we reduced the total time required to
run the bootstrapping process plus 25 simulated minutes of
steady state by 33 days, 12 hours, or 94%. The ratio of real
time units required to execute each simulated time unit dur-
ing steady state (i.e., after bootstrapping has completed) was
reduced by 96%, further highlighting our achieved speedup.
When compared to models of the same s = 31% scale from
previous work, we observed that our improvements reduced
the maximum RAM required to run bootstrapping plus 25 sim-
ulated minutes of steady state from 2.6 TiB down to 932 GiB
(a total reduction of 1.7 TiB, or 64%).

Second, we demonstrate how our improvements enable
us to run significantly larger models by running three Tor
models at scale s = 1.0, i.e., at 100% of the size of the true
Tor network. We are the first to simulate Tor test networks of
this scale.13 The bottom part of Table 2 shows that each of

13We attempted to run a 100% scale Tor network using the CCS 2018
model [38], but it did not complete the bootstrapping phase within 30 days.

7



Tor 2019 This Work (s=1.0) with 95% CI

C
D

F

0 5 10

Time (sec)

0.00

0.25

0.50

0.75

1.00

(a) Circuit Build

0.0 1.5 3.0

Time (sec)

0.00

0.25

0.50

0.75

1.00

(b) Circuit RTT

100 101 102

Error Rate (%)

0.00

0.25

0.50

0.75

1.00

(c) DL Error Rate

0 25 50

Goodput (Mbit/s) .

0.00

0.25

0.50

0.75

1.00

(d) DL Goodput

C
D

F

0 4 8

Time (sec)

0.00

0.25

0.50

0.75

1.00

(e) TTLB 50 KiB

0 20 40

Time (sec)

0.00

0.25

0.50

0.75

1.00

(f) TTLB 1 MiB

0 40 80

Time (sec)

0.00

0.25

0.50

0.75

1.00

(g) TTLB 5 MiB

150 175 200

Goodput (Gbit/s)

0.00

0.25

0.50

0.75

1.00

(h) Relay Goodput

Figure 3: Results from 3 simulations at network scale s = 1.0 (mod-
eled using Tor network state from 2019-01) compared to repro-
ducible Tor metrics [68]. The metrics are as were defined in the
Fig. 2 caption. The shaded areas represent 95% confidence intervals
(CIs) that were computed following our method from §5.

Table 2: Scalability improvements over the state of the art

Model Scale s? RAM Bootstrap Time Total Time Ω◦

CCS’18 [38]† 31% 2.6 TiB 3 days, 11 hrs. 35 days, 14 hrs. 1850
This work† 31% 932 GiB 17 hrs. 2 days, 2 hrs. 79

This work‡ 100% 3.9 TiB 2 days, 21 hrs. 8 days, 6 hrs. 310
? 31%: ≈2k relays and ≈250k users; 100%: 6,489 relays and 792k users
◦ Ω: ratio of real time / simulated time in steady state (after bootstrapping)
† Using 8×10-core Intel Xeon E7-8891v2 CPUs each running @3.2 GHz.
‡ Using 8×18-core Intel Xeon E7-8860v4 CPUs each running @2.2 GHz.

our 100% Tor networks consumed at most 3.9 TiB of RAM,
completed bootstrapping in 2 days, 21 hours, and ran the
entire simulation (bootstrapping plus 25 simulated minutes
of steady state) in 8 days, 6 hours. We show in Figure 3
that our 100% networks also achieve similar performance
compared to the metrics published by Tor [68]. Our results
are plotted with 95% confidence intervals to better understand
how well our sampling methods are capable of reproducing
the performance characteristics of the true Tor network. We
describe how to conduct such a statistical inference in §5 next.

5 On the Statistical Significance of Results

Recall that our modeling methodology from §3.2 produces
sampled Tor networks at scales of 0 < s≤ 1 times the size of
a 100% network. Because these networks are sampled using
data from the true Tor network, there is an associated sam-
pling error that must be quantified when making predictions
about how the effects observed in sampled Tor networks gen-
eralize to the true Tor network. In this section, we establish a
methodology for employing statistical inference to quantify

the sampling error and make useful predictions from sampled
networks. In our methodology, we: (i) use repeated sampling
to generate multiple sampled Tor networks; (ii) estimate the
true distribution of a random variable under study through
measurements collected from multiple sampled network sim-
ulations; and (iii) compute statistical confidence intervals to
define the precision of the estimation.

We remark that it is paramount to conduct a statistical infer-
ence when running experiments in sampled Tor networks in
order to contextualize the results they generate. Our method-
ology employs confidence intervals (CIs) to establish the pre-
cision of estimations that are made across sampled networks.
CIs will allow a researcher to make a statistical argument
about the extent to which the results they have obtained are
relevant to the real world. As we will demonstrate in §6, CIs
help guide researchers to sample additional Tor networks (and
run additional simulations) if necessary for drawing a particu-
lar conclusion in their research. Our methodology represents
a shift in the state of the art of analysis methods typically used
in Tor network performance research, which has previously
ignored statistical inference and CIs altogether (see §2.4).

5.1 Methodology
When conducting research using experimental Tor net-

works, suppose we have an interest in a particular network
metric; for example, our research might call for a focus on
the distribution of time to last byte across all files of a given
size downloaded through Tor as an indication of Tor perfor-
mance (see our ontology in Appendix A for examples of other
useful metrics). Because the values of such a variable are de-
termined by the outcomes of statistical experiments, we refer
to the variable as random variable X . The true probability
distribution over X is P(X), the true cumulative distribution is
FX (x) = P(X ≤ x), and the true inverse distribution at quantile
y is F−1

X (y) such that y = FX (F−1
X (y)). Our goal is to estimate

P(X) (or equivalently, FX and F−1
X ), which we do by running

many simulations in sampled Tor networks and averaging the
empirical distributions of X at a number of quantiles across
these simulations. Table 3 summarizes the symbols that we
use to describe our methodology.
Repeated Sampling: A single network sampled from the true
Tor network may not consistently produce perfectly repre-
sentative results due to the sampling error introduced in the
model sampling process (i.e., §3). Similarly, a single simula-
tion may not perfectly represent a sampled network due to the
sampling error introduced by the random choices made in the
simulator (e.g., guard selection). Multiple samples of each are
needed to conduct a statistical inference and understand the
error in these sampling processes.

We independently sample n > 0 Tor networks according
to §3.2. The ith resulting Tor network is associated with a
probability distribution P̂i(X) which is specific to the ith net-
work and the relays that were chosen when generating it. To
estimate P̂i(X), we run mi > 0 simulations in the ith Tor net-

8



Table 3: Symbols used to describe our statistical methodology.

Symbol Description

P(X) true probability distribution of random variable X
FX (x) cumulative distribution function of X at x such that P(X ≤ x)

F−1
X (y) inverse distribution function of X at y such that y = FX (F−1

X (y))
µ(y) estimate of inverse distribution function at quantile y
ε(y) error on inverse distribution estimate at quantile y

n number of independently sampled Tor networks
P̂i(X) probability distribution over X in network i
F̂Xi(x) cumulative distribution function of X at x such that P̂i(X ≤ x)
F̂−1

Xi (y) inverse distribution function of X in network i at quantile y
µ̂i(y) estimate of inverse distribution function in network i at quantile y
ε̂i(y) error on inverse distribution estimate in network i at quantile y

mi number of simulations in sampled Tor network i
νi j number of samples of X collected from sim j in net i

Ẽi j(X) empirical distribution over νi j samples of X from sim j in net i
F̃Xi j(x) cumulative distribution function of X at x such that Ẽi j(X ≤ x)
F̃−1

Xi j (y) inverse distribution function of X from sim j in net i at quantile y

work. During the jth simulation in the ith network, we sample
νi j values of X from P̂i(X) (i.e., we collect νi j time to last
byte measurements from the simulation). These νi j samples
form the empirical distribution Ẽi j(X), and we have ∑

n
i=1 mi

such distributions in total (one for each simulation).
Estimating Distributions: Once we have completed the sim-
ulations and collected the ∑

n
i=1 mi empirical distributions, we

then estimate the inverse distributions F̂−1
Xi and F−1

X associ-
ated with the sampled network and true probability distribu-
tions P̂i(X) and P(X), respectively.

First, we estimate each F̂−1
Xi (y) at quantile y by taking the

mean over the mi empirical distributions from network i:

F̂−1
Xi (y) = µ̂i(y) = 1

mi
∑

mi
j=1 F̃−1

Xi j (y) (1)

We refer to µ̂i as an estimator of F̂−1
Xi ; when taken over a

range of quantiles, it allows us to estimate the cumulative
distribution F̂Xi(x) = P̂i(X ≤ x).

Second, we similarly estimate F−1
X over all networks by

taking the mean over the n distributions estimated above:

F−1
X (y)≈ µ(y) = 1

n ∑
n
i=1 µ̂i(y) (2)

We refer to µ as an estimator of F−1
X ; when taken over a

range of quantiles, it allows us to estimate the cumulative
distribution FX (x) = P(X ≤ x).

We visualize the process of estimating F−1
X in Figure 4

using an example: Figure 4a shows n = 3 synthetic distri-
butions where the upward arrows point to the F̂−1

Xi values
from network i at quantile y = .5, and Figure 4b shows the
mean of those values as the estimator µ. The example applies
analogously when estimating each F̂−1

Xi .
Computing Confidence Intervals: We quantify the precision
of our estimator µ using CIs. To compute the CIs, we first
quantify the measurement error associated with the empirical
samples. This will often be negligible, but a possible source
of nontrivial measurement error is resolution error; that is, if

0 10 20 30

Random Variable X

0.00

0.25

0.50

0.75

1.00

E
m

pi
ri

ca
l

C
D

F

F̂−1
Xi (.5)F̂−1
Xi (.5)F̂−1
Xi (.5)

F̂X1

F̂X2

F̂X3

(a)

0 10 20 30 40

Random Variable X

0.00

0.25

0.50

0.75

1.00

E
st

im
at

ed
T

ru
e

C
D

F

µ(.5)

µ(.5)− ε(.5) µ(.5) + ε(.5)

µ ≈ F−1
X

CI

(b)
Figure 4: A synthetic example of estimating the cumulative distribu-
tion of a random variable X (e.g., time to last byte). (a) The mean in
Equation 2 and standard deviation in Equation 4 are computed over
the n = 3 values at each quantile. (b) The estimated true distribution
from Equation 2 is shown with confidence intervals from Equation 5.

the empirical results are reported to a resolution of r (e.g.,
0.01 s), the resolution error for each sample will be r√

12
, and

the resolution error ζi for the empirical mean µ̂i(y) of network
i at quantile y is ζi =

r√
12mi

. Next, we quantify the sampling
error associated with the estimates from Equations 1 and 2.
The error associated with µ̂i for network i at quantile y is:

ε̂i(y) = σ̂i(y) · t/
√

mi−1 (3)

where σ̂i(y) =
√

1
mi

∑
mi
j=1(F̃

−1
Xi j (y)− µ̂i(y))2 +ζ2

i is the stan-
dard deviation over the mi empirical values at quantile y (in-
cluding the measurement error) and t is the t-value from
the Student’s t-distribution at confidence level α with mi−1
degrees of freedom [25, §10.5.1]. ε̂i(y) accounts for the sam-
pling error and estimated true variance of the underlying dis-
tribution at y. The error associated with µ at quantile y is:

ε(y) = δ(y)+σ(y) · t/
√

n−1 (4)

where σ(y) =
√

1
n ∑

n
i=1(F̂

−1
Xi (y)−µ(y))2 is the standard de-

viation over the n estimated inverse distribution values at
quantile y, and δ(y) = 1

n ∑
n
i=1 ε̂i(y) is the mean error from µ̂i

over all n sampled networks. ε(y) accounts for the sampling
error introduced in the Tor network model generation and
in the simulations. We can then define the CI at quantile y
as the interval that contains the true value from the inverse
distribution F−1

X (y) with probability α:

µ(y)− ε(y)≤ F−1
X (y)≤ µ(y)+ ε(y) (5)

The width of the interval is 2 · ε(y), which we visualize at
y = .5 with the downward arrows and over all quantiles with
the shaded region in Figure 4b.

5.2 Discussion
Number of Samples Per Simulation: Recall that we collect
νi j empirical samples of the random variable X from simu-
lation j in network i. If we increase νi j (e.g., by running the
simulation for a longer period of time), this will result in a
“tighter” empirical distribution Ẽi j(X) that will more closely
resemble the probability distribution P̂i(X). However, from

9



0 20 40 60 80 100

Number of Sampled Networks

100

101

102

W
id

th
o

f
9

5
%

C
I σ ∼ N (1,1) at P50

σ ∼ N (1,1) at P90

σ ∼ N (1,1) at P99

Figure 5: The width of the 95% CI (on the log-scale y-axis) can
be significantly reduced by more than an order of magnitude after
running experiments in fewer than 10 independently sampled Tor
networks (when σ is normally distributed according to N (1,1)).

Equation 1 we can see that Ẽi j(X) only contributes a single
value to the computation of µ̂i for each quantile. Therefore,
once we have enough samples so that Ẽi j(X) reasonably ap-
proximates P̂i(X), it is more useful to run new simulations
than to gather additional samples from the same simulation.
Number of Simulations Per Network: Additional simula-
tions in network i will provide us with additional empirical dis-
tributions Ẽi∗(X), which will enable us to obtain a better esti-
mate of P̂i(X). Moreover, it will also increase the precision of
the CI by reducing ε̂i in Equation 3: increasing the number of
Ẽi∗(X) values at each quantile will decrease the standard devi-
ation σ̂i (if the values are normally distributed) and the t-value
(by increasing the number of degrees of freedom) while in-
creasing the square root component (in the denominator of ε̂i).
Number of Sampled Networks: Additional simulations in
independently sampled Tor networks will provide us with
additional estimated P̂i(X) distributions, which will enable us
to obtain a better estimate of P(X). Similarly as above, addi-
tional P̂i(X) estimates will increase CI precision by reducing
ε in Equation 4: the standard deviation σ and the t-value will
decrease while the square root component will increase.

To give a concrete example, suppose σ is normally dis-
tributed according to N (1,1). The width of the resulting CI
for each number of sampled networks n∈ [2,100] at quantiles
y ∈ {0.5,0.9,0.99} (i.e., P50, P90, and P99, respectively) is
shown in Figure 5. Notice that the y-axis is drawn at log-
scale, and shows that the width of the CI can be significantly
reduced by more than an order of magnitude after running
experiments in even just a small number of sampled networks.
Additionally, we can see that the main improvement in confi-
dence results from the first ten or so sampled networks, after
which we observe relatively diminishing returns.
Scale: Another important factor to consider is the network
scale 0< s≤ 1. Larger scales s (closer to 1) cause the probabil-
ity distribution P̂i(X) of each sampled network to cluster more
closely around the true probability distribution P(X), while
smaller values cause the P̂i(X) to vary more widely. Larger
scales s therefore induce smaller values of σ(y) and therefore
ε(y). (See §6.3 for a demonstration of this phenomenon.)
Sampling Error in Shadow: While ε includes the error due
to sampling a scaled-down Tor network (i.e., §3), the main

0 1 2 3 4 5 6 7

Download Time (s)

0.00

0.25

0.50

0.75

1.00

E
m

p
ir

ic
al

C
D

F

F̃X11

F̃X12

F̃X13

F̃X21

F̃X22

F̃X23

F̃X31

F̃X32

F̃X33

Figure 6: Sampling error introduced by Shadow is much less signif-
icant than error introduced by Tor network sampling (i.e., §3).

error that is accounted for in ε̂i is the sampling error intro-
duced by the choices made in the simulator. If this error is
low, running additional simulations in the same network will
have a reduced effect. To check the sampling error introduced
by Shadow, we ran 9 simulations (3 simulations in each of 3
independently sampled networks of scale s= 0.1) with unique
simulator seeds. Figure 6 shows that the empirical distribu-
tions of the 50 KiB download times vary much more widely
across sampled Tor networks than they do across simulations
in the same network. Although it is ideal to run multiple sim-
ulations in each of multiple sampled networks, our results
indicate that it may be a better use of resources to run every
simulation in an independently sampled network. We believe
this to be a reasonable optimization if a lack of available
computational resources is a concern.
Conclusions: We have established a methodology for esti-
mating the true distribution of random variables being studied
across simulations in multiple Tor networks. Importantly, our
methodology includes the computation of CIs that help re-
searchers make statistical arguments about the conclusions
they draw from Tor experiments. As we explained above and
demonstrated in Figure 5, running simulations in smaller-
scale Tor networks or in a smaller number of Tor networks for
a particular configuration leads to larger CIs that limit us to
drawing weaker conclusions from the results. Unfortunately,
previous Tor research that utilizes Tor networks has focused
exclusively on single Tor networks while completely ignoring
CIs, leading to questionable conclusions (see §2.4).We argue
that our methodology is superior to the state-of-the-art meth-
ods, and present in §6 a case study demonstrating how to put
our methods into practice while conducting Tor research.

6 Case Study: Tor Usage and Performance

This section presents a case study on the effects of an increase
in Tor usage on Tor client performance. Our primary goal is
to demonstrate how to apply the methodologies we presented
throughout this paper through a concrete set of experiments.

6.1 Motivation and Overview
Growing the Tor network is desirable because it improves

anonymity [1] and access to information online [72]. One
strategy for facilitating wider adoption of Tor is to deploy it in

10



more commonly used browsers. Brave now prominently ad-
vertises on its website Tor integration into its browser’s private
browsing mode, giving users the option to open a privacy-
enhanced tab that routes traffic through Tor [10], and Mozilla
is also interested in providing a similar “Super Private Brows-
ing” mode for Firefox users [55]. However, Tor has never been
deployed at the scale of popular browser deployments (Firefox
has >250M monthly active users [56]), and many important re-
search problems must be considered before such a deployment
could occur [66]. For example, deploying Tor more widely
could add enough load to the network that it reduces perfor-
mance to the extent that some users are dissuaded from using
it [18] while reducing anonymity for those that remain [1].

There has been little work in understanding the perfor-
mance effects of increasing Tor network load as representa-
tive of the significant change in Tor usage that would likely
occur in a wider deployment. Previous work that considered
variable load did so primarily to showcase a new simulation
tool [29] or to inform the design of a particular performance-
enhancing algorithm [33, 37] rather than for the purpose of
understanding network growth and scalability [44]. Moreover,
previous studies of the effects of load on performance lack
analyses of the statistical significance of the reported results,
raising questions as to their practical meaning.

Guided by the foundations that we set out in this paper, we
explore the performance effects of a sudden rise in Tor usage
that could result from, e.g., a Mozilla deployment of Tor. In
particular, we demonstrate the use of our methodologies with
an example study of this simple hypothesis: increasing the to-
tal user traffic load in Tor by 20% will reduce the performance
of existing clients by increasing their download times and
download error rates. To study this hypothesis, we conduct
a total of 420 simulations in independently sampled Tor net-
works across three network scale factors and two traffic load
factors; we measure relevant performance properties and con-
duct a statistical analysis of the results following our method-
ology in §5. Our study demonstrates how to use our contribu-
tions to conduct statistically valid Tor performance research.

6.2 Experiment Setup
Experiments and Simulations: We refer to an experiment as
a unique pair of network scale s and load ` configurations, and
a simulation as a particular execution of an experiment config-
uration. We study our hypothesis with a set of 6 experiments;
for each experiment, we run multiple simulations in inde-
pendent Tor networks so that we can quantify the statistical
significance of the results following our guidance from §5.
Tor Network Scale and Load: The Tor network scales that a
researcher can consider are typically dependent on the amount
of RAM to which they have access. Although we were able
to run a 100% Tor network for our evaluation in §4, we do
not expect that access to a machine with 4 TiB of RAM, as
was required to run the simulation, will be common. Because
it will be more informative, we focus our study on multiple

Table 4: Tor usage and performance experiments in Shadow

Scale s Load ` Sims n CPU? RAM/Sim† Run Time/Sim‡

1% 100% 100 4×8 35 GiB 4.8 hours
1% 120% 100 4×8 50 GiB 6.7 hours

10% 100% 100 4×8 355 GiB 19.4 hours
10% 120% 100 4×8 416 GiB 23.4 hours

30% 100% 10 8×8 1.07 TiB 4 days, 21 hours
30% 120% 10 8×8 1.25 TiB 5 days, 22 hours

? 4×8-core Intel Xeon E5 @3.3 GHz; 8×8-core Intel Xeon E5 @2.7 GHz.
† The median of the per-simulation max RAM usage over all simulations.
‡ The median of the per-simulation run time over all simulations.

Table 5: Network composition in each simulation?

Scale s DirAuth Guard Middle Exit E+G† Markov Perf‡ Server

1% 3 20 36 4 4 100 8 10
10% 3 204 361 40 44 792 79 79
30% 3 612 1,086 118 129 2,376 238 238

? Total number of relays at s=1%: 67; at s=10%: 652; and at s=30%: 1,948.
† E+G: Relays with both the exit and guard flags ‡ Perf: Benchmark clients

smaller network scales with more accessible resource require-
ments while showing the change in confidence that results
from running networks of different scales. In particular, our
study considers Tor network scales of 1%, 10%, and 30%
(s ∈ {0.01,0.1,0.3}) of the size of the true Tor network. At
each of these network scales, we study the performance ef-
fects of 100% and 120% traffic load (` ∈ {1.0,1.2}) using
a process scale factor of p = 0.01, i.e., each TGen process
simulates 1/0.01 = 100 Tor users.
Number of Simulations: Another important consideration in
our evaluation is the number n of simulations to run for each
experiment. As explained in §5, running too few simulations
will result in wider confidence intervals that will limit us to
weaker conclusions. The number n of simulations that should
be run typically depends on the results and the arguments
being made, but in our case we run more than we require to
validate our hypothesis in order to demonstrate the effects of
varying n. As shown in the left part of Table 4, we run a total
of 420 simulations across our 6 experiments (three network
scales and two load factors) using two machine profiles: one
profile included 4×8-core Intel Xeon E5-4627 CPUs running
at a max clock speed of 3.3 GHz and 1.25 TiB of RAM; the
other included 8×8-core Intel Xeon E5-4650 CPUs running
at a max clock speed of 2.7 GHz and 1.5 TiB of RAM.
Simulation Configuration: We run each simulation using an
independently sampled Tor network in order to ensure that we
produce informative samples following our guidance from §5.
Each Tor network is generated following our methodology
from §3 using the parameter values described above and Tor
network state files from January 2019. The resulting network
composition for each scale s is shown in Table 5.

Each simulation was configured to run for 1 simulated hour.
The relays bootstrapped a Tor overlay network within the first
5 minutes; all of the TGen clients and servers started their

11



0 5 10 15 20 25 30 35

Time to Last Byte (s)

0.0

0.9

0.99

0.1
0.2
0.3
0.4

0.5

0.6

0.7

0.8

0.91
0.92
0.93
0.94

0.95

0.96

0.97

0.98

E
st

im
at

ed
T

ru
e

C
D

F
(l

og
sc

al
e)

`=1.0, n=10

`=1.0, n=100

`=1.2, n=10

`=1.2, n=100

(a) 1% Network Scale (s = 0.01)

0 10 20 30 40 50 60

Time to Last Byte (s)

0.0

0.9

0.99

0.1
0.2
0.3
0.4

0.5

0.6

0.7

0.8

0.91
0.92
0.93
0.94

0.95

0.96

0.97

0.98

E
st

im
at

ed
T

ru
e

C
D

F
(l

og
sc

al
e)

`=1.0, n=5

`=1.0, n=10

`=1.0, n=100

`=1.2, n=5

`=1.2, n=10

`=1.2, n=100

(b) 10% Network Scale (s = 0.1)

0 10 20 30 40 50

Time to Last Byte (s)

0.0

0.9

0.99

0.1
0.2
0.3
0.4

0.5

0.6

0.7

0.8

0.91
0.92
0.93
0.94

0.95

0.96

0.97

0.98

E
st

im
at

ed
T

ru
e

C
D

F
(l

og
sc

al
e)

`=1.0, n=5

`=1.0, n=10

`=1.2, n=5

`=1.2, n=10

(c) 30% Network Scale (s = 0.3)

Figure 7: Time to last byte in seconds of 1 MiB downloads from performance benchmarking clients from experiments with traffic load `= 1.0
and `= 1.2 in networks of various scale s. The results from each experiment are aggregated from n simulations following §5, and the CDFs are
plotted with tail-logarithmic y-axes in order to highlight the long tail of network performance.

traffic generation process within 10 simulated minutes of the
start of each simulation. TGen streams created by Markov
clients were set to time out if no bytes were transferred in
any contiguous 5 simulated minute period (the default apache
client timeout), or if the streams were not complete within an
absolute time of 10 simulated minutes. Timeouts for streams
created by benchmarking clients were set to 15, 60, and 120
seconds for 50 KiB, 1 MiB, and 5 MiB transfers, respectively.

6.3 Results
During each simulation, we measure and collect the prop-

erties that allow us to understand our hypothesis. Ultimately,
we would like to test if increasing the traffic load on the net-
work by 20% (from ` = 1.0 to ` = 1.2) will reduce client
performance. Therefore, we focus this study on client down-
load time and download error rates while noting that it will
very likely be useful to consider additional properties when
studying more complex hypotheses (see Appendix A).

For each experiment, we combine the results from the n
simulations14 following the methodology outlined in §5 and
present the estimated true cumulative distributions with the
associated CIs (as in Figure 4) at α = 95% confidence. We
plot the results for varying values of n as overlapping intervals
(the CIs tighten as n increases) for instructional purposes.
Finally, we compare our results across network scales s to
highlight the effect of scale on the confidence in the results.
Client Download Time: The time it takes to download a
certain number of bytes through Tor (i.e., the time to first/last
byte) allows us to assess and compare the overall performance
that a Tor client experiences. We measure download times for
the performance benchmarking clients throughout the simula-
tions. We present in Figure 7 the time to last byte for 1 MiB
file downloads, while noting that we find similar trends for
other file download sizes as shown in the extended paper [40,
Appendix D]. The CDFs are plotted with tail-logarithmic y-
axes in order to highlight the long tail of network performance
as is typically used as an indication of usability.

14We ignore the results from the first 20 simulated minutes of each simula-
tion to allow time for the network to bootstrap and reach a steady state.

Figure 7a shows the result of our statistical analysis from §5
when using a network scale of 1% (s = 0.01). Against our ex-
pectation, our estimates of the true CDFs (i.e., the solid lines)
indicate that the time to download 1 MiB files actually de-
creased after we increased the traffic load by 20%. However,
notice the extent to which the confidence intervals overlap:
for example, the width of the region of overlap of the `= 1.0
and `= 1.2 CIs is about 20 seconds at P90 (i.e., at x ∈ [8,28]
seconds) when n = 10, and is about 3 seconds at P90 (i.e.,
at x ∈ [16.5,19.5] seconds) when n = 100. Importantly, the
estimated true CDF for ` = 1.0 falls completely within the
CIs for `= 1.2 and the estimated true CDF for `= 1.2 falls
completely within the CIs for ` = 1.0, even when consider-
ing n = 100 simulations for each experiment. Therefore, it is
possible that the x position of the true CDFs could actually be
swapped compared to what is shown in Figure 7a. If we had
followed previous work and ignored the CIs, it would have
been very difficult to notice this statistical possibility. Based
on these results alone, we are unable to draw conclusions
about our hypothesis at the desired confidence.

Our experiments with the network scale of 10% offer more
reliable results. Figure 7b shows the extent to which the CIs
become narrower as n increases from 5 to 10 to 100. Although
there is some overlap in the `= 1.0 and `= 1.2 CIs at some
y < 0.9 values when n is either 5 or 10, we can confidently
confirm our hypothesis when n = 100 because the estimated
true CDFs and their CIs are completely distinguishable. No-
tice that the CI precision at n = 10 and n = 100 has increased
compared to those from Figure 7a, because the larger scale
network produces more representative empirical samples.

Finally, the results from our experiments with the network
scale of 30% reinforce our previous conclusions about our
hypothesis. Figure 7c shows that the estimated true CDFs
and their CIs are completely distinguishable, allowing us to
confirm our hypothesis even when n = 5. However, we notice
an interesting phenomenon with the `= 1.2 CIs: the CI for
n = 10 is unexpectedly wider than the CI for n = 5. This
can be explained by the analysis shown in Figure 5: as n
approaches 1, the uncertainty in the width of the CI grows

12



0 20 40 60 80

Error Rate (%)

0.0

0.2

0.4

0.6

0.8

1.0

E
st

im
at

ed
T

ru
e

C
D

F

`=1.0, n=10

`=1.0, n=100

`=1.2, n=10

`=1.2, n=100

(a) 1% Network Scale (s = 0.01)

0 20 40 60

Error Rate (%)

0.0

0.2

0.4

0.6

0.8

1.0

E
st

im
at

ed
T

ru
e

C
D

F

`=1.0, n=5

`=1.0, n=10

`=1.0, n=100

`=1.2, n=5

`=1.2, n=10

`=1.2, n=100

(b) 10% Network Scale (s = 0.1)

0 5 10 15 20

Error Rate (%)

0.0

0.2

0.4

0.6

0.8

1.0

E
st

im
at

ed
T

ru
e

C
D

F

`=1.0, n=5

`=1.0, n=10

`=1.2, n=5

`=1.2, n=10

(c) 30% Network Scale (s = 0.3)

Figure 8: The download error rate (i.e., the fraction of failed over attempted downloads) for downloads of all sizes from performance
benchmarking clients from experiments with traffic load `= 1.0 and `= 1.2 in networks of various scale s. The results from each experiment
are aggregated from n simulations following §5.

rapidly. In our case, the empirical distributions from the first
n= 5 networks that we generated happened to be more closely
clustered by chance, but n = 10 resulted in a more diverse
set of sampled networks that produced more varied empirical
distributions. Our conclusions happen to be the same both
when n = 5 and when n = 10, but this may not always be the
case (e.g., when the performance differences between two ex-
periments are less pronounced). We offer general conclusions
based on our results later in this section.
Client Download Error Rate: The client download error
rate (i.e., the fraction of failed over attempted downloads)
helps us understand how additional traffic load would impact
usability. Larger error rates indicate a more congested net-
work and represent a poorer user experience. We measure the
number of attempted and failed downloads throughout the
simulations, and compute the download error rate across all
downloads (independent of file size) for each performance
benchmarking client. We present in Figure 8 the download
error rate across all benchmarking clients. (Note that another
general network assessment metric, Tor network goodput, is
shown in the extended paper [40, Appendix D].)

Figure 8a shows the result of our statistical analysis from §5
when using a network scale of 1% (s = 0.01). As with the
client download time metric, we see overlap in the `= 1.0 and
`= 1.2 CIs when n = 10. Although it appears that the down-
load error rates decrease when adding 20% load (because the
range of the `= 1.0 CI is generally to the right of the range
of the `= 1.2 CI), we are unable to draw conclusions at the
desired confidence when n = 10. However, the ` = 1.0 and
` = 1.2 CIs become significantly narrower (and no longer
overlap) with n = 100 simulations, and it becomes clear that
adding 20% load increases the error rate.

Our experiments with the network scale of 10% again offer
more reliable results. Figure 8b shows significant overlap
in the ` = 1.0 and ` = 1.2 CIs when n = 5 simulations and
a very slight overlap in CIs when n = 10. However, based
on the estimated true CDF and CIs when n = 100, we can
again confidently conclude that increasing the traffic load

by 20% increases the download error rate because the CIs
are clearly distinguishable. Notice that the CI precision for
` = 1.2 compared to the CI precision for ` = 1.0 offers an
additional insight into the results: the error rate is more highly
varied when ` = 1.2, indicating that the user experience is
much less consistent than it is when `= 1.0.

Finally, the results from our experiments with the network
scale of 30% again reinforce our previous conclusions about
our hypothesis. Figure 8c shows that the estimated true CDFs
and their CIs are completely distinguishable, allowing us to
confirm our hypothesis even when n = 5.
Conclusions: We offer some general observations based on
the results of our case study. First, our results indicate that
it is possible to come to similar conclusions by running ex-
periments in networks of different scales. Generally, fewer
simulations will be required to achieve a particular CI preci-
sion in networks of larger scale than in networks of smaller
scale. The network scale that is appropriate and the precision
that is needed will vary and depend heavily on the experi-
ments and metrics being compared and the hypothesis being
tested. However, based on our results, we suggest that net-
works at a scale of at least 10% (s≥ 0.1) are used whenever
possible, and we strongly recommend that 1% networks be
avoided due to the unreliability of the results they generate.
Second, some of our results exhibited the phenomenon that
increasing the number of simulations n also decreased the CI
precision, although the opposite is expected. This behavior is
due to random sampling and is more likely to be exhibited for
smaller n. Along with the analysis from §5, our results lead
us to recommend that no fewer than n = 10 simulations be
run for any experiment, independent of the network scale s.

7 Conclusion

In this paper, we develop foundations upon which future Tor
performance research can build. The foundations we develop
include: (i) a new Tor network modeling methodology and
supporting tools that produce more representative Tor net-

13



works (§3); (ii) accuracy and performance improvements to
the Shadow simulator that allow us to run Tor simulations
faster and at a larger scale than was previously possible (§4);
and (iii) a methodology for conducting statistical inference of
results generated in scaled-down (sampled) Tor networks (§5).
We showcase our modeling and simulation scalability im-
provements by running simulations with 6,489 relays and
792k users, the largest known Tor network simulations and
the first at a network scale of 100% (§4.3). Building upon the
above foundations, we conduct a case study of the effects of
traffic load on client performance in the Tor network through a
total of 420 Tor simulations across three network scale factors
and two traffic load factors (§6). Our case study demonstrates
how to apply our methodologies for modeling Tor networks
and for conducting sound statistical inferences of results.
Conclusions: We find that: (i) significant reductions in RAM
are possible by representing multiple Tor users in each Tor
client process (§4.3); (ii) it is feasible to run 100% Tor net-
work simulations on high-memory servers in a reasonable
time (less than 2 weeks) (§4.3); (iii) running multiple sim-
ulations in independent Tor networks is necessary to draw
statistically significant conclusions (§5); and (iv) fewer simu-
lations are generally needed to achieve a desired CI precision
in networks of larger scale than in those of smaller scale (§6).
Limitations and Future Work: Although routers in Shadow
drop packets when congested (using CoDel), we describe in
§3.1 that we do not model any additional artificial packet
loss. However, it is possible that packet loss or corruption
rates are higher in Tor than in Shadow (e.g., for mobile clients
that are wirelessly connected), and modeling this loss could
improve realism. Future work should consider developing a
more realistic packet loss model that is, for example, based
on measurements of actual Tor clients and relays.

In §3.2.1 we describe that we compute some relay char-
acteristics (e.g., consensus weight, bandwidth rate and burst,
location) using the median value of those observed across
all consensus and server descriptors from the staging period.
Similarly, in §3.2.2 we describe that we select m relays from
those available by “bucketing” them and choosing the relay
with the median bandwidth capacity from each bucket. These
selection criteria may not capture the full variance in the relay
characteristics. Future work might consider alternative selec-
tion strategies—such as randomly sampling the full observed
distribution of each characteristic, choosing based on occur-
rence count, or choosing uniformly at random—and evaluate
how such choices affect simulation accuracy.

Our traffic modeling approach in §3.2.2 allows us to re-
duce the RAM required to run simulations by simulating 1/p
users in each Tor client process. This optimization yields the
following implications. First, we disable guards in our model
because Tor does not currently support multiple guard “ses-
sions” on a given Tor client. Future work should consider
either implementing support for guard “sessions” in the Tor
client, or otherwise managing guard selection and circuit as-

signment through the Tor control port. Second, simulating
1/p users on a Tor client results in “clustering” these users
in the city that was assigned to the client, resulting in lower
location diversity. Choosing values of p closer to 1 would
reduce this effect. Third, setting p < 1 reduces the total num-
ber of Tor clients and therefore the total number of network
descriptor fetches. Because these fetches occur infrequently
in Tor, the network impact is negligible relative to the total
amount of traffic being generated by each client.

Finally, future work might consider sampling the Tor net-
work at scales s > 1.0, which could help us better understand
how Tor might handle growth as it becomes more popular.
Acknowledgments: We thank our shepherd, Yixin Sun, and
the anonymous reviewers for their valuable feedback. This
work has been partially supported by the Office of Naval
Research (ONR), the Defense Advanced Research Projects
Agency (DARPA), the National Science Foundation (NSF)
under award CNS-1925497, and the National Sciences and
Engineering Research Council of Canada (NSERC) under
award CRDPJ-534381. This research was undertaken, in part,
thanks to funding from the Canada Research Chairs program.
This work benefited from the use of the CrySP RIPPLE Facil-
ity at the University of Waterloo.

References

[1] A. Acquisti, R. Dingledine, and P. Syverson. On the Economics
of Anonymity. In 7th International Financial Cryptography
Conference (FC), 2003.

[2] M. AlSabah and I. Goldberg. PCTCP: Per-circuit TCP-over-
IPsec Transport for Anonymous Communication Overlay Net-
works. In ACM Conference on Computer and Communications
Security (CCS), 2013.

[3] M. AlSabah and I. Goldberg. Performance and Security Im-
provements for Tor: A Survey. ACM Computing Surveys
(CSUR), 49(2):32, 2016.

[4] M. AlSabah, K. Bauer, I. Goldberg, D. Grunwald, D. McCoy,
S. Savage, and G. M. Voelker. DefenestraTor: Throwing Out
Windows in Tor. In Privacy Enhancing Technologies Sympo-
sium (PETS), pages 134–154, 2011.

[5] M. AlSabah, K. Bauer, T. Elahi, and I. Goldberg. The Path Less
Travelled: Overcoming Tor’s Bottlenecks with Traffic Splitting.
In Privacy Enhancing Technologies Symposium (PETS), 2013.

[6] S. Aryan, H. Aryan, and J. A. Halderman. Internet Censorship
in Iran: A First Look. In 3rd USENIX Workshop on Free and
Open Communications on the Internet (FOCI), 2013.

[7] A. Barton and M. Wright. DeNASA: Destination-Naive AS-
Awareness in Anonymous Communications. Proceedings on
Privacy Enhancing Technologies (PoPETs), 2016(4):356–372,
2016.

[8] K. S. Bauer, M. Sherr, and D. Grunwald. ExperimenTor: A
Testbed for Safe and Realistic Tor Experimentation. In USENIX
Workshop on Cyber Security Experimentation and Test (CSET),
2011.

14



[9] R. D. Blumofe and C. E. Leiserson. Scheduling Multithreaded
Computations by Work Stealing. J. ACM, 46(5):720–748, Sept.
1999.

[10] Brave. Brave Browser. https://brave.com/, November 2019.
Accessed 2020-09-30.

[11] J. Clark, P. C. van Oorschot, and C. Adams. Usability of
Anonymous Web Browsing: An Examination of Tor Interfaces
and Deployability. In 3rd Symposium on Usable Privacy and
Security (SOUPS), 2007.

[12] B. Conrad and F. Shirazi. Analyzing the Effectiveness of DoS
Attacks on Tor. In 7th International Conference on Security of
Information and Networks, page 355, 2014.

[13] S. Dahal, J. Lee, J. Kang, and S. Shin. Analysis on End-to-
End Node Selection Probability in Tor Network. In 2015
International Conference on Information Networking (ICOIN),
pages 46–50, Jan 2015.

[14] R. Dingledine and N. Mathewson. Anonymity Loves Company:
Usability and the Network Effect. In 5th Workshop on the
Economics of Information Security (WEIS), 2006.

[15] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
Second-Generation Onion Router. In USENIX Security Sym-
posium (USENIX-Sec), 2004.

[16] T.-N. Dinh, F. Rochet, O. Pereira, and D. S. Wallach. Scaling
Up Anonymous Communication with Efficient Nanopayment
Channels. Proceedings on Privacy Enhancing Technologies
(PoPETs), 2020(3):175–203, 2020.

[17] T. Elahi, G. Danezis, and I. Goldberg. PrivEx: Private Col-
lection of Traffic Statistics for Anonymous Communication
Networks. In ACM Conference on Computer and Communica-
tions Security (CCS), 2014. See also git://git-crysp.uwaterloo.
ca/privex.

[18] B. Fabian, F. Goertz, S. Kunz, S. Müller, and M. Nitzsche. Pri-
vately Waiting — A Usability Analysis of the Tor Anonymity
Network. In Sustainable e-Business Management, 2010.

[19] E. Fenske, A. Mani, A. Johnson, and M. Sherr. Distributed
Measurement with Private Set-Union Cardinality. In ACM
Conference on Computer and Communications Security (CCS),
2017.

[20] J. Geddes, R. Jansen, and N. Hopper. How Low Can You
Go: Balancing Performance with Anonymity in Tor. In 13th
Privacy Enhancing Technologies Symposium, pages 164–184,
2013.

[21] J. Geddes, R. Jansen, and N. Hopper. IMUX: Managing Tor
Connections from Two to Infinity, and Beyond. In ACM Work-
shop on Privacy in the Electronic Society (WPES), pages 181–
190, 2014.

[22] J. Geddes, M. Schliep, and N. Hopper. ABRA CADABRA:
Magically Increasing Network Utilization in Tor by Avoid-
ing Bottlenecks. In 15th ACM Workshop on Privacy in the
Electronic Society, pages 165–176, 2016.

[23] D. Gopal and N. Heninger. Torchestra: Reducing Interactive
Traffic Delays over Tor. In ACM Workshop on Privacy in the
Electronic Society (WPES), 2012.

[24] H. Hanley, Y. Sun, S. Wagh, and P. Mittal. DPSelect: A Differ-
ential Privacy Based Guard Relay Selection Algorithm for Tor.
Proceedings on Privacy Enhancing Technologies (PoPETs),
2019(2):166–186, 2019.

[25] P. G. Hoel. Introduction to Mathematical Statistics. Wiley,
New York, 4th edition, 1971. ISBN 0471403652.

[26] N. Hopper. Challenges in protecting Tor hidden services from
botnet abuse. In Financial Cryptography and Data Security
(FC), pages 316–325, 2014.

[27] M. Imani, A. Barton, and M. Wright. Guard Sets in Tor us-
ing AS Relationships. Proceedings on Privacy Enhancing
Technologies (PoPETs), 2018(1):145–165, 2018.

[28] M. Imani, M. Amirabadi, and M. Wright. Modified Relay
Selection and Circuit Selection for Faster Tor. IET Communi-
cations, 13(17):2723–2734, 2019.

[29] R. Jansen and N. Hopper. Shadow: Running Tor in a Box
for Accurate and Efficient Experimentation. In Network and
Distributed System Security Symposium (NDSS), 2012. See
also https://shadow.github.io.

[30] R. Jansen and A. Johnson. Safely Measuring Tor. In ACM
Conference on Computer and Communications Security (CCS),
2016. See also https://github.com/privcount.

[31] R. Jansen, N. Hopper, and Y. Kim. Recruiting New Tor Re-
lays with BRAIDS. In ACM Conference on Computer and
Communications Security (CCS), 2010.

[32] R. Jansen, K. Bauer, N. Hopper, and R. Dingledine. Method-
ically Modeling the Tor Network. In USENIX Workshop on
Cyber Security Experimentation and Test (CSET), 2012.

[33] R. Jansen, P. F. Syverson, and N. Hopper. Throttling Tor Band-
width Parasites. In USENIX Security Symposium (USENIX-
Sec), 2012.

[34] R. Jansen, A. Johnson, and P. Syverson. LIRA: Lightweight In-
centivized Routing for Anonymity. In Network and Distributed
System Security Symposium (NDSS), 2013.

[35] R. Jansen, J. Geddes, C. Wacek, M. Sherr, and P. Syverson.
Never Been KIST: Tor’s Congestion Management Blossoms
with Kernel-Informed Socket Transport. In USENIX Security
Symposium (USENIX-Sec), 2014.

[36] R. Jansen, F. Tschorsch, A. Johnson, and B. Scheuermann. The
Sniper Attack: Anonymously Deanonymizing and Disabling
the Tor Network. In Network and Distributed System Security
Symposium (NDSS), 2014.

[37] R. Jansen, M. Traudt, J. Geddes, C. Wacek, M. Sherr, and
P. Syverson. KIST: Kernel-Informed Socket Transport for Tor.
ACM Transactions on Privacy and Security (TOPS), 22(1):
3:1–3:37, December 2018.

[38] R. Jansen, M. Traudt, and N. Hopper. Privacy-Preserving
Dynamic Learning of Tor Network Traffic. In ACM Conference
on Computer and Communications Security (CCS), 2018. See
also https://tmodel-ccs2018.github.io.

[39] R. Jansen, T. Vaidya, and M. Sherr. Point Break: A Study of
Bandwidth Denial-of-Service Attacks against Tor. In USENIX
Security Symposium (USENIX-Sec), 2019.

15

https://brave.com/
git://git-crysp.uwaterloo.ca/privex
git://git-crysp.uwaterloo.ca/privex
https://shadow.github.io
https://github.com/privcount
https://tmodel-ccs2018.github.io


[40] R. Jansen, J. Tracey, and I. Goldberg. Once is Never Enough:
Foundations for Sound Statistical Inference in Tor Network Ex-
perimentation. arXiv e-prints, art. arXiv:2102.05196, February
2021. https://arxiv.org/abs/2102.05196.

[41] A. Johnson, R. Jansen, N. Hopper, A. Segal, and P. Syverson.
PeerFlow: Secure Load Balancing in Tor. Proceedings on
Privacy Enhancing Technologies (PoPETs), 2017(2):74–94,
2017.

[42] A. Johnson, R. Jansen, A. D. Jaggard, J. Feigenbaum, and
P. Syverson. Avoiding The Man on the Wire: Improving Tor’s
Security with Trust-Aware Path Selection. In Network and
Distributed System Security Symposium (NDSS), 2017.

[43] K. Kiran, S. S. Chalke, M. Usman, P. D. Shenoy, and K. Venu-
gopal. Anonymity and Performance Analysis of Stream Isola-
tion in Tor Network. In International Conference on Comput-
ing, Communication and Networking Technologies (ICCCNT),
2019.

[44] C. H. Komlo, N. Mathewson, and I. Goldberg. Walking
onions: Scaling anonymity networks while protecting users. In
USENIX Security Symposium (USENIX-Sec), 2020.

[45] A. Lakshmikantha, R. Srikant, and C. Beck. Impact of File
Arrivals and Departures on Buffer Sizing in Core Routers. In
IEEE INFOCOM 2008 - The 27th Conference on Computer
Communications, May 2008.

[46] L. Lee, D. Fifield, N. Malkin, G. Iyer, S. Egelman, and D. Wag-
ner. A Usability Evaluation of Tor Launcher. Proceedings on
Privacy Enhancing Technologies (PoPETs), 2017, 07 2017.

[47] D. Lin, M. Sherr, and B. T. Loo. Scalable and Anonymous
Group Communication with MTor. Proceedings on Privacy
Enhancing Technologies (PoPETs), 2016(2):22–39, 2016.

[48] Z. Liu, Y. Liu, P. Winter, P. Mittal, and Y.-C. Hu. TorPolice:
Towards Enforcing Service-Defined Access Policies for Anony-
mous Communication in the Tor Network. In International
Conference on Network Protocols, 2017.

[49] K. Loesing, S. J. Murdoch, and R. Dingledine. A Case Study
on Measuring Statistical Data in the Tor Anonymity Network.
In Financial Cryptography and Data Security (FC), 2010. See
also https://metrics.torproject.org.

[50] A. Mani and M. Sherr. HisTorε: Differentially Private and Ro-
bust Statistics Collection for Tor. In Network and Distributed
System Security Symposium (NDSS), 2017.

[51] A. Mani, T. Wilson-Brown, R. Jansen, A. Johnson, and
M. Sherr. Understanding Tor Usage with Privacy-Preserving
Measurement. In 18th ACM Internet Measurement Conference
(IMC), 2018. See also https://torusage-imc2018.github.io.

[52] A. Miller and R. Jansen. Shadow-Bitcoin: Scalable Simula-
tion via Direct Execution of Multi-threaded Applications. In
USENIX Workshop on Cyber Security Experimentation and
Test (CSET), 2015.

[53] A. Mitseva, M. Aleksandrova, T. Engel, and A. Panchenko.
Security and Performance Implications of BGP Rerouting-
Resistant Guard Selection Algorithms for Tor. In IFIP In-
ternational Conference on ICT Systems Security and Privacy
Protection, 2020.

[54] W. B. Moore, C. Wacek, and M. Sherr. Exploring the Potential
Benefits of Expanded Rate Limiting in Tor: Slow and Steady
Wins the Race with Tortoise. In Annual Computer Security
Applications Conference (ACSAC), 2011.

[55] Mozilla. Mozilla Research Grants 2019H1. https:
//mozilla-research.forms.fm/mozilla-research-grants-
2019h1/forms/6510, 2019. Call for Proposals.

[56] Mozilla. Firefox Public Data Report. https://data.firefox.com/
dashboard/user-activity, December 2019.

[57] T.-W. J. Ngan, R. Dingledine, and D. S. Wallach. Building
Incentives into Tor. In Financial Cryptography and Data
Security (FC), 2010.

[58] G. Norcie, K. Caine, and L. J. Camp. Eliminating Stop-Points
in the Installation and Use of Anonymity Systems: a Usability
Evaluation of the Tor Browser Bundle. In Privacy Enhancing
Technologies Symposium (PETS), 2012.

[59] F. Rochet and O. Pereira. Waterfilling: Balancing the Tor
network with maximum diversity. Proceedings on Privacy
Enhancing Technologies (PoPETs), 2017(2):4–22, 2017.

[60] F. Rochet and O. Pereira. Dropping on the Edge: Flexibility and
Traffic Confirmation in Onion Routing Protocols. Proceedings
on Privacy Enhancing Technologies (PoPETs), 2018(2):27–46,
2018.

[61] F. Rochet, R. Wails, A. Johnson, P. Mittal, and O. Pereira.
CLAPS: Client-Location-Aware Path Selection in Tor. In
ACM Conference on Computer and Communications Security
(CCS), 2020.

[62] F. Shirazi, C. Diaz, and J. Wright. Towards Measuring Re-
silience in Anonymous Communication Networks. In 14th
ACM Workshop on Privacy in the Electronic Society, pages
95–99, 2015.

[63] F. Shirazi, M. Goehring, and C. Diaz. Tor Experimentation
Tools. In International Workshop on Privacy Engineering
(IWPE), 2015.

[64] S. Singh. Large-Scale Emulation of Anonymous Commu-
nication Networks. Master’s thesis, University of Waterloo,
2014.

[65] C. Tang and I. Goldberg. An Improved Algorithm for Tor
Circuit Scheduling. In 17th ACM Conference on Computer
and Communications Security (CCS), 2010.

[66] The Tor Project. Mozilla Research Call: Tune up Tor for Inte-
gration and Scale. https://blog.torproject.org/mozilla-research-
call-tune-tor-integration-and-scale, May 2019. Blog Post.

[67] The Tor Project. Tor Metrics Portal. https://metrics.torproject.
org, January 2020.

[68] The Tor Project. Reproducible Metrics. https://metrics.
torproject.org/reproducible-metrics.html#performance, Octo-
ber 2020.

[69] The Tor Project. The Tor Project. https://www.torproject.org,
January 2020.

[70] J. Tracey, R. Jansen, and I. Goldberg. High Performance Tor Ex-
perimentation from the Magic of Dynamic ELFs. In USENIX

16

https://arxiv.org/abs/2102.05196
https://metrics.torproject.org
https://torusage-imc2018.github.io
https://mozilla-research.forms.fm/mozilla-research-grants-2019h1/forms/6510
https://mozilla-research.forms.fm/mozilla-research-grants-2019h1/forms/6510
https://mozilla-research.forms.fm/mozilla-research-grants-2019h1/forms/6510
https://data.firefox.com/dashboard/user-activity
https://data.firefox.com/dashboard/user-activity
https://blog.torproject.org/mozilla-research-call-tune-tor-integration-and-scale
https://blog.torproject.org/mozilla-research-call-tune-tor-integration-and-scale
https://metrics.torproject.org
https://metrics.torproject.org
https://metrics.torproject.org/reproducible-metrics.html#performance
https://metrics.torproject.org/reproducible-metrics.html#performance
https://www.torproject.org


Workshop on Cyber Security Experimentation and Test (CSET),
2018.

[71] N. Unger. NetMirage. https://crysp.uwaterloo.ca/software/
netmirage/, 2018. Accessed 2020-02-12.

[72] United Nations. Freedom of Information. https:
//www.un.org/ruleoflaw/thematic-areas/governance/freedom-
of-information, January 2020.

[73] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić,
J. Chase, and D. Becker. Scalability and Accuracy in a Large-
Scale Network Emulator. SIGOPS Oper. Syst. Rev., 36(SI):
271–284, Dec. 2003.

[74] C. Wacek, H. Tan, K. Bauer, and M. Sherr. An Empirical Eval-
uation of Relay Selection in Tor. In Network and Distributed
System Security Symposium (NDSS), 2013.

[75] L. Yang and F. Li. mTor: A Multipath Tor Routing Beyond
Bandwidth Throttling. In 2015 IEEE Conference on Commu-
nications and Network Security (CNS), pages 479–487, Sept
2015.

[76] L. Yang and F. Li. Enhancing Traffic Analysis Resistance
for Tor Hidden Services with Multipath Routing. In Interna-
tional Conference on Security and Privacy in Communication
Systems, pages 367–384, 2015.

Appendix

A Ontology of Tor Performance Metrics

In this appendix, we describe an ontology of the Tor network,
from the perspective and for the purpose of controlled per-
formance research. While our ontology shows one way of
orienting known factors to consider when conducting Tor
experiments, we emphasize that it is not intended to be com-
plete. The most interesting future research may come not from
the measurement of properties (or even elements) listed here,
but from the gaps and undervalued areas that are currently
unexplored in Tor research.
Ontology: The ontology consists of elements (clients, relays,
servers, and the network), each of which have properties that
can be further recursively subdivided into (sub)properties.
These properties can be viewed as the variables of an ex-
periment, and therefore can be separated into independent
and dependent variables. Independent variables are properties
that are set, chosen during the course of experiment config-
uration (e.g., the number of clients, or available bandwidth).
Dependent variables are properties that can be measured as
results of the experiment (e.g., throughput, or successful down-
loads). The division between what constitutes independent
and dependent variables depends on the specific context of an
experiment. In this ontology, we classified properties based
on the experimentation platforms we examined. Specifically,
these categorizations are based on controlled Tor experiments;
more observational research (e.g., the measurements done on
Tor Metrics [67]) would have a different perspective, primar-
ily manifesting as many properties shifting from independent

to dependent variables. Even with this particular point of ref-
erence, however, some properties can concurrently exist as
both independent and dependent variables in one experiment.
Packet loss, for example, is something that can be configured
as a property of the network (i.e., a particular link can be
configured to drop packets with some probability), but will
also occur as a result of the natural behavior of TCP stacks es-
tablishing a stable connection and can therefore be measured.

The rest of this section is dedicated to describing the ele-
ments of our ontology. The properties of these elements are
enumerated and classified in Table 6. While most of the terms
are self-explanatory, they are also briefly described in Table 7
to alleviate any confusion.
Network: The network element represents the connections
between other elements, as well as meta-properties that are not
directly measurable on individual nodes (though analogues
may be). Latency and bandwidth, for example, are properties
directly instantiated in the links between the other elements.
The time to a steady state, on the other hand, is something
that can be measured, but not as an actual property of any
particular element, so much as a measurement of a constructed
representation of the network itself.
Network Nodes: Network nodes are all endpoints in the net-
work (i.e., every client, relay, and server). While we could
assign their common properties to each of the elements dis-
cussed in the remainder of this section, we group them to-
gether to reflect their commonality (and to conserve space).

Some properties, such as control overhead, could arguably
be positioned as part of the network itself, but are in this
ontology considered part of the network nodes. The deciding
factor was whether the variable could be directly configured
or measured as a property of a particular node. For example,
while packet loss requires knowledge of the link between
two relays, control overhead can be measured on only one
end; therefore, we place the former as a network property
and the latter as a property of the network node. From a more
empirical perspective, tools such as Shadow and NetMirage
would configure/measure packet loss on the edges of a
network graph, while control overhead would be measured
using data collected from the node.
Clients: Clients are the subclass of network nodes that run
applications proxied via Tor; they represent both normal Tor
clients, as well as onion services. Client properties include
those relating to the Tor application itself, as well as the ap-
plication(s) being proxied through it.
Relays: Relays are the subclass of network nodes that run
Tor relays. As above, relay properties include those of the Tor
application, as well as the environment in which it runs.
Servers: Servers are the subclass of network nodes that repre-
sent non-Tor network entities; e.g., web servers and non-Tor
clients. Because they do not run Tor, and will typically be
creating requests or responding to requests created elsewhere,
they add few properties not already captured above.

17

https://crysp.uwaterloo.ca/software/netmirage/
https://crysp.uwaterloo.ca/software/netmirage/
https://www.un.org/ruleoflaw/thematic-areas/governance/freedom-of-information
https://www.un.org/ruleoflaw/thematic-areas/governance/freedom-of-information
https://www.un.org/ruleoflaw/thematic-areas/governance/freedom-of-information


Table 6: Classification of the experimentation properties in our Tor ontology into Independent and Dependent variables, organized by element.
An arrow indicates a subproperty.

lat
en

cyjitt
er

ba
nd

widt
h

rel
iab

ilit
y

pa
ck

et
los

s

pa
th/

rou
tin

g

co
ng

est
ion

tim
e to

Tor
co

ns
en

su
s

tim
e to

ste
ad

y sta
te

qu
an

tity

IP
ad

dre
ss

ge
olo

ca
tio

n

sta
ck OS/ke

rne
l

ha
rdw

are

CPU/m
em

ory
us

ag
e

thr
ou

gh
pu

t

go
od

pu
t

co
ntr

ol
ov

erh
ea

d

ret
ran

sm
iss

ion
s

be
ha

vio
r mod

el

nu
mbe

r of
co

nn
ec

tio
ns

du
rat

ion
of

co
nn

ec
tio

ns

tra
ffi

c typ
e

idl
e tim

e

tim
e to

first
/la

st
by

te

Tor rel
ay

sel
ec

tio
n alg

ori
thm

max
nu

m. o
pe

n cir
cu

its

max
du

rat
ion

of
cir

cu
its

cir
cu

it b
uil

d tim
e

err
ors

Tor
rel

ay
co

nfi
gu

rat
ion

pa
ck

et
de

lay

co
ng

est
ion

pro
ce

ssi
ng

(T
or)

pro
ce

ssi
ng

(st
ac

k)

co
nn

ec
tio

ns
(nu

mbe
r of:

)

so
ck

ets
op

en

str
ea

ms an
d cir

cu
its

co
nn

ec
tin

g cli
en

ts

err
ors

be
ha

vio
r mod

el

po
rt

Indep. - - - - - - - - - - - - - - - - - - -
Dep. - - - - - - - - - - - - - - - - - -

Network Common Clients Relays Servers
Network Nodes

Table 7: Description of properties from the ontology. Arrows denote subproperties.

Property Description

N
et

w
or

k

latency The amount of time it takes for a packet to traverse from one network node to another.
jitter The variation in latency.

bandwidth The amount of data a network connection can transfer in a given amount of time.
reliability The probability of a network connection successfully transferring data.

packet loss The probability of a packet on an existing connection not arriving at the destination.
path/routing The set of network nodes a packet passes through to arrive at its destination.
congestion The amount of traffic load exceeding the capacity of the link or network node.
time to Tor consensus The amount of time until the Tor network generates a valid consensus file (the file directory authorities

publish containing information about every relay).
time to steady state The amount of time until the network displays consistent behavior.

N
et

w
or

k
N

od
es

C
om

m
on

quantity The amount of this particular type of node in the network.
IP address The external IP address of the node.
geolocation Where the node is geographically located.
stack What Tor and associated processes are running on.

OS/kernel The operating system, especially the network stack.
hardware The computer components and their characteristics, such as CPU speed and memory capacity.

CPU/memory usage The amount of CPU time and RAM used.
throughput The total network traffic seen in a given amount of time, including overhead such as packet headers and

retransmissions.
goodput The total amount of usable traffic seen in a given amount of time, therefore not including overhead from

headers or retransmissions.
control overhead The amount of traffic that is spent on protocol data, rather than payload data.

retransmissions The amount of traffic that was duplicated as a result of TCP acknowledgements not being received (in time).

C
lie

nt
s

behavior model How the client behaves.
number of connections How many network connections the client creates (typically to servers, via Tor relays).
duration of connections How long network connections last before being closed.
traffic type The protocol and traffic properties (e.g., web pages, large downloads).
idle time The time spent not sending any traffic, either because there is nothing being sent over a currently active

connection, or because the client has completed all connections and has not yet started another.
time to first byte The amount of time it takes to receive the first byte of a download. Also known as round trip time (RTT).
time to last byte The amount of time it takes to complete a download.
Tor

relay selection algorithm How Tor chooses which relays to route through.
max number of open circuits The maximum number of Tor circuits simultaneously open.
max duration of circuits The maximum amount of time circuits remain open.
circuit build time How long it takes to construct a circuit.
errors The number and characteristics of errors encountered.

R
el

ay
s

Tor relay configuration The configuration of the Tor relay, whether in configuration files or changes to the Tor application.
packet delay The amount of additional time it takes for a packet to enter and leave the entire relay.
congestion Network congestion specifically as a result of the Tor relay process.
processing (Tor) The amount of time spent processing packets within the Tor process.
processing (stack) The amount of time spent processing packets outside the Tor process (primarily the OS).
connections (number of:)

sockets open The number of network sockets the relay has open.
streams and circuits The number of TCP streams and Tor circuits.
connecting clients The number of clients that connect to this relay.
errors The number and characteristics of errors encountered.

Se
rv

er
s behavior model How the server interacts with the client application communicating with it.
port The network ports the server is listening on. This is distinct from the behavior model in that Tor relays

interact with it (via exit policies), not just the client.

18


	Introduction
	Background and Related Work
	Tor
	Tor Experimentation Tools
	Tor Modeling
	Tor Performance Studies

	Models for Tor Experimentation
	Internet Model
	Tor Network Model
	Staging
	Generation
	Modeling Tools


	Tor Experimentation Platform
	Shadow Background
	Shadow Improvements
	Evaluation

	On the Statistical Significance of Results
	Methodology
	Discussion

	Case Study: Tor Usage and Performance
	Motivation and Overview
	Experiment Setup
	Results

	Conclusion
	Ontology of Tor Performance Metrics

