
Appendices to Accompany “Never Been KIST: Tors Congestion Management Blossoms with Kernel-Informed

Socket Transport”

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 Keller Hall

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 14-012

Appendices to Accompany “Never Been KIST: Tors Congestion

Management Blossoms with Kernel-Informed Socket Transport”

Rob Jansen, John Geddes, Chris Wacek, Micah Sherr, and Paul

Syverson

June 06, 2014





Appendices to Accompany “Never Been KIST: Tor’s Congestion
Management Blossoms with Kernel-Informed Socket Transport”

Rob Jansen† John Geddes‡ Chris Wacek∗ Micah Sherr∗ Paul Syverson†

† U.S. Naval Research Laboratory
{rob.g.jansen, paul.syverson}@nrl.navy.mil

‡ University of Minnesota
geddes@cs.umn.edu

∗ Georgetown University
{cwacek, msherr}@cs.georgetown.edu

Abstract
This document provides appendices to accompany the
publication entitled “Never Been KIST: Tor’s Con-
gestion Management Blossoms with Kernel-Informed
Socket Transport” to appear in the Proceedings of the
23rd USENIX Security Symposium, 2014 [8].

Appendices

A Enhancing Shadow

This section provides implementation details about the
Shadow enhancements outlined in Section 3 [8].

A.1 Implementing TCP
In order to accurately simulate the real world Tor net-
work, we needed to make sure that Shadow implements
the many-faceted interconnected algorithms used in the
TCP kernel stack for congestion control. These algo-
rithms deal with two primary aspects, growth of the con-
gestion window (which helps dictate how much data can
be sent at time) and how to detect and respond to packet
loss. We will briefly discuss the TCP algorithms incorpo-
rated into Shadow, in addition to looking at how Shadow
compares to both the TCP implementation in Linux and
to the network simulator (NS) [12], a tool very com-
monly used in the network community when comparing
performance of different TCP algorithms.
Detecting Packet Loss: We have implemented in
Shadow four techniques for detecting and handling
packet loss commonly found in TCP implementations.
First, we compute the retransmission timer value [13]
and set up events to notify Shadow when a packet is
lost and should be retransmitted. Second, as part of fast
retransmit/recovery [6], once 3 duplicate acknowledg-
ments have been received, all unacknowledged packets
are considered lost and will be resent. Third, we use se-
lective acknowledgments [11] so the receiver can notify

the sender of any out of order packets received, allow-
ing the sender to skip retransmission of packets it knows
have been received. Finally, we have implemented for-
ward acknowledgment [10], which both makes response
to packet loss faster and adds a way to more accurately
assess the state of sent packets.

The first part of the forward acknowledgement algo-
rithm adds a retransmission trigger if it receives a se-
lective acknowledgment of four packets past the last in-
order acknowledgment it received. The second part,
when retransmitting a packet, will note the next sequence
number to be assigned to a newly sent packet. Then,
if it receives a selective acknowledgment for that se-
quence number before receiving one for the retransmitted
packet, it considers the retransmitted packet lost and will
resend it once again.
Congestion Control: For congestion control we imple-
mented the CUBIC algorithm [7], the default congestion
control algorithm used in the Linux kernel since version
2.6.19. The main variable the algorithm controls is the
congestion window (cwnd), which is used to help TCP
determine how many packets can be sent at one time.
The growth of cwnd changes depending which state the
congestion algorithm is in: slow start, congestion avoid-
ance, or fast retransmit/recovery. At the beginning of the
TCP connection the algorithm starts out in slow start,
where for each acknowledgment received cwnd is in-
cremented by one. This leads to an exponential growth
in the congestion window, as for every cwnd packets
sent the sender will receive cwnd acknowledgments ev-
ery round-trip time, doubling the congestion window
each RTT. After the congestion control algorithm exits
from slow start, either by detecting packet loss or hav-
ing the congestion value exceed the slow start thresh-
old (ssthresh), the algorithm then enters congestion
avoidance. During congestion avoidance, the CUBIC al-
gorithm dictates the growth of cwnd by first entering a
rapid concave growth with flat lines for a while, then en-
ters convex growth which starts out slow and eventually

1



Figure 1: An overview of the operation of libkqtime to
measure inbound and outbound kernel delays.

grows exponentially. This allows the algorithm to stabi-
lize after the “steady state” phase with concave growth,
reducing the potential for congestion and packet loss,
then enter into a “max probing” with convex growth in
order to make sure the full capacity of the link is being
utilized. When a packet loss is detected through either
three duplicate acknowledgments or with the forward ac-
knowledgment algorithm, the congestion window is re-
duced by a multiplicative factor and then starts over in
the congestion avoidance state with concave growth. If
a packet loss is detected via the retransmit timer event,
this indicates high levels of congestion. Accordingly, the
congestion window is set to 1, congestion control starts
over in slow start, and the retransmit timer is doubled.

A.2 New Topology

In addition to accurate network protocols in Shadow’s
simulated kernel, an accurate and realistic Internet topol-
ogy model will also improve confidence in our experi-
mental results. To ensure that we are causing the most re-
alistic performance and congestion effects possible dur-
ing simulation, we enhance Shadow Internet representa-
tion as follows.

First, we enhance Shadow’s internal topology repre-
sentation to support arbitrary network graphs. Previ-
ously, Shadow’s topology was represented as a complete
graph with a single edge between each vertex. This
model was simple and efficient, but was unable to ac-
curately represent the complexities of autonomous sys-
tems in general and Inter-domain routing in particular. A
network graph representation allows us to run standard
graph algorithms to compute accurate network proper-
ties, such as latency and packet loss rates, between any
two vertices. We modified Shadow to use the igraph [3]
library to manage the network graph and topology.

700 800 900 1000 1100
Throughput (MiB/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla-2x

KIST-2x

Figure 2: Aggregate relay write throughput for vanilla Tor
and KIST. Shown is aggregate relay write throughput under a
heavily-loaded Shadow-Tor network with twice as many clients
(27,600) as discussed in our Tor model in Section 3 [8]. As
when under normal load, KIST increases network throughput
over vanilla Tor.

Second, we enhance the topology fed into Shadow
to represent the Internet at a much finer granularity.
Shadow’s previous model represented entire countries
as vertices and used data collected from custom Planet-
Lab [14] experiments, which led to missing data in places
where no PlanetLab nodes exist. Using techniques from
recent research in modeling Tor topologies [9,15], tracer-
oute data from CAIDA [2], and client/server data from
the Tor Metrics Portal [5] and Alexa [1], we created a
much more realistic Internet map that includes 699,029
vertices and 1,338,590 edges. Each vertex represents ei-
ther a point of presence or a point of interest: a point of
presence is a cluster of all known routers with the same
parent AS where the latency between each pair of routers
in the cluster is within 2 milliseconds; a point of inter-
est represents the network location of a known Internet
server, Tor relay, or client. We instrumented Shadow
to assign nodes to the points of interest in this network
graph while running Dijkstra’s shortest path algorithm to
approximate routing between the nodes.

B Measuring Kernel Congestion with
libkqtime

In order to measure kernel congestion, libkqtime
must determine when data crosses the host/network
boundary and when it crosses the application/kernel
boundary. For the host/network boundary, we rely
on packet capture via libpcap [4]. To receive in-
bound and outbound packets from libpcap: we ini-
tialize the library and set the direction to PCAP D IN
and PCAP D OUT, respectively; we compile a fil-
ter to only capture TCP packets; and we regis-
ter a callback function to handle the captured pack-

2



10−1 100 101 102 103

Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
Fr

ac
tio

n

vanilla-2x

KIST-2x

(a) Kernel Out Congestion

10−1 100 101 102 103

Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla-2x

KIST-2x

(b) Tor Congestion

0 500 1000 1500 2000
Time (ms)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla-2x

KIST-2x

(c) Circuit Congestion
Figure 3: Congestion for vanilla Tor and KIST. Shown is performance under a heavily-loaded Shadow-Tor network with twice than
many clients (27,600) as discussed in our Tor model in Section 3 [8]. Figures 3b and 3a show the distribution of cell congestion
local to each relay (with logarithmic x-axes), while Figure 3c shows the distribution of the end-to-end circuit congestion for all
measured cells.

0.2 0.5 1 2 5 10
Time to First Byte (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla-2x

KIST-2x

(a) All Clients

0 5 10 15 20
Time to Last Byte (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla-2x

KIST-2x

(b) 320 KiB “web” clients

0 50 100 150 200
Time to Last Byte (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Fr
ac

tio
n

vanilla-2x

KIST-2x

(c) 5 MiB “bulk” clients
Figure 4: Client performance for vanilla Tor and KIST. Shown is performance under a heavily-loaded Shadow-Tor network with
twice as many clients (27,600) than discussed in our Tor model in Section 3 [8]. Figure 4a shows the distribution of the time until
the client receives the first byte of the data payload, for all clients, while Figures 4b and 4c show the distribution of time to complete
a 320 KiB and 5 MiB file by the “web” and “bulk” clients, respectively.

ets. For the application/kernel boundary, we use
function interposition: we create a special Linux
shared library (libkqtime-preload.so) contain-
ing write(), send(), read(), and recv() func-
tion signatures; and we interpose on the application’s
calls to these functions by preloading this library be-
fore execution by setting the environmental variable
LD PRELOAD=libkqtime-preload.so.

During initialization, libkqtime creates 5 helper
threads that it uses to compute queuing delays. The in-
put and output pcap threads register to receive inbound
and outbound packets via libpcap, respectively. Each
pcap thread asynchronously communicates with a search
thread that will perform substring matching on packet
and application data. Finally, each search thread commu-
nicates with a single stats thread that will collect socket
statistics upon successful string matches. Using multi-
ple threads in this way ensures that libkqtime mini-
mally interjects in the normal operation of the applica-
tion. An overview of libkqtime is shown in Figure 1,
where the shaded shapes represent operations done in the
libkqtime worker threads and the unshaded shapes
represent actions taken in the application thread(s).

An application links to libkqtime and registers the
socket descriptors for which it would like to gather ker-
nel queuing delays. Then as the application sends data
to those sockets, libkqtime copies a 16 byte tag from
the data and asynchronously sends it along with a times-
tamp to the output search thread (Figure 1a). The output
pcap thread asynchronously sends outgoing packet pay-
loads to the output search thread (Figure 1b), which itself
searches the payloads for the tag. When it finds a match,
it asynchronously sends the tag and match timestamps to
the stats thread (Figure 1c). The stats thread then collects
socket length and capacity information from the kernel
and logs it along with the timestamps, the difference be-
tween which represents kernel congestion. The process
works analogously in the inbound direction, except the
tags originate from the input pcap thread (Figure 1d) and
the payloads from the preload library (Figure 1e).

C Heavily Loaded Network Results

To better understand the benefits provided by KIST, we
tested it under a more heavily loaded network. In this set

3



of experiments, we configured our Shadow-Tor network
with twice the number of each client type described in
Section 3 [8]. This resulted in 27,800 clients producing
load on the exisitng 3,600 relays. All other settings re-
main as before. Figures 3, 4, and 2 compare congestion,
performance, and aggregate relay throughput in vanilla
Tor and KIST, respectively.

References
[1] Alexa top 1 million sites. http://s3.amazonaws.com/

alexa-static/top-1m.csv.zip. Retrieved 2012-01-31.

[2] CAIDA data. http://www.caida.org/data.

[3] igraph network analysis package. http://igraph.org/.

[4] libpcap portable C/C++ library for network traffic capture.
http://www.tcpdump.org/.

[5] Tor Metrics Portal. http://metrics.torproject.org/.

[6] ALLMAN, M., PAXSON, V., AND BLANTON, E. TCP Conges-
tion Control. RFC 5681 (Draft Standard), Sept. 2009.

[7] HA, S., RHEE, I., AND XU, L. CUBIC: a new TCP-friendly
high-speed TCP variant. ACM SIGOPS Operating Systems Re-
view 42, 5 (2008), 64–74.

[8] JANSEN, R., GEDDES, J., WACEK, C., SHERR, M., AND
SYVERSON, P. Never been KIST: Tor’s congestion management

blossoms with kernel-informed socket transport. In USENIX Se-
curity Symposium (USENIX) (2014).

[9] JOHNSON, A., WACEK, C., JANSEN, R., SHERR, M., AND
SYVERSON, P. Users get routed: Traffic correlation on tor by
realistic adversaries. In ACM Conference on Computer and Com-
munications Security (CCS) (2013).

[10] MATHIS, M., AND MAHDAVI, J. Forward acknowledgement:
Refining TCP congestion control. ACM SIGCOMM Computer
Communication Review 26, 4 (1996), 281–291.

[11] MATHIS, M., MAHDAVI, J., FLOYD, S., AND ROMANOW, A.
TCP Selective Acknowledgment Options. RFC 2018 (Proposed
Standard), Oct. 1996.

[12] The ns2 Network Simulator. http://www.isi.edu/
nsnam/ns/.

[13] PAXSON, V., ALLMAN, M., CHU, J., AND SARGENT, M. Com-
puting TCP’s Retransmission Timer. RFC 6298 (Proposed Stan-
dard), June 2011.

[14] PETERSON, L., MUIR, S., ROSCOE, T., AND KLINGAMAN,
A. PlanetLab Architecture: An Overview. Tech. rep., Planet-
Lab Consortium, 2006.

[15] WACEK, C., TAN, H., BAUER, K., AND SHERR, M. An em-
pirical evaluation of relay selection in Tor. In Network and Dis-
tributed System Security Symposium (NDSS) (2013).

4

http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://www.caida.org/data
http://igraph.org/
http://www.tcpdump.org/
http://metrics.torproject.org/
http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/

