
How Low Can You Go: Balancing Performance

with Anonymity in Tor

John Geddes1, Rob Jansen2, and Nicholas Hopper1

1 University of Minnesota, Minneapolis, MN
2 U.S. Naval Research Laboratory, Washington, DC

Abstract. Tor is one of the most popular anonymity systems in use
today, in part because of its design goal of providing high performance.
This has motivated research into performance enhancing modifications
to Tor’s circuit scheduling, congestion control, and bandwidth allocation
mechanisms. This paper investigates the effects of these proposed mod-
ifications on attacks that rely on network measurements as a side chan-
nel. We introduce a new class of induced throttling attacks in this space
that exploit performance enhancing mechanisms to artificially throttle
a circuit. We show that these attacks can drastically reduce the set of
probable entry guards on a circuit, in many cases uniquely identifying
the entry guard. Comparing to existing attacks, we find that although
most of the performance enhancing modifications improve the accuracy
of network measurements, the effectiveness of the attacks is reduced in
some cases by making the Tor network more homogeneous. We conclude
with an analysis of the total reduction in anonymity that clients face due
to each proposed mechanism.

1 Introduction

The Tor [10] network is a widely-used anonymity and censorship-circumvention
tool that provides anonymous Internet access to millions of users every day.
This anonymity is provided by routing user traffic through a circuit of three
relays, using layered encryption to prevent any single relay from seeing more
than the next and previous links in the circuit, so that a relay may know the
origin or destination of a connection, but not both. The Tor network allows users
to participate as clients without contributing as relays, to build a greater variety
of plausible uses of the network and provide a larger anonymity set.

One of the key design choices of the Tor system is the goal of building a
large anonymity set by providing high performance to as many users as possible,
while sacrificing some level of protection from large-scale (global) adversaries.
For example, Tor does not attempt to protect against an end-to-end correla-
tion attack that certain mix systems try to prevent [7,14,25], as they introduce
large costs in increased latency making such systems difficult to use. This perfor-
mance focus has led researchers to investigate a variety of methods to improve
performance, such as using different circuit scheduling algorithms [30], better
congestion control [2], and throttling high bandwidth clients [13,22,26]. Several

E. De Cristofaro and M. Wright (Eds.): PETS 2013, LNCS 7981, pp. 164–184, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

How Low Can You Go: Balancing Performance with Anonymity in Tor 165

of these mechanisms have been or will be incorporated into the Tor software as
a result of this research.

One overlooked side effect of these improvements, however, is that in some
cases improving the performance of users can also improve the performance of
attacks against the Tor network. For example, several attacks have been pro-
posed [12, 17, 24, 27] that rely on measuring the latency or throughput of a Tor
circuit to draw inferences about its source and destination. If an algorithm im-
proves the throughput or responsiveness of Tor circuits this can improve the
accuracy of the measurements used by these attacks either directly or by aver-
aging a larger sample. Thus it is important to analyze how these modifications
to Tor interact with attacks based on network measurements.

In this paper we investigate this interaction. We start by introducing a new
class of attacks based on network measurement, which we call induced throttling
attacks. In these attacks, an adversarial exit node exploits congestion or traffic
admission control algorithms to artificially throttle and unthrottle a chosen cir-
cuit without directly sending data through the circuit or relay. This leads to a
recognizable pattern in other circuits sharing resources with the target circuit,
leaking information about the connection between the client and entry guard.
We show that there are highly effective induced throttling attacks against most
of the proposed scheduling, flow control, and admission control modifications to
Tor, allowing an adversary to uniquely identify entry guards in many cases.

We also examine the effect these algorithms have on previous attacks [17, 24]
to see if the improvement in performance, and therefore in network measure-
ments, leads to more successful attacks. Through large-scale simulation, we find
that for throughput attacks, the improved network measurements are essentially
“cancelled out” by the reduced variance in performance provided by these im-
provements. We also find that nearly all of the proposed improvements increase
the effectiveness of latency-based attacks, in many cases leading to a 10% or
higher loss in “degree of anonymity.”

Finally, we performa comprehensive analysis of the combined effects of through-
put, induced throttling and latency-measurement attacks.We show that using in-
duced throttling, the combined attacks can in many cases uniquely identify the
source of a circuit by a likelihood ratio test. These results indicate that flow and
admission control algorithms can have considerable impact on the security as well
as performance of the Tor network, and new proposals must be evaluated for re-
sistance to induced throttling.

2 Background and Related Work

This section discusses the proposed performance-enhancing algorithms for and
attacks against Tor to facilitate an understanding of our work.

2.1 Tor

As previously mentioned, Tor is the most popular anonymity and censorship-
circumvention system, currently consisting of roughly 3000 relays and millions

166 J. Geddes, R. Jansen, and N. Hopper

of daily users. During the circuit building process, each client chooses the entry
relay into the Tor network from a small set of relays (currently three). Every
circuit built by the client will begin with one of these guard relays in order to
prevent passive logging attacks [28, 32]. It is generally considered feasible for
an adversary to eventually de-anonymize a client by combining knowledge of a
client’s guard nodes with other attacks [4, 17].

2.2 Circuit Scheduling

Tor traditionally used a round robin [15] fair queuing algorithm to determine
which among the active circuits on an onion-routing connection to send from
next. Although the round robin algorithm is still the software default, the net-
work directory authorities are currently distributing configuration options that
enable an EWMA-based algorithm. The EWMA algorithm selects the circuit
with the lowest exponentially weighted moving average throughput, and was
suggested by Tang and Goldberg [30] in order to reduce latency and prioritize
performance for low throughput circuits.

2.3 Congestion Control

The high client-to-relay ratio in Tor causes performance problems that have been
the focus of a considerable amount of previous research. The main congestion
control mechanism used by Tor is an end-to-end window based system, where the
exit relay and client use SENDME control cells to infer network level congestion.
Tor separates data flowing inbound from data flowing outbound,1 and congestion
control mechanisms operate independently on each flow. Each circuit starts with
an initial 1000 cell window which is decremented by the source edge node for
every cell sent. When the window reaches 0, the source edge stops sending.
Upon receiving 100 cells, the receiver edge node returns a SENDME cell to the
source edge, allowing the source edge to increment its circuit window by 100
and continue sending more cells.

Tor’s end-to-end congestion control is slow to react to congestion that occurs
in the middle of circuits. Therefore, AlSabah et al. introduced N23 [2], a link
based algorithm that can instead detect and react to congestion on every link
in the circuit. Similar to the native congestion control mechanism in Tor, each
relay in an N23-controlled circuit initializes its credit balance to N2 + N3 and
decrements it by one for every cell it forwards. After a node has forwarded N2
cells, it returns back a flow control cell containing the number of forwarded cells
to the backward relay. Upon receiving a flow control cell from the forward relay,
the backward relay updates its credit balance to be N2+N3 minus the difference
in cells it has forwarded and cells the forward relay has forwarded.

1 Throughout this paper, we use inbound to indicate the direction toward the client
edge of a circuit, and outbound to indicate the direction toward the exit relay edge
of a circuit. Relatedly, we use forward to indicate the direction of the destination of
a data flow, and backward to indicate the direction of the source of a data flow.

How Low Can You Go: Balancing Performance with Anonymity in Tor 167

2.4 Traffic Admission Control

Guard nodes in Tor have the ability2 to throttle clients using a basic rate lim-
iter [9]. The algorithm uses a token bucket whose size and refill rate are config-
urable to enforce a long-term average throughput while allowing short-term data
bursts. The intuition behind the algorithm is that a throttling guard node will
limit the client’s rate of requests for new data, which will lower the outstanding
amount of data that exists inside the network at any given time and generally
reduce congestion and improve performance.

There have been many proposed uses of and alterations to the approach out-
lined above, some of which vary the connections that are throttled [1, 22, 26]
and others that vary the throttle rate [13, 22, 26]. Of particular interest are al-
gorithms that dynamically utilize the number of client-to-guard (C-G) connec-
tions to adjust throttling rates [22]: the bitsplit algorithm divides its configured
BandwidthRate evenly among C-G connections; the flag algorithm uses the num-
ber of C-G connections to determine the rate over which a client will get flagged
as “high throughput” and throttled; and the threshold algorithm throttles the
loudest fraction of C-G connections.

2.5 Known Attacks

Murdoch and Danezis previously proposed a Tor circuit clogging attack [27] in
which the adversary sends data through a circuit in order to cause congestion and
change its latency characteristics. The adversary correlates the latency variations
of this circuit with those of circuits through other relays in order to identify the
likely relays of a target circuit. The attack requires significant bandwidth in order
to produce a signal strong enough for correlation, and it has been shown to be no
longer effective [12]. There have been numerous variations on this attack, some
of which have simple defenses [12,18] and others that have low success rates [4].
This work does not consider these “general” congestion attacks where the main
focus is keeping bandwidth usage small enough to remain practical. Instead, we
focus on the feasibility and anonymity effects of new induced throttling attacks
introduced by recent performance enhancing algorithm proposals.

Mittal et al. recently proposed “stealthy” throughput attacks [24] where an
adversary that controls an exit node of a circuit attempts to find its guard
relay by using “probe” clients that measure the attainable throughput through
each relay.3 The adversary may then correlate the circuit throughput measured
at the exit node with the throughput of each of its probes to find the guard
node with high probability. Some of our attacks also utilize probe clients in
order to recognize the signal produced once throttling has been induced on a
circuit. Hopperet al. [17] propose an attack where an adversary injects malicious
javascript into a webpage in order to measure the round trip time of a circuit.
The adversary may use these measurements to narrow the possible path the

2 Tor does not currently enable throttling by default.
3 The attack is active in that an adversary launches it by sending data to relays, but
stealthy in that its data streams are indistinguishable from normal client streams.

168 J. Geddes, R. Jansen, and N. Hopper

target circuit is taking through the network and approximate the geographical
location of the client. As our techniques are similar to both of these attacks, we
include them in our evaluation in Section 4 and analysis in Section 7.

3 Methodology

The remainder of this paper will focus on the proposed changes to Tor’s inter-
nal algorithms that aim to reduce congestion or throttle circuits as discussed
in Section 2. In particular, we consider three classes of algorithms that have
been recently proposed: EWMA circuit scheduling [30]; N23 congestion con-
trol [2]; and bitsplit, flag, and threshold throttling [22]. We will also consider an
ideal throttling algorithm that has perfect knowledge of the traffic type of every
stream.4

3.1 Metrics

We will explore new algorithm-specific attacks we have developed, as well as
previously published generic attacks [17, 24], and quantify the extent to which
the attacks affect anonymity. In analyzing the algorithms, we can expect them
to have one of two effects: the algorithms may improve the effectiveness of sta-
tistical attacks by making side channel throughput and latency measurements
more accurate, improving the adversary’s ability to de-anonymize the client; or
the algorithms may reduce the noise that an adversary uses to eliminate entry
guards and clients from the potential candidate set, frustrating the attacks and
improving client anonymity. We will use the following metrics to determine the
extent to which our attacks affect anonymity:

Percentile. The percentile for a candidate target T of an attack is defined
as the percent of other candidate targets (i.e., members of the anonymity set)
with a lower score than T, based on statistical information the attacker uses to
score each candidate as the true target. A higher percentile for T means there
is a greater likelihood that T is the true target. Percentiles allow an attacker to
reduce uncertainty by increasing confidence about the true target, or increasing
confidence in rejecting candidates unlikely to be the true target.

Degrees of Anonymity. In order to measure the actual level of anonymity
lost in the attacks for each algorithm, we first analyze reduction in terms of
entropy [8,29] and then compute the degree of anonymity [8]. Entropy quantifies
uncertainty an adversary has about a target, while the degree of anonymity loss
provides us with how much total information a system is leaking. We create a
reduced anonymity set based on a threshold value determining what entities to
include or discard, then for each possible threshold value we calculate the degree
of anonymity loss. While this may not show the direct implications of anonymity

4 The algorithm throttles high throughput nodes at a rate of 50 KiB/s and approxi-
mates the difftor approach of AlSabah et al. [1].

How Low Can You Go: Balancing Performance with Anonymity in Tor 169

loss on each client, we can determine the best case scenario for a potential
adversary by examining the maximum amount of information leakage possible.
Perhaps more importantly, it allows us to do cross experimental comparisons
to determine the effect that different algorithms have under different attack
scenarios.

Client Probability. In order to determine the total reduction in anonymity,
we consider the probability distribution that clients have before and after an
attack. Given a set of relays R, the a priori probability that a relay Ri is the
guard node G is P [G = Ri] = 1

|R| . In addition, for each relay Ri and a set

of clients C, the a priori probability that a client Ci is the victim V is P [V =
Ci|Rj] =

1
|C| . Therefore, we define the probability that any client Ci is the victim

as: P [V = Ci] =
∑

j P [V = Ci|Rj]P [G = Rj]. For our purposes, an attack can
affect this metric in one of two ways: it either will attempt to identify possible
entry guards, thus changing the probability distribution P [G = Ri]; or it tries
to reduce the set of possible clients given that it knows a potential entry guard,
in which case the distribution P [V = Ci|Rj] is updated for each relay Rj .

3.2 Experimental Setup and Model

Our experiments will utilize the Shadow simulator [19, 21], an accurate discrete
event simulator that runs the real Tor code over a simulated network. Shadow al-
lows us to configure large scale experiments running on network sizes not feasible
using traditional distributed network testbeds [5] while offering precise control
over network topology, latency, and bandwidth characteristics. Shadow also al-
lows us to: control Tor’s circuit creation process; experiment with our attacks in
a safe environment; and run repeatable experiments while only modifying the al-
gorithm or attack scenario of interest, resulting in more controlled and accurate
evaluations and comparisons.

We developed a model of the Tor network based on work by Jansen et al. [20],
and use it as the base of each large scale experiment in the following sections. We
will discuss necessary changes to the following base configuration as we explore
each specific attack scenario: 160 exit relays, 240 nonexit relays, 2375 web clients,
125 bulk clients, 75 small TorPerf clients, 75 medium TorPerf clients, 75 large
TorPerf clients, and 400 HTTP servers. The web client downloads a 320 KiB
file from one of the randomly selected servers, after which it sleeps for a time
between 1 and 60 seconds drawn uniformly at random before starting the next
download. The bulk clients repeatedly download a 5 MiB file with no wait time
between downloads. Finally, the TorPerf clients only perform one download every
10 minutes, where the small, medium and large clients download 50 KiB, 1 MiB
and 5MiB files respectively. This distribution of clients is used to approximate
the findings of McCoy et al. [23], Chaabane et al. [3] and data from Tor [31].

4 Algorithmic Effects on Known Attacks

This section evaluates how recently proposed performance enhancing algorithms
affect previously known guard and client identification attacks against Tor.

170 J. Geddes, R. Jansen, and N. Hopper

0.0 0.2 0.4 0.6 0.8 1.0

|Correlation Score|

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(a) Entry Scores

0.0 0.2 0.4 0.6 0.8 1.0

Percent with Lower Score

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(b) Entry Percentile

0.0 0.2 0.4 0.6 0.8 1.0

Threshold

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

D
e

g
re

e
 o

f
A

n
o

n
y
m

it
y
 L

o
s
s

vanilla

EWMA

N23

(c) Anonymity Loss

Fig. 1. Results for throughput attack with vanilla Tor compared to EWMA and N23
scheduling and congestion control algorithms

0.0 0.2 0.4 0.6 0.8 1.0

|Correlation Score|

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(a) Entry Scores

0.0 0.2 0.4 0.6 0.8 1.0

Percent with Lower Score

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(b) Entry Percentile

0.0 0.2 0.4 0.6 0.8 1.0

Threshold

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

D
e

g
re

e
 o

f
A

n
o

n
y
m

it
y
 L

o
s
s

vanilla

bitsplit

flag

threshold

ideal

(c) Anonymity Loss

Fig. 2. Results for throughput attack with vanilla Tor compared to different throttling
algorithms

4.1 Throughput as a Signal

We first explore the scenario of Mittal et al. [24], where an attacker is able to
identify the guard relay of a circuit with high probability by correlating through-
put measured at an adversarial exit node to probe measurements made through
a set of entry guards.

We first ran our base experiment from Section 3.2 to discover the circuits that
each bulk client created. Then, for every entry G that was not a middle or exit
relay for any bulk client, we instantiated a probe client that created a one-hop
circuit through G in order to measure its throughput. This was done to minimize
the interference of other probes on bulk circuits, where they only potentially
affect the circuit they are measuring and no other. We compared vanilla Tor with
6 different algorithms: EWMA circuit scheduling [30], N23 congestion control [2],
bitsplit, flag, and threshold throttling [22], and ideal throttling.

The results for the EWMA and N23 algorithms can be seen in Figure 1. Fig-
ure 1a shows the correlation of each entry’s throughput to that measured by its
assigned probe client as a cumulative distribution function (CDF). High corre-
lation scores mean changes in the true entry’s throughput strongly corresponds
with changes in the probe’s throughput. Figure 1b shows, for each candidate
entry, the percent of other candidates with a lower score (see Section 3.1). Cor-
relation scores and percentiles can help the attacker reduce uncertainty about

How Low Can You Go: Balancing Performance with Anonymity in Tor 171

the entry node of the target circuit. Figure 1c shows the degree of anonymity
loss while varying the threshold value, that is, the minimum correlation score an
entry guard must have to be included in set of possible guards. Our results in-
dicate that there are more candidates that match well with the true entry with
EWMA (i.e., more uncertainty about the true entry). However, both EWMA
and N23 result in insignificant anonymity loss compared to vanilla Tor.

Results for the throttling algorithms are shown in Figure 2. We found in-
credibly low entry guard correlation scores for the ideal and flag algorithms in
Figure 2a, and Figure 2b shows that 48% of entry guards are in the top quintile
of the list based on correlation score in vanilla Tor, while only 22-41% of the
guards in the throttling algorithm experiments made it in the top quintile. Fig-
ure 2c shows a much larger peak in anonymity loss for vanilla Tor compared to all
other algorithms, indicating that an adversary would expect more information
leakage when choosing the threshold correctly. This implies that the throttling
algorithms would actually result in a larger anonymity set for the adversary,
making the attack less accurate. Intuitively, the throughput of throttled circuits
tend to be more similar than the throughput of unthrottled circuits, increasing
the uncertainty during the attack. The throttling algorithms effectively smooth
out circuit throughput to the configured long-term throttle rate, making it more
difficult to distinguish the actual entry guard from the set of potential guards.

4.2 Latency as a Signal

We now explore the latency attack of Hopper et al. [17]. They show how an
adversarial exit relay, having learned the identity of the entry guard in the circuit,
is able to estimate the latency between the client and guard. This is accomplished
by creating two ping streams through the circuit, one originating from the client
and one from the attacker. The ping stream from the attacker is used to estimate
the latency between the entry guard and the exit relay which, when subtracted
from the ping times between the client and exit relay produces an estimate of
latency between the client and guard. Using network coordinates to compile the
set of “actual” latencies between potential clients and guards, the adversary is
then able to reduce the anonymity set of clients based on the estimated latency.
Since this attack relies on the accuracy of the estimated latency measurements,
the majority of the algorithms have the potential to decrease the anonymity of
the clients by allowing an adversary to discard more potential clients.

For our experiments, we use the same base configuration with 400 relays and
2500 clients, with an additional 250 victim clients setup to send pings through the
Tor circuit every 5 seconds. Then, for each victim client a corresponding attacker
client is added, which creates an identical circuit to the one used by the victim,
and then sends a ping over this circuit every 5 seconds. These corresponding ping
clients are used to calculate the estimated latency between the victim and entry
guard as discussed above. In order to determine the actual latencies between
the clients and guard node, we utilize the fact that Shadow determines the
latency distribution that is sampled from between each node that communicates
in the experiment, so we merely assign the median latency of these distributions

172 J. Geddes, R. Jansen, and N. Hopper

0 50 100 150 200 250 300 350
Estimated Ping Difference

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

vanilla

EWMA

N23

(a) Ping Differences

0.0 0.2 0.4 0.6 0.8 1.0

Percent with Lower Differences

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

vanilla

EWMA

N23

(b) Percentile

0 50 100 150 200

Threshold

0.00

0.05

0.10

0.15

0.20

D
e

g
re

e
 o

f
A

n
o

n
y
m

it
y
 L

o
s
s

vanilla

EWMA

N23

(c) Anonymity Loss

Fig. 3. Results of latency attack on EWMA and N23 algorithms

0 50 100 150 200 250 300
Estimated Ping Difference

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

vanilla

bitsplit

flag

threshold

ideal

(a) Ping Differences

0.0 0.2 0.4 0.6 0.8 1.0
Percent with Lower Differences

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

vanilla

bitsplit

flag

threshold

ideal

(b) Percentile

0 50 100 150 200

Threshold

0.00

0.05

0.10

0.15

0.20

D
e

g
re

e
 o

f
A

n
o

n
y
m

it
y
 L

o
s
s

vanilla

bitsplit

flag

threshold

ideal

(c) Anonymity Loss

Fig. 4. Results of latency attack on the various throttling algorithms

as the actual latencies between nodes. This would correspond to the analysis
done in [17] where it is assumed that these quantities were known a priori, so we
believe using this “insider information” doesn’t contradict any assumptions made
in the initial paper outlining the attack. Furthermore, since we’re ultimately
concerned with how the attacks differ using various algorithms, the analysis
should hold.

Similar to the original attack, we take the minimum of all observed ping times
seen over both the victim and attacker circuit, denoted TVX and TAX respec-
tively. Then, an estimate of the latency between the victim and entry guard,
TV E , is calculated as T̂AE = TVX − TAX + TAE , where TAE is the latency be-
tween the attacker and entry guard as calculated above. Figures 3a and 4a show
the difference in estimated latency computed by an adversary and the actual
latency between the client and guard, while Figures 3b and 4b show how these
compare with the differences between the estimate and other possible clients.
While these graphs only show a slight improvement for every algorithm except
EWMA, the degree of anonymity loss in Figures 3c and 4c shows a noticeable
increase in the maximum possible information gain an adversary can achieve.
Even though there is only a slight improvement in the accuracy of the latency
estimation, this allows an adversary to consider a smaller window around the
estimation to filter out potential clients while still retaining similar accuracy
rates. This results in a smaller set of potential clients to consider, and thus a
higher reduction in anonymity of the victim client.

How Low Can You Go: Balancing Performance with Anonymity in Tor 173

5 Induced Throttling via Congestion Control

We now look at how an attacker is able to use specific mechanisms in the con-
gestion control algorithms to induce throttling on a target circuit.

5.1 Artificial Congestion

Recall from Section 2.3, the congestion control algorithms send control cells
backward to notify edge nodes to send more data. If there is congestion and
the nodes go long enough without receiving these cells, they stop sending data
until the next control cell is received. Using these mechanisms, an adversarial
exit node can implicitly control when a client can and cannot send data forward,
thereby inducing artificial congestion.

To demonstrate the effectiveness of such techniques, we introduce a more de-
tailed “torrent” client that models the BitTorrent protocol and mimics a “tit-for-
tat” scheme [6]. Instead of downloading a file from a server as is done by the ex-
isting web and bulk clients, the torrent client swaps 16 KiB blocks of data with a

●

●●●
●
●●●
●●
●

●

●

●
●
●

●●
●

●

●

●

●●●●●

●

●
●
●●
●

●
●
●
●
●●

●●

●
●
●
●●
●

●
●
●
●●
●
●
●
●

● ●
●

●

●●

●●

●

●
●

●●
●●●

●●

●

●

●

●●

●●
●
●

●

●

●●

●

●●
●●

●
●●
●
●
●
●●
●

●

●●

●

●
●
●
●
●●●

●

●●
●
●
●
●●

●
●

●

●

●●
●
●●●

●

●

●

●●
●

●

●
●

0 50 100 150 200 250

0
2

0
4

0
6

0
8

0

Time (seconds)

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

●

●●●
●
●●●
●●
●

●

●

●
●
●

●●
●

●

●

●

●●●●●

●

●
●
●●
●

●
●
●
●
●●

●●

●
●
●
●●
●

●
●
●
●●
●
●
●
●

●●

●
●●
●
●
●●
●
●

●
●

●●●●●
●

●

●●●
●
●●

●

●

●

●
●●

●

●
●

●

●
●

●●
●
●
●

●

●

●●
●
●
●
●

●
●

●

●
●●

●

●

●

●

●
●
●

●

●

●

●●
●
●

●

●●

●●

●

●
●

●●
●●●

●●

●

●

●

●●

●●
●
●

●

●

●●

●

●●
●●

●
●●
●
●
●
●●
●

●

●●

●

●
●
●
●
●●●●●

●

●

●
●
●

●●●●
●

●

●●
●●
●
●

●
●

●
●

●

●●
●
●

●

●
●

●

●●

●

●

●●

●

●
●●
●
●●

●

●

●

●

●
●

●

●
●●

●
●
●●

●

●

●●

●

●●
●

●

●●
●
●
●
●●

●
●

●

●

●●
●

xxxxxxxxxxxxxxxxxxxxx

xx
xx
x
xx
xxx
x
xx
x
xxxxxx
x
xx
xx
xxx

x

x
x
xxxxxxx
xx
xxx
xxxx
xx
x
x
xx

x

xxx
x
xxxxx
xx
xxxxxxx
x
xxxx
x
xx
xxx
x
x
x
xxxx
x
xx
xxxxx

x

xxx

x

xxxx
x
x
x
x

xx
xxxxx
xxx
xx
x
xxx
x
xxxx
xx
xxxxxxx
x
xx
xxx
x
x

xx
x
xxx
xxxx
x
xx
x
x
xxxxxx
xx
x
x
xxx
x
xx
xxxxx
xxx

x
x
x
xxx
x
x
x
x
x
xx
xxxxxxx
x
xx

x

xxx
x
x
x
x

x
x

x

xxxx
x
xxx
xx
xx

x

xxxxxx
x
x
xxxx

x

x
xx

x
xxxx
x
xxxx
x
xxx
xxxx
x
xxxx
x
xxx

x

xxxxx

x
x
xx

x

x
x
xx
x
xxxx
x
xx
xxxxx
xxxxxxx
xxxx
xxxxxxxxxx

x

xx
xxxx
x

xxx
xxxxxxx
x

xxxx
x
x

x

xxx

x

xxxxxxxxxxxx

x
x
x

xx
x
xxxxxxxxx
xxx
x
xxxxxxx
xx
xxxx
xxxx
xx
x
xxx
xx
x

xxxxxxxxxx
xxxxx
xxxxxxxxxxxxx
x
xxx
x
xxx

x
xxxxx

x

xxxxxxxxxxxxx

x
x
x
xx
x

x
xx
xx
x
xxxxx
xx
x
x
x
xx
xx
x
xxxxxxxxx

x

xxx

x

xxxxxxxx
xxxxxx
x
x
xxx
xxxx
xx
x
x
xxxxxxxxx
xx
x
xxxx
xxxxxxx
xxxxxxxxx
x
x
xx
x
x
xx
x
xxxxxxxxxxx
x
xx
xxx
xxxxx
xxxx

x
xxxxxx
xxxxxx
x

xxxxxxxxxx
xx
x
xxx
xxx
x
xx

xxxxxxx
xxxx
x
xxxxxxx
x
xxx
x
xx
x
x
xxxxxxxx
xxxxxxx
xx

xxxxx
x
xxxx
xxx
x
x

x

xxxxx xxxxxxxxxx
xxxx
xxxxxx
x
xxx
xx
xx
xxxx
x
x

x

x

x

xxxxxx
x
xxx
x
x
x
xxx

x
x
xxxxxxx
xxxxxx
xxx
x
xx
x
x
x
x
xx
x
xxx

o

x

Bulk

Torrent

Fig. 5. The effects of using artificial con-
gestion to induce throttling

peer. This swapping causes large
amounts of data to both be up-
loaded and downloaded and allows us
to demonstrate attacks that induce
artificial congestion. In our experi-
ment, a bulk and torrent client cre-
ate connections over the same circuit,
where each relay was configured with
128 KiB/s bandwidth. The exit re-
lay would then periodically hold all
torrent client control cells in an at-
tempt to throttle the connection. Fig-
ure 5 shows the observed throughput
of both clients, where the shaded re-
gions indicate periods when the exit relay was holding control cells bound for
the torrent client. We can see that approximately 30 seconds into these peri-
ods, the torrent client runs out of available cells to send and goes into an idle
state, leaving more resources to the bulk client resulting in a rise in the observed
throughput.

Next we want to identify how a potential adversary could utilize this in an
attempt to identify entry guards used in a circuit. We can see the intuition be-
hind the attack in Figure 5: when throttling of a circuit is repeatedly toggled,
the throughput of all other circuits going through those nodes will increase and
then decrease, producing a noticeable pattern which an adversary may be able
to detect. We assume a scenario similar to previous attacks [12,24,27], where an
adversary controls an exit node and wants to identify the entry guard of a cir-
cuit going through them. The adversary creates one-hop probe circuits through
possible entry guards by extending circuits through middle relays that the ad-
versary controls, and measures the throughput and congestion on each circuit

174 J. Geddes, R. Jansen, and N. Hopper

at a constant interval. The adversary then periodically throttles the circuit by
holding control cells and tests for an increase in throughput for the duration of
the attack. By repeatedly performing this action an attacker should be able to
reduce the possible set of entry guards that the circuit might be using.

5.2 Small Scale Experiment

To test the feasibility of such an attack, we designed a small scale experiment
with 20 relays, 190 web clients and 10 bulk clients. One of the exit relays was
designated as the adversary and one of the bulk clients was designated as the
victim. The victim bulk client was then configured to use the torrent client while
creating circuits using the adversary as their exit relay. Then, for each of the
19 remaining non-adversarial relays, a probe client was added and configured to
create one-hop circuits through the relay, measuring observed throughput in 100
ms intervals. The adversarial exit relay would then wait until the victim client
created the connection, then every 60 seconds would toggle between normal
mode in which all control cells are sent as appropriate, and throttle mode where
all control cells are held.

0 100 200 300 400 500 600

0
5

0
1

0
0

1
5

0

Time

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

(a) Raw Throughput

0 100 200 300 400 500 600

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

(b) Smoothed Throughput

Fig. 6. Raw and smoothed throughput of probe through guard during attack

Figure 6a shows the observed throughput at the probe client connected to the
entry guard that the victim client was using, where the shaded regions correspond
to the periods where the victim client runs out of available cells to send and is
throttled. During these periods the probe client sees a large spike in observed
throughput as more resources become available at the guard relay. While these
changes are visually identifiable, we need a quantitative test that can deal with
noise and variability in order to analyze a large number of probe clients and
reduce the set of possible guards.

5.3 Smoothing Throughput

The first step is to smooth out the throughput measurements for each probe
client in order to filter out any noise. Given throughput measurements (ti, bi),
we first compute the exponentially weighted moving average (EWMA), using
α = 0.01. We then take the output from EWMA and pass it through a cubic

How Low Can You Go: Balancing Performance with Anonymity in Tor 175

spline smoothing algorithm [16] with smoothing parameter λ = 0.5. The result of
this process can be seen in Figure 6b with the normalized smoothed throughput
plotted over the shaded attack windows.

5.4 Scoring Algorithm

The intuition behind the scoring algorithm can be seen in Figure 6b. Over each
attack window marked by the shaded regions, the guard probe client should
see large increases and decreases in throughput at the beginning and end of the
window. Here we want the scoring algorithm to place heavy weight on consistent
large increases and decreases that align with all the windows, while at the same
time minimizing false positives from potentially assigning too much weight to
large spikes that randomly happen to align with the attack window.

The first step of the scoring algorithm is to calculate a linear regression on the
smoothed throughput over the first δ seconds5 at the start and end of each attack
window and collect the slope values si and ei for the start and end regression.
Then for each window i, first sort all probe clients based on their si slope value
from highest to lowest, and for each probe client record their relative rank rsi .
Repeat this for the slope value ei, only instead sort the clients from lowest to
highest, again recording their relative rank rei . Rankings are used instead of the
raw slope value in order to prevent the false positives from large spikes mentioned
previously. Now that each probe client has a set of ranks {rs1 , re1 , . . . , rsn , ren}
over n attack windows, the final score assigned to each client is simply the mean
of all the ranks, where the lower the score the higher chance the probe client
connected through the entry guard.

5.5 Large Scale Experiments

In order to test the accuracy of this attack on a large scale, we used the base
experiment setup discussed in Section 3.2, with the addition of one-hop probe
clients to connect through each relay. For each run, a random circuit used by
a bulk node was chosen to be the attack circuit and the exit node used in the
circuit was made an attacker node. The bulk node was then updated to run a
torrent client, and the probe clients that were initially set up to probe the middle
and exit relays were removed. For each algorithm, we performed 40 runs with
the different attack circuits chosen for each run. We configure the experiments
with the vanilla Tor algorithm which uses SENDME cells for congestion control,
and the N23 congestion control algorithm with N3 = 500 and N3 = 100. We
experimented with having the torrent client send 1, 2, 5, and 10 streams over the
circuit. The single stream results are shown in Figure 7 and the multiple stream
results in Figure 8.

Figure 7a shows the CDF of the average score computed by the ranking al-
gorithm for the entry guards’ probe client, while Figure 7b shows the CDF of
the percent of probe clients with a higher rank (i.e. worse score) than the true
guard’s probe client. Interestingly, even though in vanilla Tor not a single entry

5 Through empirical evaluation we found δ = 30 seconds to be ideal.

176 J. Geddes, R. Jansen, and N. Hopper

0 20 40 60 80 100 120 140 160 180
Entry Probe Rank

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

vanilla
N23 (N3=100)
N23 (N3=500)

(a) Entry Average Ranks

0.0 0.2 0.4 0.6 0.8 1.0
Percent with Higher Rank

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

vanilla
N23 (N3=100)
N23 (N3=500)

(b) Percentiles

0 50 100 150 200 250 300
Threshold

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
eg

re
e

of
A

no
ny

m
ity

Lo
ss vanilla

N23 (N3=500)
N23 (N3=100)

(c) Anonymity Loss

Fig. 7. Large-scale induced throttling via congestion control. The torrent client sends
a single stream over the circuit.

0 50 100 150 200 250 300
Threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
eg

re
e

of
A

no
ny

m
ity

Lo
ss 1 stream

2 streams
5 streams
10 streams

(a) Vanilla

0 50 100 150 200 250 300
Threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
eg

re
e

of
A

no
ny

m
ity

Lo
ss 1 stream

2 streams
5 streams
10 streams

(b) N23 (N3=500)

0 50 100 150 200 250 300
Threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
eg

re
e

of
A

no
ny

m
ity

Lo
ss 1 stream

2 streams
5 streams
10 streams

(c) N23 (N3=100)

Fig. 8. Large-scale induced throttling via congestion control. The torrent client sends
multiple streams over the circuit. The anonymity loss is higher when the torrent client
utilizes more streams.

guard probe had a score better than 150 out of 400, we still see about 80% of the
entry guard probe clients were in the 25th percentile amongst all probe clients.
Furthermore, we see that the attack is much more successful with the N23 al-
gorithm, especially with N3 = 100, with peaks in degree of anonymity loss at
31%, compared to 27% with N3 = 500 and 19% in vanilla Tor. This is due to
the fact that it is easier to induce throttling with N23, especially when the N3
value is low. In vanilla Tor, the initial window is set at 1000 cells, while for the
N23 algorithm this would be N2+N3, which works out to 510 and 110 cells for
N3 = 500 and N2 = 100 respectively (default value for N2 is 10). The outcome
is that for N23 with N3 = 100, we were able to throttle the attack circuit around
12 times, resulting in 24 comparison points over all attack windows, while both
with N3 = 500 and vanilla Tor we see around 7 attack windows, resulting in
14 comparison points. The reason that we see slightly better entry probe rank-
ings with N3 = 500 than vanilla Tor is because with N23, each node buffers cells
when it runs out of credit, while vanilla Tor buffers cells at the client. This means
when the congestion control cell is finally sent by the attacker, it would cause
the entry guard to flush the circuits buffer and cause an immediately noticeable
change in throughput and thus a higher rank score for the entry guard.

While using one circuit for one stream is the ideal greedy strategy for a Bit-
Torrent client using Tor, it may not always be feasible to accomplish this. To
explore what effects sending multiple streams over a circuit has on the attacks,
for each algorithm we experimented having our torrent client send 2, 5, and 10

How Low Can You Go: Balancing Performance with Anonymity in Tor 177

streams over the circuit that the attacker throttles. The results are shown in Fig-
ure 8. For each algorithm, we can see how the degree of anonymity loss changes
as more streams are multiplexed over a single Tor circuit. Not surprisingly, all
three algorithms have a high degree of anonymity loss when sending 10 streams
over the circuit, as this dramatically increases the amount of data being sent
over the circuit. Thus, when the artificial throttling is induced, there will be
larger variations and changes in observed throughput at the entry guard’s probe
client. Even adding a single extra stream to the circuit can in some cases cause
a noticeable reduction in the degree of anonymity, as particularly exemplified by
the N23 algorithm with N3 = 100 (Figure 8c).

6 Induced Throttling via Traffic Admission Control

We now explore how an attacker is able to use specific mechanisms in proposed
traffic admission control algorithms to induce throttling on a target circuit, cre-
ating a throughput signal at much lower cost than the techniques required in [24].

6.1 Connection Sybils

Recall that each of the algorithms proposed in [22] relies on the number of client-
to-guard connections to adaptively adjust the throttle rate (see Section 2). Un-
fortunately, this feature may be controlled by the adversary during an active
sybil attack [11]: an adversary may either modify a Tor client to create multiple
connections to a target guard relay instead of just one, or boot multiple Tor
clients that are each instructed to connect to the same target.6 As a result, the
number of connections C at the target will increase to C = Cn + Cs, where
Cn is the number of normal connections and Cs is the number of sybil connec-
tions. The throttling algorithms will be affected as follows: the bitsplit algorithm
will lower the throttle rate to BandwidthRate

Cn+Cs
; the flag algorithm will throttle any

connection whose average throughput has ever exceeded BandwidthRate
Cn+Cs

to the con-
figured flag rate; and the threshold algorithm will throttle the loudest fraction
f of connections to the throughput of the quietest of that throttled set (but no
less than a floor of 50 KiB/s).7 Therefore, the attacker may cause the throttle
rate at any guard relay to reduce dramatically in all of the algorithms by using
enough sybils. In this way, an adversary controlling an exit node can determine
the guard node belonging to a target circuit with high probability. Note that the
attacker need not use any bandwidth or computational resources beyond that
which is required to establish the connections from its client(s) to the target
guard relay.

We test the feasibility of this attack in Shadow. We configure a network with
5 relays, a file server, and a single victim client that downloads a large file from
the server through Tor for 300 seconds. The adversary controls the exit relay on

6 A similar attack was previously described in [22], Section 5.2, Attack 4.
7 We use a flag rate of 5 KiB/s and a threshold of f = 0.10 as advised in [22]

178 J. Geddes, R. Jansen, and N. Hopper

0 50 100 150 200 250 300
Time (s)

0

50

100

150

200

250

Th
ro

ug
hp

ut
(K

iB
/s

)

(a) Bitsplit

0 50 100 150 200 250 300
Time (s)

0

50

100

150

200

250

Th
ro

ug
hp

ut
(K

iB
/s

)
(b) Flag

0 50 100 150 200 250 300
Time (s)

0

50

100

150

200

250

Th
ro

ug
hp

ut
(K

iB
/s

)

(c) Threshold

Fig. 9. Small scale sybil attack on the bandwidth throttling algorithms from [22]. The
shaded area represents the period during which the attack is active. The sybils cause
an easily recognizable drop in throughput on the target circuit.

the client’s circuit and therefore is able to compute the client’s throughput. The
attacker starts multiple sybil nodes at time t = 100 seconds that each connect
to the same entry relay used by the victim. The sybil nodes are shut down at
t = 200, after being active for 100 seconds.

The results of this attack on each algorithm are shown in Figure 9, where the
shaded area represents the time during which the attack was active. Figure 9a
shows that the bitsplit algorithm is only affected while the attack is active, after
which the client throughput returns to normal. However, the client throughput
remains degraded in both Figures 9b and 9c—the flag algorithm flagged the
client as a high throughput node and did not unflag it while the threshold al-
gorithm continued to throttle at the 50 KiB/s floor. Further, notice that the
throttling does not occur until roughly 10 to 20 seconds after the attack has
begun. This is due to the size of the token bucket, i.e., the BandwidthBurst

configuration: the attack causes the refill rate to drop dramatically, but it takes
time for the client to use up the existing tokens in the bucket. In addition to the
delay associated with the token bucket size, Figure 9c shows added delay in the
threshold algorithm because it only updates throttle rates once per minute.

6.2 Large Scale Experiments

We further explore the sybil attack on a large scale in Shadow. In addition to
the base experiment setup discussed in Section 3.2, we add a victim client who
downloads a large file through a circuit with an adversarial exit and a known
target guard. The adversary starts sybil nodes and instructs them to connect
to the known target guard at time t = 100. The sybil nodes cycle through 60
second active and inactive phases, and the adversary measures the throughput
of the circuit.

The results of this attack on each algorithm are shown in Figure 10, where
the shaded area again represents the time during which the attack was active. In
the large scale experiment, only the bitsplit algorithm (Figure 10a) produced a
repeatable signal while the throttle rate remained constant after the first phase
for both flag (Figure 10b) and threshold (Figure 10c). Also, these results show
the importance of correctly computing the attack duration: the signal was missed

How Low Can You Go: Balancing Performance with Anonymity in Tor 179

0 100 200 300 400 500 600 700
Time (s)

−50

0

50

100

150

200

250

300

350

Th
ro

ug
hp

ut
(K

iB
/s

)

(a) Bitsplit

0 100 200 300 400 500 600 700
Time (s)

−50

0

50

100

150

200

250

300

Th
ro

ug
hp

ut
(K

iB
/s

)
(b) Flag

0 100 200 300 400 500 600 700
Time (s)

−50

0

50

100

150

200

250

300

Th
ro

ug
hp

ut
(K

iB
/s

)

(c) Threshold

Fig. 10. Large scale sybil attack on the bandwidth throttling algorithms from [22].
The shaded area represents the period during which the attack is active. Due to token
bucket sizes, the throughput signal may be missed if the attack phases are too short.

during the first phase for both bitsplit and flag because the token bucket had
not yet fully drained.

6.3 Search Extensions

Because the drop in throughput during the attack is easily recognizable, it is
much easier to carry out than those discussed in Section 5. Therefore, in addition
to statistical correlations that eliminate potential guards from a candidate set for
a given circuit, a search strategy over the potential guard set will also be useful.
In a linear search, the adversary would attack each candidate guard one by one
until the throughput signal on the target circuit is recognized. This strategy is
simple, but it may take a long time to test every candidate. A binary search,
where the attacker tests half of the candidates in each phase of the search, would
significantly reduce the search time. Note that a binary search may be ineffective
on certain configurations of the flag and threshold algorithms because of the lack
of a repeatable signal (see Figures 9 and 10).

Regardless of the search strategy, a successful attack will contain enough sybils
to allow the adversary to recognize the throughput signal, but otherwise be as
fast as possible. Given our results above, the attack should consider the token
bucket size and refill rate of each candidate guard to aid in determining the
number of sybils to launch and the length of time each sybil should remain
active. An adversary who controls the circuit exit may compute the average
circuit throughput and estimate the amount of time it would take for the circuit
to deplete the remaining tokens in a target guard’s bucket during an attack.
Each sybil should then remain active for at least that amount of time. Figure 10
shows that the throughput signal may be missed without these considerations.

7 Analysis

Having seen how the algorithms perform independently in different attack sce-
narios, we now want to examine the overall effects on anonymity that each
algorithm has. For our analysis, we use client probability distributions as dis-
cussed in Section 3.1 to measure how much information is gained by an ad-
versary. Recall that we have the probability that a client is the victim being

180 J. Geddes, R. Jansen, and N. Hopper

0 1 2 3 4 5 6
Client Probability (percent)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

vanilla
EWMA
N23

(a) Throughput

0 2 4 6 8 10 12 14 16
Client Probability (percent)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F vanilla
vanilla (attack)
N23 (N3=500)
N23 (N3=100)

(b) Induced Throttling

0 10 20 30 40 50 60 70
Client Probability (percent)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F vanilla
vanilla (attack)
N23 (N3=500)
N23 (N3=100)

(c) Perfect Knowledge

Fig. 11. Victim client probabilities, various congestion control attack scenarios

P [V = Ci] =
∑

j P [V = Ci|Rj]P [G = Rj] for a set of relays R and clients
C. Now we need to determine how to update the probability distributions for
P [G = Rj] and P [V = Ci|Rj] based on the attacks we’ve covered.

There are three attacks discussed that are used to learn information about the
guard node used in a circuit, determining P [G = Rj]. The throughput attack and
artificial throttling attack both attempt to reduce the set of possible entry guards
by assigning a score to each guard and using a threshold value to determine the
reduced set. For each attack, we compile the set of scores assigned to the actual
guard nodes, and use this set as input to a kernel density estimator in order to
generate an estimate of the probability density function, P̂ . Then, given a relay
Rj with a score score(Rj) we can compute P [G = Rj] = P̂ [X = score(Rj)]. For
the sybil attacks on the throttling algorithms we were able to uniquely identify
the entry guard, so we have P [G = Rj] = 1 if Rj is the guard, otherwise it’s 0.
Therefore, denoting RG as the guard relay, we have P [V = Ci] = P [V = Ci|RG].

For determining the probability distribution for P [V = Ci|Rj], recall that the

latency attack computes the difference between the estimated latency T̂V E and
the actual latency TV E as the score, and ranks potential clients that way. Using
the absolute value of the difference as the score, we compute the probability
density function P̂ in the same way as we did for P [G = Rj]. Therefore, to
compute P [V = Ci|Rj], we let latCiRj be the actual latency between client

Ci and relay Rj , and T̂V E be the estimate latency between the client and entry

guard. Then, with diff = |latCiRj−T̂V E | we have P [V = Ci|Rj] = P̂ [X = diff]
from the computed probability density function.

Our analysis first concentrates on how the algorithms perform with the
throughput and latency attack compared to vanilla Tor. We then focus on the
new induced throttling attacks shown in Section 5 and 6 to see if there are im-
provements over either vanilla Tor or the throughput attack with the algorithms.
For each attack we use a set of potential victims {Vi} and their entry guards Gi

and compute the probabilities P [V = Vi] as shown above.
The results for the algorithms EWMA, N23, and the induced throttling at-

tacks described in Section 5 are shown in Figure 11. We can see in Figure 11a
that with just the throughput and latency attack, vanilla Tor leaks about the
same amount of anonymity of a client as EWMA and N23. The exception to this
is that a tiny proportion of clients have probabilities ranging from 4-6% which

How Low Can You Go: Balancing Performance with Anonymity in Tor 181

0 1 2 3 4 5 6 7 8 9
Client Probability (percent)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
vanilla
bitsplit
flag
threshold
ideal

(a) Throughput

0 20 40 60 80 100
Client Probability (percent)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

vanilla
bitsplit
flag
threshold

(b) Induced Throttling

Fig. 12. Victim client probabilities, various traffic admission control attack scenarios

is outside the range in vanilla Tor. Referring back to Figure 3 we see that these
algorithms, N23 in particular, leak slightly more information than vanilla Tor
based on latency estimation. While sometimes this information gain might be
counteracted by the amount of possible entry guards that need to be considered,
there are a small amount of cases where the guard set is reduced enough that the
extra information from the latency attack translates into a higher probability
for the client.

When replacing the throughput attack with the induced throttling attack we
start to see a larger divergence in client probabilities, as shown in Figure 11b.
While the induced throttling attack with vanilla Tor leaks slightly more informa-
tion than vanilla Tor with the throughput attack, N23 with N3 = 500 has higher
client probabilities than both attacks on vanilla Tor and higher than N23 with
just the throughput attack. Furthermore, N23 with N3 = 100 does significantly
better than all previous algorithms, leaking more information than vanilla Tor
for almost half the clients, reaching probabilities as high as 15%.

The results in Figure 11b assume that the client only sends one stream over
the circuit, the worst case scenario for an adversary. As shown in Figure 8, as the
number streams multiplexed over the circuit increases, the degree of anonymity
loss sharply approaches 100% implying that an adversary would be able to
uniquely identify the entry guard. An analysis with this assumption of “per-
fect knowledge” can be seen in Figure 11c, where P [G = Rj] = 1 when Rj is
the entry guard. Here we see a dramatic improvement from when a client only
sends a single stream over the circuit, with some clients having probabilities as
high as 60%, compared to a peak of 15% with a single stream.

Using the throughput attack with the traffic admission control algorithms
produces similar results as N23 and EWMA, as shown in Figure 12a. There is
a slightly higher upper bound in the client probability caused by the threshold
and ideal throttling algorithms, but for the most part these results line up fairly
closely to what was previously seen. Given that the throttling algorithms all
had similar peaks to N23 with respect to the loss of anonymity in the latency
attacks, these results aren’t too surprising. Even with the improved performance
of the latency attack, these gains are wiped out by the fact that the throughput
attack results in too many guards that need to be considered in relation to the

182 J. Geddes, R. Jansen, and N. Hopper

clients. However, when using the sybil attack to induce throttling under the
assumption that the adversary is able to uniquely identify the entry guard in
use, we see dramatically higher client probabilities. Figure 12b shows the result
of this analysis, where at the extreme end we see clients with probabilities as
high as 90%. This is due to the fact that with the sybil attack we are able to
identify the exact entry guard used by each victim, thus reducing the noise from
having to consider the latency of clients based on other possible relays. This very
effectively demonstrates the level of anonymity lost when an adversary is able
to significantly reduce the set of candidate entry guards.

8 Conclusion

While high performance is vital to the Tor system, algorithms which seek to
improve allocation of network resources via more advanced congestion control
or traffic admission algorithms need to take into account the implications on
anonymity, both with respect to existing attacks and the potential for new ones.
To this effect, we introduce a new class of induced throttling attacks and demon-
strate the effectiveness across a wide variety of performance enhancing algo-
rithms, resulting in dramatic information leakage on victim clients. Using the
new class of attacks, we perform a comprehensive analysis on the implications
on anonymity, showing both the effects the algorithms have on existing attacks,
as well as showing the increase in information gain from the new attacks.

Preventing these new attacks isn’t straightforward, as in many cases the ad-
versary is merely exploiting the underlying mechanisms in the algorithms. With
the induced throttling attacks on vanilla and N23 congestion control, an ad-
versary acts exactly as they should under heavy congestion, so prevention or
detection becomes difficult without completely changing the algorithm. In these
cases it comes down to the performance/anonymity trade-off. However, in the
throttling algorithms the adversary is taking advantage of the fact that only the
raw number of open connections are considered when calculating the throttling
rate, allowing Sybil connections to be created using negligible resources. A throt-
tling algorithm might prevent this by considering only active connections which
have seen a minimum amount of bandwidth over a certain time period, forcing
the attacker to spend a non-trivial amount of resources to significantly affect
the throttle rate. The throttling rate could also be weighted by each connec-
tion’s average bandwidth, creating a direct correlation between the bandwidth
an adversary must provide and its influence on the throttling rate. Alternatively,
throttling algorithms that do not directly consider the number of connections
would not be vulnerable to the attacks in this paper.

Acknowledgments. We would like to thank our shepherds Roger Dingledine
and Damon McCoy and the anonymous reviewers for their comments that helped
improve this paper. This work was supported by NSF grant 0915145.

How Low Can You Go: Balancing Performance with Anonymity in Tor 183

References

1. AlSabah, M., Bauer, K., Goldberg, I.: Enhancing Tor’s performance using real-time
traffic classification. In: Proceedings of the 2012 ACM Conference on Computer and
Communications Security. ACM (2012)

2. AlSabah, M., Bauer, K., Goldberg, I., Grunwald, D., McCoy, D., Savage, S.,
Voelker, G.M.: DefenestraTor: Throwing out windows in Tor. In: Fischer-Hübner,
S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 134–154. Springer, Heidel-
berg (2011)

3. Chaabane, A., Manils, P., Kaafar, M.A.: Digging into anonymous traffic: A deep
analysis of the tor anonymizing network. In: 2010 4th International Conference on
Network and System Security (NSS) (2010)

4. Chakravarty, S., Stavrou, A., Keromytis, A.D.: Traffic Analysis Against Low-
Latency Anonymity Networks Using Available Bandwidth Estimation. In: Gritza-
lis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp.
249–267. Springer, Heidelberg (2010)

5. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bow-
man, M.: PlanetLab: an overlay testbed for broad-coverage services. SIGCOMM
Computer Communication Review 33 (2003)

6. Cohen, B.: Incentives build robustness in BitTorrent. In: Workshop on Economics
of Peer-to-Peer Systems, vol. 6 (2003)

7. Danezis, G., Dingledine, R., Mathewson, N.: Mixminion: Design of a type III anony-
mous remailer protocol. In: Proc. of IEEE Security and Privacy (2003)

8. Dı́az, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In:
Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 54–68.
Springer, Heidelberg (2003)

9. Dingledine, R.: Adaptive throttling of Tor clients by entry guards. Technical Report
2010-09-001, The Tor Project (September 2010)

10. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The Second-Generation Onion
Router. In: Proceedings of the 13th Usenix Security Symposium (2004)

11. Douceur, J.R.: The Sybil Attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)

12. Evans, N.S., Dingledine, R., Grothoff, C.: A practical congestion attack on Tor
using long paths. In: Proceedings of the 18th USENIX Security Symposium (2009)

13. Gopal, D., Heninger, N.: Torchestra: Reducing interactive traffic delays over Tor.
In: Proc. of the Workshop on Privacy in the Electronic Society (2012)

14. Gulcu, C., Tsudik, G.: Mixing E-mail with Babel. In: Proceedings of the Sympo-
sium on Network and Distributed System Security (1996)

15. Hahne, E.: Round-robin scheduling for max-min fairness in data networks. IEEE
Journal on Selected Areas in Communications 9(7) (1991)

16. Hastie, T.J., Tibshirani, R.J.: Generalized additive models, vol. 43 (1990)
17. Hopper, N., Vasserman, E.Y., Chan-Tin, E.: How much anonymity does network

latency leak? In: Proceedings of the 14th ACM Conference on Computer and Com-
munications Security. ACM (2007)

18. Houmansadr, A., Borisov, N.: SWIRL: A Scalable Watermark to Detect Correlated
Network Flows. In: Proc. of the Network and Distributed Security Symp. (2011)

19. Jansen, R.: The Shadow Simulator, http://shadow.cs.umn.edu/
20. Jansen, R., Bauer, K., Hopper, N., Dingledine, R.: Methodically Modeling the Tor

Network. In: Proceedings of the 5th Workshop on Cyber Security Experimentation
and Test (August 2012)

http://shadow.cs.umn.edu/

184 J. Geddes, R. Jansen, and N. Hopper

21. Jansen, R., Hopper, N.: Shadow: Running Tor in a Box for Accurate and Efficient
Experimentation. In: Proceedings of the 19th Network and Distributed System
Security Symposium (2012)

22. Jansen, R., Syverson, P., Hopper, N.: Throttling Tor Bandwidth Parasites. In:
Proceedings of the 21st USENIX Security Symposium (2012)

23. McCoy, D., Bauer, K., Grunwald, D., Kohno, T., Sicker, D.: Shining light in dark
places: Understanding the Tor network. In: Borisov, N., Goldberg, I. (eds.) PETS
2008. LNCS, vol. 5134, pp. 63–76. Springer, Heidelberg (2008)

24. Mittal, P., Khurshid, A., Juen, J., Caesar, M., Borisov, N.: Stealthy traffic analysis
of low-latency anonymous communication using throughput fingerprinting. In: Pro-
ceedings of the 18th ACM Conference on Computer and Communications Security.
ACM (2011)

25. Möller, U., Cottrell, L., Palfrader, P., Sassaman, L.: Mixmaster protocol version 2.
Draft (July 2003)

26. Moore, W.B., Wacek, C., Sherr, M.: Exploring the Potential Benefits of Expanded
Rate Limiting in Tor: Slow and Steady Wins the Race With Tortoise. In: Proceed-
ings of 2011 Annual Computer Security Applications Conference (2011)

27. Murdoch, S.J., Danezis, G.: Low-cost traffic analysis of Tor. In: 2005 IEEE Sym-
posium on Security and Privacy. IEEE (2005)

28. Øverlier, L., Syverson, P.: Locating Hidden Servers. In: Proceedings of the 2006
IEEE Symposium on Security and Privacy (2006)

29. Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity.
In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53.
Springer, Heidelberg (2003)

30. Tang, C., Goldberg, I.: An improved algorithm for Tor circuit scheduling. In: Pro-
ceedings of the 17th ACM Conference on Computer and Communications Security.
ACM (2010)

31. The Tor Project: The Tor Metrics Portal, https://metrics.torproject.org/
32. Wright, M., Adler, M., Levine, B.N., Shields, C.: Defending Anonymous Com-

munication Against Passive Logging Attacks. In: Proceedings of the 2003 IEEE
Symposium on Security and Privacy (May 2003)

https://metrics.torproject.org/

	How Low Can You Go: Balancing Performance with Anonymity in Tor
	Introduction
	Background and Related Work
	Tor
	Circuit Scheduling
	Congestion Control
	Traffic Admission Control
	Known Attacks

	Methodology
	Metrics
	Percentile.
	Degrees of Anonymity.
	Client Probability.

	Experimental Setup and Model

	Algorithmic Effects on Known Attacks
	Throughput as a Signal
	Latency as a Signal

	Induced Throttling via Congestion Control
	Artificial Congestion
	Small Scale Experiment
	Smoothing Throughput
	Scoring Algorithm
	Large Scale Experiments

	Induced Throttling via Traffic Admission Control
	Connection Sybils
	Large Scale Experiments
	Search Extensions

	Analysis
	Conclusion
	Acknowledgments.

