Noisy Carrier Modulation for HF RFID

Gerhard P. Hancke

September 25, 2007

Data Confidentiality

- Alice and Bob are exchanging data
- An attacker, Eve, tries to eavesdrop on the communication
- Alice and Bob need to share some key information
- Key management is not always easy

Wire-Tap Model

- Wyner (1975)
 - Receiver: x(t) = y(t) + N'(t)
 - Attacker: z(t) = y(t) + N''(t)
 - N'(t) << N''(t)
- Attacker cannot recover data as result of N''(t)
- Problem: No assurance that N''(t) is always sufficient

Cover Noise Proposals

- Intentional introduction of 'noise' into the system
- Several RFID proposals use bit-blocking
- Privacy
 - Blocker Tag (Juels, Rivest and Szydlo)
 - RFID Guardian
 (Rieback, Gaydadjiev, Crispo, Hofman and Tanenbaum)
- Key Exchange
 - Noisy Tag Protocol (Castelluccia and Avoine)
 - NFC Key Agreement (Haselsteiner and Breitfuss)

Bit-Blocking Requirements

- Two devices transmit at the same time
 - **●** Both transmit a '1' $\rightarrow S_{11}$
 - **●** Both transmit a '0' $\rightarrow S_{00}$
 - Transmission of '0' and '1' $\rightarrow S_{10}$ or S_{01}
- It is assumed that $S_{01} = S_{10}$
 - Attacker cannot guess who transmitted the '1' and '0'
- Blocking and data sequences must match
 - Amplitude
 - Phase

NFC Key Agreement (NKA)

- Devices transmit at same time
- Receiver knows the blocking sequence
- Key refined from S_{01} and S_{10}

Noisy Tag Protocol (NTP)

- Additional noisy tag used as blocker
- Noisy tag and reader share a secret
- Key refined from S_{01} and S_{10}

Practical Problems

- $S_{01} \neq S_{10}$
- Attacker can determine who sent which symbol

Practical Problems(2)

Bit collision in reply of two ISO 14443A tokens

Solution

- Prevent attacker from distinguishing S_{01} and S_{10}
- Ensure that $S_{01} \approx S_{10}$
 - Phase: Devices can synchronize, blocker could adjust to different tokens
 - Amplitude: Match blocking sequence to data, difficult for the blocker to adjust
- Randomize the physical characteristics of the communication
 - Amplitude: Change the amplitude of the bit-blocking sequence

Amplitude Randomization

- Add band-limited noise to the blocking sequence
- Obfuscate the difference between S_{01} and S_{10}
- Data recovered if noisy blocking sequence is known

Noisy Carrier Modulation

- Transmits the 'noisy' carrier during the token's response
 - Token's response modulated onto this carrier
- Randomizing the amplitude of the carrier similar effect to bit blocking

Noisy Carrier Modulation(2)

- System assumptions
 - A reader and token exchange a key in the presence of a passive attacker
 - The reader is trusted
 - The cover noise is resistant to analysis
- Enhance current bit-blocking schemes
 - Resolve some practical issues with bit-blocking
 - Not meant to obfuscate data only with noise

Practical Implementation?

- Additional hardware in the reader
 - Blocking-sequence: PRNG and AWGN noise source
 - Recovery: Noise synchronization

Advantages

- The reader acts as the blocker
 - User does not require additional devices
- No special token required
 - All extra functions build into the reader
 - Scheme can be used without modifications to current standards

Modeling the system

- - S(t) is the sequence of S_{10} and S_{01} symbols
 - N(t) in the range [-1:1], scaled by n_i
- No additional noise, N'(t)
- Attacker uses a correlation receiver
- Attacker knows when the data is sent
- Attacker knows the bit periods of the data

Results

- $= |S_{10} S_{01}|, \text{ where } \max(S_{10}, S_{01}) = 1$
- BER of 0.5 equivalent to attacker guessing

Results(2)

Frequency

Additional N'(t)

- Choose noise to match data
- More realistic model

Conclusion

- Show that simple bit-blocking has practical constraints
 - Attacker can distinguish between the blocker and sender because of differences in their communication
- Proposal for making backward channel resistant to eavesdropping
 - Use a modified bit-blocking scheme
 - Additional noise used to randomize amplitude of blocking sequence
 - Simulated results show that this scheme increases the probability that the attacker will make a bit error
 - No really suitable for data encryption

Conclusion(2)

- The reader acts as the blocker
 - Requires that the reader implements additional hardware
 - No need to change token
 - User does not need additional blocking device
- Suitable for implementation with current standards
 - Could be possibly be extended to NFC
- Allows for more secure implementation of current bit-blocking schemes
 - Key exchange
 - RFID proxies and blockers
- At the moment it is only an idea...:-)

Recent Proposal

RFID Noisy Reader How to Prevent from Eavesdropping on the Communication?

O. Savry, F. Pebay-Peyroula, F. Dehmas, G. Robert and J. Reverdy

CEA-LETI

Cryptographic Hardware and Embedded Systems – CHES 2007 Vienna, September 2007

- Similar scheme specifically for ISO 14443
- Uses an additional antenna to broadcast cover noise
- More details on noise generation and hardware
- Attack model includes the attacker's distance and coupling efficiency

Done

Thank you, and any questions?

gerhard.hancke@rhul.ac.uk
Smart Card Centre
Royal Holloway, University of London