
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. Y, MONTH 1999 100A General Framework for Low Level VisionNir Sochen Ron Kimmel Ravi MalladiAbstract| We introduce a new geometrical frameworkbased on which natural 
ows for image scale space and en-hancement are presented. We consider intensity images assurfaces in the (x; I) space. The image is thereby a 2D sur-face in 3D space for gray level images, and 2D surfaces in 5Dfor color images. The new formulation uni�es many classicalschemes and algorithms via a simple scaling of the intensitycontrast, and results in new and e�cient schemes. Exten-sions to multi dimensional signals become natural and leadto powerful denoising and scale space algorithms.Keywords|Scale-space, Non-linear image di�usion, Imagesmoothing, Image enhancement, Color image processingI. IntroductionTHE importance of dynamics of image geometry in theperception and understanding of images is by now wellestablished in computer vision. Geometry, symmetry anddynamics are also the main issues in physics. Borrowingideas from high-energy physics, we propose in this paper ageometrical framework for low-level vision. The two mainingredients of this framework are 1) de�ning images as em-bedding maps between two Riemannian manifolds. 2) Anaction functional that provides a measure on the space ofthese maps. This action is the natural generalization ofthe L2 Euclidean norm to non-Euclidean manifolds and isknown as the Polyakov action in physics. The justi�cationfor the use of this functional in computer vision is twofold:It uni�es many seemingly unrelated scale space methods onone hand and provides new and improved ways to smoothand denoise images on the other. It will lead us in this pa-per to the construction of image enhancement proceduresfor gray and color images. The framework also integratesmany existing denoising and scale space procedures by achange of a single parameter that switches between theEuclidean L1 and L2 norms.Motivated by [2], [31], we consider low level vision as aninput to output process. For example, the most commoninput is a gray level image; namely a map from a two di-mensional surface to a three dimensional space (IR3). Wehave at each point of the xy coordinate plane an intensityI(x; y). The IR3 space-feature has Cartesian coordinates(x; y; I) where x and y are the spatial coordinates and I isthe feature coordinate 1. The output of the low level pro-cess in most models consists of 1) A smoothed image fromwhich reliable features can be extracted by local, and there-fore di�erential operators, and 2) A segmentation, that is,either a decomposition of the image domain into homoge-Nir Sochen was with the Physics Dept. UC Berkeley, and since Oct.1 1996 is with the School of Physics and Astronomy, Tel Aviv Univ.,Ramat-Aviv, Tel-Aviv 69978, IsraelRon Kimmel and Ravi Malladi are with the Dept. of Mathematics,and Lawrence Berkeley National Laboratory, University of California,Berkeley CA 947201While in this paper the feature coordinate is simply the zeroth jetspace j0I, we use the term feature space to leave room for a moregeneral cases like texture [24], etc.

neous regions with boundaries, or a set of boundary points{ an \edge map".The process assumes the existence of layers serving asoperators such that the information is processed locally inthe layers and forwarded to the next layer with no inter-action between distant layers. This means that the outputhas the form X(�; t) which is the solution of @tX = OX,where O is a local di�erential operator, and the input im-age is given as initial condition. This process yields a one-parameter family of images on the basis of an input image.Normally such a family is called a scale-space (see [35] andreferences therein).The importance of edges that are obtained from the in-tensity gradient is acknowledged, and gradient based edgedetectors are a basic operation in many computer visionapplications. Edge detectors appear by now in almost allimage processing tools. The importance of edges in scalespace construction is also obvious. Boundaries betweenobjects should survive as long as possible along the scalespace, while homogeneous regions should be simpli�ed and
attened in a more rapid way. We propose here a newnon-linear di�usion algorithm which does exactly that.Another important question, for which there is only par-tial answers, is how to treat multi valued images. A colorimage is a good example since we actually talk about 3images (Red, Green, Blue) that are composed into one.Should one treat such images as multi valued functions asproposed in [14]?We attempt to answer the above question by viewing im-ages as embedding maps, that 
ow towards minimal sur-faces. We go two dimensions higher than most of the clas-sical schemes, and instead of dealing with isophotes as pla-nar curves we deal with the whole image as a surface. Forexample, a gray level image is no longer considered as afunction but as a two dimensional surface in three dimen-sional space. This idea is quite old [20], [46] for gray levelimages, yet, to the best of our knowledge, it was never car-ried on to higher dimensions. As another example, we willconsider a color image as 2D surfaces now in 5D. We thankthe editors for communicating to us a related e�ort that ispublished in this issue, see [47].We have chosen to present our ideas in the following or-der: Section II introduces the basic concepts of a metricand the induced metric and presents a measure on mapsbetween Riemannianmanifolds that we borrowed fromhighenergy physics. This measure provides a general frameworkfor non-linear di�usion in computer vision, as shown in thefollowing sections. In Section III we introduce a new 
owthat we have chosen to name Beltrami 
ow, present a geo-metric interpretation in the simplest 3D case, its relation toprevious models, and two examples of the Beltrami 
ow forcolor images. Then, in Section IV we refer to other mod-els that are the result of the same action through di�erent



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. Y, MONTH 1999 101choices of the image metric and the minimization variables.We also study the geometrical properties of a generalizedversion of the mean curvature 
ow that is closely related tothe proposed framework. We conclude in Section V with asummarizing discussion.II. Polyakov Action and Harmonic MapsA. The geometry of a map
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Fig. 1. Length element of a surface curve ds, may be de�ned eitheras a function of a local metric de�ned on the surface (�1; �2), oras a function of the coordinates of the space in which the surfaceis embedded (x; y; I).The basic concept of Riemannian di�erential geometryis distance. The natural question in this context is howdo we measure distances? We will �rst take the impor-tant example X : � ! IR3. Denote the local coordinateson the two dimensional manifold � by (�1; �2), these areanalogous to arc length for the one dimensional manifold,i.e. a curve, see Fig. 1. The map X is explicitly given by(X1(�1; �2); X2(�1; �2); X3(�1; �2)). Since the local coor-dinates �i are curvilinear, the squared distance is givenby a positive de�nite symmetric bilinear form called themetric whose components we denote by g��(�1; �2):ds2 = g��d��d�� � g11(d�1)2 + 2g12d�1d�2 + g22(d�2)2;where we used Einstein summation convention in the sec-ond equality; identical indices that appear one up and onedown are summed over. We will denote the inverse of themetric by g�� , so that g��g�
 = ��
 , where ��
 is the Kro-necker delta.Let X : � ! M be an embedding of (�; g) in (M;h),where � and M are Riemannian manifolds and g and h aretheir metrics respectively. We can use the knowledge of themetric on M and the map X to construct the metric on�. This procedure, which is denoted formally as (g��)� =X�(hij)M , is called the pullback for obvious reasons and isgiven explicitly as follow:g��(�1; �2) = hij(X)@�Xi@�Xj ; (1)where i; j = 1; :::; dimM are being summed over, and@�Xi � @Xi(�1; �2)=@��.Take for example a grey level image which is, from ourpoint of view, the embedding of a surface described as agraph in IR3:X : (�1; �2)! (x = �1; y = �2; z = I(�1; �2)); (2)

where (x; y; z) are Cartesian coordinates. Using Eqn. (1)we get (g��) = � 1 + I2x IxIyIxIy 1 + I2y � ; (3)where we used the identi�cation x � �1 and y � �2 in themap X.Actually, we can understand this result in an intuitiveway: Eq. (1) means that the distance measured on thesurface by the local coordinates is equal to the distancemeasured in the embedding coordinates, see Fig. 1. Underthe above identi�cation, we can write ds2 = dx2 + dy2 +dI2 = dx2+dy2+(Ixdx+Iydy)2 = (1+I2x)dx2+2IxIydxdy+(1 + I2y )dy2:Next we provide a measure on the space of these maps.B. The measure on mapsIn this subsection, we present a general framework fornon-linear di�usion in computer vision. We will show inthe sequel that many known methods fall naturally intothis framework and how to derive new ones. The equationswill be derived by a minimization problem from an actionfunctional. The functional in question depends on both theimagemanifold and the embedding space. Denote by (�; g)the image manifold and its metric and by (M;h) the space-feature manifold and its metric, then the map X : �!Mhas the following weight [34]S[Xi; g��; hij] = Z dm�pgg��@�Xi@�Xjhij(X); (4)where m is the dimension of �, g is the determinant ofthe image metric, g�� is the inverse of the image met-ric, the range of indices is �; � = 1; : : : ; dim�, and i; j =1; : : : ; dimM . The metric of the embedding space is hij.To gain some intuition about this functional, let us takethe example of a surface embedded in IR3 and treat boththe metric (g��) and the spatial coordinates of the embed-ding space as free parameters, and let us �x them to(g��) = �1 00 1� ; x = �1 ; y = �2: (5)We also adopt in IR3 the Cartesian coordinates (i.e. hij =�ij). Then we get the Euclidean L2 norm:S[I; g�� = ��� ; hij = �ij ] = Z d2�(jrxj2 + jryj2 + jrIj2):(6)If we now minimize with respect to I, we will get the usualheat operator acting on I. We see that the Polyakov ac-tion is the generalization of the L2 norm to curved spaces.Here, dm�pg is the volume element (area element for d=2)of � { the image manifold , and g��@�Xi@�Xjhij(X) isthe generalization of jrIj2 to maps between non-Euclideanmanifolds. Note that the volume element as well as therest of the expression is reparameterization invariant. Thismeans that they are invariant under a smooth transforma-tion �� ! ~��(�1; �2). The Polyakov action really depends



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. Y, MONTH 1999 102on the geometrical objects and not on the way we describethem via our parameterization of the coordinates.Given the above functional, we have to choose the min-imization. We may choose for example to minimize withrespect to the embedding alone. In this case the metricg�� is treated as a parameter of the theory and may be�xed by hand. Another choice is to vary only with respectto the feature coordinates of the embedding space, or wemay choose to vary with respect to the image metric aswell. We will see that these di�erent choices yield di�er-ent 
ows. Some 
ows are recognized as existing methodslike the heat 
ow, a generalized Perona-Malik 
ow, or themean-curvature 
ow. Other choices are new and will bedescribed below in detail.Another important point is the choice of the embeddingspace and its geometry. In general, we need informationabout the task at hand in order to �x the right geometry.Take for example the grey level images. It is clear that theintensity I is not on equal footing as x and y. In fact therelative scale of I with respect to the spatial coordinates(x; y) is to be speci�ed. This can be interpreted as takingthe metric of the embedding space as follows:(hij) = 0@ 1 0 00 1 00 0 �2 1A : (7)We will see below that di�erent limits of this ratio � inter-polate between the 
ows that originate from the EuclideanL1 and L2 norms.Using standard methods in variational calculus, theEuler-Lagrange equations with respect to the embeddingare (see [42] for derivation):� 12pg hil �S�X l = 1pg @�(pgg��@�Xi) + �ijk@�Xj@�Xkg�� ;(8)where �ijk are the Levi-Civita connection coe�cients withrespect to the metric hij that describes the geometry ofthe embedding space (see [44], [42] for a de�nition of theLevi-Civita connection).Our proposal is to view scale-space as the gradient de-scent: Xit � @Xi@t = � 12pg hil �S�X l : (9)Few remarks are in order. First, notice that we usedour freedom to multiply the Euler-Lagrange equations bya strictly positive function and a positive de�nite matrix.This factor is the simplest one that does not change theminimization solution while giving a reparameterization in-variant expression. This choice guarantees that the 
ow isgeometric and does not depend on the parameterization.We will see below that the Perona-Malik 
ow, for example,corresponds to another choice of the pre-factor, namely 1.The operator that is acting on Xi in the �rst term of Eqn.(8) is the natural generalization of the Laplacian from 
atspaces to manifolds and is called the second order di�eren-tial parameter of Beltrami [27], or in short Beltrami oper-ator, and we will denote it by �g. When the embedding

is in a Euclidean space with Cartesian coordinate systemthe connection elements are zero. If the embedding spaceis not Euclidean or if the Coordinate system we use is notCartesian we have to include the Levi-Civita connectionterm since it is no longer equal to zero.In general for any manifolds � and M , the map X :� ! M that minimizes the action S with respect to theembedding is called a harmonic map. The harmonic mapis the natural generalization of the geodesic curve and theminimal surface to higher dimensional manifolds and fordi�erent embedding spaces. We have here a framework thatcan treat curves, surfaces, and higher dimensional imagedata embedded in gray, color and higher dimensional andgeometrically non-trivial embedding spaces.III. The Beltrami flowIn this section, we present a new and natural 
ow. Theimage is regarded as an embedding map X : � ! IRn,where � is a two dimensional manifold. We treat grey-level and color images as examples and then compare torelated works. Explicitly, the maps for grey-level and colorimages areX = �x(�1; �2); y(�1; �2); I(�1; �2)�and X = �x(�1; �2); y(�1; �2); fIi(�1; �2)g3i=1� ; (10)respectively. In the above map we have denoted (r; g; b) by(1; 2; 3) for convenience, or in general notation by i. Weminimize our action in Eqn. (4) with respect to the metricand with respect to (Ir ; Ig; Ib). The coordinates x and yare parameters from this view point and are identi�ed asusual with �1 and �2 respectively. We note that there areobviously better selections to color space de�nition ratherthan the RGB 
at space. Nevertheless, we get good resultseven from this oversimpli�ed assumption.Minimizing the metric gives, as we have seen, the inducedmetric which is given for grey level image in Eqn. (3) andfor color images by(g��) = � 1 +P3i=1(Iix)2 P3i=1 IixIiyP3i=1 IixIiy 1 +P3i=1(Iiy)2� ; (11)and g = det(gij) = g11g22 � g212. Note that this metricdi�ers from the Di Zenzo matrix [14] (which is not a metricsince it is not positive de�nite) by the addition of 1 to g11and g22. The source of the di�erence lies in the map usedto describe the image; Di Zenzo used X : � ! IR3 whilewe use X : �! IR5.The action functional under our choice of the metric isthe Nambu functionalS = Z d2�qdet(@�Xi@�Xi)= Z d2�s1 +Xi jrIij2 + 12Xij (rIi;rIj)2;(12)where (rIi;rIj) stands for the magnitude of the vec-tor product of the vectors rIi and rIj. For grey level



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. Y, MONTH 1999 103images the last term vanishes and we are left with S =R d2�p1 + jrIj2. The action in Eqn. (12) is simply thearea of the image surface.Now, we compare our norm to that proposed by Shah in[41]: R pPi=1 jrIij2. We notice that the proposed areanorm in Eqn. (12), includes an extra term that does notappear in Shah's norm and other previous norms in theliterature. The term Pij(rIi;rIj)2 measures the direc-tional di�erence of the gradient between di�erent channels.The minimization of a norm that includes this term, di-rects di�erent channels to align together as they becomesmoother and simpler in scale. One should recognize thiscross correlation of orientation between the channels as avery important feature; overcoming the color 
uctuationsalong edges as a result of a lossy JPEG standard compres-sion is a good example.Minimizing Eqn. (12) with respect to Ii gives the Bel-trami 
ow Iit = 1pg@�(pgg��@�Ii) � Hi: (13)It means that the velocity in the Ii direction is proportionalto the component of the mean curvature vector in the Iidirection. Note the di�erence between Eqn. (13) and themean curvature 
ow in Eqn. (20). Here we only movethe feature coordinates while keeping x and y �xed, whereas in the mean curvature 
ow we move all coordinates.The projection of the mean curvature vector on the featurecoordinates is an edge preserving procedure. Intuitively itis obvious. Each point on the image surface moves witha velocity that depends on the mean curvature and theIi components of the normal to the surface at that point.Since along the edges the normal to the surface lies almostentirely in the x-y plane, Ii hardly changes along the edgeswhile the 
ow drives other regions of the image towards aminimal surface at a more rapid rate.For a simple implementation of the Beltrami 
ow in colorwe �rst compute the following matrices: Iix, Iiy, pi, and qigiven by pi = g22Iix � g12Iiy;qi = �g12Iix + g11Iiy:Then the evolution is given byIit = 1g �pix + qiy�� 12g2 �gxpi + gyqi� (14)where gx = @xg (gy = @yg).For grey-scale case, we get the following expression afterplugging the explicit form of (g��):It = (1 + I2y )Ixx � 2IxIyIxy + (1 + I2x)Iyy(1 + I2x + I2y )2 : (15)Let us further explore the geometry of the 
ow and relateit to other known methods.

A. Geometric Flows Towards Minimal SurfacesA minimal surface is the surface with least area that sat-is�es given boundary conditions. It has nice geometricalproperties, and is often used as a natural model of variousphysical phenomena, e.g. soap bubbles `Plateau's prob-lem,' in computer aided design, in structural design, andrecently even for medical imaging [6]. It was realized byJ. L. Lagrange in 1762 [28], that the mean curvature equalto zero is the Euler Lagrange equation for area minimiza-tion. Hence, the mean curvature 
ow is the most e�cient
ow towards a minimal surface. Numerical schemes for themean curvature 
ow, and the construction of minimal sur-faces under constraints, where studied since the beginningof the modern age of numerical analysis [13], and is stillthe subject of ongoing numerical research [11], [12], [8].For constructing the mean curvature 
ow of the imageas a surface, we follow three steps: 1) Let the surface Sevolve according to the geometric 
ow @S@t = ~F ; where ~F isan arbitrary smooth 
ow �eld. The geometric deformationof S may be equivalently written as @S@t = h~F ; ~Ni ~N ; where~N is the unit normal of the surface at each point, andh~F ; ~Ni is the inner product (the projection of ~F on ~N ). 2)The mean curvature 
ow is given by: @S@t = H ~N ; where His the mean curvature of S at every point. 3) Consideringthe image function I(x; y), as a parameterized surface S =(x; y; I(x; y)), and using the relation in step 1, we maywritethe mean curvature 
ow as: @S@t = Hh ~N ;~zi~z; for any smoothvector �eld ~z de�ned on the surface. Especially, we maychoose ~z as the Î direction, i.e. ~z = (0; 0; 1). In this case1h ~N ; ~zi � ~z =q1 + I2x + I2y � (0; 0; 1) = pg(0; 0; 1): (16)Fixing the (x; y) parameterization along the 
ow, we haveSt = @@t(x; y; I(x; y)) = (0; 0; It(x; y)). Thus, for trackingthe evolving surface, it is enough to evolve I via @I@t =Hq1 + I2x + I2y ; where the mean curvature H is given as afunction of the image I, see Fig. 2, and Eqn. (22). See [10],[11] for the derivation of H (as D.L. Chopp summarizes theoriginal derivation by J.L. Lagrange from 1762).Substituting the explicit equation for mean curvature,we end up with the equationIt = (1 + I2y )Ixx � 2IxIyIxy + (1 + I2x)Iyy1 + I2x + I2y ; (17)with the initial condition I(x; y; t = 0) = I0(x; y). Us-ing the notation of Beltrami second order operator �g andthe metric g, Equation (17) may be read as It = g�gI.This equation was studied in depth in [16], [32] where theexistence and uniqueness of weak solutions was proved un-der some mild conditions on the behavior of the curvatureon the boundary and the smoothness of the initial condi-tion. The Beltrami 
ow itself (selective mean curvature
ow) It = �gI is given explicitly for the simple 2D casein Eqn. (15). The di�erence between the two 
ows is the
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HNFig. 2. Consider the surface mean curvature 
ow St = H ~N , meancurvature H in the surface normal direction ~N . A geometricallyequivalent
ow is the 
ow @(x; y; I)=@t = H(1+jrIj2)1=2 �(0;0;1)which yields the mean curvature 
ow when projected onto thenormal.factor g. This factor has an important signi�cance in keep-ing the 
ow geometrical, that is, it depends on geometricalobjects and not on coordinates used in describing them. Italso serves as an edge detector by behaving like an edge-preserving 
ow; see Fig. 3.
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HNFig. 3. Consider the mean curvature H in the surface normal di-rection ~N . It can also be expressed as H ~N = �gS. Beltramioperator that operates on I: �gI, is the third component of thisvector: Projection onto the I (~z) direction.B. Related worksIn [17], the authors propose a similar 
ow for grey levelimages: It = H = pg�g: Geometrically, they rotate thecurvature normal vector so that it coincides with the ~zaxis. This equation was studied extensively by mathemati-cians [29], [19], [15] where the existence and uniqueness ofweak solutions was discussed. It is located somewhere be-tween the mean curvature 
ow for the image as a surfaceIt = g�gI = Hpg that was used in [30] to denoise im-ages, and our Beltrami 
ow, which in 2D case simpli�es toIt = �gI = H=pg. All of the above 
ows lead towards aminimal surface, yet our proposed framework better pre-serves the edges, naturally extends to any number of di-mensions, and is reparameterization invariant.Let us show next the direct relation to TV methods [36]and especially for the regularization introduced by Vogeland Oman [45], and e�ciently implemented for changingthe regularization ratio (from large to small) in [8]. We willshow that by modifying the aspect ratio between the inten-sity and the xy coordinates we are able to switch betweennorms. It is possible to obtain the TV norm, travel throughminimal surfaces, and end up with potential surfaces at theother limit.

The regularized TV is de�ned by: minR p�2 + jrIj2,where � is a real number, subject to constraints that areused to monitor the drifting of the evolving image awayfrom the initial one. Contrast scaling of I ! �I, we haverI ! �rI and the TV norm becomes R p1 + jrIj2. Thisis exactly an area minimization towards a minimal sur-face that could be realized through mean curvature 
owwith constraints imposed by the noise variance and scale.In other words, the regularized TV is in fact a 
ow to-wards a minimal surface with respect to the scaled surface(x; y; �I). The ratio between the image size (resolution)and the gray level is taken in an arbitrary way for creatingan arti�cial Euclidean metric, therefore, setting this ratioto � brings us to the minimal surface computation. It isimportant to note that the � ratio should be determinedfor every image processing algorithm. The � ratio may beintroduced via Polyakov action by de�ning the embeddingmetric hij to be as in Eqn. (7). The only way to avoid the� ratio dependence is to construct planar curve evolutionfor the gray level sets, such that embedding is preserved[1], [39], [22]. This was called `contrast invariance' in [2].Yet, these schemes are pure smoothing schemes that do notpreserve edges.We note that it is possible to impose constraints on thefunctional that modify the 
ow like the variance constraintsof the Rudin-Osher-Fatemi total variation (TV) method[36]. We have just shown that large � ratio leads to poten-tial surfaces, while at small ratio we have the TV norm.We have thereby linked together many classical schemesvia a selection of one parameter, that is, the image graylevel scale with respect to its xy coordinates. This scaleis determined arbitrarily anyhow in most of the currentschemes.Note that for color images we have a di�erent situation.First we can have three di�erent regularization ratios onefor each channel. Second, even when we take a commonratio for all channels, in the limit � !1 we get an actionthat does not agree with the color TV [38], [37], [3], [41].This can be seen easily by observing Eqn. 12 where onlythe third term survives in this limit. This is the term thatcontributes the most for coupling between the color chan-nels. The other limit � ! 0 gives a channel by channellinear di�usion.Because of space limitations we refer the reader to ourpapers [42], [25], [23], [43] for comparison with other meth-ods suggested recently for non-linear color image processinglike [7], [38], [37], [3], [41].C. Beltrami Flow in Color Space: ResultsWe now present some results of denoising color imagesusing our model. Spatial derivatives are approximated us-ing central di�erences and an explicit Euler step is em-ployed to reach the solution. We represent the image inthe RGB space; however, other representations and di�er-ent numerical schemes (as in [8]) are possible.In the �rst example, we corrupt a given image with Gaus-sian noise and denoise it using our method. The left imagein Fig. 4 shows an image corrupted with noise and the im-
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Fig. 4. Reconstruction of a color images corrupted with Gaussiannoise (this is a color image).
Fig. 5. Reconstructionof an image that has been corrupted by JPEGcompression algorithm (this is a color image).age on the right depicts its reconstruction. In the secondexample, we consider noise artifacts introduced by lossycompression algorithms such as JPEG. In Fig. 5, the leftimage shows a JPEG compressed image and the right im-age is its \corrected" version using our Beltrami 
ow.IV. Choices that Lead to Known MethodsWe will survey in this section di�erent choices for thedynamic and parametric degrees of freedom in the actionfunctional.A. Linear scale-spaceRecently, Florac et al. [18] invoked reparameterizationinvariance in vision. The basic motivation in their workis to give a formulation of the linear scale-space, which isbased on the linear heat 
ow, that lends itself to treatmentin di�erent coordinate systems. They also noted on thepossibility to use a non-
at metric, and raised the idea ofusing an image induced metric.In order to have reparameterization invariance one hasto write an invariant di�erential operator. The simplestsecond order invariant di�erential operator is the Beltramioperator. The major di�erence then between our approachand the one given in [18] is the class of metrics allowed.Since a change in parameterization can not change the ge-ometry of the problem, and since they are interested in alinear scale-space, they only allow metrics for which theRiemann tensor vanishes, that is metrics of a 
at space.Our point of view is that an image is a surface embed-

ded in IRn (or a more general Riemannianmanifold). Fromthis perspective the natural metric to choose is the inducedmetric of the surface. This metric is never 
at for a signif-icant image.B. Generalized Perona-Malik 
owsWe �x, as in the linear case, the xy coordinates and varythe action with respect to I while the metric is arbitrary forthe time being. Using the Euler-Lagrange equation withoutany pre-factor, we get the following 
owIt = @�pgg��@�I:We assume now that the image is a d dimensional manifoldembedded in IRd+1. The task at hand is to �nd the rightchoice of the metric to reproduce the Perona-Malik 
ow.We select (g��) = ~fId, where Id is the identity matrix.The determinant is g = ( ~f )d, and consequently the 
owbecomes It = nX�=1 @� ~f d2�1@�I:For any dimension di�erent from two we can choose ~f d2�1 =C(I) to get It = div (C(I)rI) ;which is the basic idea of Perona and Malik [33]. If we fur-ther specify ~f d2�1 = C(I) = f(I0)jrIj , where I0 is the originalimage, we arrive atIt = div�f(I0) rIjrIj� ;which is the core (up to the jrIj normalization factor) ofwhat is known in the literature as the geodesic active con-tours [4], [5], [6], [21], [40]. Note that this works only fordimension di�erent from two. Examples of higher dimen-sional manifolds in vision and image processing are 3D im-ages and movies as 3 dimensional manifolds [26], 3D movieas 4D manifold and texture as a 4D manifold embedded in6D space [24].A simple way to get the 2-D Perona-Malik 
ow is to goone dimension higher: Imagine a map which is the em-bedding of a 3-D hyperplane as follows (x; y; z; I(x; y)),note that I depends only on x and y. Now choosea metric which is zero except the diagonal elements(f�1(x; y); f�1(x; y); f2(x; y)), so that the determinant is1 and the diagonal of the inverse metric matrix reads(f; f; f�2). Since both the metric and the intensity donot depend on z then the derivative with respect to zvanishes and we get the 2-D Perona-Malik 
ow: It =@x(fIx) + @y(fIy). In fact, f can depend on z since@z(f(x; y; z)Iz) = 0 if Iz = 0, so that we can identify zwith the parameter in the Perona Malik di�usion function,e.g. f = exp(�z(Ix + Iy)2). Our approach gives the zand f a special form which has a well de�ned geometricalmeaning and it is derived from a minimization of an actionfunctional.
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owIn this subsection, we choose to minimize with respect toall the embedding variables in the action. We also choosethe induced metric as the image metric.Going back to the action in Eqn. (4) and minimizingwith respect to each one of the embedding coordinates Xi,we get the Euler Lagrange equations (see [42] for deriva-tion):1pg@�(pgg��@�Xi) + �ijk@�Xj@�Xkg�� = 0: (18)We take the image metric to be g�� = @�Xi@�Xjhij whichis by de�nition the induced metric. For the case of grey-level image (i.e. X : �! R3), it is given explicitly in Eqn.(3).Substituting the induced metric in Eq. (9) we get thegeneralized mean curvature 
ow, namelyXit = 1pg@�(pgg��@�Xi) + �ijk@�Xj@�Xkg�� �Hi:(19)whereH is the mean curvature vector by de�nition [9], [44].For embedding of a manifold in IRn with Cartesian coor-dinate system the a�ne connection is identically zero andwe are left with the Laplace-Beltrami operator:Xit = 1pg@�(pgg��@�Xi) (20)Plugging the explicit expression of the induced metric(Eqn. (3)) for the case X : �! R3, in the above equation,we obtain Xt = H = H ~N ; (21)where H is the mean curvature vector that can be writtenfor surfaces as the mean curvature H times the unit normalto the surface ~N : 2H = (1 + I2x)Iyy � 2IxIyIxy + (1 + I2y )Ixxg 32~N = 1pg (�Ix;�Iy; 1)T (22)where g = 1 + I2x + I2y .The fact that this choice gives us the mean curvature
ow should not be a surprise, since if we check how thechoice of metric g�� e�ects the action functional, we noticethatS = Z d2�pg = Z d2�qdet(@�Xi@�Xjhij); (23)which is the Euler functional that describes the area of thesurface (also known in high energy physics as the Nambuaction). The geometrical meaning of this 
ow is evident.Each point of the surface moves in the direction of thenormal with velocity proportional to the mean curvature.2Note that some de�nitions of the mean curvature include a factorof 2 that we omit in our de�nition.

If the embedding space is not Euclidean or if we use anon-Cartesian coordinate system we have to use the moregeneral 
ow, Eqn. (19). In this way we generalize themean curvature 
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