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Abstract. Screening and diagnosis of diabetic retinopathy disease is a well known problem
in the biomedical domain. The use of medical imagery from a patient’s eye for detecting the
damage caused to blood vessels is a part of the computer-aided diagnosis that has immensely
progressed over the past few years due to the advent and success of deep learning. The
challenges related to imbalanced datasets, inconsistent annotations, less number of sample
images and inappropriate performance evaluation metrics has caused an adverse impact on the
performance of the deep learning models. In order to tackle the effect caused by class imbalance,
we have done extensive comparative analysis between various state-of-the-art methods on three
benchmark datasets of diabetic retinopathy: - Kaggle DR detection, IDRiD and DDR, for
classification, object detection and segmentation tasks. This research could serve as a concrete
baseline for future research in this field to find appropriate approaches and deep learning
architectures for imbalanced datasets.
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1 Introduction

Diabetes is a well-known chronic disease
which has been known to contribute to an
alarming rise in the number of deaths world-
wide. The adverse effects of diabetes are usu-
ally seen in the retina of eyes, which can lead
to the loss of vision problems to a great ex-
tent at later stages of the disease. Diabetic
Retinopathy (DR) is the condition where eyes
are affected due to the occurrence of diabetes
[1] [2]. This problematic condition occurs due
to the presence of high levels of sugar in the
blood vessels of the retina. Hence, detection
of DR at early stages of the disease plays a
crucial role in saving the life of the patient
from this life-threatening situation. According
to the collaborative research study conducted
by early treatment Diabetic Retinopathy re-
search group (ETDS) and International Clini-
cal Diabetic Retinopathy, there are several DR
levels which have been categorized, such as: -
stage 0 which apparently signifies no retinopa-
thy, whereas stages 1, 2 and 3 indicate mild,
moderate and severe non-proliferative diabetic

retinopathy conditions, respectively [3]. Stage
4 is the dangerous and advanced stage which
leads to the proliferative diabetic retinopathy
condition. The last stage has an overall se-
rious impact on the health of the patient as
it might lead to different problems related to
vision, such as blurriness or blindness. Au-
tomatic computer-aided diagnosis screening of
DR can speeden up the process in a much more
effortless manner as compared to the manual
time consuming screening task. The use of
such automated methods would result in early
and reliable detection of the disease, which can
also be easily applied for mass screening of
populations. With the recent developments in
computing hardware, there has been a tremen-
dous ease in applying deep learning techniques
extensively, which has greatly benefited the
biomedical domain. Thus, the application of
deep learning has resulted in significant im-
provement in the diagnosis of DR in compari-
son to the traditional approaches.
The objective of this work is to conduct ex-
tensive experimental comparative analysis us-
ing computer vision techniques to find out the

https://doi.org/10.1016/j.compbiomed.2022.105989


Diabetic Retinopathy Screening using Deep Learning for Multi-class Imbalanced Datasets

appropriate pre-trained neural network for per-
forming classification, object detection and seg-
mentation on diabetic retinopathy multi-class
imbalanced datasets. An imbalanced dataset
is one in which the population of the majority
classes is much higher than the population of
the minority classes, due to which the classi-
fication results are biased towards the major-
ity classes [4]. It is observed that most real
world datasets in the biomedical domain are
imbalanced in nature, and it was found that
datasets associated with diabetic retinopathy
have a highly skewed class distribution. For
our work, we specifically focus on multi-class
imbalanced datasets where the samples are not
equally distributed in the respective classes.
We have emphasized on the challenging aspects
of creation of deep learning models for multi-
class imbalanced datasets, as the mystifying as-
pect is to identify the classes which will fall into
majority or minority categories based on the
samples in each class distribution [5][6]. Along
with that, we also emphasize on the significance
of the right evaluation metrics that are to be
used for measuring the performance of different
deep learning models for respective computer
vision tasks. The multi-class distribution of
samples is more challenging in comparison to
the binary class problem (having two classes).
However, in order to have an efficient diagnos-
tic method, it is equally important to recog-
nize both the under-represented classes (minor-
ity classes) and majority classes equally. There
is a need to have effective models which can
diagnose diabetes accurately, and also detect
the type of diabetes, based on automated di-
agnosis using classification tasks. Further, it is
also important to locate anomalies in the reti-
nal images using object detection and segmen-
tation techniques, in order to provide accurate
treatment at an early stage to save the life of
the patient suffering from diabetes and avoid
the high risk of vision loss. It is important to
automatically count and detect the presence of
the lesions in the retina such as exudates, mi-
croaneurysms and hemorrhage, for appropriate
diagnosis for diabetic retinopathy. The microa-
neurysms are red dots having 12-100 µm di-
ameters, which is usually due to minute blood
clots. Hard exudates are shiny white or cream
spots which are present in the retina of the
eye due to presence of an exudate fluid. Ex-
cess accumulation of this fluid might be life-
threatening if it appears near to the center of

the macula of the patient’s eye. Hemorrhages
occur due to the release of blood from broken
blood vessels, and can be of different shapes
and sizes. In this paper, we have shown ex-
tensive experiments using various pre-trained
networks to demonstrate their efficacy for var-
ious computer vision tasks on DR images. To
the best of our knowledge we have not found
any paper related to combining the compara-
tive analysis of various pre-trained networks for
classification, object detection and segmenta-
tion of diabetic retinopathy datasets in a sin-
gle paper, which also notably comprises of a
curated set of the most popular problem state-
ments in computer vision. [7] [8]. Classification
is the supervised learning technique to classify
unknown test samples into categories [9], while
object detection is used to locate objects in an
image by drawing the bounding box around the
object region [10]. Whereas, image segmenta-
tion is the process of dividing an image into
multiple connected regions based on some sim-
ilarity criteria [11]. Computer vision problems
can be broadly classified into dense, sparse and
global labeling tasks. Classification is regarded
as a global labeling task where a single image
is assigned a single class label; object detection
is considered a sparse labeling task since only a
few pixels of the image are labeled as there are
bounding boxes which contain regional infor-
mation of sparse locations; Segmentation, on
the other hand, is a dense labeling task as each
and every pixel of the image has an assigned
class label.
Nowadays, in the computer vision domain,
most of the problems has increased the resolu-
tion capacity with the support of Convolutional
Neural Networks (CNNs) that is quite popu-
lary used in various application areas. CNNs
have proved to be revolutionary in the field
of computer vision. CNNs can perform auto-
matic feature extraction as well as classifica-
tion in a unit, which outperforms traditional
approaches [10]. They have been widely used in
the current era for classification, segmentation
and object detection tasks. In case of object
detection, CNN is used by modeling the object
detection as a regression problem, or in other
words, it can be used as a backbone network for
the object detection task. Training of CNNs
can be broadly categorized into two categories:
either training from scratch or reusing pre-
trained networks to train the model on a target
dataset. The pre-trained models are the ones
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which are already trained on a larger dataset
comprising of millions of images [12]. There are
several advantages of using pre-trained mod-
els over CNNs that are trained from scratch,
since they are based upon the transfer learn-
ing concept. Another advantage of using pre-
trained networks is that there are less require-
ments of computational resources, and train-
ing time would also be significantly lesser [13].
So considering the various advantages of the
pre-trained models, in this paper, we have con-
ducted a comprehensive performance analysis
of various state-of-the art deep learning pre-
trained models on three popular biomedical di-
abetes datasets of varied sizes: Kaggle DR de-
tection or Kaggle DRD [14], IDRiD [15] and
DDR [16] for image classification, object de-
tection and segmentation tasks. It is notable
to mention that the availability of pre-trained
networks for segmentation and object detection
tasks is comparatively lesser in comparison to
those for classification tasks. The major con-
tributions of our work are highlighted as fol-
lows: (1) We have done extensive comparative
experimental analysis between various state-of-
the art pre-trained networks using three pop-
ular well known imbalanced diabetes datasets
for image classification, using small, medium
and large multi-class imbalanced datasets. (2)
Comparison is also conducted between vari-
ous state-of-the art methods for object detec-
tion and segmentation tasks using two avail-
able multi-class imbalanced datasets. (3) Em-
phasis is laid upon the relevance of using the
transfer learning approaches instead of train-
ing the CNN from scratch, as training the net-
work from scratch will involve massive compu-
tational power and resources for small, medium
and larger diabetes datasets. The rest of the
paper is organized as follows: literature review
is described in section 2; in sections 3, 4 and 5,
we have discussed the methodology, datasets
and performance evaluations metrics, respec-
tively, which is followed by the implementation
details, results and discussion in sections 6 and
7. Finally, conclusion is presented in section 8.

2 Literature Review

We have conducted a literature survey com-
piled set of works regarding the usage of deep
learning in diabetic retinopathy detection.
There are readily available datasets related to
diabetes, to which researchers have applied

deep learning techniques for automatic detec-
tion of diabetic retinopathy. With the recent
advancement in computational resources, deep
learning has been extensively used in various
applications. Healthcare is one of the domains
where deep learning is prevalent nowadays.
Raghu et al. (2019) had emphasized on
the importance of transfer learning using
CNNs for medical imaging datasets [17]. The
experiments were conducted on RETINA
and CHEXPERT datasets, and the Receiver
Operating Characteristics (ROC) - Area
Under Curve (AUC) performance metric was
used for the evaluation. Various researchers
have worked on different pre-trained networks
for diabetic retinopathy datasets. Hagos
and Shri Kant (2019) had highlighted the
application of Inception-v3 pre-trained model
on a smaller subset of diabetic retinopathy
detection dataset by considering accuracy as
the evaluation measure, and they achieved
90.9% accuracy [18]. For an imbalanced
dataset, there are many other reliable evalua-
tion metrics other than accuracy which should
be considered, as well, while measuring the
performance of the model, which are missing
in many works. Thota and Reddy (2020)
had proposed a variant of VGG16 pre-trained
model for performing the classification task on
EyePACS dataset [19] whose performance was
evaluated using metrics such as sensitivity,
specificity and AUC along with accuracy. Lam
et al. (2018) had used GoogleNet and AlexNet
pre-trained models on the Messidor-1 diabetic
retinopathy dataset [20]. They took con-
catenated features from different pre-trained
networks and passed them as input to machine
learning classifiers. Kassani et al. (2019) had
shown improved performance by considering
Xception as the pre-trained network for feature
extraction, and further processed the extracted
features using a multi-layer perceptron neural
network [21]. Wan et al. (2018) had obtained
high performance on the publicly available
Kaggle DRD dataset by using VggNet that
outperformed other pre-trained networks such
as AlexNet, GoogleNet and ResNet, and they
had also emphasized upon the role of fine
tuning and transfer learning [22]. Saini and
Susan proposed deep learning based DCGAN
approach for tackling class imbalance through
synthetic data generation for Breast Cancer
detection [23]. A modified VGG16 network ar-
chitecture was proposed for the purpose, that
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outperformed various other networks including
CNNs trained from scratch. Additionally,
the authors proposed VGGIN-Net network
which was based upon transfer learning and
essentially constructed using a combination
of VGG16 and Inception networks [24]. It
was found that fine-tuning pre-trained models
in the biomedical domain yield much better
results than training models from scratch.
There are numerous other works in literature
related to object detection and segmentation
using various diabetes datasets. Zhang et
al. (2020) had proposed a convolutional
neural network formulated by combining
few convolutional and deconvolutional layers
along with the Fully Connected (FC) and
softmax layers to distinguish the presence of
microaneurysms in retinal fundus images [25].
Oliveira et al. (2021) had proposed a variant
of Faster R-CNN, with data augmentation, for
Diabetic foot Ulcer Detection [26]. Porwal et
al. (2018) reported results compiled by various
researchers who had participated in the grand
diabetic retinopathy segmentation and grading
challenge on Indian retinopathy Image dataset
(IDRiD) [27]. From the analysis, it was inter-
preted that the top performance approaches
involved some form of data augmentation
or ensemble models. Another major finding
was that solving the class imbalance problem
would lead to a tremendous improvement in
the overall performance of the model. So
dealing with class imbalance is an important
aspect, along with the overfitting problem, in
order to generally enhance the performance of
the network. Data Augmentation is a regu-
larization method [28] which helps to resolve
the overfitting problem generally occurring in
deep learning models. It is equally important
to select the correct set of data augmentation
operations to overall improve the performance
of the model. However, selecting the correct
set of data augmentation operations is a
tedious and manual process and also it is
difficult to design the correct pipeline of
operations. So certain automated approaches
are proposed in literature to select the correct
set of data augmentation operations such as
AutoAugment [29] and RandAugment [30].
AutoAugment is a computationally expensive
process and it is formulated by the Proximal
Policy Optimization (PPO) algorithm with a
large search space of different augmentation
operations and their magnitudes. However,

the RandAugment approach proposed by the
same authors removed the PPO algorithm
resulting in a much smaller search space. A
simple grid search based tuning approach
reduces the computational complexity as well
as the search space, deeming it to be one of
the most effective automated approaches for
data augmentation of CNNs.

Hu et al. proposed a model based on neutro-
scopic enhancement using neural networks to
perform segmentation and extract the region
of colorectal polyps found in tissue scans while
comparing their approach with various other
state-of-the-art models for the given biomed-
ical area and presented the results in their
work [31]. Wu et al. presented a cloud-based
electronic medical record system highlighting
the importance of cloud technology, related
systems and specialized hardware that apart
from dealing with challenges in data handling
also takes care of the security aspects includ-
ing confidentiality of patient information [32].
Their work also describes the different scalabil-
ity challenges that come with large volumes of
biomedical datasets. Advancements in digital
technology especially ones involving edge de-
vices and specialized hardware for small scale
systems have increased the resolution capac-
ity of different multimedia applications. Yang
et al. had presented a novel string match-
ing algorithm with extremely low complexity
suitable for lossless compression for image and
video content streaming [33]. Similarly, ad-
vent of hardware accelerators in this field have
greatly benefited the biomedical domain for
deep learning based approaches. Dai et al. pro-
posed a deep LSTM based model trained using
EMG signals which helps to rehabilitate mus-
culoskeletal framework of the body which is an-
other area of research in the biomedical com-
munity [34]. Tang et al. proposed a novel seg-
mentation algorithm based on retinal fundus
images using a back propagation neural net-
work with the help of morphological process-
ing, histogram equalization and gaussian fil-
tering [35]. Additionally, He et al. explored
the application of artificial neural networks for
detecting lesion regions in lung cancer images
and comparing different approaches for diagno-
sis of cancer [36]. Hence, deep learning mod-
els can be generalized to be applied to var-
ious areas from the biomedical domain, and
contemporarily there have been multiple ad-
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vancements in the field. Some of the major
areas where biomedical applications have ben-
efited from deep learning based architectures
include musculoskeletal rehabilitation, rectal,
breast, cervical, retinal and lung cancer, etc.
For our work, we focus exclusively on deep
learning based architectures for classification,
segmentation and object detection on diabetic
retinopathy datasets.

3 Methodology

In this section, we explain our methodol-
ogy for the extensive comparative analysis of
various state-of-the-art pre-trained deep learn-
ing networks for image classification, segmen-
tation and object detection on challenging di-
abetic retinopathy datasets of varied sample
sizes. We have projected an automated diag-
nosis system for diabetic retinopathy that per-
forms classification, object detection and seg-
mentation on diabetic retinopathy fundus im-
ages, as depicted in Figure 1. The different
modules of our framework are explained next.

3.1 Classification

Classification is a supervised learning ap-
proach where the class label is known in ad-
vance. The model is trained using the train-
ing dataset having multiple images so that
if any unknown sample images from the test
dataset are passed to the trained model, it
can predict the category or class to which
the test sample belongs. The predicted out-
put is matched with the target output in or-
der to check how well the model has learned.
With the recent advancements in high per-
formance computing devices, deep learning is
widely used in image classification tasks nowa-
days [37]. Here we have performed image clas-
sification on three varied size diabetic retinopa-
thy image datasets to detect the degree of
severity of diabetic retinopathy for the retina
image of a given patient. Various pre-trained
deep learning CNN architectures have been ap-
plied on three diabetic retinopathy datasets:
- Kaggle DRD, IDRiD and DDR, in order
to perform classification: VGG16, VGG19,
ResNet50, ResNet101, ResNet152, Inception
v3, ResNet50 v2, ResNet101 v2, ResNet152
v2, Xception, InceptionResNet v2, MobileNet
v2, DenseNet169, DenseNet201 and Efficient-
NetB0.

3.2 Object Detection

Object detection is used to determine the
presence of an object in an image by drawing
the bounding box around the object [38] [39].
Presence of multiple objects in an image deter-
mines whether it comes under single or multi-
class object detection category. Object detec-
tion and localization is the procedure of detect-
ing the presence of objects in the image with
the coordinates of the location where the object
is located in the image. Pathak et al. (2018)
had emphasized the role of the wide usage of
CNN-based deep learning in object detection
tasks in various fields such as robotics, surveil-
lance and transportation, autonomous driving,
medical domain etc. [40] [41] [42] [43]. In
our current work, we have applied EfficientDet-
D0, ResNet50 based Faster RCNN, SSD us-
ing MobileNet v1 and MobileNet v2, as well
as ResNet50 based RetinaNet pre-trained net-
works on two popular datasets: IDRiD Dataset
for Fovea and Optical Disc Detection along
with DDR Dataset for lesion detection.

3.3 Segmentation

In image segmentation, the input image is
divided into distinguished regions or segments.
Each region has pixels having similar character-
istics. In other words, segmentation is the pro-
cess used to find boundaries to locate objects.
Labels are assigned to each pixel in an image
such that the pixels having the same character-
istics are assigned the same label. In the seg-
mentation process, the foreground is separated
from the background. To perform segmenta-
tion we can use multiple pre-trained networks.
In case of CNN architectures, we have encoder
and decoder inside the model, both combined
together. Image segmentation reduces the com-
plexity and further makes the analysis of the
image much simpler. We have applied DeepLab
v2, DeepLab v3, PSPNet with cross-entropy
loss and focal loss, respectively, on two pop-
ular datasets: DDR dataset for Lesion Detec-
tion and IDRiD dataset for both lesion as well
as organ (fovea and optic disc) segmentation.

4 Datasets

While conducting the experiments, we have
considered three well-known multi-class imbal-
anced diabetic datasets of varying sample sizes
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Figure 1: Automated system for diabetic retinopathy screening using classification, object de-
tection and segmentation of fundus images.

for classification, segmentation and object de-
tection, that can be categorized based on their
sizes into small, medium and large dataset cat-
egories as described below.

4.1 Kaggle DRD Dataset

It is a very large publicly available dataset
that was originally published in a Kaggle com-
petition. It consists of high-resolution images
captured in varied imaging conditions, belong-
ing to four classes: class 0 (no DR), class 1
(mild DR), class 2 (moderate DR), class 3 (se-
vere DR) and class 4 (proliferative DR). Figure
2 depicts the illustration of a few random sam-
ples taken from different diabetic retinopathy
grades from the Kaggle DRD dataset. In total
53,576 and 35,126 images are present in the test
and train datasets, respectively [14]. The Kag-
gle DRD dataset is imbalanced in nature, and
the test dataset has reasonably high number of
image samples existing in each class. Our ex-

periments use the same train-test split as that
of the original competition.: Class 0 has 31,403
samples, class 1 consists of 3042 samples, class
2 has 6282, and further classes 3 and 4 have 977
and 966 samples, respectively. It was observed
that the minority class comprises 2.016% of the
entire dataset. For pre-processing, the images
were resized from their very high inital reso-
lution so that the radius of an eyeball is 300
pixels, then they were cropped to 90% of the
radius, and encoded into 72 JPEG quality. [44]

4.2 DDR Dataset

We have also used the DDR dataset pro-
posed by Li et al [16] for the experimenta-
tion. The dataset consists of three categories
of annotations: - bounding box, pixel and DR
grading level annotations. There are a very
large number of sample images (13,673 fundus
images) presented in the dataset, which were
collected from 9,598 patients consisting of 6
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Table 1: Distribution of classes across different tasks (Segmentation, Object Detection and
Classification) for the three diabetic retinopathy datasets.

Dataset Segmentation Object Detection Classification

Kaggle DRD - -

Diabetic Retinopathy Grading
• Class 0 - No DR
• Class 1 - Mild DR
• Class 2 - Moderate DR
• Class 3 - Severe DR
• Class 4 - Proliferative DR

DDR

Lesion Segmentation
• Hemorrhages (HA)
• Microaneurysms (MA)
• Soft Exudates (SE)
• Hard Exudates (EX)

Detection of Lesion
• Hemorrhages (HA)
• Microaneurysms (MA)
• Soft Exudates (SE)
• Hard Exudates (EX)

Diabetic Retinopathy Grading
• Class 0 - No DR
• Class 1 - Mild DR
• Class 2 - Moderate DR
• Class 3 - Severe DR
• Class 4 - Proliferative DR
• Class 5 - Ungradable

IDRiD

Lesion Segmentation
• Hemorrhages (HA)
• Microaneurysms (MA)
• Soft Exudates (SE)
• Hard Exudates (EX)

Organ Segmentation
• Optical Disc (OD)

Detection of Organ Centroids
• Optical Disc
• Fovea Centralis

Diabetic Retinopathy Grading
• Class 0 - No DR
• Class 1 - Mild DR
• Class 2 - Moderate DR
• Class 3 - Severe DR
• Class 4 - Proliferative DR

classes. Out of 13,673 fundus images, 6835 and
2733 images, respectively, are kept for train-
ing and validation purposes, and the remain-
ing 4105 images are taken out for testing re-
spectively. The images were originally collecte
from a closer clinical perspective from 147 hos-
pitals, covering 23 provinces in China. In our
experiments we use the same split as that of
the original authors. Figure 3 depicts a few
random samples taken from different diabetic
retinopathy grades from the DDR dataset. We
found that in this dataset, the most under-
represented class is around 1.726% of the to-
tal samples. In the case of segmentation, there
were a few samples (very minimal, around 5)
with corrupted masks in the dataset that had
to be removed before training.

4.3 Indian Diabetic Retinopathy im-
age (IDRiD) Dataset

IDRiD is the first available diabetic retinopa-
thy images database based on the Indian popu-
lation and it consists of three parts: segmenta-
tion, disease grading (classification) and local-
ization (object detection). The dataset consists
of 4288×2848 size jpg file images [17]. During
collection of the images, pupils of all subjects
were dilated with one drop of tropicamide at
0.5% concentration such that they were cap-
tured with 50 degrees field of view. In both the

cases of disease grading and localization, a to-
tal of 516 images are present in the dataset, out
of which 413 images are considered for train-
ing and the remaining 103 images are kept for
testing. Figure 4 illustrates a few random sam-
ples taken from different diabetic retinopathy
grades from the IDRiD dataset. The ground
truth labels available for localization are for
Optic Disc Center location and Fovea Center
location. The number of samples in the mi-
nority class is around 4.986% of the complete
dataset, rendering it to be a case of severe class
imbalance.In case of localization task for this
dataset, the centroids of each of the objects to
be localized i.e either lesion or fovea or optic
disc, and we used the centroid information to
generate bounding boxes of fixed sizes using a
preset radius.
Table 1 reflects the overall distribution of sam-
ples in various classes for all the datasets,
shown for different tasks such as segmenta-
tion, object detection and classification. Kag-
gle DRD dataset has classification task only,
but IDRiD and DDR dataset have segmenta-
tion and object detection tasks available be-
sides classification. Table 1 gives a clear de-
piction of the multiple classes associated with
different computer vision tasks. Further, Fig-
ure 5 illustrates the histogram of the number
of image samples present in each class of the
three diabetes datasets, while Figure 6 depicts
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the histogram of the number of pixels belonging
to each segmentation class for the respective
diabetes datasets. As concluded from the un-
even class population profiles in the two figures,
there is a high degree of class imbalance associ-
ated with all three datasets for both the classifi-
cation and segmentation task. In our work, we
analyze the performance of the state-of-the-art
deep neural networks for the DR screening task
in the current scenario of high class imbalance.

5 Performance Evaluation Measures

In this paper, we have done comparative
analysis between different state-of-the-art pre-
trained networks by using various performance
evaluation metrics. For the classification
task, various performance evaluation param-
eters are considered such as Cohen’s Kappa
(unweighted, linear, quadratic weighted), Ac-
curacy, ROC-AUC (weighted and macro aver-
age), F1-score, Index Balanced Accuracy (IBA)
and Geometric Mean (GMean) [45] [23] [46]
[47] [48]. In the case of object detection, we
have considered the following evaluation pa-
rameters for measuring the performance of the
object detection models: Mean Average Preci-
sion (mAP), mAP @ 0.5IoU, mAP @ 0.75IoU,
mAP (small, medium, large) and Average Re-
call (AR): AR @ 1,10,100 [49] [50]. Further,
Intersection over Union (IoU) and Dice Score
evaluation metrics are used for segmentation
[51] [52].

6 Implementation Details

For conducting all our experiments, the Ten-
sorFlow v2.3 framework was used [53] with
Python 3.8. For the classification and segmen-
tation tasks, the CNNs were trained with the
help of Keras models, while for object detec-
tion the TensorFlow Object Detection API was
used. The experiments were accelerated using
Google Cloud TPU hardware, access to which
was available through the TensorFlow Research
Cloud (TRC) program. In all the experiments,
TPU v3-8 cores were used for training the deep
learning models. For our experimental setup,
the batch size of 512 is considered for all the
datasets. The total training steps taken was
12,000 (400 epochs x 30 steps per epoch) for
DDR [16] and for Kaggle DRD Dataset [14],
while for IDRiD dataset it was set to 1000 (200
epochs x 5 steps per epoch) [15].

Various data augmentation operations were ap-
plied on all the images present in the train
datasets while conducting the classification
task, such as horizontal shifts, vertical shifts,
rotation, flip etc., to reduce the over-fitting
problem [46]. In all the classification datasets,
the original class distributions of samples were
imbalanced in nature. The target distribu-
tion was achieved such that each class has an
equal number of samples represented during
the training of the pipeline in all the batches.
This was achieved using rejection resampling
technique which is also popularly known as
random undersampling. Hence undersampling
technique was applied on-the-fly during the
training process at the time of selection of each
mini-batch, and it was also ensured that the
samples are shuffled and randomly picked from
the original distribution. The training process
is made to last for sufficiently large numbers of
epochs such that all training samples are cov-
ered irrespective of the fact that sample rejec-
tion has been applied at batch level. It was
observed that without the application of this
rejection resampling strategy, each classifier
would face the adverse effects of class imbal-
ance. However, data augmentation techniques
were applied in all the experiments correspond-
ing to the classification and object detection
task. Data augmentation is a regularization
technique that helps to enhance the overall per-
formance of deep learning models [54]. Some
data augmentation learning policies had also
automated the data augmentation process. We
have used the RandAugment technique while
training the network [30]. There are several
advantages of using RandAugment over other
augmentation techniques as it will lead to the
reduction of the search space or removal of
separate search space because more computa-
tional expensive resources were required while
training which will help to achieve optimal per-
formance. The RandAugment approach works
well for numerous datasets as well as tasks such
as object detection and classification. Due to
all these unique properties it results in better
performance in comparison to other augmen-
tation methods. The various data augmenta-
tion operations that we have applied are ran-
dom grid shuffle, rescale, horizontal and verti-
cal flips in horizontal and vertical flips, shear
in x and y direction, translate in x and y di-
rection, rotate, posterize, contrast, sharpness,
and cutout. Cutout [55] is like dropout at
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Figure 2: Illustration depicting a few random samples taken from different diabetic retinopathy
grades for kaggle DRD dataset.

data level, which creates random black square
patches in the images; it was found to be an
essential augmentation operation.
After many iterations through our experimen-
tal setup, we were able to use the follow-
ing hyperparameters for all of our classifica-
tion experiments. The training process was
intended at fine-tuning each of the classifica-
tion networks using pre-trained weights in or-
der to adapt the models for diabetic retinopa-
thy tasks. A standard categorical cross-entropy
loss and adaptive momentum optimization
(Adam) variant of SGD was used while train-
ing. The choice of learning rate was set to
lower values in order to ensure that our mod-
els continually learn from retinal images with-
out completely exterminating the knowledge on
the large-scale ImageNet. Similar to fine tun-
ing of CNNs in other works, we used an expo-
nentially decaying learning rate with warmup
in the range 1e-5 and 2e-4. Under this setting,
the learning rate was initially ramped up lin-
early to 2e-4 for the first 160 epochs, sustained
at that rate for another 80 epochs, and finally
decayed exponentially for the remaining epochs
using a decay of 0.8. Evaluation on validation

was performed each 10 epochs to ensure models
can train well for longer. Each of the models
were trained for a net budget of 400 sweeps
(epochs) and the largely set value of number of
warmup epochs is solely due to the random un-
dersampling technique which significantly re-
duces samples from each epoch in order to ob-
tain a balanced class distribution at train time.
The warmup and sustain phase of the learning
rate schedule is slightly longer to ensure that
the complete dataset can be iterated across
during the training phase by the models before
the value of learning rate drops significantly.
The batch size for the experiments were set
to 512 and images were rescaled to 224 x 224
which were found to be ideal for training on
TPU v3-8 accelerators. TPU v3-8 hardware
are ASIC chips designed by Google and oper-
ated on Google Cloud Platform and are specif-
ically developed for fast machine learning and
deep learning workloads. It can consume up
to 128GB of on-chip high bandwidth memory
(HBM) for upto 8 TPU cores which was help-
ful for accelerating our experiments, and the
higher batch sizes significantly helped consume
the large amount of available on-chip memory
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Figure 3: Illustration depicting a few random samples taken from different diabetic retinopathy
grades for DDR dataset.

for which learning rate was scaled accordingly
[56]. For data augmentation along with the re-
jection resampling technique (random under-
sampling approach), as discussed, we slightly
modified the RandAugment technique [57] to
incorporate random flips, random grid shuffle
and rescale transforms. A few set of randomly
augmented samples generated using this tech-
nique are shown in Figure 7. After a series of
manual tuning trials, RandAugment was ap-
plied with m=8 and n=2 and it was found
that adding the extra image operations would
greatly improve the classification performance
for the diabetes datasets.
In case of lesion segmentation on the DDR and
IDRiD datasets, we fine-tuned the segmenta-
tion models that are pre-trained on the PAS-
CAL VOC 2012 dataset. The training process
was carried out on TPUs using focal loss with
gamma set to 2.0 and batch size of 64. The ex-
ponentially decayed learning rate schedule was
similar to the classification experiments and
in the range 1e-5 and 5e-4 with 80 warmup
epochs. The focal loss models were able to
significantly perform better than categorical
cross-entropy loss due to the very high num-

ber of background pixels which causes imbal-
ance. Random flip based data augmentation
was used during training on images of size 384
x 384, validation performed every 25 epochs
and each model was trained for a total of 250
epochs. Similar to segmentation and classifica-
tion, we used Adam optimizer for training the
object detection models as well. Images of size
512 x 512 were used to train the object detec-
tors for around 10000 steps for each dataset and
with each step having a batch size of 32. The
training process also involved data augmenta-
tion using random flips, random square crop,
random padding with different combinations of
random hue, saturation, contrast and bright-
ness. Due to the stochastic nature of neural
networks in all of the deep learning models, we
trained all classification, segmentation as well
as object detection models for a total of five
runs with different random seed set each time,
and the results are represented with the help of
mean and standard deviation for each evalua-
tion metric.
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Figure 4: Illustration depicting a few random samples taken from different diabetic retinopathy
grades for IDRiD dataset.
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Table 2: Illustration of classification results of various pre-trained network on Kaggle Dataset
using Cohen’s Kappa and ROC AUC evaluation metrics.

Models
Cohen’s Kappa

Accuracy
ROC AUC

Unweighted Linearly Weighted Quadratic Weighted Weighted-average Macro-average

VGG16 [58] 0.4305 ± 0.0360 0.6516 ± 0.0175 0.5547 ± 0.0281 0.7706 ± 0.0394 0.8087 ± 0.0030 0.8251 ± 0.0038
VGG19 [58] 0.4514 ± 0.0053 0.6638 ± 0.0026 0.5718 ± 0.0034 0.7874 ± 0.0029 0.8078 ± 0.0038 0.8284 ± 0.0019

InceptionV3 [59] 0.4134 ± 0.0042 0.6357 ± 0.0050 0.5374 ± 0.0048 0.7814 ± 0.0024 0.8046 ± 0.0020 0.8261 ± 0.0010
ResNet50 [60] 0.4336 ± 0.0046 0.6514 ± 0.0048 0.5561 ± 0.0045 0.7906 ± 0.0015 0.8101 ± 0.0021 0.8302 ± 0.0016

ResNet50V2 [61] 0.4127 ± 0.0028 0.6341 ± 0.0034 0.5361 ± 0.0034 0.7782 ± 0.0029 0.8004 ± 0.0020 0.8224 ± 0.0021
ResNet152 [60] 0.4316 ± 0.0035 0.6465 ± 0.0014 0.5526 ± 0.0020 0.7914 ± 0.0012 0.8103 ± 0.0011 0.8305 ± 0.0005
ResNet101 [60] 0.4317 ± 0.0050 0.6488 ± 0.0061 0.5539 ± 0.0057 0.7913 ± 0.0022 0.8097 ± 0.0018 0.8306 ± 0.0017

ResNet152V2 [61] 0.4266 ± 0.0051 0.6456 ± 0.0042 0.5493 ± 0.0043 0.7846 ± 0.0017 0.8069 ± 0.0018 0.8252 ± 0.0012
ResNet101V2 [61] 0.4229 ± 0.0028 0.6435 ± 0.0011 0.5464 ± 0.0017 0.7827 ± 0.0031 0.8026 ± 0.0015 0.8236 ± 0.0007

Xception [62] 0.4371 ± 0.0019 0.6587 ± 0.0033 0.5618 ± 0.0027 0.7906 ± 0.0014 0.8139 ± 0.0010 0.8310 ± 0.0005
InceptionResNetV2 [63] 0.4324 ± 0.0048 0.6513 ± 0.0049 0.5558 ± 0.0044 0.7962 ± 0.0010 0.8140 ± 0.0015 0.8320 ± 0.0009

MobileNetV2 [64] 0.4013 ± 0.0050 0.6345 ± 0.0049 0.5309 ± 0.0048 0.7608 ± 0.0058 0.8010 ± 0.0011 0.8227 ± 0.0013
DenseNet121 [65] 0.4465 ± 0.0023 0.6678 ± 0.0030 0.5716 ± 0.0027 0.7911 ± 0.0029 0.8189 ± 0.0018 0.8340 ± 0.0021
DenseNet169 [65] 0.4462 ± 0.0045 0.6655 ± 0.0044 0.5705 ± 0.0044 0.7963 ± 0.0020 0.8198 ± 0.0020 0.8334 ± 0.0017
DenseNet201 [65] 0.4408 ± 0.0071 0.6567 ± 0.0062 0.5628 ± 0.0065 0.7986 ± 0.0012 0.8199 ± 0.0016 0.8344 ± 0.0013

EfficientNetB0 [66] 0.4288 ± 0.0035 0.6579 ± 0.0046 0.5565 ± 0.0042 0.7713 ± 0.0028 0.8134 ± 0.0018 0.8317 ± 0.0013

Table 3: Illustration of classification results of various pre-trained network on DDR Dataset
using Cohen’s Kappa and ROC AUC evaluation metrics.

Models
Cohen’s Kappa

Accuracy
ROC AUC

Unweighted Linearly Weighted Quadratic Weighted Weighted-average Macro-average

VGG16 [58] 0.6228 ± 0.0099 0.8451 ± 0.0059 0.7499 ± 0.0078 0.7589 ± 0.0062 0.9165 ± 0.0029 0.9013 ± 0.0025
VGG19 [58] 0.6330 ± 0.0067 0.8490 ± 0.0031 0.7574 ± 0.0042 0.7646 ± 0.0041 0.9135 ± 0.0036 0.9048 ± 0.0029

InceptionV3 [59] 0.5662 ± 0.0050 0.8205 ± 0.0039 0.7092 ± 0.0045 0.7249 ± 0.0026 0.8936 ± 0.0037 0.8840 ± 0.0034
ResNet50 [60] 0.5950 ± 0.0048 0.8314 ± 0.0056 0.7287 ± 0.0052 0.7427 ± 0.0030 0.9089 ± 0.0020 0.8956 ± 0.0049

ResNet50V2 [61] 0.5826 ± 0.0133 0.8261 ± 0.0049 0.7198 ± 0.0091 0.7350 ± 0.0077 0.8989 ± 0.0014 0.8894 ± 0.0036
ResNet152 [60] 0.5934 ± 0.0140 0.8320 ± 0.0088 0.7282 ± 0.0118 0.7422 ± 0.0081 0.9093 ± 0.0041 0.8939 ± 0.0019
ResNet101 [60] 0.5909 ± 0.0081 0.8285 ± 0.0055 0.7251 ± 0.0066 0.7408 ± 0.0049 0.9119 ± 0.0026 0.8961 ± 0.0037

ResNet152V2 [61] 0.5943 ± 0.0056 0.8325 ± 0.0023 0.7292 ± 0.0037 0.7424 ± 0.0037 0.9112 ± 0.0032 0.8977 ± 0.0017
ResNet101V2 [61] 0.5909 ± 0.0091 0.8307 ± 0.0056 0.7261 ± 0.0072 0.7398 ± 0.0055 0.9086 ± 0.0017 0.8965 ± 0.0013

Xception [62] 0.5856 ± 0.0199 0.8273 ± 0.0082 0.7221 ± 0.0137 0.7365 ± 0.0120 0.8981 ± 0.0033 0.8826 ± 0.0013
InceptionResNetV2 [63] 0.5903 ± 0.0137 0.8296 ± 0.0067 0.7256 ± 0.0099 0.7403 ± 0.0082 0.9012 ± 0.0021 0.8817 ± 0.0049

MobileNetV2 [64] 0.5064 ± 0.0290 0.7965 ± 0.0151 0.6689 ± 0.0215 0.6898 ± 0.0170 0.8880 ± 0.0041 0.8694 ± 0.0072
DenseNet121 [65] 0.6102 ± 0.0061 0.8393 ± 0.0023 0.7402 ± 0.0033 0.7514 ± 0.0038 0.9139 ± 0.0027 0.8985 ± 0.0065
DenseNet169 [65] 0.6043 ± 0.0068 0.8376 ± 0.0043 0.7367 ± 0.0051 0.7485 ± 0.0039 0.9119 ± 0.0029 0.8969 ± 0.0029
DenseNet201 [65] 0.6172 ± 0.0045 0.8433 ± 0.0032 0.7458 ± 0.0031 0.7568 ± 0.0026 0.9129 ± 0.0021 0.8907 ± 0.0019

EfficientNetB0 [66] 0.5910 ± 0.0059 0.8364 ± 0.0031 0.7306 ± 0.0042 0.7374 ± 0.0040 0.9091 ± 0.0042 0.8962 ± 0.0058

Table 4: Illustration of classification results of various pre-trained network on IDRiD Dataset
using Cohen’s Kappa and ROC AUC evaluation metrics.

Models
Cohen’s Kappa

Accuracy
ROC AUC

Unweighted Linearly Weighted Quadratic Weighted Weighted-average Macro-average

VGG16 [58] 0.3938 ± 0.0500 0.5662 ± 0.0600 0.4914 ± 0.0538 0.5728 ± 0.0357 0.8114 ± 0.0048 0.7939 ± 0.0074
VGG19 [58] 0.3793 ± 0.0303 0.5920 ± 0.0378 0.4979 ± 0.0243 0.5592 ± 0.0244 0.8136 ± 0.0032 0.7987 ± 0.0129

InceptionV3 [59] 0.4327 ± 0.0371 0.6007 ± 0.0488 0.5319 ± 0.0341 0.5961 ± 0.0280 0.7841 ± 0.0110 0.7245 ± 0.0187
ResNet50 [60] 0.3965 ± 0.0421 0.6079 ± 0.0485 0.5227 ± 0.0471 0.5709 ± 0.0278 0.8013 ± 0.0135 0.7561 ± 0.0226

ResNet50V2 [61] 0.3921 ± 0.0481 0.5616 ± 0.0251 0.4888 ± 0.0298 0.5689 ± 0.0340 0.7838 ± 0.0132 0.7335 ± 0.0332
ResNet152 [60] 0.4208 ± 0.0563 0.5986 ± 0.0306 0.5212 ± 0.0432 0.5883 ± 0.0404 0.7968 ± 0.0140 0.7539 ± 0.0141
ResNet101 [60] 0.4447 ± 0.0472 0.6071 ± 0.0274 0.5389 ± 0.0366 0.6058 ± 0.0334 0.8037 ± 0.0123 0.7577 ± 0.0217

ResNet152V2 [61] 0.3421 ± 0.0520 0.5373 ± 0.0264 0.4530 ± 0.0383 0.5340 ± 0.0370 0.7720 ± 0.0193 0.7134 ± 0.0288
ResNet101V2 [61] 0.4066 ± 0.0341 0.5916 ± 0.0214 0.5120 ± 0.0131 0.5786 ± 0.0244 0.7735 ± 0.0153 0.7125 ± 0.0271

Xception [62] 0.4182 ± 0.0276 0.5939 ± 0.0189 0.5116 ± 0.0222 0.5903 ± 0.0199 0.8006 ± 0.0091 0.7474 ± 0.0138
InceptionResNetV2 [63] 0.3834 ± 0.0429 0.5632 ± 0.0341 0.4867 ± 0.0390 0.5650 ± 0.0310 0.7881 ± 0.0029 0.7560 ± 0.0084

MobileNetV2 [64] 0.3768 ± 0.0347 0.5608 ± 0.0268 0.4838 ± 0.0275 0.5592 ± 0.0354 0.7759 ± 0.0096 0.7396 ± 0.0082
DenseNet121 [65] 0.3882 ± 0.0243 0.6049 ± 0.0410 0.5092 ± 0.0318 0.5612 ± 0.0160 0.7878 ± 0.0099 0.7352 ± 0.0189
DenseNet169 [65] 0.4244 ± 0.0241 0.6206 ± 0.0115 0.5352 ± 0.0127 0.5922 ± 0.0182 0.8021 ± 0.0060 0.7489 ± 0.0144
DenseNet201 [65] 0.4089 ± 0.0285 0.5844 ± 0.0210 0.5102 ± 0.0244 0.5806 ± 0.0210 0.8034 ± 0.0065 0.7555 ± 0.0081

EfficientNetB0 [66] 0.4089 ± 0.0057 0.6376 ± 0.0299 0.5375 ± 0.0192 0.5767 ± 0.0053 0.8059 ± 0.0096 0.7633 ± 0.0178
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Table 5: Illustration of classification results of various pre-trained network on Kaggle Dataset
using F1 Score evaluation metrics.

Models
F1 Score

Class 0 Class 1 Class 2 Class 3 Class 4 Weighted Average

VGG16 [58]
0.8781 ±
0.0275

0.0935 ±
0.0384

0.5527 ±
0.0286

0.3429 ±
0.0371

0.5364 ±
0.0086

0.7543 ±
0.0208

VGG19 [58]
0.8905 ±
0.0019

0.0804 ±
0.0129

0.5701 ±
0.0033

0.3171 ±
0.0196

0.5337 ±
0.0194

0.7644 ±
0.0014

InceptionV3 [59]
0.8871 ±
0.0016

0.0659 ±
0.0054

0.5171 ±
0.0067

0.3257 ±
0.0133

0.5066 ±
0.0088

0.7526 ±
0.0009

ResNet50 [60]
0.8928 ±
0.0010

0.0606 ±
0.0046

0.5366 ±
0.0067

0.3446 ±
0.0164

0.5232 ±
0.0148

0.7601 ±
0.0010

ResNet50V2 [61]
0.8850 ±
0.0019

0.0701 ±
0.0031

0.5150 ±
0.0057

0.3335 ±
0.0254

0.5252 ±
0.0056

0.7517 ±
0.0014

ResNet152 [60]
0.8927 ±
0.0007

0.0544 ±
0.0028

0.5331 ±
0.0045

0.3494 ±
0.0053

0.5357 ±
0.0050

0.7595 ±
0.0005

ResNet101 [60]
0.8931 ±
0.0013

0.0470 ±
0.0090

0.5348 ±
0.0046

0.3444 ±
0.0219

0.5248 ±
0.0106

0.7591 ±
0.0019

ResNet152V2 [61]
0.8891 ±
0.0010

0.0710 ±
0.0108

0.5280 ±
0.0060

0.3535 ±
0.0202

0.5280 ±
0.0070

0.7572 ±
0.0009

ResNet101V2 [61]
0.8879 ±
0.0020

0.0701 ±
0.0039

0.5260 ±
0.0044

0.3408 ±
0.0101

0.5290 ±
0.0045

0.7557 ±
0.0011

Xception [62]
0.8928 ±
0.0011

0.0657 ±
0.0044

0.5421 ±
0.0035

0.3436 ±
0.0127

0.5396 ±
0.0095

0.7616 ±
0.0009

InceptionResNetV2 [63]
0.8960 ±
0.0008

0.0506 ±
0.0076

0.5310 ±
0.0052

0.3350 ±
0.0184

0.5315 ±
0.0148

0.7609 ±
0.0012

MobileNetV2 [64]
0.8748 ±
0.0032

0.1043 ±
0.0062

0.5180 ±
0.0031

0.3421 ±
0.0189

0.5077 ±
0.0251

0.7468 ±
0.0031

DenseNet121 [65]
0.8935 ±
0.0018

0.0745 ±
0.0068

0.5527 ±
0.0025

0.3530 ±
0.0158

0.5474 ±
0.0094

0.7647 ±
0.0013

DenseNet169 [65]
0.8964 ±
0.0010

0.0525 ±
0.0040

0.5494 ±
0.0063

0.3488 ±
0.0050

0.5511 ±
0.0064

0.7648 ±
0.0017

DenseNet201 [65]
0.8970 ±
0.0008

0.0541 ±
0.0068

0.5431 ±
0.0077

0.3430 ±
0.0081

0.5343 ±
0.0158

0.7639 ±
0.0020

EfficientNetB0 [66]
0.8806 ±
0.0018

0.1043 ±
0.0028

0.5411 ±
0.0042

0.3623 ±
0.0071

0.5590 ±
0.0044

0.7562 ±
0.0018

Table 6: Illustration of classification results of various pre-trained network on Kaggle Dataset
using Indexed Balanced Accuracy(IBA) evaluation metrics.

Models
Index Balanced Accuracy (IBA)

Class 0 Class 1 Class 2 Class 3 Class 4 Weighted Average

VGG16 [58]
0.5312 ±
0.0058

0.0695 ±
0.0540

0.4990 ±
0.0118

0.2582 ±
0.0776

0.4026 ±
0.0563

0.5201 ±
0.0045

VGG19 [58]
0.5426 ±
0.0040

0.0487 ±
0.0101

0.5182 ±
0.0101

0.2152 ±
0.0241

0.3806 ±
0.0210

0.5304 ±
0.0032

InceptionV3 [59]
0.4914 ±
0.0110

0.0375 ±
0.0035

0.4350 ±
0.0161

0.2372 ±
0.0158

0.3632 ±
0.0079

0.4930 ±
0.0068

ResNet50 [60]
0.5036 ±
0.0116

0.0332 ±
0.0033

0.4531 ±
0.0161

0.2503 ±
0.0178

0.3758 ±
0.0180

0.5041 ±
0.0074

ResNet50V2 [61]
0.4975 ±
0.0080

0.0407 ±
0.0028

0.4400 ±
0.0078

0.2467 ±
0.0262

0.3812 ±
0.0125

0.4961 ±
0.0047

ResNet152 [60]
0.4962 ±
0.0092

0.0291 ±
0.0017

0.4470 ±
0.0113

0.2525 ±
0.0078

0.3850 ±
0.0039

0.4997 ±
0.0056

ResNet101 [60]
0.4980 ±
0.0100

0.0252 ±
0.0054

0.4494 ±
0.0123

0.2507 ±
0.0256

0.3729 ±
0.0158

0.5006 ±
0.0064

ResNet152V2 [61]
0.5059 ±
0.0081

0.0405 ±
0.0075

0.4504 ±
0.0154

0.2637 ±
0.0178

0.3812 ±
0.0093

0.5038 ±
0.0054

ResNet101V2 [61]
0.5045 ±
0.0075

0.0403 ±
0.0027

0.4499 ±
0.0126

0.2528 ±
0.0107

0.3789 ±
0.0054

0.5022 ±
0.0044

Xception [62]
0.5092 ±
0.0028

0.0371 ±
0.0029

0.4582 ±
0.0055

0.2487 ±
0.0145

0.3964 ±
0.0092

0.5080 ±
0.0019

InceptionResNetV2 [63]
0.4859 ±
0.0084

0.0264 ±
0.0045

0.4319 ±
0.0130

0.2401 ±
0.0195

0.3762 ±
0.0186

0.4942 ±
0.0055

MobileNetV2 [64]
0.5167 ±
0.0070

0.0758 ±
0.0072

0.4517 ±
0.0095

0.2614 ±
0.0241

0.3666 ±
0.0261

0.5045 ±
0.0033

DenseNet121 [65]
0.5251 ±
0.0044

0.0434 ±
0.0048

0.4752 ±
0.0043

0.2613 ±
0.0224

0.4020 ±
0.0138

0.5190 ±
0.0023

DenseNet169 [65]
0.5105 ±
0.0028

0.0283 ±
0.0025

0.4623 ±
0.0068

0.2541 ±
0.0101

0.4016 ±
0.0091

0.5106 ±
0.0024

DenseNet201 [65]
0.4924 ±
0.0118

0.0282 ±
0.0039

0.4450 ±
0.0142

0.2421 ±
0.0091

0.3860 ±
0.0185

0.4997 ±
0.0078

EfficientNetB0 [66]
0.5384 ±
0.0018

0.0708 ±
0.0025

0.4852 ±
0.0039

0.2804 ±
0.0062

0.4309 ±
0.0053

0.5234 ±
0.0012

Saini M. and S. Susan 14



Diabetic Retinopathy Screening using Deep Learning for Multi-class Imbalanced Datasets

Table 7: Illustration of classification results of various pre-trained network on Kaggle Dataset
using GMean evaluation metrics.

Models
Geometric Mean (GMean)

Class 0 Class 1 Class 2 Class 3 Class 4 Weighted Average

VGG16 [58]
0.7170 ±
0.0078

0.2632 ±
0.0901

0.7192 ±
0.0090

0.5228 ±
0.0708

0.6521 ±
0.0416

0.7176 ±
0.0018

VGG19 [58]
0.7235 ±
0.0028

0.2304 ±
0.0246

0.7323 ±
0.0064

0.4820 ±
0.0258

0.6358 ±
0.0171

0.7239 ±
0.0022

InceptionV3 [59]
0.6861 ±
0.0084

0.2034 ±
0.0095

0.6745 ±
0.0115

0.5057 ±
0.0163

0.6218 ±
0.0065

0.6966 ±
0.0052

ResNet50 [60]
0.6945 ±
0.0088

0.1914 ±
0.0096

0.6879 ±
0.0113

0.5191 ±
0.0180

0.6320 ±
0.0145

0.7043 ±
0.0056

ResNet50V2 [61]
0.6910 ±
0.0061

0.2117 ±
0.0072

0.6780 ±
0.0056

0.5150 ±
0.0267

0.6364 ±
0.0099

0.6991 ±
0.0037

ResNet152 [60]
0.6890 ±
0.0069

0.1792 ±
0.0052

0.6836 ±
0.0080

0.5215 ±
0.0078

0.6395 ±
0.0031

0.7009 ±
0.0042

ResNet101 [60]
0.6903 ±
0.0075

0.1661 ±
0.0180

0.6853 ±
0.0087

0.5192 ±
0.0259

0.6297 ±
0.0128

0.7016 ±
0.0048

ResNet152V2 [61]
0.6967 ±
0.0060

0.2108 ±
0.0188

0.6857 ±
0.0109

0.5325 ±
0.0175

0.6365 ±
0.0074

0.7045 ±
0.0040

ResNet101V2 [61]
0.6958 ±
0.0058

0.2107 ±
0.0071

0.6853 ±
0.0088

0.5218 ±
0.0107

0.6346 ±
0.0044

0.7034 ±
0.0034

Xception [62]
0.6987 ±
0.0022

0.2023 ±
0.0079

0.6917 ±
0.0039

0.5176 ±
0.0147

0.6485 ±
0.0072

0.7072 ±
0.0015

InceptionResNetV2 [63]
0.6809 ±
0.0063

0.1704 ±
0.0144

0.6729 ±
0.0094

0.5086 ±
0.0207

0.6323 ±
0.0149

0.6965 ±
0.0041

MobileNetV2 [64]
0.7066 ±
0.0056

0.2878 ±
0.0133

0.6862 ±
0.0065

0.5299 ±
0.0242

0.6243 ±
0.0215

0.7066 ±
0.0028

DenseNet121 [65]
0.7103 ±
0.0034

0.2184 ±
0.0121

0.7036 ±
0.0028

0.5299 ±
0.0217

0.6528 ±
0.0107

0.7153 ±
0.0018

DenseNet169 [65]
0.6992 ±
0.0020

0.1767 ±
0.0077

0.6948 ±
0.0048

0.5231 ±
0.0100

0.6526 ±
0.0070

0.7087 ±
0.0017

DenseNet201 [65]
0.6856 ±
0.0088

0.1764 ±
0.0119

0.6826 ±
0.0103

0.5110 ±
0.0094

0.6402 ±
0.0146

0.7005 ±
0.0058

EfficientNetB0 [66]
0.7219 ±
0.0014

0.2786 ±
0.0048

0.7097 ±
0.0027

0.5487 ±
0.0059

0.6749 ±
0.0040

0.7199 ±
0.0008

Table 8: Illustration of classification results of various pre-trained network on DDR Dataset
using F1 Score evaluation metrics.

Models
F1 Score

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Weighted Average

VGG16 [58]
0.8487 ±
0.0044

0.0610 ±
0.0294

0.6592 ±
0.0097

0.2698 ±
0.0191

0.7188 ±
0.0220

0.8606 ±
0.0086

0.7327 ±
0.0069

VGG19 [58]
0.8588 ±
0.0027

0.0609 ±
0.0153

0.6741 ±
0.0071

0.2879 ±
0.0322

0.6971 ±
0.0207

0.8561 ±
0.0080

0.7407 ±
0.0044

InceptionV3 [59]
0.8292 ±
0.0016

0.0360 ±
0.0093

0.5780 ±
0.0098

0.2967 ±
0.0348

0.6470 ±
0.0133

0.8671 ±
0.0066

0.6922 ±
0.0044

ResNet50 [60]
0.8392 ±
0.0041

0.0316 ±
0.0066

0.6208 ±
0.0104

0.3520 ±
0.0383

0.6774 ±
0.0193

0.8636 ±
0.0062

0.7133 ±
0.0037

ResNet50V2 [61]
0.8338 ±
0.0062

0.0507 ±
0.0060

0.5976 ±
0.0202

0.2816 ±
0.0672

0.6895 ±
0.0122

0.8611 ±
0.0038

0.7035 ±
0.0102

ResNet152 [60]
0.8393 ±
0.0064

0.0387 ±
0.0117

0.6182 ±
0.0207

0.2760 ±
0.0316

0.6683 ±
0.0106

0.8622 ±
0.0070

0.7108 ±
0.0100

ResNet101 [60]
0.8381 ±
0.0028

0.0362 ±
0.0139

0.6145 ±
0.0118

0.2750 ±
0.0288

0.6700 ±
0.0078

0.8666 ±
0.0105

0.7093 ±
0.0060

ResNet152V2 [61]
0.8386 ±
0.0037

0.0423 ±
0.0171

0.6131 ±
0.0101

0.2682 ±
0.0389

0.7081 ±
0.0155

0.8651 ±
0.0067

0.7118 ±
0.0039

ResNet101V2 [61]
0.8393 ±
0.0067

0.0599 ±
0.0119

0.6087 ±
0.0133

0.3112 ±
0.0598

0.6877 ±
0.0241

0.8550 ±
0.0045

0.7100 ±
0.0065

Xception [62]
0.8342 ±
0.0091

0.0263 ±
0.0064

0.6031 ±
0.0295

0.3615 ±
0.0366

0.6794 ±
0.0059

0.8643 ±
0.0037

0.7054 ±
0.0146

InceptionResNetV2 [63]
0.8371 ±
0.0062

0.0260 ±
0.0148

0.6083 ±
0.0227

0.2460 ±
0.0265

0.6867 ±
0.0115

0.8728 ±
0.0038

0.7076 ±
0.0106

MobileNetV2 [64]
0.8136 ±
0.0131

0.0220 ±
0.0185

0.5256 ±
0.0488

0.3024 ±
0.0669

0.3582 ±
0.0788

0.8069 ±
0.0184

0.6429 ±
0.0226

DenseNet121 [65]
0.8473 ±
0.0044

0.0482 ±
0.0054

0.6322 ±
0.0105

0.3278 ±
0.0314

0.7048 ±
0.0183

0.8663 ±
0.0037

0.7231 ±
0.0043

DenseNet169 [65]
0.8425 ±
0.0031

0.0431 ±
0.0148

0.6253 ±
0.0069

0.3165 ±
0.0084

0.7038 ±
0.0162

0.8679 ±
0.0027

0.7183 ±
0.0049

DenseNet201 [65]
0.8489 ±
0.0039

0.0223 ±
0.0123

0.6461 ±
0.0058

0.3029 ±
0.0281

0.7010 ±
0.0178

0.8686 ±
0.0055

0.7268 ±
0.0027

EfficientNetB0 [66]
0.8399 ±
0.0035

0.0830 ±
0.0125

0.5928 ±
0.0068

0.3961 ±
0.0174

0.7205 ±
0.0112

0.8668 ±
0.0041

0.7107 ±
0.0035
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Table 9: Illustration of classification results of various pre-trained network on DDR Dataset
using Indexed Balanced Accuracy(IBA) evaluation metrics.

Models
Index Balanced Accuracy (IBA)

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Weighted Average

VGG16 [58]
0.7278 ±
0.0084

0.0342 ±
0.0176

0.5072 ±
0.0118

0.1780 ±
0.0111

0.6238 ±
0.0312

0.9103 ±
0.0087

0.6384 ±
0.0081

VGG19 [58]
0.7494 ±
0.0059

0.0341 ±
0.0085

0.5303 ±
0.0110

0.1912 ±
0.0146

0.6148 ±
0.0397

0.8866 ±
0.0092

0.6499 ±
0.0057

InceptionV3 [59]
0.6842 ±
0.0046

0.0199 ±
0.0052

0.4181 ±
0.0112

0.1966 ±
0.0302

0.5329 ±
0.0218

0.9194 ±
0.0066

0.5908 ±
0.0045

ResNet50 [60]
0.7065 ±
0.0091

0.0170 ±
0.0042

0.4654 ±
0.0136

0.2393 ±
0.0360

0.5574 ±
0.0255

0.9098 ±
0.0062

0.6142 ±
0.0047

ResNet50V2 [61]
0.6936 ±
0.0150

0.0275 ±
0.0039

0.4373 ±
0.0232

0.1914 ±
0.0514

0.5735 ±
0.0094

0.9193 ±
0.0064

0.6035 ±
0.0118

ResNet152 [60]
0.7051 ±
0.0153

0.0199 ±
0.0062

0.4612 ±
0.0238

0.1808 ±
0.0321

0.5552 ±
0.0137

0.9106 ±
0.0158

0.6127 ±
0.0124

ResNet101 [60]
0.7017 ±
0.0070

0.0190 ±
0.0075

0.4554 ±
0.0144

0.1859 ±
0.0239

0.5587 ±
0.0068

0.9081 ±
0.0131

0.6104 ±
0.0068

ResNet152V2 [61]
0.7038 ±
0.0072

0.0228 ±
0.0091

0.4544 ±
0.0103

0.1729 ±
0.0302

0.5979 ±
0.0193

0.9139 ±
0.0079

0.6129 ±
0.0048

ResNet101V2 [61]
0.7057 ±
0.0151

0.0332 ±
0.0067

0.4501 ±
0.0164

0.2074 ±
0.0502

0.5761 ±
0.0201

0.9081 ±
0.0050

0.6112 ±
0.0086

Xception [62]
0.6953 ±
0.0209

0.0142 ±
0.0034

0.4437 ±
0.0342

0.2473 ±
0.0315

0.5651 ±
0.0128

0.9294 ±
0.0074

0.6062 ±
0.0172

InceptionResNetV2 [63]
0.7000 ±
0.0146

0.0133 ±
0.0078

0.4498 ±
0.0260

0.1622 ±
0.0237

0.5794 ±
0.0134

0.9238 ±
0.0136

0.6094 ±
0.0120

MobileNetV2 [64]
0.6464 ±
0.0353

0.0114 ±
0.0104

0.3680 ±
0.0556

0.2759 ±
0.1484

0.2112 ±
0.0589

0.9336 ±
0.0044

0.5470 ±
0.0237

DenseNet121 [65]
0.7230 ±
0.0094

0.0265 ±
0.0026

0.4766 ±
0.0142

0.2179 ±
0.0286

0.5991 ±
0.0301

0.9220 ±
0.0122

0.6275 ±
0.0059

DenseNet169 [65]
0.7115 ±
0.0073

0.0228 ±
0.0085

0.4662 ±
0.0090

0.2177 ±
0.0109

0.6017 ±
0.0259

0.9190 ±
0.0096

0.6212 ±
0.0059

DenseNet201 [65]
0.7250 ±
0.0091

0.0114 ±
0.0064

0.4912 ±
0.0072

0.2045 ±
0.0197

0.5939 ±
0.0291

0.9168 ±
0.0050

0.6324 ±
0.0042

EfficientNetB0 [66]
0.7079 ±
0.0066

0.0537 ±
0.0086

0.4285 ±
0.0076

0.3139 ±
0.0315

0.6233 ±
0.0108

0.9316 ±
0.0072

0.6124 ±
0.0047

Table 10: Illustration of classification results of various pre-trained network on DDR Dataset
using GMean evaluation metrics.

Models
Geometric Mean (GMean)

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Weighted Average

VGG16 [58]
0.8431 ±
0.0051

0.1876 ±
0.0561

0.7250 ±
0.0080

0.4397 ±
0.0133

0.8032 ±
0.0191

0.9562 ±
0.0042

0.8026 ±
0.0050

VGG19 [58]
0.8569 ±
0.0038

0.1931 ±
0.0233

0.7398 ±
0.0069

0.4553 ±
0.0169

0.7974 ±
0.0236

0.9449 ±
0.0045

0.8099 ±
0.0035

InceptionV3 [59]
0.8153 ±
0.0034

0.1472 ±
0.0200

0.6611 ±
0.0083

0.4608 ±
0.0336

0.7458 ±
0.0144

0.9605 ±
0.0032

0.7725 ±
0.0030

ResNet50 [60]
0.8295 ±
0.0059

0.1366 ±
0.0163

0.6956 ±
0.0094

0.5070 ±
0.0378

0.7619 ±
0.0166

0.9560 ±
0.0031

0.7874 ±
0.0030

ResNet50V2 [61]
0.8211 ±
0.0098

0.1741 ±
0.0124

0.6756 ±
0.0170

0.4520 ±
0.0630

0.7724 ±
0.0059

0.9604 ±
0.0030

0.7805 ±
0.0077

ResNet152 [60]
0.8282 ±
0.0099

0.1468 ±
0.0258

0.6927 ±
0.0170

0.4418 ±
0.0389

0.7605 ±
0.0089

0.9563 ±
0.0075

0.7863 ±
0.0080

ResNet101 [60]
0.8259 ±
0.0046

0.1425 ±
0.0296

0.6889 ±
0.0101

0.4486 ±
0.0283

0.7628 ±
0.0043

0.9553 ±
0.0064

0.7849 ±
0.0043

ResNet152V2 [61]
0.8274 ±
0.0043

0.1557 ±
0.0345

0.6881 ±
0.0075

0.4323 ±
0.0381

0.7876 ±
0.0118

0.9580 ±
0.0038

0.7865 ±
0.0030

ResNet101V2 [61]
0.8287 ±
0.0097

0.1908 ±
0.0189

0.6849 ±
0.0118

0.4708 ±
0.0594

0.7739 ±
0.0128

0.9550 ±
0.0024

0.7855 ±
0.0056

Xception [62]
0.8224 ±
0.0135

0.1247 ±
0.0150

0.6800 ±
0.0248

0.5156 ±
0.0310

0.7669 ±
0.0081

0.9652 ±
0.0035

0.7822 ±
0.0110

InceptionResNetV2 [63]
0.8249 ±
0.0094

0.1170 ±
0.0361

0.6846 ±
0.0188

0.4194 ±
0.0305

0.7760 ±
0.0084

0.9627 ±
0.0064

0.7842 ±
0.0077

MobileNetV2 [64]
0.7907 ±
0.0237

0.1042 ±
0.0469

0.6203 ±
0.0434

0.5276 ±
0.1402

0.4742 ±
0.0664

0.9656 ±
0.0019

0.7437 ±
0.0161

DenseNet121 [65]
0.8396 ±
0.0059

0.1711 ±
0.0085

0.7038 ±
0.0096

0.4847 ±
0.0326

0.7881 ±
0.0186

0.9617 ±
0.0057

0.7958 ±
0.0037

DenseNet169 [65]
0.8321 ±
0.0047

0.1565 ±
0.0300

0.6968 ±
0.0063

0.4852 ±
0.0118

0.7897 ±
0.0159

0.9604 ±
0.0045

0.7917 ±
0.0038

DenseNet201 [65]
0.8404 ±
0.0058

0.1083 ±
0.0335

0.7142 ±
0.0048

0.4703 ±
0.0220

0.7849 ±
0.0179

0.9594 ±
0.0023

0.7987 ±
0.0027

EfficientNetB0 [66]
0.8303 ±
0.0039

0.2426 ±
0.0196

0.6697 ±
0.0056

0.5790 ±
0.0273

0.8031 ±
0.0065

0.9662 ±
0.0033

0.7865 ±
0.0029
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Table 11: Illustration of classification results of various pre-trained network on IDRiD Dataset
using F1 Score evaluation metrics.

Models
F1 Score

Class 0 Class 1 Class 2 Class 3 Class 4 Weighted Average

VGG16 [58]
0.7112 ±
0.0537

0.0000 ±
0.0000

0.5901 ±
0.0266

0.4909 ±
0.0176

0.2259 ±
0.1669

0.5371 ±
0.0385

VGG19 [58]
0.6759 ±
0.0274

0.0000 ±
0.0000

0.5764 ±
0.0388

0.4809 ±
0.0758

0.3474 ±
0.0419

0.5347 ±
0.0202

InceptionV3 [59]
0.7322 ±
0.0336

0.0000 ±
0.0000

0.6058 ±
0.0288

0.5716 ±
0.0249

0.2500 ±
0.0859

0.5669 ±
0.0283

ResNet50 [60]
0.7461 ±
0.0275

0.0000 ±
0.0000

0.5911 ±
0.0306

0.4537 ±
0.0808

0.1732 ±
0.1196

0.5355 ±
0.0323

ResNet50V2 [61]
0.6768 ±
0.0250

0.0000 ±
0.0000

0.5963 ±
0.0207

0.5574 ±
0.1054

0.2089 ±
0.1419

0.5378 ±
0.0379

ResNet152 [60]
0.7228 ±
0.0201

0.0000 ±
0.0000

0.6128 ±
0.0587

0.5330 ±
0.0670

0.2599 ±
0.0483

0.5601 ±
0.0380

ResNet101 [60]
0.7287 ±
0.0331

0.0500 ±
0.1118

0.6263 ±
0.0397

0.5679 ±
0.0602

0.2704 ±
0.0375

0.5764 ±
0.0326

ResNet152V2 [61]
0.6520 ±
0.0385

0.0000 ±
0.0000

0.5840 ±
0.0517

0.4406 ±
0.0693

0.1948 ±
0.0450

0.5025 ±
0.0346

ResNet101V2 [61]
0.6897 ±
0.0186

0.0000 ±
0.0000

0.5941 ±
0.0362

0.5423 ±
0.0698

0.3076 ±
0.0483

0.5511 ±
0.0253

Xception [62]
0.7218 ±
0.0355

0.0000 ±
0.0000

0.5945 ±
0.0218

0.5507 ±
0.0266

0.2732 ±
0.0644

0.5590 ±
0.0172

InceptionResNetV2 [63]
0.6947 ±
0.0343

0.0000 ±
0.0000

0.6088 ±
0.0294

0.4599 ±
0.0629

0.1665 ±
0.0457

0.5243 ±
0.0263

MobileNetV2 [64]
0.7046 ±
0.0396

0.0421 ±
0.0942

0.5600 ±
0.0335

0.4197 ±
0.0462

0.2943 ±
0.0487

0.5232 ±
0.0164

DenseNet121 [65]
0.7039 ±
0.0300

0.0500 ±
0.1118

0.5759 ±
0.0229

0.4787 ±
0.0609

0.3117 ±
0.0923

0.5413 ±
0.0198

DenseNet169 [65]
0.7349 ±
0.0175

0.0000 ±
0.0000

0.6012 ±
0.0200

0.5069 ±
0.0692

0.3032 ±
0.0616

0.5611 ±
0.0171

DenseNet201 [65]
0.7147 ±
0.0309

0.0000 ±
0.0000

0.6057 ±
0.0205

0.5272 ±
0.0368

0.2191 ±
0.0531

0.5490 ±
0.0209

EfficientNetB0 [66]
0.7148 ±
0.0179

0.0000 ±
0.0000

0.5450 ±
0.0100

0.5358 ±
0.0748

0.4210 ±
0.0347

0.5573 ±
0.0058

Table 12: Illustration of classification results of various pre-trained network on IDRiD Dataset
using Indexed Balanced Accuracy (IBA) evaluation metrics.

Models
Index Balanced Accuracy (IBA)

Class 0 Class 1 Class 2 Class 3 Class 4 Weighted Average

VGG16 [58]
0.6088 ±
0.0748

0.0000 ±
0.0000

0.4857 ±
0.0353

0.3579 ±
0.0206

0.1395 ±
0.1110

0.4579 ±
0.0368

VGG19 [58]
0.5667 ±
0.0354

0.0000 ±
0.0000

0.4711 ±
0.0471

0.3559 ±
0.0739

0.2227 ±
0.0324

0.4453 ±
0.0216

InceptionV3 [59]
0.6451 ±
0.0450

0.0000 ±
0.0000

0.5078 ±
0.0375

0.4544 ±
0.0257

0.1520 ±
0.0583

0.4869 ±
0.0276

ResNet50 [60]
0.6644 ±
0.0423

0.0000 ±
0.0000

0.4873 ±
0.0374

0.3497 ±
0.0853

0.1093 ±
0.0784

0.4623 ±
0.0313

ResNet50V2 [61]
0.5779 ±
0.0344

0.0000 ±
0.0000

0.4935 ±
0.0261

0.4229 ±
0.1064

0.1370 ±
0.0983

0.4559 ±
0.0339

ResNet152 [60]
0.6175 ±
0.0299

0.0000 ±
0.0000

0.5185 ±
0.0765

0.4143 ±
0.0646

0.1525 ±
0.0316

0.4784 ±
0.0420

ResNet101 [60]
0.6328 ±
0.0448

0.0361 ±
0.0808

0.5360 ±
0.0533

0.4466 ±
0.0733

0.1536 ±
0.0309

0.4958 ±
0.0367

ResNet152V2 [61]
0.5381 ±
0.0456

0.0000 ±
0.0000

0.4811 ±
0.0640

0.3029 ±
0.0575

0.1220 ±
0.0304

0.4206 ±
0.0380

ResNet101V2 [61]
0.5895 ±
0.0284

0.0000 ±
0.0000

0.4929 ±
0.0460

0.4244 ±
0.0656

0.1939 ±
0.0320

0.4658 ±
0.0252

Xception [62]
0.6282 ±
0.0510

0.0000 ±
0.0000

0.4934 ±
0.0279

0.3957 ±
0.0221

0.1662 ±
0.0399

0.4749 ±
0.0215

InceptionResNetV2 [63]
0.5958 ±
0.0520

0.0000 ±
0.0000

0.5098 ±
0.0362

0.3366 ±
0.0750

0.0958 ±
0.0366

0.4512 ±
0.0320

MobileNetV2 [64]
0.6228 ±
0.0595

0.0669 ±
0.1495

0.4490 ±
0.0407

0.2604 ±
0.0426

0.1803 ±
0.0380

0.4444 ±
0.0271

DenseNet121 [65]
0.5930 ±
0.0354

0.0361 ±
0.0808

0.4710 ±
0.0288

0.3701 ±
0.0730

0.2188 ±
0.0897

0.4529 ±
0.0181

DenseNet169 [65]
0.6450 ±
0.0225

0.0000 ±
0.0000

0.5014 ±
0.0264

0.3781 ±
0.0914

0.1936 ±
0.0576

0.4804 ±
0.0176

DenseNet201 [65]
0.6089 ±
0.0429

0.0000 ±
0.0000

0.5082 ±
0.0268

0.4118 ±
0.0389

0.1247 ±
0.0314

0.4692 ±
0.0214

EfficientNetB0 [66]
0.6247 ±
0.0266

0.0000 ±
0.0000

0.4319 ±
0.0103

0.4296 ±
0.0887

0.2929 ±
0.0559

0.4664 ±
0.0042
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Table 13: Illustration of classification results of various pre-trained network on IDRiD Dataset
using GMean evaluation metrics.

Models
Geometric Mean (GMean)

Class 0 Class 1 Class 2 Class 3 Class 4 Weighted Average

VGG16 [58]
0.7834 ±
0.0453

0.0000 ±
0.0000

0.6915 ±
0.0254

0.6151 ±
0.0164

0.3376 ±
0.2145

0.6847 ±
0.0270

VGG19 [58]
0.7565 ±
0.0223

0.0000 ±
0.0000

0.6838 ±
0.0326

0.6107 ±
0.0586

0.4892 ±
0.0332

0.6760 ±
0.0157

InceptionV3 [59]
0.8040 ±
0.0273

0.0000 ±
0.0000

0.7122 ±
0.0243

0.6890 ±
0.0185

0.3994 ±
0.0822

0.7061 ±
0.0194

ResNet50 [60]
0.8155 ±
0.0240

0.0000 ±
0.0000

0.6980 ±
0.0275

0.6033 ±
0.0728

0.3028 ±
0.1835

0.6886 ±
0.0228

ResNet50V2 [61]
0.7600 ±
0.0210

0.0000 ±
0.0000

0.7035 ±
0.0180

0.6625 ±
0.0797

0.3396 ±
0.2023

0.6835 ±
0.0246

ResNet152 [60]
0.7907 ±
0.0176

0.0000 ±
0.0000

0.7142 ±
0.0533

0.6577 ±
0.0506

0.4057 ±
0.0389

0.6997 ±
0.0304

ResNet101 [60]
0.7983 ±
0.0269

0.0885 ±
0.1979

0.7281 ±
0.0345

0.6819 ±
0.0527

0.4075 ±
0.0378

0.7120 ±
0.0253

ResNet152V2 [61]
0.7373 ±
0.0307

0.0000 ±
0.0000

0.6891 ±
0.0455

0.5661 ±
0.0522

0.3617 ±
0.0498

0.6571 ±
0.0294

ResNet101V2 [61]
0.7694 ±
0.0164

0.0000 ±
0.0000

0.7016 ±
0.0312

0.6655 ±
0.0477

0.4566 ±
0.0397

0.6909 ±
0.0178

Xception [62]
0.7945 ±
0.0298

0.0000 ±
0.0000

0.6983 ±
0.0189

0.6465 ±
0.0170

0.4224 ±
0.0493

0.6971 ±
0.0153

InceptionResNetV2 [63]
0.7734 ±
0.0302

0.0000 ±
0.0000

0.7107 ±
0.0263

0.5938 ±
0.0648

0.3193 ±
0.0596

0.6800 ±
0.0232

MobileNetV2 [64]
0.7823 ±
0.0335

0.1185 ±
0.2650

0.6734 ±
0.0281

0.5276 ±
0.0434

0.4400 ±
0.0467

0.6751 ±
0.0194

DenseNet121 [65]
0.7755 ±
0.0227

0.0885 ±
0.1979

0.6850 ±
0.0202

0.6217 ±
0.0587

0.4769 ±
0.0951

0.6821 ±
0.0133

DenseNet169 [65]
0.8049 ±
0.0136

0.0000 ±
0.0000

0.7058 ±
0.0149

0.6277 ±
0.0729

0.4535 ±
0.0654

0.7014 ±
0.0125

DenseNet201 [65]
0.7850 ±
0.0259

0.0000 ±
0.0000

0.7086 ±
0.0176

0.6567 ±
0.0289

0.3660 ±
0.0513

0.6935 ±
0.0152

EfficientNetB0 [66]
0.7909 ±
0.0155

0.0000 ±
0.0000

0.6610 ±
0.0080

0.6673 ±
0.0658

0.5573 ±
0.0523

0.6918 ±
0.0030

Table 14: Illustration of lesion detection results of various pre-trained networks on DDR Dataset
using mAP, AR evaluation metrics.

Models
Detection Boxes Precision Detection Boxes Recall

mAP
mAP

@0.5 IoU
mAP

@0.75 IoU
mAP

(small)
mAP

(medium)
mAP

(large)
AR@1 AR@10 AR@100

AR@100
(small)

AR@100
(medium)

AR@100
(large)

EfficientDet-D0 [67]
0.0065 ±
0.0012

0.0189 ±
0.0210

0.0047 ±
0.0011

0.0015 ±
0.0001

0.0129 ±
0.0121

0.0296 ±
0.0001

0.0070 ±
0.0018

0.0123 ±
0.0007

0.0175 ±
0.0017

0.0037 ±
0.0000

0.0401 ±
0.0014

0.0770 ±
0.0010

Faster RCNN
(ResNet-50) [68]

0.0042 ±
0.0023

0.0139 ±
0.0021

0.0001 ±
0.0001

0.0007 ±
0.0000

0.0098 ±
0.0000

0.0441 ±
0.0021

0.0083 ±
0.0001

0.0151 ±
0.0012

0.0172 ±
0.0102

0.0016 ±
0.0007

0.0318 ±
0.0024

0.1199 ±
0.0171

SSD
(MobileNetV1)[69]

0.0206 ±
0.0101

0.0425 ±
0.0201

0.0312 ±
0.0001

0.0035 ±
0.0009

0.0482 ±
0.0013

0.1038 ±
0.0012

0.0180 ±
0.0023

0.0387 ±
0.0102

0.0501 ±
0.0012

0.0192 ±
0.0103

0.1201 ±
0.0027

0.1753 ±
0.0102

RetinaNet
(ResNet50)[70]

0.0163 ±
0.0064

0.0381 ±
0.0016

0.0152 ±
0.0230

0.0012 ±
0.0102

0.0327 ±
0.0121

0.1319 ±
0.0014

0.0199 ±
0.0101

0.0402 ±
0.0078

0.0513 ±
0.0018

0.0191 ±
0.0012

0.1298 ±
0.0201

0.1645 ±
0.0019

SSD
(MobileNetV2)[71]

0.0192 ±
0.0209

0.0283 ±
0.0023

0.0089 ±
0.1023

0.0012 ±
0.0029

0.0284 ±
0.0023

0.0934 ±
0.0012

0.0132 ±
0.0012

0.0277 ±
0.0100

0.0359 ±
0.0080

0.0132 ±
0.0012

0.0792 ±
0.0010

0.1537 ±
0.0208

Table 15: Illustration of fovea and optic disc detection results of various pre-trained networks
on IDRiD Dataset using mAP, AR evaluation metrics.

Detection Boxes Precision Detection Boxes Recall
Models

mAP
mAP

@0.5 IoU
mAP

@0.75 IoU
mAP

(large)
AR@1 AR@10 AR@100

AR@100
(large)

EfficientDet-D0 [67]
0.7221 ±
0.0076

0.9810 ±
0.0010

0.9353 ±
0.0019

0.7419 ±
0.0121

0.8161 ±
0.0094

0.8121 ±
0.0191

0.8243 ±
0.0201

0.8254 ±
0.0092

Faster RCNN
(ResNet-50) [68]

0.7828 ±
0.02319

0.9532 ±
0.0167

0.9021 ±
0.0143

0.7292 ±
0.0132

0.8181 ±
0.0129

0.8914 ±
0.0132

0.8500 ±
0.0103

0.8510 ±
0.0190

SSD
(MobileNetV1)[69]

0.7822 ±
0.0101

0.9790 ±
0.0230

0.9289 ±
0.0012

0.7821 ±
0.0023

0.8241 ±
0.0102

0.8332 ±
0.0121

0.8212 ±
0.0121

0.8190 ±
0.0120

RetinaNet
(ResNet50)[70]

0.6912 ±
0.0012

0.9690 ±
0.0102

0.8791 ±
0.0561

0.7133 ±
0.0131

0.7123 ±
0.0012

0.7277 ±
0.0121

0.7278 ±
0.0121

0.7245 ±
0.0234

SSD
(MobileNetV2)[71]

0.7612 ±
0.0076

0.9756 ±
0.0129

0.9144 ±
0.0075

0.7624 ±
0.0034

0.8012 ±
0.0121

0.8004 ±
0.0103

0.8190 ±
0.0013

0.8037 ±
0.0612
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Table 16: Illustration of lesion segmentation results of various pre-trained networks on DDR
Dataset using Dice Score evaluation metric.

Models
Segmentation - Dice score

Dicescore
(Background)

Dicescore
(EX)

Dicescore
(HA)

Dicescore
(MA)

Dicescore
(SE)

mDicescore

PSPNet [72]
(w/ Focal Loss) 0.9910 ± 0.0001 0.0978 ± 0.0098 0.1319 ± 0.0138 0.0022 ± 0.0007 0.0324 ± 0.0028 0.0661 ± 0.0058

DeepLab v2 [73]
(w/ Focal Loss) 0.9901 ± 0.0002 0.0295 ± 0.0185 0.0575 ± 0.0403 0.0000 ± 0.0000 0.0078 ± 0.0123 0.0237 ± 0.0165

DeepLab v3 [74]
(w/ Focal Loss) 0.9912 ± 0.0002 0.1909 ± 0.0155 0.1569 ± 0.0255 0.0180 ± 0.0053 0.0323 ± 0.0053 0.0995 ± 0.0101

PSPNet [72]
(w/ Cross-entropy Loss) 0.9908 ± 0.0003 0.0993 ± 0.0052 0.1260 ± 0.0063 0.0015 ± 0.0004 0.0265 ± 0.0032 0.0634 ± 0.0029

DeepLab v2 [73]
(w/ Cross-entropy Loss) 0.9898 ± 0.0002 0.0307 ± 0.0194 0.0236 ± 0.0398 0.0000 ± 0.0000 0.0043 ± 0.0047 0.0146 ± 0.0134

DeepLab v3 [74]
(w/ Cross-entropy Loss) 0.9912 ± 0.0001 0.1907 ± 0.0116 0.1699 ± 0.0256 0.0142 ± 0.0087 0.0314 ± 0.0070 0.1016 ± 0.0063

Table 17: Illustration of lesion segmentation results of various pre-trained networks on DDR
Dataset using Intersection over Union (IoU) evaluation metric.

Models
Segmentation - Intersection over Union (IoU)

IoU
(Background)

IoU
(EX)

IoU
(HA)

IoU
(MA)

IoU
(SE)

mIoU

PSPNet [72]
(w/ Focal Loss) 0.9954 ± 0.0001 0.1582 ± 0.0147 0.2096 ± 0.0197 0.0040 ± 0.0014 0.0458 ± 0.0032 0.1044 ± 0.0084

DeepLab v2 [73]
(w/ Focal Loss) 0.9950 ± 0.0001 0.0502 ± 0.0313 0.0947 ± 0.0654 0.0000 ± 0.0000 0.0117 ± 0.0176 0.0391 ± 0.0265

DeepLab v3 [74]
(w/ Focal Loss) 0.9955 ± 0.0001 0.2886 ± 0.0203 0.2439 ± 0.0352 0.0312 ± 0.0095 0.0457 ± 0.0075 0.1524 ± 0.0136

PSPNet [72]
(w/ Cross-entropy Loss) 0.9953 ± 0.0002 0.1599 ± 0.0077 0.2008 ± 0.0085 0.0029 ± 0.0008 0.0390 ± 0.0038 0.1007 ± 0.0040

DeepLab v2 [73]
(w/ Cross-entropy Loss) 0.9948 ± 0.0001 0.0530 ± 0.0333 0.0393 ± 0.0650 0.0000 ± 0.0000 0.0071 ± 0.0078 0.0249 ± 0.0223

DeepLab v3 [74]
(w/ Cross-entropy Loss) 0.9955 ± 0.0000 0.2887 ± 0.0149 0.2630 ± 0.0374 0.0250 ± 0.0147 0.0445 ± 0.0092 0.1553 ± 0.0082

Table 18: Illustration of lesion, fovea and optic disc segmentation results of various pre-trained
networks on IDRiD Dataset using Dice Score evaluation metric.

Models
Segmentation - Dice score

Dicescore
(Background)

Dicescore
(EX)

Dicescore
(HA)

Dicescore
(MA)

Dicescore
(SE)

Dicescore
(OD)

mDicescore

PSPNet [72]
(w/ Focal Loss) 0.9611 ± 0.0002 0.1921 ± 0.0160 0.3011 ± 0.0053 0.0038 ± 0.0018 0.1346 ± 0.0137 0.8857 ± 0.0073 0.3035 ± 0.0065

DeepLab v2 [73]
(w/ Focal Loss) 0.9502 ± 0.0018 0.0031 ± 0.0043 0.0287 ± 0.0406 0.0000 ± 0.0000 0.0000 ± 0.0000 0.8158 ± 0.0119 0.1695 ± 0.0049

DeepLab v3 [74]
(w/ Focal Loss) 0.9633 ± 0.0005 0.1213 ± 0.0351 0.3634 ± 0.0183 0.0298 ± 0.0270 0.0570 ± 0.0233 0.8986 ± 0.0044 0.2940 ± 0.0029

PSPNet [72]
(w/ Cross-entropy Loss) 0.9616 ± 0.0013 0.1876 ± 0.0029 0.3026 ± 0.0019 0.0012 ± 0.0020 0.1154 ± 0.0001 0.8914 ± 0.0041 0.2997 ± 0.0101

DeepLab v2 [73]
(w/ Cross-entropy Loss) 0.9509 ± 0.0011 0.0000 ± 0.0000 0.0898 ± 0.0418 0.0000 ± 0.0000 0.0000 ± 0.0000 0.8138 ± 0.0358 0.1807 ± 0.0140

DeepLab v3 [74]
(w/ Cross-entropy Loss) 0.9631 ± 0.0012 0.1859 ± 0.0657 0.3460 ± 0.0276 0.0033 ± 0.0022 0.0595 ± 0.0056 0.8990 ± 0.0055 0.2988 ± 0.0184
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Table 19: Illustration of lesion, fovea and optic disc segmentation results of various pre-trained
networks on IDRiD Dataset using Intersection over Union (IoU) evaluation metric.

Models
Segmentation - Intersection over Union (IoU)

IoU
(Background)

IoU
(EX)

IoU
(HA)

IoU
(MA)

IoU
(SE)

IoU
(OD)

mIoU

PSPNet [72]
(w/ Focal Loss) 0.9800 ± 0.0001 0.3009 ± 0.0232 0.4457 ± 0.0069 0.0075 ± 0.0035 0.1919 ± 0.0152 0.9386 ± 0.0040 0.3769 ± 0.0074

DeepLab v2 [73]
(w/ Focal Loss) 0.9742 ± 0.0010 0.0057 ± 0.0080 0.0462 ± 0.0654 0.0000 ± 0.0000 0.0000 ± 0.0000 0.8957 ± 0.0058 0.1895 ± 0.0103

DeepLab v3 [74]
(w/ Focal Loss) 0.9811 ± 0.0002 0.1997 ± 0.0545 0.5140 ± 0.0200 0.0551 ± 0.0496 0.0830 ± 0.0381 0.9460 ± 0.0024 0.3596 ± 0.0056

PSPNet [72]
(w/ Cross-entropy Loss) 0.9803 ± 0.0027 0.2940 ± 0.0017 0.4461 ± 0.0120 0.0024 ± 0.0012 0.1696 ± 0.0105 0.9423 ± 0.0011 0.3709 ± 0.0206

DeepLab v2 [73]
(w/ Cross-entropy Loss) 0.9745 ± 0.0006 0.0000 ± 0.0000 0.1505 ± 0.0644 0.0000 ± 0.0000 0.0000 ± 0.0000 0.8938 ± 0.0238 0.2089 ± 0.0163

DeepLab v3 [74]
(w/ Cross-entropy Loss) 0.9810 ± 0.0007 0.2908 ± 0.0929 0.4970 ± 0.0289 0.0064 ± 0.0041 0.0839 ± 0.0124 0.9459 ± 0.0030 0.3648 ± 0.0240

Lesion Segmentation
(DDR dataset)

Lesion and Optical Disc Segmentation
(IDRiD Dataset)

Figure 8: Results of segmentation model from PSPNet trained using focal loss for (i) DDR and
(ii) IDRiD datasets.
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7 Results and Discussion

We have conducted extensive experimenta-
tion using the three imbalanced publicly avail-
able diabetic retinopathy datasets of varied
sizes for image classification, object detec-
tion and segmentation tasks. Tables 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12, 13 illustrate
the comparative analysis between various pre-
trained models, for the classification task for
the three diabetic retinopathy datasets: - Kag-
gle DRD, DDR and IDRiD. From the anal-
ysis it was found that DenseNet121 proves
to be an effective model in case of all three
datasets, in comparison to InceptionV3, Mo-
bileNetV2, Xception, ResNet50, EfficientNet-
B0, VGG16, VGG19, ResNet152, ResNet101,
ResNet152V2, ResNet101V2, DenseNet169,
DenseNet201, ResNet50V2 and Inception-
ResNetV2 pre-trained networks. After
DenseNet121, the second-most effective pre-
trained network is Xception for all the three
datasets with respect to various classifica-
tion evaluation metrics: Cohen’s Kappa (un-
weighted, linear, quadratic weighted), Accu-
racy, ROC-AUC (weighted and macro average)
and F1-score, Index Balanced Accuracy (IBA)
and Geometric Mean (GMean). Another ob-
servation found was that Class 1, Early stage
diabetes is difficult to detect irrespective of
whether that class falls under minority cate-
gory or not, in case of all the three datasets.
Third observation inculcated after conducting
the experiments was that data augmentation
used for training is suitable for longer training
(400/200 epochs). Fourth observation found
was that samples are equally distributed dur-
ing training using rejection resampling that had
a significant impact on the overall performance
of the classification task. DenseNet and Xcep-
tion architectures are both simple architectures
amongst other prevalent architectures present
in the study. DenseNet works well in evading
the vanishing gradient problem and enabling
feature reuse and has achieved state of the art
(SOTA) results on the ImageNet, CIFAR and
SVHN datasets [12] [18]. It is composed of
dense blocks where every layer receives con-
catenated data from all the previous layers,
thereby simplifying the residual network pat-
tern. Moreover, it requires fewer parameters
than the other convolutional networks. In con-
trast to ResNets, which also use skip connec-
tion, DenseNets concatenate the output and

the input feature maps. Due to input concate-
nation, ease of access to learned maps for the
corresponding layers is increased. Fine tuning
on the pre-trained DenseNet helped in preserv-
ing the salient image features, along with learn-
ing the DR classification features.
Tables 14 and 15 depict the Detection Boxes
Precision (mean average precision (mAP)) and
Detection Boxes recall (average recall (AR))
metrics for object detection tasks for both
DDR and IDRiD datasets. In this mAP met-
ric, we also have an overlap criterion that
lays down the minimum value of the inter-
section over union (IoU), which is used for
correct detection. The value was taken as
0.5, 0.75I for IoU criterion. The results il-
lustrates that in case of DDR dataset, SSD
(MobileNetV1) is more efficient in lesion detec-
tion in comparison to EfficientDet-D0, Faster
RCNN (ResNet-50), RetinaNet (ResNet50)
and SSD (MobileNetV2) pre-trained networks.
However, in the case of the IDRiD dataset for
Fovea and Optic Disc Detection, EfficientDet-
D0, Faster RCNN (ResNet-50), SSD (Mo-
bileNetV1) works well in comparison to other
pre-trained networks (RetinaNet (ResNet50)
and SSD (MobileNetV2)) while considering
mAP without IoU evaluation metrics. But af-
ter taking consideration of mAP with IoU value
we can see that EfficientDet-D0 is showing bet-
ter results in comparison to other pre-trained
networks in all aspects (when considering small
and large objects). Tables 16, 17, 18, 19 show
a comparative analysis between various state-
of-the-art pre-trained networks for segmenta-
tion in case of DDR and IDRiD datasets, re-
spectively, using Dice score and IoU (intersec-
tion over union) evaluation metrics between
various pre-trained networks: DeepLabV2 and
DeepLabV3 and PSPNet with cross-entropy
loss and focal loss. After experimentation it
was observed that PSPNet (with Focal Loss)
is working best in comparison to other pre-
trained networks taken into consideration, re-
sults from which are shown in Figure 8.

8 Conclusion

In this paper, we have emphasized research
on the medical diabetic retinopathy imbal-
anced datasets for classification, object detec-
tion and segmentation tasks in a unified frame-
work. We have done extensive comparative
analysis between various state-of-the-art pre-
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trained deep models on varied size datasets.
Throughout our study, we have focused on the
transfer learning approaches for improving the
performance of models. After conducting the
analysis it was found that the DenseNet121
pre-trained model is the best suited for di-
abetic retinopathy image classification. The
EfficientDet-D0 and SSD (MobileNetV1) are
best suited for object detection on diabetic
retinopathy datasets. In case of segmentation,
PSPNet (with focal loss) performs best in com-
parison to other pre-trained networks. In fu-
ture works, we will emphasize on the creation
of architectures using this baseline study for le-
sion detection and segmentation, and explore
ensemble learning with different pre-trained
networks for more effective diagnosis of dia-
betic retinopathy as well as other challenging
areas from the biomedical domain [31] [34] [35]
[36] in order to be able to derive more generic
approaches.
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