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Abstract—Neural Rendering, an intersection of computer
graphics techniques and machine learning, has a significant
impact on the generation of hyperrealistic content. This research
advocates for the application of scalable, cloud-based digitization
techniques within the realms of academia and culture to create
sustainable models that can be efficiently preserved in minimal
storage spaces, using on-demand free resources. This work
introduces a Scalable Cloud-based Neural Rendering Prototype
System (NRPS) powered by TPUs, made possible by the TPU
Research Cloud (TRC) program. It was evaluated across three
distinct architectures: (1) TPU VM, (2) TPU Node, and (3) TPU
Node with GKE. The performance of the NRPS was assessed
using images from the cultural heritage of Puno. The results
demonstrate that the NRPS functions efficiently when employing
TPUs in a scalable manner while minimizing CPU and RAM
costs, particularly when utilizing the TPU Node architecture with
GKE. The TPU Node architecture with GKE showcased superior
scalability while requiring minimal VM resources, albeit with a
50% reduction in production capacity and a 120% increase in
processing time, resulting in a daily production capacity of 1440
models. This research concludes that the TPU VM architecture
is suitable for experimental production or scenarios requiring
quick access to results, whereas the TPU Node with GKE is well-
suited for scalable production. Furthermore, this work highlights
the untapped potential of emerging technologies in enhancing
academic research and cultural preservation, with a focus on
efficiency and sustainability.

Index Terms—Neural Rendering, Neural Radiance Fields,
Tensor Processing Unit, Google Cloud Platform, TPU Research
Cloud.

I. INTRODUCTION

The advancements in computer graphics have embraced
sustainable technologies for digitally preserving information,
thereby paving the way for new research areas focused on
gaining control over three-dimensional scenes through tech-
niques involving Neural Rendering, such as Novel View
Synthesis (NVS), Neural Scene Representations (NSR), and
others [1]–[4].

Neural Radiance Fields (NeRF) represent a groundbreaking
technique in this field. NeRF is a coordinate-based Multi-
layer Perceptron (MLP) that combines Novel View Synthesis
(NVS), Neural Scene Representations (NSR), and Neural
Volume Rendering (NVR) techniques [2].

These computer graphics techniques interpret three-
dimensional scenes, enabling the generation of multiple per-
spectives of objects within the scene [5]. This, in turn, facil-
itates the creation of diverse multimedia production formats
while significantly reducing the storage requirements for the
entire scene to a single file [3].

NeRF is available in several programming languages and
libraries, each one with its own specific objectives and func-
tionalities [6]. This diversity allows for seamless integration
with high-capacity computational resources like TPUs, thereby
facilitating deep neural network training through Google Cloud
Platform (GCP) services [7]. Furthermore, the availability
of free cloud resources empowers the execution of projects
that utilize Machine Learning, leveraging services like the
GCP Suite Services [8]. The TPU Research Cloud (TRC)
program complements this by providing on-demand access
to TPU resources. TRC offers 10 non-interruptible TPUs
and 100 interruptible TPUs, enabling the deployment of an
architecture that maximizes the production of JAXNERF-
trained models [9].

This study presents a scalable cloud-based digitization
model that utilizes 2D images to generate 3D images through
rendering techniques, all achieved at a low cost and with
minimal storage requirements using freely available cloud
resources. This approach is aimed at creating digital models of
culturally valuable objects, particularly archaeological pieces
found in museums. Such an endeavor ensures the preservation
and accessibility of these objects, which is especially important
in South American countries like Peru, where there is a
wealth of cultural heritage. To achieve this, we first describe
a cloud-based Neural Rendering Prototype System (NRPS)
that leverages Cloud TPUs and Google Kubernetes Engine
(GKE) services, utilizing GCP’s free-trial and on-demand
resources. By incorporating JAXNERF [10] into an API/REST
framework, as illustrated in Fig. 1, the NRPS evaluates the
performance of three different architectural setups using a
dataset of images from a cultural museum. Ultimately, the
NRPS identifies the optimal architecture that produces the
highest number of digital neural models while consuming the
fewest resources.

The structure of the paper is as follows: Section I describes
the problem; Section II presents the state of the art; Section
III describes the architectural design and proposal; Section IV979-8-3503-1557-8/23/$31.00 ©2023 IEEE



presents the results and discussions; Section V contains the
conclusions; Section VI shows the acknowledgments and,
finally, the References are listed.

II. STATE OF THE ART

Some relevant studies in the literature have significantly
contributed to this field [2] [6] [10] [11]. NeRF captures a
volumetric representation of a 3D scene within neural network
weights, leading to a significant reduction in the size of mul-
timedia files. The method involves training a fully connected
network and effectively models viewpoint-dependent effects
such as reflections, flares, and shadows, thereby enhancing the
accuracy of 3D reconstruction [2].

Leveraging cloud resources provides a distinct advantage in
developing new implementations or experimental frameworks,
such as Kubernetes and Docker [12]. These technologies
enable the customization of specific work environments for
various applications and facilitate the scalable deployment
of Application Programming Interfaces (APIs). Notably, they
have played an important role in artificial intelligence vir-
tualization projects, allowing for the efficient utilization of
resources across Central Processing Units (CPUs), Graphics
Processing Units (GPUs), and TPUs [13]. Kubernetes, an
open-source orchestrator created by Google, ensures secure
spaces for scalable applications using Virtual Machine (VM)
instances for container virtualization from an image [14].

JAXNERF, designed to accelerate NeRF training in the
Cloud, employs JAX to run on diverse processing units such as
CPUs, GPUs, and TPUs, thereby minimizing training time and
maximizing NeRF performance [15]. The Kubeflow project,
grounded in Kubernetes, is focused to the deployment, scaling,
and management of Machine Learning solutions [16]. A
Kubeflow project at CERN provides Kubeflow-based services
for data preparation and performing interactive analysis, large-
scale distributed model training, and model services, reports
on the comparison and evaluation of cost and time of scaling
in a public cloud using GPUs and TPUs [17].

A Tensor Processing Unit (TPU) is a specialized high-
performance hardware designed by Google, explicitly tailored
for accelerating machine learning workloads [18]. TPUs come
in two versions: TPU v2 and TPU v3, each equipped with
distinct cores and memory configurations. These TPUs provide
two primary services: TPU VM and TPU Node [19], [20].
In the case of TPU VM, it offers a high-capacity virtual
machine that can be accessed via Secure Shell (SSH), while
TPU Node necessitates custom virtual machine instances for
each dedicated TPU Node, which cannot be directly accessed.
The configuration of TPUs depends on the specific machine
learning framework being used, such as TensorFlow, PyTorch,
or JAX, each requiring its own specialized setup. Lastly, TPUs
are scalable using the Google Kubernetes Engine (GKE) ser-
vice [21]. In summary, Tensor Processing Units are specialized
hardware devices purpose-built for training and applying ma-
chine learning models. They operate at high speeds, leveraging
high-bandwidth memory and massive instruction parallelism to
significantly accelerate machine learning tasks [22].

Currently, there does not appear to be a significant in-
crease of model implementation and development aimed at
multimedia digitization focused on culture [11]. That may
be strongly associated with resource allocation provided by
various institutions. For this reason, we use technology to
generate new models and achieve sustainable preservation
through the utilization of on-demand research programs and
free trial resources. This approach aims to promote research
in several related academic areas.

The application of Kubernetes and TPUs as research tools
opens new possibilities for reducing study and data training
durations. In this work, we strive to give a general idea of
these technologies’ applications, acknowledging that this is an
emerging field in the development of new architectures for the
distributed training of machine learning models [16].

III. PROPOSED PROTOTYPE

The Fig. 1 shows the prototype system proposed in this
work. The process consists of four steps: (1) for the dataset, we
perform the capture of different 2D poses of each choice model
(Iron, Canvas, and Monolith); (2) the proposed prototype
preprocess the dataset, i.e., the proposed prototype obtains the
intrinsic position values to generate the necessary vectors for
the neural network; (3) the proposed prototype construction
NRPS uses three TPU architectures: TPU VM, TPU Node,
and TPU Node and GKE. For that uses the TPU v2-8 version
belonging to the Single Devices group, with a single TPU
device, eight cores, and 64GiB of memory [13]; Finally, (4) the
infrastructure and the API/REST interface integrate a modified
JAXNERF code to render the 3D model.

A. Dataset

The dataset created uses three models each with different
weight and dimension. These models were obtained using a
mobile camera, that captures intrinsic image values utilizing
the Local Light Field Fusion (LLFF) through the use of
COLMAP tools [23], this process enables the capturing of the
movement within the 3D scene [24]. Table I shows this dataset
for each model with the total file size, the image resolution,
and the application of a resizing algorithm at 100%, 50%, and
25% to perform several experiments.

TABLE I: Dataset

Model Resizing Image Resolution File Size
A

100 %
2080x4624 43,40 MB

B 3472x3472 125,00 MB
C 3472x4624 209,00 MB
A

50 %
1040x2312 44,90 MB

B 1736x1736 114,00 MB
C 1736x2312 192,00 MB
A

25 %
520x1156 12,90 MB

B 868x868 31,90 MB
C 868x1156 56,20 MB
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Fig. 1: Neural Rendering Prototype System.

B. Architecture

The proposed architectures used the Monitoring service
provided by GCP, which stores the performance of the TPU,
CPU, and RAM resources, together with the training time,
through the GCP services [25].

1) TPU VM: It uses the minimalist environment Miniconda
[26], its design is oriented to develop tests using Cloud Stor-
age and Cloud TPU services, which facilitates requirements
installation for JAXNERF and API/REST. Fig. 2 shows how
the NRPS works using port 30000 and querying via the curl
console.

Curl
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TPU Worker performance

TPU VM

Expose Port: 30000

Endpoints

Miniconda

NRPS

Monitoring

GCP Cloud Storage

Drivers

Fig. 2: TPU VM Architecture

2) TPU Node: It uses TPU VM architecture and involves
Compute Engine to instantiate a VM. As Fig. 3 shows, it uses
drivers TPU through XLA to connect TPU resources with a
code adapted from the Colab library JAXNERF.

3) TPU Node with GKE: This architecture mainly uses
GCP’s GKE service. The Kubernetes manifest configuration
uses the Artifacts services for infrastructure requests and
CloudStore for managing the models that need to train on the
NRPS. As a constraint of the TPU service, each work node
links to only the TPU node. Fig 4 shows how the NRPS works.
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Fig. 3: TPU Node Architecture

C. Infrastructure

The infrastructure describes the Dockerfile manifest, which
contains the necessary resources to run the modified JAXN-
ERF code with the API/REST, cloning it from the GitHub
repository. As Fig. 4 shows, the infrastructure is built into a
Docker image using the Cloud Build service and storage in
the CloudStore service. Finally, the infrastructure is registered
and deployed in a multi-region Artifacts repository.

D. NRPS API/REST

JAXNERF training code changes from evaluation code to
rendering code. The API/REST integration was developed in
Python with Flask to achieve the objectives of (a) verifying
the threads and capturing data from the CPU and RAM; (b)
resizing images, storing and verifying files in the cloud; and
(c) establishing and verifying the host’s connection to the TPU,
as shown in Fig. 5.
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IV. RESULTS AND DISCUSSIONS

This section shows the application results of the proposed
prototype system. The models used belong to the cultural
heritage of the Carlos Dreyer Museum, a historical reserve
located in Puno City - Peru, which preserves and exhibits
cultural assets from the pre-Inca, Inca, colonial and republican
times. In this work, we have chosen three objects of historical
value: a monolith from the pre-Inca period, a domestic artifact
from the colonial period, and a canvas that shows Titicaca Lake
from the Peruvian Republic period (see Table I). It’s important
to highlight that each trained architecture uses 100 thousand
iterations per model and that the TPU VM architecture used
the ideal host TPU, and the TPU Node and TPU Node
with GKE architectures used the VM Medium and Minimum
features, as shown in Table II.

The results obtained with the first architecture established
the profiles for the next ones. Fig. 6 shows the profiles use
high RAM capacity that grows as the model size increases,
with a minimum requirement of 32 GiB and an ideal of
340 GiB. Fig. 7 shows the CPU use that grows depending
on the architecture, which has a minimum requirement of 4
CPUs and an ideal of 96 CPUs. Finally, Fig. 8 shows the
time performance that is also affected by the training time,

TABLE II: Profiles VM

TPU Host VM
Features Ideal Medium Minimum

Image Tensor-Flow 2.7.0
Type N1 N1 E2

Profile n1-356-96-tpu n1-highmem-8 e2-highmem-4
CPU 96 CPUs 8 CPUs 4 CPUs
RAM 340 GiB 52 GiB 32 GiB
Zone us-central1-f
TPU TPU v2-8

Price x hour 4,50$ 0,44$ 0,24$

which has a minimum requirement of 0.24$ and an ideal
of 4.5$ per hour. It’s noteworthy that the resource capacity
remains relatively consistent across all architectures in these
experiments.

GCP provides several VMs by the compute engine service
[27]. We selected the medium N1, similar to the TPU Host
with lower capacity, and the E2, the most economical, as
shown in Table II.

Fig. 6: RAM Performance



Fig. 7: CPU Performance

VM and TPU Profiles

Fig. 8: Time Performance

1) TPU VM architecture: In this architecture, we trained
the entire dataset successfully. For 10 TPU VM node instances,
the production time and capacity achieved up to 1960 models
in 8 days, as shown in Table III. This architecture aims to
provide a low-scale service with a shorter time to production,
using a smaller number of TPU VM instances. Notably, the
production cost is zero thanks to the TRC program, providing
a viable and sustainable solution for neural digitization. How-
ever, it lacks large-scale TPU instance control or orchestration.

The results showed that the NRPS proposed with a TPU VM
architecture exhibited substantial performance capabilities,
achieving twice the performance compared to the alternative
architectures. However, the system scalability was constrained
due to its reliance on manual configuration, restricting the
available TPUs use.

2) TPU node architecture: In this architecture, the models
from the dataset used have resizing of 50% and 25%, by
not exceeding the RAM usage. For 10 TPU node and VM
instances, the production achieves 961 models in 8 days on

the E2 profile and 454 models in 4 days on the N1 profile, as
shown in Table III. The production cost uses all the 300$ GCP
free trial for the models. However, Fig. 6 shows a decrease in
RAM consumption compared to the previous architecture and
a significant increase in time (see Fig. 8).

The results from the TPU Node architecture show an
increase in the production time and a decrease in the models
resolution. This architecture does not use Kubernetes to man-
age the TPU Node instances and restart the downed nodes.

3) TPU Node architecture with GKE: In this architecture,
the models from the dataset used have resizing of 25% for all
models in the E2 profile; 50% and 25% for the B and the C
models, and 25% for the A model in the N1 profile, by not
exceeding the RAM usage.

The TPU Node architecture with GKE produces lower mod-
els per node, reducing 50.95% on the E2 profile and 56.58%
on the N1 profile, compared to the TPU VM architecture.
When using 100 nodes, the architecture achieves a maximum
production of 1026.55 on the E2 profile and 468.47 on the N1
profile. All the $300 credits ended in 21.35h on the E2 profile
and 11.01h on the N1 profile, using all the TPUs available, as
shown in Table III.

The TPU Node architecture with GKE demonstrated supe-
rior scalability with minimal VM resources, albeit reducing
production capacity by 50% and increasing time by 120%,
with a resulting production capacity of 1440 models per day.
In contrast, the TPU Node architecture exhibited performance
comparable to the previous. However, it lacked scalability,
making it the least efficient among the proposed architectures.

The Figs. 9, 10, and 11 show the result of the training
performed on the TPU VM at 100% resolution of the neural
rendering for models A, B, and C respectively. Finally, the
necessary investment to maximize the use of the TPU Node
with GKE is $9,816.00 approximately, with a production of
34,619.01 models on the E2 profile. This could potentially be
applied to process images related to the cultural heritage of
the Carlos Dreyer Museum, provided that the museum has the
necessary budget and resources to support such an endeavor.

V. CONCLUSIONS

This work shows that the Scalable Cloud-based NRPS
with the TPU VM architecture is suitable for experimental
production or scenarios where quick access to results is re-
quired, and the TPU Node with GKE is functional for scalable
production. The evaluations showed satisfactory and functional
results in applying TPU and GKE services with free-trial and
on-demand resources, allowing multiple implementations in
new and improved ways of implementing architectures and
technologies based on automatic learning models.

The main contribution of this research shows the appli-
cation of TPU and GKE services, utilizing both free-trial
and on-demand resources, yields satisfactory and functional
outcomes. Thereby enabling novel and enhanced approaches
to deploying architectures and technologies based on ma-
chine learning models. Importantly, these approaches were
successfully applied to a historical reserve in Peru, dedicated



TABLE III: Comparison

Price Time Production Production Comparison Reduction %

E2 N1 E2 N1 E2 N1 TPU VM with
E2 Time

TPU VM with
N1 Time

TPU VM
vs N1

TPU VM
vs E2

1
Node 0,24$ 0,44$ 30.0 days 28,40 days 346,15 290,13 705,6 671,11 50,95 56,58

5
Nodes 0,80$ 1,46$ 15,62 days 8,56 days 901,44 437,19 1837,5 1006,8 50,95 56,58

10
Nodes 1,50$ 2,81$ 8,33 days 4,44 days 961,53 454,31 1960 1046,24 50,95 56,58

100
Nodes 14,05$ 27,25$ 21,35 h 11,01 h 1026,55 468,47 - - - -

Fig. 9: Model A: Iron

Fig. 10: Model B: Canvas

Fig. 11: Model C: Monolith

to preserving and showcasing cultural assets, showcasing the
practical relevance and impact of the research.
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