
A Maturity Model for Semantic RESTful Web APIs

Ivan Salvadori
Department of Informatics and Statistics

Federal University of Santa Catarina
Florianópolis, SC - Brazil

ivan.salvadori@posgrad.ufsc.br

Frank Siqueira
Department of Informatics and Statistics

Federal University of Santa Catarina
Florianópolis, SC - Brazil

frank@inf.ufsc.br

Abstract—Web APIs provide interfaces for interaction among
systems based on the existing infrastructure for hosting Web
sites and applications. The REST architectural style is the
most employed approach for building Web APIs. However, the
flexibility provided by REST may result in implementations with
low quality design, limited reuse and poor documentation. This
paper describes a maturity model for classifying Web APIs, aimed
at promoting the adherence to REST architectural principles and
the adoption of semantic Web technology in order to improve the
design, reuse and documentation of Web APIs.

Keywords-Maturity Model, REST, Web API, Linked Data,
Semantic Web

I. INTRODUCTION

REST is a very popular architectural style for integration
of Web-based applications, which allows sharing and reusing
information through distributed systems. Large-scale applica-
tions based on the REST principle must be implemented using
the appropriate strategies and mechanisms in order to produce
systems that are easy to develop, reuse and maintain. The
integration interfaces provided by these systems, called Web
APIs, have an important influence on the characteristics of the
resulting implementation.

According to Sjoberg, Dyba and Jorgensen [1], the vast
majority of research studies are aimed at technology evolution,
while technology evaluation is less investigated. Maturity mod-
els provide a useful reference for evaluation, providing criteria
for classifying existing implementations and the employed
technologies. Heitmann et al. [2] present an empirical study
that evaluates the level of adoption of semantic technology for
application development and identifies the main technological
challenges for its adoption. One of the main challenges iden-
tified by the authors of this study is the lack of standards and
guidelines for developing applications with semantic capabil-
ities. Therefore, a maturity model able to evaluate semantic
applications can provide important guidelines for application
developers. In addition, Tahir and Macdonell [3] conclude that
most of the existing quality metrics are targeted at general-
purpose object-oriented systems. Other categories of systems,
including Web-based systems, are not sufficiently explored.
The existing maturity models for Web API design found in
the literature [4] [5], though, do not take into account all
characteristics required for developing implementations with
semantic support.

This paper introduces a new maturity model for RESTful
Web APIs that evaluates three complementary and orthogonal
dimensions: Design, Profile and Semantics. These dimensions

represent fundamental characteristics for an efficient and re-
liable integration among systems. This work also identifies
strategies for achieving the highest maturity levels of the
proposed model.

The remainder of this paper is organized as follows. Section
II presents the main concepts required for understanding the
proposed model. The related work is described in section III.
Section IV presents a new maturity model for Web APIs. Some
support technologies for Web API development are evaluated
in section V. Finally, section VI summarizes the outcomes
of this work and points out some open areas for further
development.

II. BACKGROUND

This section describes the main concepts related to the
maturity model for Web APIs proposed in this paper.

A. Semantic Web

The Semantic Web [6] is an extension of the current World
Wide Web, in which data available on the Web is semantically
described. The Semantic Web allows not only humans, but also
machines to infer the meaning of data published on the Web,
and also facilitates data integration and reuse. It is a natural
evolution from a Web based on hypertext, targeted at human
beings, toward a Web of data, which can be interpreted by
machines due to the association of published content with their
semantic description. The combination of Web content with
semantic descriptions creates an interconnected information
structure known as Linked Data [7].

Data available on the Semantic Web must be identified
by HTTP Uniform Resource Identifiers (URIs) and must be
associated with semantic descriptions built using standard tech-
nologies recommended by the World Wide Web Consortium
(W3C). One of such standards is the Resource Description
Framework (RDF) [8], which is a method for information mod-
eling that can be employed for describing resource semantics.
By using RDF, information is structured as triples subject-
predicate-object. Subject represents the resource that is being
described, predicate is a characteristic of the subject, and object
is a value assigned to the characteristic of the subject. The
available data must also have hyperlinks to related content, in
order to enable the navigation through the Web of data.

B. REST

REpresentational State Transfer (REST) is an architectural
style that defines a set of constraints aimed at improving the



performance, availability and scalability of Web-based dis-
tributed systems [9]. It is based on the traditional client-server
paradigm, in which requests issued by clients are executed by
a server.

A RESTful implementation is one that follows the con-
straints defined by the REST architectural style. REST defines
a uniform interface for system components based on four
constraints: resource identification, handling resources through
representations, self-described messages and Hypermedia as
the Engine of Application State (HATEOAS).

Resources are abstractions that represent information han-
dled by RESTful applications. A resource must be identifiable
and accessible through a generic interface. Resources are not
directly accessed; instead, they are seen through a representa-
tion, which is a snapshot of the state of a resource at a given
time. Representations of a given resource may be available
in different formats, such as XML, JSON, HTML, and so
on. Representations are obtained by issuing requests to Web
services provided by a RESTful application.

RESTful services must have stateless behavior, i.e., the
server does not keep information regarding the requests issued
by clients. This constraint is vital to improve the scalability
of the system. Stateless behavior requires self-described mes-
sages, i.e., the request must contain all the required information
for being processed by the server.

The HATEOAS constraint defines that client interaction
must be guided through hypermedia controls, which provide
mechanisms for querying, storing and handling information on
resources. The HATEOAS principle implies that resource rep-
resentations must provide not only resource information, but
also hypermedia controls to guide client interaction, informing
the operations that may be performed on the resource and
providing links to other resources which are made available
by the server.

C. Web API Design

Web APIs consist in programmatic interfaces that provide
access to Web Services for remote clients, allowing the con-
struction of distributed applications based on the Web infras-
tructure [10]. The design of a Web API has a direct influence
on the quality of communication between a server and its
clients, given that it defines how information is modeled,
transmitted and interpreted.

The most adopted design styles for building Web APIs are
based on Remote Procedure Calls (RPC) and on Resources.
Web APIs designed based on RPC style employ the HTTP
protocol to request operations, which are processed by a Web
Service addressed by a single URI. The service receives a
data payload and executes the requested operation using a
set of provided parameters. The RPC style does not follow
the semantics of the HTTP protocol; services are requested
through a HTTP POST method and the result of execution is
contained in a payload sent to the client.

The design style based on Resources creates an interre-
lated set of data, which becomes available through the Web
API. Each resource is addressed by a URI, which allows
the execution of operations on the resource. Operations are

often limited to CRUD (Create, Read, Update and Delete)
procedures applied on resource data.

The best design strategies for modeling a Web API make
use of the original semantics of the data transfer protocol (e.g.,
HTTP). This paper identifies the existing strategies for model-
ing a resource-based Web API and classifies them according to
the level of quality of the obtained implementation, resulting
in a maturity model to guide the construction and to evaluate
the quality of Web APIs.

D. Semantic RESTful Web APIs

The Semantic Web is based on principles and technologies
that may also be applied for the construction of semantically
enriched Web APIs. A Semantic Web API is one in which
data and operations are semantically described. APIs based on
RESTful resources are able to profit from semantic technology,
given that there is no widely accepted standard for describing
data and operations provided by RESTful services.

One enabling technology for implementing Semantic
RESTful Web APIs is JSON-LD [11], which is a W3C stan-
dard that extends the JSON format, allowing the addition of
Linked Data to resource representations. Resources described
in JSON-LD are also valid JSON documents, allowing the
reuse of the existing libraries and tools for processing JSON
data. One of the main goals of JSON-LD is to allow the
construction of Web APIs that provide access to resources
that are semantically described by controlled vocabularies
associated to a given application domain. The description
of resources through a controlled vocabulary establishes a
clearly defined context related to the information exchanged
with client applications, increasing their understanding of data
semantics.

Although JSON-LD represents a step forward toward the
addition of hypermedia controls to resource representations, it
does not provide means to describe the available operations to
handle resources [10]. An alternative that allows wider use of
hypermedia control is provided by Hydra [12], which extends
JSON-LD with a vocabulary aimed at describing operation
semantics. Hydra allows the exchange of information in JSON,
using the semantic context provided by JSON-LD with the
addition of instructions to describe the operations supported by
a resource. Besides enriching the information made available
through the Web API, Hydra offers mechanisms for document-
ing the whole set of resources accessible through the Web API.

E. Web API Description and Documentation

Interaction with Web APIs may require the execution of
complex communication steps between a client and the server.
The communication flow is often composed by a sequence of
requests that must follow a pre-established order in the aim
of executing a complex activity in a given application domain.
A Domain Application Protocol (DAP) allows the description
of interactions among entities in a distributed system, guiding
the execution of a business process [13].

The HTTP protocol provides a uniform interface for han-
dling Web resources among different platforms, standardizing
the semantics of protocol messages. However, HTTP semantics
is not sufficient for describing all details of a given application



domain [13]. One solution for this problem is the adoption of
Profiles [10] to describe application and protocol semantics. A
profile describes a Web API in a format that can be understood
by humans and by software agents, allowing the construction
of intelligent and autonomous clients.

Technologies such as JSON-LD and Hydra can be em-
ployed for description of Profiles [10]. The documentation for-
mat for Web APIs offered by Hydra allows the description of
resources with their corresponding properties and operations.
Complex interactions, though, cannot be described in a profile,
requiring the use of hypermedia controls to guide the client.

F. Quality Criteria

Meskens [14] presents a methodology to establish a di-
agnosis based on quality criteria, which helps developers to
identify if an application should be reengineered or completely
redeveloped. Flexibility, maintainability and testability are
considered the main quality factors, which result in many
criteria such as: consistency, self-documentation, modularity,
simplicity and conciseness. Metrics such as coupling, size and
cohesiveness, are also taken into account by the methodology.
Four levels of abstraction are identified by the methodology.
The implementation level identifies components (e.g., files,
modules, variables) and explains how they are tied together,
abstracting the programming language chosen for system
development. The structural level reveals how parts of the
system will influence the other parts. The functional level
helps to explain the logical relationships among components.
At last, the domain level provides an interpretation of the
functional behavior of components with concepts specific to
the application domain.

According to Daud and Kadir [15] and Chahal and Singh
[16], the most employed metrics for evaluating the quality
of computer systems are cohesion, coupling and complexity.
Coupling measures the dependency among system modules.
Cohesion evaluates if the internal features of a module are
closely related. Complexity derives from coupling and cohe-
sion, and can be defined as the difficulty to understand and
manage a system [17]. These metrics are employed by Tahir
and Macdonell [3] and by Daud and Kadir [15]. The first
two investigate the characteristics related to dynamic metrics,
i.e., metrics applied during system execution [18]. The authors
state that complexity and maintainability are the most explored
aspects by dynamic metrics, while aspects such as testability
and reusability are not given much attention. Daud and Kadir
[15], on the other hand, classify applications based on SOA
(Service Oriented Architecture) principles. These authors state
that modularity and low coupling have an important role
in SOA applications, given that these applications establish
service contracts and behavioral agreements. These authors
divided the development process in four phases: requirements,
design, implementation and maintenance. However, the ma-
jority of metrics established for SOA systems focuses on the
implementation and design phases.

III. RELATED WORK

Maturity models are useful to evaluate the quality of
software design and the resulting implementation. This section
describes two proposals found in the literature that present
maturity models for evaluation of Web APIs.

HTTP-based Type II

REST

RPC URI-Tunneling

HTTP-based Type I

WS-*

HTTP Verbs

Hypermedia Controls

POX

Resources

(a) RMM (b) CoHA

Fig. 1. (a) Richardson and (b) CoHA maturity models

A. Richardson Maturity Model

Richardson Maturity Model (RMM) [5] classifies Web
APIs in four maturity levels according to their design, as shown
by Fig. 1(a). The lowest level consist in using HTTP just as
a data transfer protocol, without following the semantics of
HTTP methods and REST architectural principles. The most
common format for data representation is XML, with a Plain
Old XML style (POX). Interactions are done in RPC style,
providing access to all services through a single access point.

The second level comprises Web APIs organized following
the concept of Web resources. Information accessible through
the API is modeled as multiple resources. Every single re-
source is uniquely identified and addressed, allowing the client
to handle resources individually. Each resource can be accessed
through its own set of operations.

The third maturity level enforces the conformance with
the semantics of the HTTP protocol. It requires the correct
use of HTTP messages to handle resources accordingly, i.e.
POST creates a resource, PUT modifies it, GET retrieves it and
DELETE removes the corresponding resource. HTTP status
codes must also be used in response messages to describe with
consistency the result of operations performed on resources.

The highest maturity level requires adherence to the HA-
TEOAS principle through the provision of hypermedia controls
by the Web API. The provision of hypermedia controls allows
clients of the Web API to explore and navigate through
resources without being tightly coupled to the internal charac-
teristics of the implementation.

B. CoHA Maturity Model

Classification of HTTP-based APIs (CoHA) [4] defines
five maturity levels that can be associated with the design
of Web APIs, as shown by Fig. 1(b). The first level, named
WS-*, corresponds to implementations based on the SOAP
protocol that employ HTTP as data transfer mechanism. In this
level, URIs are associated with services, and SOAP envelopes
encapsulate the required information for service execution.
This strategy presents high cost of adoption, maintenance and
evolution, and may result in vendor lock-in due to the use of
proprietary technology.

The second maturity level, named RPC URI-tunneling,
requires the use of resources for modeling the API, without
enforcing operations based on the semantics of the data



transfer protocol. Despite allowing resources to be uniquely
identified, this level does not grant access to multiple resource
representations. This design approach results in high coupling
between client and server, and constrains their capacity to
evolve independently from each other.

The third level, called HTTP-based Type I, requires han-
dling resources according to the semantics of the HTTP pro-
tocol. The API provides access to resources through represen-
tations, allowing the use of different data formats. This design
requires the server to present stateless behavior, increasing the
scalability of the Web API. It has a low cost of adoption, but
the resulting implementation is still hard to evolve due to the
high coupling between client and server.

The fourth level is named HTTP-based Type II and requires
the use of self-described messages. Therefore, operations and
resources must be described at design time. Web APIs that
adopt this design strategy simplify client-server interactions
by providing a uniform interface.

The fifth and highest level is called REST and follows all
the constraints define by this architectural principle (i.e., re-
sources are identified and addressed, handled through represen-
tations, messages are self-described and provide hypermedia
controls). A high learning curve is required for adopting this
design strategy, but this initial cost is compensated by lower
maintenance and evolution costs, because changes in the Web
API do not interfere with client behavior.

IV. THE WS3 MATURITY MODEL

The WS3 maturity model, as shown in Fig. 2, has a cubic
shape, in which the faces represent the evolution of Web APIs
according to three dimensions, identified as Design, Profile and
Semantics. The Design dimension is based on the Richardson
Maturity Model, described in section 3.1, and represents the
different modeling strategies adopted for designing a Web API.
The Profile dimension reflects the quality of documentation
provided by the Web API. The Semantics dimension describes
the level of support for semantic description of data and
operations presented by the Web API. These three dimensions
are independent from each other and can be freely combined
to classify a given implementation.

Protocol Compliance

Atomic Resources

RPC

Resources

Linke
d 

Data

Pro
file

 dim
ensio

n

Semantic dimension

D
es

ig
n 

di
m

en
si

on

Fig. 2. The WS3 maturity model

According to Chahal and Singh [16], quality is a measure
of user satisfaction, which is perceived by users based on
external attributes of the system. Some outstanding external
attributes are: usability, integrity, maintainability and relia-
bility. However, internal attributes - i.e., cohesion, coupling
and reusability - are of major relevance to the development
team. The WS3 maturity model sees client applications as
users of the Web API, and establishes its internal and external
characteristics to fulfil client expectations. In order to reach
this goal, quality factors, metrics and criteria are distributed
across the three dimensions of the WS3 model.

A. The Design Dimension

The Design dimension evaluates the structural character-
istics of a Web API. This dimension focuses mainly on the
structure of the information provided by the API. The Design
dimension has four maturity levels. The lowest maturity level is
assigned to APIs with RPC design, which are strongly based
on services, and therefore do not comply with REST prin-
ciples. The Resources level corresponds to implementations
in which data provided through the API is modeled in the
form of resources. This design cohesively groups data into
separate units and simplifies information handling, allowing
the definition of operations for managing data. Up from
this level, APIs must have stateless behavior, resources are
handled through their representations and messages are self-
described. The following level, named Protocol Compliance,
is associated with Web APIs that respect the semantics of the
data transfer protocol. From this level upwards, resources are
handled through a uniform interface imposed by the adopted
protocol. In spite of the focus of the Design dimension being
on the structural characteristics of the system, the Protocol
Compliance level evaluates behavioral aspects that aim to
enforce communication patterns. At the top of this face of
the cube is the Atomic Resources level, which corresponds to
the most mature design strategy. This level constrains access
to resource properties separately. In this case, the smallest data
unit that can be handled by operations is the resource, and the
provided operations are able to alter all properties contained in
a representation. The Atomic Resources level is directly linked
to information integrity, given that the constraints imposed by
this design approach increase this quality criterion.

Fig. 3 presents an example of atomic design, in which two
separate resources represent a single person. By adopting this
design it is possible to handle part of data associated to a per-
son separately, guaranteeing the atomicity of operations. Fig.
4 illustrates an example with a representation of a person. The
resource is composed by the following properties: FirstName,
FamilyName, BirthDate, Email and Password. CRUD opera-
tions can be performed on the resource through HTTP GET,
POST, PUT and DELETE messages. However, the resource
provides a second set of operations to handle only properties
Email and Password. Despite respecting the semantics of the
HTTP protocol, the adopted design does not guarantee the
atomicity of operations performed on this resource.

B. The Profile Dimension

A profile provides details on the structure and behavior of
resources handled through a Web API. Self-documentation is
one of the criteria presented by Meskens [14] that is directly

Ivan Salvadori


Ivan Salvadori


Ivan Salvadori


Ivan Salvadori




FirstName
FamilyName
BirthDate

/webapi/person

Entire
Person

GET
POST
PUT
DELETE

Email
Password

/webapi/credential

Entire
Credential

GET
POST
PUT
DELETE

Fig. 3. Example: Atomic resource.

FirstName
FamilyName
BirthDate
Email
Password

/webapi/person

Email
Password

Entire
Person

GET
POST
PUT
DELETE

GET
POST
PUT

DELETE

Fig. 4. Example: Non-atomic resource.

related to the three quality factors (i.e., flexibility, maintain-
ability and testability). The profile is an effective way for self-
documenting an API. Therefore, APIs that reach the maturity
levels associated with the Profile dimension have this quality
characteristic. The proposed maturity model takes into account
only profiles that can be interpreted by software agents. This
constraint reinforces the premise that the documentation must
be employed only for guiding clients at runtime, instead of
guiding the developer (i.e., a human) at design time.

The Profile dimension can be evaluated combined with
the other dimensions (Design and Semantic), and is divided
into two maturity levels. Web APIs classified in the maturity
level Interaction Profile provide documentation describing the
semantics of the adopted communication protocol. This matu-
rity level requires the description of all operations, including
their execution details, such as HTTP method, URI, supported
media types, required properties, and so on. The Domain
Profile level requires the description of details specific to
the application domain of the Web API, such as the order
of operation execution, pre- and post-conditions, etc. This
level may be reached using three different strategies: adding
hypermedia controls to resource representations; through pro-
tocol headers; or by documenting the Web API. Meskens [14]
considers that systems can be seen based on different levels
of abstraction. The Interaction and Domain Profile levels of
the WS3 model correspond, respectively, to the functional and
domain abstraction levels defined by Meskens.

It is important to notice that complex business processes
may require several requests to manipulate multiple resources.
A possible strategy to hide the complexity from the user is to

encapsulate all resources required to execute a complex process
in a single meta-resource, allowing the execution of several op-
erations with a single request. This approach is recommended
if the client application has previous knowledge of all the
information needed for executing the whole process. Some
processes, though, require information produced or provided
by the Web API during the execution of intermediate steps
of the business process. In this scenario, the process cannot
be invoked with a single request; therefore, a mechanism
that guides the client through the execution of a sequence of
requests is required. Hypermedia controls added to resources
may be employed to guide the client, teaching how to execute
operations on resources. This information can be added to
resource representations or to protocol headers. Fig. 5 shows
an example in which a resource Person is created through an
HTTP POST request. The Web API sends a response saying
that the resource was successfully stored and informing the
next step, which is creating a Credential for this person.

POST

C
L
I
E
N
T

Person

Credential

W
E
B

A
P
I

next: POST: Credential

POST

OK

Fig. 5. Orchestration through hypermedia control

The strategy based on hypermedia controls provides a
mechanism for orchestrating operations that is not tied to a
given application domain, given that the execution of busi-
ness processes is directly based on resources and operations.
Despite the fact that this mechanism can be used in any
application domain, there is still a high structural coupling
among resources handled by the Web API. This structural
coupling results from the fact that client applications must
correctly interpret resource representations, which may present
ambiguities, leading to handling errors. A viable alternative is
to describe resource semantics by associating properties with
concepts described by a vocabulary or ontology.

C. The Semantic Dimension

Web APIs described through semantic technology give an
increased understanding of the way in which resources are rep-
resented and consumed. With the Semantic Web, information
can be consistently handled, avoiding all sorts of ambiguity.
The semantic description of resources can be done through
the association of concepts defined by vocabularies shared
with client applications. Through this approach, vocabularies
become the knowledge base, reducing the coupling among
Web APIs and their clients to the conceptual level. The
Semantic dimension of the maturity model represents the use of
semantic technology and is divided into two maturity levels,
which can be combined with the other two dimensions (i.e,
Design and Profile).

Heitmann [2] highlights that the adoption of the Semantic
Web for system development is in expansion, and that one
of the main reasons for its adoption is the ability to simplify



system integration. Despite the increased adoption of semantic
technologies, a large share of system integration efforts require
human intervention. Heitmann states that one of the main
challenges in this area is to integrate different sources of
heterogeneous data. The Semantic Web can provide a solution
for executing complex data integrations. Due to these facts, the
Semantic dimension of the WS3 maturity model is an essential
part in the process of classifying and evaluating Web APIs.

The Semantic Description level corresponds to APIs in
which properties and operations of resources are semantically
described, allowing consumers to understand the information
and to perform operations appropriately (Fig. 6). Web APIs
that provide semantic description of resources result in less
coupled applications, given that the consumer can take into
account the semantic descriptions instead of relying on the
developer to hard-code his/her understanding of the application
domain. However, the semantic description of properties and
operations of resources incurs in a high cost, due to the high
modeling and development complexity.

Person
FOAF

Vocabulary

foaf:Person

foaf:firstName

foaf:familyName

foaf:birthday

FirstName

FamyliName

BirthDate

Credential

Email

Password

foaf:mbox

xfoaf:password_sha1sum

Fig. 6. Semantic description

The Linked Data level is reached when not only resources,
but also the relationships amongst them are semantically
described. Despite being possible to describe relationships
through the documentation of the Web API, the use of hy-
permedia controls results in a more beneficial solution, which
allows consumer applications to obtain this information on
demand [13] [5].

A 
person

FOAF
Vocabulary

Schema.org
Vocabulary

A 
book

Another 
person

author

knows

Fig. 7. Example: Linked Data

Fig. 7 presents an example of use of Linked Data, in which
three resources are semantically described by two different

vocabularies that have equivalent concepts. If more vocabu-
laries are employed to describe resources, higher is the chance
of a client application being able to correctly understand
the information carried by the resource. The capability of
interpreting information is even higher when vocabularies are
shared by several other applications. This occurs with some
public vocabularies such as FOAF, Schema.org, DublinCore
and DBPedia, among others. However, a proprietary vocabu-
lary can be employed to describe a very specific domain that
is not completely described by an existing public vocabulary.
Besides describing the semantics of properties, the example
shown in Fig. 7 identifies relationships among resources, which
are also defined by controlled vocabularies. One can notice in
the example that A person knows Another person that is the
author of A book. The use of Linked Data allows performing
inferences that result in a higher level of information reuse.
It is possible, for example, to infer that A person knows a
book writer. The Linked Data maturity level does not imply
using a standard data format, but Web APIs can adopt standard
technologies such as RDF and JSON-LD, among others, as
shown by Fig. 8.

{
  "@context": {
    "foaf": "http://xmlns.com/foaf/0.1/",
    "schema": "http://schema.org/"
  },
  "@type": ["foaf:Person","schema:Person"],
  "foaf:firstName": "A",
  "foaf:familyName": "person",
  "foaf:knows": {
    "@type": ["foaf:Person","schema:Person"],
    "foaf:firstName": "Another",
    "foaf:familyName": "person",
    "schema:author": {
      "@type": "schema:Book",
      "schema:name": "A book"
    }
  }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Fig. 8. Example: Resource representation in JSON-LD

D. Classification and Selection of Web APIs

The WS3 maturity model provides classification mecha-
nisms that are helpful for the selection and composition of Web
APIs. Fig. 9 shows an example in which a client application
must invoke a service provided by a Web API. Multiple APIs
provide similar services, which are implemented differently.
The client application must choose among the available Web
APIs based on some criteria. The WS3 maturity model can
help in this process, identifying the maturity level of each
existing Web API. As shown in Fig. 9, the Simple Web API
reaches levels D3-S0-P0, meaning that it fits in the third level
of the Design (D) dimension (i.e., Protocol Compliance) and
that it does not provide support for Semantics (S) and Profile
(P). By comparing this result with the levels obtained by the
other APIs, the client application can choose the one that is
more suitable for its needs.

Classifying the maturity level of a given Web API is a
subjective action. Each client application has different needs
that are fitted by a set of features. As a result, is difficult to

Ivan Salvadori


Ivan Salvadori




Client
Application

Semantic
Web API

D3-S0-P0

Maturity 
level? D2-S2-P0

D2-S0-P2

D2-S2-P1

Simple
Web API

Self-documented
Web API

Self-documented
Semantic Web API

Fig. 9. Selection of Web API based on maturity level

find a final number that represents the maturity level. It is up
to client application determine which characteristics are more
relevant to achieve its goals.

E. Comparative Analysis

Richardson and CoHA maturity models provide very useful
means for classifying the design of Web APIs. These maturity
levels allow designers to identify the desired characteristics of
a Web API and guide its development and evolution. Despite
providing a useful reference for evaluating the quality of Web
API design, the maturity model proposed by Richardson does
not describe ways to reach the highest maturity levels [19]
and takes into account a limited set of quality attributes.
On the other hand, CoHA provides a more comprehensive
alternative for Web API evaluation, which is not constrained
to RESTful systems, taking into account other HTTP-based
distributed applications. CoHA also evaluates attributes such
as performance, visibility, cost, evolution and maintenance,
among others. However, CoHA classifies RESTful Web APIs
in a single level that requires full adherence to REST princi-
ples.

The WS3 maturity model, which was introduced in this
paper, takes into account characteristics that are not considered
by Richardson and CoHA, such as the use of profiles and
semantic descriptions. Profiles are vital for documenting Web
APIs that deal with complex business processes, while the
use of semantic descriptions helps clients of the Web API
to understand and handle data correctly. The evaluation done
by Heitmann [2] shows that only 11% of applications that
employ Semantic Web technology execute a fully automated
integration process. Given that the Profile dimension considers
only documentation that can be read by software agents,
the documentation of Web APIs can be used together with
semantic technology to allow application integration without
human intervention. The WS3 maturity model may be used
as a mechanism to promote automatic usability and compos-
ability. In order to implement this feature, a Web APIs have to
reach high maturity levels into different maturity dimensions.
Given that, integration without human intervention relies on
characteristics from different dimensions.

Richardson and CoHA maturity models do not clarify how
the highest maturity levels can be reached. The WS3 maturity
model, on the other hand, suggests the use of hypermedia
controls, Linked Data and profiles to obtain high-quality API
design. The HTTP-based Type I level of the CoHA model re-
quires using Web Application Description Language (WADL)

[20] for describing resource representations and operations
available through the Web API. WADL may be seen as an
approach for implementing profiles, however it is not able to
describe the orchestration of requests required for executing a
complex business process.

V. EVALUATION OF SUPPORT TECHNOLOGY FOR WEB

According to Heitmann [2], the main obstacles for de-
veloping semantic applications are: integrating noisy data;
mismatched data models between components; distribution of
application logic across components; and missing guidelines
and patterns. Maturity models can be employed as patterns and
guidelines for Web API development, aiming to increase the
quality of the resulting product. Software development tools
and frameworks can also take into account the evaluation and
classification criteria identified by maturity models in order to
anticipate and mitigate obstacles during system development,
evolution and maintenance. This section evaluates some tools
and frameworks that provide support for Semantic Web API
development.

The vast majority of Web APIs are described only through
text-based documentation, forcing users to read and understand
these documents to write client applications. This fact results
in high-coupled implementations that are difficult to reuse.
In this context, Maleshkova et al. [21] propose an approach
to semantically annotate and classify the documentation of
Web APIs. The proposed approach employs the SWEET Tool
[22] to add semantic descriptions to Web API documentation
through the execution of a semi-automated process.

Gulden and Kugele [23] propose an approach to add
RESTful Web interfaces to legacy systems through the au-
tomatic generation of Java code based on models. It generates
resources based on the Domain Transfer Object (DTO) pattern,
which are composed only by properties. The integration code
is isolated in a separate layer containing service classes. This
approach provides partial support for hypermedia control.

Strauch and Schreier [19] propose a procedure composed
by three steps for translating SOAP-based service interfaces
into a RESTful Web API. The first step comprises the con-
version of services into resources, which are handled through
POST operations (RPC style). The second iteration applies
a uniform interface with CRUD operations, which are in-
voked through the corresponding HTTP request messages. The
third step adds hypermedia controls, defining the relationships
among different resources. Support for HATEOAS is obtained
through URI templates.

Salvadori and Siqueira [24] propose a framework that
allows resources to be annotated with semantic descriptions.
The framework is based on the JAX-RS specification, which
provides support for the development of RESTful Web Ser-
vices on the Java platform. Annotations are added to resource
properties and operations directly in the source code of the
Web API. These annotations result in resource representations
in JSON-LD format with hypermedia controls based on Hydra
[12]. The framework generates the documentation of the API
based on information obtained from the annotations added to
the source code.

Table 1 compares the maturity level of the support tech-
nologies for Web API development described in this section,

Ivan Salvadori


Ivan Salvadori




TABLE I. MATURITY LEVEL OF SUPPORT TECHNOLOGIES FOR WEB
API DEVELOPMENT.

Support
Technology

Dimension
Design Profile Semantic

Maleshkova et al. [21] All levels None None
Gulden & Kugele [23] All levels None None

Strauch & Schreier [19] All levels Interaction None
Salvadori & Siqueira [24] All levels Interaction Linked Data

taking into account the three dimensions of the maturity model
proposed in this paper. All the described technologies allow
reaching any level in the Design dimension, given that they do
not have a direct influence on the design principles adopted for
building the Web API. Only [24] and [19] reach Interaction
level in the Profile dimension, and none reaches the Domain
level. Just [24] provides full support for Semantic description
of the Web API and its resources. Semantic annotations are
added to the Web API documentation by [21], but it does not
add semantic information to resource representations.

VI. CONCLUSIONS

The WS3 maturity model aims to guide the development of
distributed applications that employ the Web as communication
infrastructure. The resulting model emphasizes the relevance
of efficient design as well as the provision of descriptive
information to obtain integration APIs that result in imple-
mentations with low coupling and able to correctly understand
the semantics of exchanged data.

The proposed maturity model helps to identify the main
goals to promote healthful interaction among clients and the
Web API. First, the API must expose a data model based
on atomic resources and the provided operations must respect
protocol semantics. The Web API must also be described using
profiling mechanisms, allowing software agents to understand
how to interact with resources. At last, the use of Semantic
Web technologies to describe resource representations accessed
through the Web API allows clients to dynamically find out
how data is represented, which operations are available and
how resources relate to each other.

As seen in section V, the existing support technologies
for Web API development still do not promote high quality
design, and have very limited support for building profiles and
for semantic description of resources. It is expected that a new
generation of support technologies looks into these limitations,
aiming to improve the quality of the resulting Web APIs.

REFERENCES

[1] D. I. K. Sjoberg, T. Dyba, and M. Jorgensen, “The future of
empirical methods in software engineering research,” in 2007 Future
of Software Engineering, ser. FOSE ’07. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 358–378. [Online]. Available:
http://dx.doi.org/10.1109/FOSE.2007.30

[2] B. Heitmann, R. Cyganiak, C. Hayes, and S. Decker, “An empirically
grounded conceptual architecture for applications on the web of data,”
Trans. Sys. Man Cyber Part C, vol. 42, no. 1, pp. 51–60, Jan. 2012.
[Online]. Available: http://dx.doi.org/10.1109/TSMCC.2011.2145370

[3] A. Tahir and S. Macdonell, “A systematic mapping study on dynamic
metrics and software quality,” in Software Maintenance (ICSM), 2012
28th IEEE International Conference on, Sept 2012, pp. 326–335.

[4] J. Algermissen, “Classification of HTTP-based APIs,”
http://nordsc.com/ext/classification_of_http_ based_apis.html, 2010.

[5] J. Webber, S. Parastatidis, and I. S. Robinson, REST in Practice -
Hypermedia and Systems Architecture. O’Reilly, 2010.

[6] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,”
Scientific American, vol. 284, no. 5, pp. 34–43, May 2001.

[7] C. Bizer, T. Heath, K. Idehen, and T. Berners-Lee, “Linked data
on the web (ldow2008),” in Proceedings of the 17th International
Conference on World Wide Web, ser. WWW ’08. New York,
NY, USA: ACM, 2008, pp. 1265–1266. [Online]. Available: http:
//doi.acm.org/10.1145/1367497.1367760

[8] W3C, “Resource Description Framework (RDF) Model and Syntax
Specification,” http://www.w3.org/TR/rdf-syntax-grammar/, 2014.

[9] R. T. Fielding, “REST: architectural styles and the design of network-
based software architectures,” Doctoral dissertation, University of Cal-
ifornia, Irvine, 2000.

[10] L. Richardson, M. Amundsen, and S. Ruby, Restful Web Apis.
Oreilly & Associates Incorporated, 2013. [Online]. Available: http:
//books.google.com.br/books?id=i3a7mAEACAAJ

[11] M. Lanthaler and C. Gütl, “On using JSON-LD to create evolvable
RESTful services,” in WS-REST, R. Alarcón, C. Pautasso, and E. Wilde,
Eds. ACM, 2012, pp. 25–32.

[12] M. Lanthaler, “Creating 3rd Generation Web APIs with Hydra,”
in Proceedings of the 22Nd International Conference on World
Wide Web Companion, ser. WWW ’13 Companion. Republic
and Canton of Geneva, Switzerland: International World Wide Web
Conferences Steering Committee, 2013, pp. 35–38. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2487788.2487799

[13] I. Robinson, “RESTful Domain Application Protocols,” in REST: From
Research to Practice, E. Wilde and C. Pautasso, Eds. Springer, 2011,
pp. 61–91.

[14] N. Meskens, “Software quality analysis system: a new approach,” in In-
dustrial Electronics, Control, and Instrumentation, 1996., Proceedings
of the 1996 IEEE IECON 22nd International Conference on, vol. 3,
Aug 1996, pp. 1406–1411 vol.3.

[15] N. Nik Daud and W. Wan Kadir, “Static and dynamic classifications for
SOA structural attributes metrics,” in Software Engineering Conference
(MySEC), 2014 8th Malaysian, Sept 2014, pp. 130–135.

[16] K. Kaur Chahal and H. Singh, “A metrics based approach to evaluate
design of software components,” in Global Software Engineering, 2008.
ICGSE 2008. IEEE International Conference on, Aug 2008, pp. 269–
272.

[17] H. Zuse, Software Complexity: Measures and Methods. Hawthorne,
NJ, USA: Walter de Gruyter & Co., 1991.

[18] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and
R. Koschke, “A systematic survey of program comprehension through
dynamic analysis,” Software Engineering, IEEE Transactions on,
vol. 35, no. 5, pp. 684–702, Sept 2009.

[19] J. Strauch and S. Schreier, “RESTify: From RPCs to RESTful
HTTP Design,” in Proceedings of the Third International Workshop
on RESTful Design, ser. WS-REST ’12. New York, NY, USA:
ACM, 2012, pp. 11–18. [Online]. Available: http://doi.acm.org/10.
1145/2307819.2307824

[20] M. J. Hadley, “Web Application Description Language (WADL),”
Mountain View, CA, USA, Tech. Rep., 2006.

[21] M. Maleshkova, L. Zilka, P. Knoth, and C. Pedrinaci, “Cross-Lingual
Web API Classification and Annotation,” in MSW, ser. CEUR Work-
shop Proceedings, E. Montiel-Ponsoda, J. McCrae, P. Buitelaar, and
P. Cimiano, Eds., vol. 775. CEUR-WS.org, 2011, pp. 1–12.

[22] M. Maleshkova, C. Pedrinaci, and J. Domingue, “Semantic annotation
of Web APIs with SWEET,” in 6th Workshop on Scripting and
Development for the Semantic Web, colocated with ESWC, 2010.

[23] M. Gulden and S. Kugele, “A Concept for Generating
Simplified RESTful Interfaces,” in Proceedings of the 22Nd
International Conference on World Wide Web Companion,
ser. WWW ’13 Companion. Republic and Canton of
Geneva, Switzerland: International World Wide Web Conferences
Steering Committee, 2013, pp. 1391–1398. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2487788.2488181

[24] I. Salvadori and F. Siqueira, “A Framework for Semantic Description
of RESTful Web APIs,” in Web Services (ICWS), 2014 IEEE 21th
International Conference on, 2014, pp. 630–637.

Ivan Salvadori


Ivan Salvadori


Ivan Salvadori



