
Analysis and Testing of Ajax-based
Single-page Web Applications

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof. dr. ir. J.T. Fokkema,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op vrijdag 19 juni 2009 om 14:00 uur

door

Ali MESBAH

ingenieur informatica
geboren te Karaj, Iran

Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. A. van Deursen

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. A. van Deursen Technische Universiteit Delft, promotor
Prof. dr. A. Orso Georgia Institute of Technology
Prof. dr. A.L. Wolf Imperial College London
Prof. dr. P.M.E. De Bra Technische Universiteit Eindhoven
Prof. dr. P. Klint Universiteit van Amsterdam & CWI
Prof. dr. ir. G.J.P.M. Houben Technische Universiteit Delft
Prof. dr. ir. F.W. Jansen Technische Universiteit Delft

The work in this thesis has been carried out at the Delft University of Technol-
ogy, under the auspices of the research school IPA (Institute for Programming
research and Algorithmics). This research was partially supported by the
Dutch Ministry of Economic Affairs under the SenterNovem program, project
Single Page Computer Interaction (SPCI).

IPA Dissertation Series 2009-08

Copyright c© 2009 by Ali Mesbah

ISBN 978-90-79982-02-8

Cover design by Azin Nader and Mohamad Yekta.

This work has been typeset by the author using LATEX.

Printed by Wöhrmann Print Service, Zutphen.

Contents

Preface ix

List of Acronyms xi

1 Introduction 1
1.1 Web Evolution . 1

1.1.1 Static Hypertext Documents 1

1.1.2 Dynamically Generated Pages 2

1.1.3 Web Architecture . 4

1.1.4 Rich Internet Applications 4

1.1.5 Web 2.0 . 5

1.2 Ajax . 6

1.2.1 JavaScript and the Document Object Model 6

1.2.2 Cascading Style Sheets . 7

1.2.3 The XMLHttpRequest Object 7

1.2.4 A New Approach to Web Applications 7

1.2.5 Multi-page versus Single-page Web Applications 10

1.2.6 Reverse Ajax: Comet . 10

1.3 Challenges and Research Questions 12

1.3.1 Architecture . 14

1.3.2 Reengineering . 15

1.3.3 Analysis and Testing . 16

1.4 Research Method and Evaluation 18

1.5 Thesis Outline . 19

1.6 Origin of Chapters . 20

2 A Component- and Push-based Architectural Style for Ajax 23
2.1 Introduction . 23

2.2 Ajax Frameworks . 25

2.2.1 Echo2 . 26

2.2.2 GWT . 27

2.2.3 Backbase . 27

2.2.4 Dojo and Cometd . 28

2.2.5 Features . 29

2.3 Architectural Styles . 30

2.3.1 Terminology . 30

2.3.2 Existing Styles . 31

2.3.3 A Style for Ajax . 32

2.4 Architectural Properties . 32

2.4.1 User Interactivity . 33

2.4.2 User-perceived Latency 33

2.4.3 Network Performance . 34

2.4.4 Simplicity . 34

2.4.5 Scalability . 34

2.4.6 Portability . 34

2.4.7 Visibility . 34

2.4.8 Reliability . 34

2.4.9 Data Coherence . 35

2.4.10 Adaptability . 35

2.5 Spiar Architectural Elements . 35

2.5.1 Processing Elements . 36

2.5.2 Data Elements . 37

2.5.3 Connecting Elements . 39

2.6 Architectural Views . 39

2.6.1 Ajax view . 39

2.6.2 Comet view . 40

2.7 Architectural Constraints . 42

2.7.1 Single Page Interface . 42

2.7.2 Asynchronous Interaction 42

2.7.3 Delta-communication . 43

2.7.4 User Interface Component-based 43

2.7.5 Web standards-based . 44

2.7.6 Client-side Processing . 44

2.7.7 Stateful . 45

2.7.8 Push-based Publish/Subscribe 45

2.8 Discussion and Evaluation . 46

2.8.1 Retrofitting Frameworks onto Spiar 46

2.8.2 Typical Ajax Configurations 46

2.8.3 Issues with push Ajax . 48

2.8.4 Resource-based versus Component-based 48

2.8.5 Safe versus Unsafe Interactions 49

2.8.6 Client- or server-side processing 49

2.8.7 Asynchronous Synchronization 50

2.8.8 Communication Protocol 50

2.8.9 Design Models . 51

2.8.10 Scope of Spiar . 51

2.9 Related Work . 51

2.10 Concluding Remarks . 53

3 Migrating Multi-page Web Applications to Ajax Interfaces 55
3.1 Introduction . 55

3.2 Single-page Meta-model . 56

3.3 Migration Process . 56

3.3.1 Retrieving Pages . 58

3.3.2 Navigational Path Extraction 58

3.3.3 UI Component Model Identification 59

iv Contents

3.3.4 Single-page UI Model Definition 59

3.3.5 Target UI Model Transformation 60

3.4 Navigational Path Extraction . 60

3.4.1 Page Classification . 60

3.4.2 Schema-based Similarity 61

3.4.3 Schema-based Clustering 62

3.4.4 Cluster Refinement/Reduction 62

3.5 UI Component Identification . 64

3.5.1 Differencing . 64

3.5.2 Identifying Elements . 65

3.6 Tool Implementation: Retjax . 65

3.7 Case Study . 66

3.7.1 JPetStore . 66

3.7.2 Reference Classification 66

3.7.3 Automatic Classification 67

3.7.4 Evaluation . 69

3.8 Discussion . 70

3.9 Related Work . 71

3.10 Concluding Remarks . 72

4 Performance Testing of Data Delivery Techniques for Ajax 75
4.1 Introduction . 75

4.2 Web-based Real-time Notification 78

4.2.1 HTTP Pull . 78

4.2.2 HTTP Streaming . 79

4.2.3 Comet or Reverse Ajax 79

4.3 Comet Implementations . 81

4.3.1 Cometd Framework and the Bayeux Protocol 81

4.3.2 Direct Web Remoting (DWR) 82

4.4 Experimental Design . 83

4.4.1 Goal and Research Questions 83

4.4.2 Outline of the Proposed Approach 83

4.4.3 Independent Variables . 84

4.4.4 Dependent Variables . 84

4.5 Distributed Testing . 85

4.5.1 The Chiron Distributed Testing Framework 86

4.5.2 Testing Environment . 89

4.5.3 Example Scenario . 90

4.5.4 Sample Application: Stock Ticker 91

4.6 Results and Evaluation . 92

4.6.1 Publish Trip-time and Data Coherence 92

4.6.2 Server Performance . 92

4.6.3 Received Publish Messages 95

4.6.4 Received Unique Publish Messages 95

4.6.5 Received Message Percentage 98

4.6.6 Network Traffic . 98

Contents v

4.7 Discussion . 98

4.7.1 The Research Questions Revisited 98

4.7.2 Threats to Validity . 101

4.8 Related Work . 103

4.9 Concluding Remarks . 104

5 Crawling Ajax by Inferring User Interface State Changes 107
5.1 Introduction . 107

5.2 Challenges of Crawling Ajax . 109

5.2.1 Client-side Execution . 109

5.2.2 State Changes & Navigation 109

5.2.3 Dynamic Document Object Model (DOM) 109

5.2.4 Delta-communication . 110

5.2.5 Elements Changing the Internal State 110

5.3 A Method for Crawling Ajax . 111

5.3.1 User Interface States . 111

5.3.2 The State-flow Graph . 111

5.3.3 Inferring the State Machine 112

5.3.4 Detecting Clickables . 112

5.3.5 Creating States . 115

5.3.6 Processing Document Tree Deltas 115

5.3.7 Navigating the States . 115

5.3.8 CASL: Crawling Ajax Specification Language 117

5.3.9 Generating Indexable Pages 117

5.4 Tool Implementation: Crawljax 118

5.5 Case Studies . 119

5.5.1 Subject Systems . 119

5.5.2 Experimental Design . 120

5.5.3 Results and Evaluation 121

5.6 Discussion . 123

5.6.1 Back Implementation . 123

5.6.2 Constantly Changing DOM 123

5.6.3 Cookies . 123

5.6.4 State Space . 124

5.7 Applications . 124

5.7.1 Search Engines . 124

5.7.2 Discoverability . 125

5.7.3 Testing . 126

5.8 Related Work . 127

5.9 Concluding Remarks . 127

6 Invariant-Based Automatic Testing of Ajax User Interfaces 129
6.1 Introduction . 129

6.2 Related Work . 130

6.3 Ajax Testing Challenges . 132

6.3.1 Reach . 132

vi Contents

6.3.2 Trigger . 133

6.3.3 Propagate . 133

6.4 Deriving Ajax States . 133

6.5 Data Entry Points . 135

6.6 Testing Ajax States Through Invariants 136

6.6.1 Generic DOM Invariants 136

6.6.2 State Machine Invariants 137

6.6.3 Application-specific Invariants 137

6.7 Testing Ajax Paths . 137

6.7.1 Oracle Comparators . 139

6.7.2 Test-case Execution . 139

6.8 Tool Implementation: Atusa . 139

6.9 Empirical Evaluation . 142

6.9.1 Study 1: TUDU . 142

6.9.2 Study 2: Finding Real-Life Bugs 145

6.10 Discussion . 148

6.10.1 Automation Scope . 148

6.10.2 Invariants . 148

6.10.3 Generated versus hand-coded JavaScript 149

6.10.4 Manual Effort . 149

6.10.5 Performance and Scalability 149

6.10.6 Application Size . 149

6.10.7 Threats to Validity . 150

6.10.8 Ajax Testing Strategies . 150

6.11 Concluding Remarks . 150

7 Conclusion 153
7.1 Contributions . 153

7.2 Research Questions Revisited . 154

7.3 Evaluation . 159

7.4 Future Work and Recommendations 161

7.5 Concluding Remarks . 162

A A Single-page Ajax Example Application 163
A.1 The HTML Single-page . 163

A.2 The Run-time DOM . 163

A.3 Requesting Data . 164

A.4 The Server-side Code . 166

A.5 DOM Injection . 166

A.6 Submitting Data . 168

Samenvatting (Dutch Summary) 171

Bibliography 175

Curriculum Vitae 191

Contents vii

viii Contents

Preface

Four years have passed since I started my PhD research project (SPCI). Now
that I look back, I can say with great confidence that it is has been a very

instructive and pleasant experience. I wish to thank all those who have made
it possible.

First of all, I would like to extend my heartfelt gratitude to Arie van
Deursen for giving me the opportunity to work under his excellent super-
vision. Arie has been a great source of inspiration and I am very thankful for
his continuous encouragement and support, enthusiasm, and kindness. His
extensive knowledge and insight along with his open and positive attitude
make him a great mentor for every student.

I would like to thank the members of my defense committee: prof. dr.
Alessandro Orso, prof. dr. Alex Wolf, prof. dr. Paul de Bra, prof. dr. Paul
Klint, prof. dr. Geert-Jan Houben, and prof. dr. Erik Jansen, for providing me
with valuable feedback on this thesis.

I would like to thank Engin Bozdag for his feedback on Chapter 2, our
collaboration in writing Chapter 4, and more importantly, for the good times
on conference trips.

Many thanks to the (current and former) members of the Software En-
gineering Research Group (SERG) at Delft University of Technology: Andy
Zaidman (for proof reading parts of the thesis), Bas Cornelissen (for correcting
the ‘Samenvatting’), Cathal Boogerd, Marius Marin, Rui Abreu, Eelco Visser
and his ‘gang’, Martin Pinzger, Gerd Gross, Marco Lormans, Bas Graaf, Al-
berto Gonzalez, Michaela Greiler, Eric Piel, Hans Geers, Frans Ververs, Teemu
Kanstren, Eric Bouwers, and Adam Nasr.

The first year of my PhD work took place in the software engineering re-
search group (SEN1) at the Centrum Wiskunde & Informatica (CWI) in Ams-
terdam. I thank Paul Klint and the members of SEN1 for facilitating my stay
at CWI.

During my MSc studies I started working at West Consulting BV (West),
a software company composed of highly motivated and disciplined software
engineers. I have gained most of my real-world industrial software engineer-
ing experience at West, for which I am very thankful to all the colleagues. In
particular, I am grateful to Rob Westermann, managing director of West, for
his continuous support and sponsoring through all these years.

Within the SPCI project, I had the privilege to work with a number of
talented MSc students: Engin, Maikel, Justin, Vahid, Cor-Paul, and Danny.
Thanks for the great collaborations and results.

I really appreciate spending time with my dear friends Payman, Parham,
Behnam, Vahid, and Samrad. Thanks for the fun times as well as the valuable
conservations on all aspects of life, politics, and technology.

My sincere thanks go to Azin Nader and my dear friend Mohamad Yekta
for designing the cover of this thesis.

I am very grateful to my parents, my two sisters, and my parents-in-law, for
their unconditional support and kindness. I thank my father for encouraging
me to follow his steps in doing a PhD.

Last, but certainly not least, I am indebted to my best friend and wife,
Negin, who tolerated my negligence during the paper submission deadlines.
Thanks for everything!

Ali Mesbah
April 24, 2009

Delft

x

List of Acronyms

ASP Active Server Pages

API Application Programming Interface

ATUSA Automatically Testing User-interface States of Ajax

CGI Common Gateway Interface

Crawljax CRAWLing aJAX

CSS Cascading Style Sheets

DOM Document Object Model

DSL Domain Specific Language

GUI Graphical User Interface

GWT Google Web Toolkit

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

JSF JavaServer Faces

JSP JavaServer Pages

JSON JavaScript Object Notation

Ajax Asynchronous JavaScript and XML

REST REpresentational State Transfer

Retjax Reverse Engineering Tool for Ajax

RIA Rich Internet Application

SPIAR Single Page Internet Application aRchitecture

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

XHTML Extensible HyperText Markup Language

WWW World Wide Web

xii

Chapter

1
Introduction

According to recent statistics,1 there are approximately 1.46 billion people
using the Internet, with a penetration of 21.9%, based on the world popu-

lation estimate of 6.67 billion persons for mid-year 2008. This figure represents
an incredible increase of 305% in 2008, compared to the year 2000.

The World Wide Web (WWW) has been growing at a very fast pace (see
Figure 1.1). In July 2008, Google engineers announced2 that the search engine
had discovered one trillion unique URLs on the Internet.

Current wide user participation in accessing, creating, and distributing dig-
ital content is mainly driven by two factors: wider world wide broadband
access and new web technologies providing user-friendly software tools.

The web has had a significant impact on business, industry, finance, edu-
cation, government, and entertainment sectors, as well as our personal lives.
Many existing software systems have been and continue to be migrated to the
web, and many new domains are being developed, thanks to the ubiquitous
nature of the web.

In this thesis, we focus on understanding, analyzing, and testing interactive
standards-based web applications, and the consequences of moving from the
classical multi-page model to a single-page style.

In this chapter, we first take a brief look at the evolution of the web from
its infancy stages up until today, with respect to the level of offered user
interactivity and responsiveness. We discuss the advantages and challenges
that new web technologies bring with them and outline the main questions
that are addressed in this research.

1.1 Web Evolution

1.1.1 Static Hypertext Documents
The WWW was created in 1989 by Tim Berners-Lee, and released in 1992. The
web was initially based on the following four concepts (Berners-Lee, 1996):

• Independence of specifications, to achieve the ultimate goal of flexibility
through as few and independent specifications as possible;

• The Uniform Resource Identifier (URI), a sequence of characters used
to identify or name a resource, such as a web page, uniquely on the
web space. The web requires only unidirectional links, enabling users to
link to external resources without any action required from the external

1http://www.internetworldstats.com, retrieved 20 October 2008.
2 http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html

http://www.internetworldstats.com
http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html

Figure 1.1 The WWW growth. Note: Sites = number of web servers (one host
may have multiple sites by using different domains or port numbers). Taken from
(Zakon, 2006).

party. The Uniform Resource Locator (URL) is a URI, which also speci-
fies the location of the identified resource and the protocol for accessing
it (Berners-Lee et al., 1994);

• The HyperText Markup Language (HTML), to format data in hypertext
documents. Hypertext refers to text on a computer that makes a dy-
namic organization of information through connections (called hyper-
links) possible;

• The HyperText Transfer Protocol (HTTP), an application-level, stateless
request-response protocol for distributed, hypermedia information sys-
tems (Fielding et al., 1999). It is used for transporting data on the net-
work between the client (e.g., browser) and server. The protocol sup-
ports eight operations: GET, POST, HEAD, PUT, OPTIONS, DELETE,
TRACE, and CONNECT. In practice, mostly the fist two are used to
GET pages from, and POST user data to, servers.

Using these concepts, a simple but powerful client/server architecture was
developed in which resources could be linked together and easily accessed
through web browsers. In the early nineties, the web was merely composed
of linked simple static hypertext documents. Upon sending a request to the
server, the server would simply locate and retrieve the corresponding web
page on the file-system, and send it back to the client browser. The browser
would then use the new web page to refresh the entire interface. Figure 1.2
shows one of the first web browsers called Mosaic, credited with popularizing
the web because of its user friendly interface.

1.1.2 Dynamically Generated Pages
After the wide adoption of the web, more complex web applications began to
flourish, moving from static pages on the file-system to dynamically assem-

2 1.1. Web Evolution

Figure 1.2 Screen shot of the Mosaic web browser interface, late 1993, designed
at NCSA.

bled pages served by smarter web servers. Figure 1.3 shows the classical web
client/server interaction style in which a typical scenario would be as follows:

• the user clicks on a hypertext link (URL),

• the browser sends a (HTTP GET) request to the server,

• (static) if the request points to a file stored on disk, the server retrieves
the contents of that file,

• (dynamic) if the request cannot be associated with a file on the disk,
then based on the request, the parameters, and the server-side state, the
server assembles a new web page,

• the server sends the page to the browser as a response, and

• the browser refreshes the entire page.

The first dynamic web pages were often created with the help of server-
side languages, such as Perl, typically though the Common Gateway Interface
(CGI), a standard (W3C, 1995) for interfacing external applications, such as
databases, with web servers to assemble dynamic web pages.

Chapter 1. Introduction 3

ServerBrowser

App
Server

HTML
UI

GET

HTTP

Figure 1.3 Classical web client/server interaction pattern.

As the web matured, more server-side scripting languages appeared, exam-
ples of which include PHP, Python, Ruby, JavaServer Pages (JSP), and Active
Server Pages (ASP). Such languages typically run on the server, have access to
various resources, and are capable of creating and returning web pages upon
request.

The ability to generate web pages contributed to the separation of concerns
(presentation, business logic, data) and realization of multi-tier architectures
for web applications.

1.1.3 Web Architecture
By the year 2000, many of the initial concepts forming the backbone of the web
(e.g., HTTP, URI, HTML) and additional recommendations such as Cascad-
ing Style Sheets (CSS) (level 2) and Document Object Model (DOM) (W3C, a)
(level 2) were standardized through the World Wide Web Consortium (W3C).
In addition, an architectural style of the web called REpresentational State
Transfer (REST) was proposed by Fielding (2000), capturing the essence of
the main features of the web architecture, through architectural constraints
and properties. Rest specifies a layered client-stateless-server architecture in
which each request is independent of the previous ones, inducing the prop-
erty of scalability. In practice, however, not many web implementations can
be found that abide by the restrictions set by Rest. In particular, many devel-
opers have ignored the stateless constraint by allowing the server to keep track
of relevant state changes. Chapter 2 discusses the architecture of the web in
more detail.

1.1.4 Rich Internet Applications
It soon became apparent that HTML was not designed for creating an interac-
tive Graphical User Interface (GUI). Classical web applications are, inherently,
based on a multi-page user interface model, in which interactions are based on
a synchronous page-sequence paradigm. While simple and elegant in de-
sign for exchanging documents, this model has many limitations for develop-
ing modern web applications with user friendly human-computer interaction.
The main limitations can be summarized as follows:

• Low lever of user interactivity;

4 1.1. Web Evolution

Figure 1.4 Screen shot of OpenLaszlo Webtop, a RIA providing functionality for
email, address book, and calendars.

• Redundant data transfer between the client/server;

• High user-perceived latency;

• The browser is passive: there is hardly any application-specific client-
side processing.

The concept of a Rich Internet Application (RIA) was proposed (Allaire,
2002) as a response, to describe a new class of web applications that could
provide richer user interface components on the browser.

The common ground for all RIAs is an intermediate layer of code intro-
duced between the user and the server, which acts as an extension of the
browser, usually taking over responsibility of server communication and ren-
dering the web user interface. An example of a RIA technology is a Java
Applet, which extends the web browser, using a Java Virtual Machine (JVM).
Other well-known examples include Adobe Flex (based on Flash), OpenLas-
zlo, and Microsoft Silverlight. Figure 1.4 depicts a screen shot of a RIA desk-
top, built on OpenLaszlo.

One of the main issues with such technologies is their non-standard (pro-
prietary) plugin-based nature. Users need to install specific plugins for each
of the RIA technologies mentioned above.

1.1.5 Web 2.0
Web 2.0 (O’Reilly, 2005) is a term often used describing changing trends in
the use of web technology, i.e., evolution from a hypertext read-only system
into a dynamic medium of user-created content and rich interaction.

Even though the term is ambiguously defined, it revolves around web tech-
nologies that promote:

• strong participation of web users as a source of content (e.g., the online
free encyclopedia Wikipedia, the photo sharing site Flickr),

Chapter 1. Introduction 5

• user collaboration and information sharing (e.g., the social networking
web application Facebook),

• rich but simple to use web user interfaces (e.g., Google Maps),

• and software as a service through the web (e.g., the online office appli-
cation Google Docs).

Many Web 2.0 applications rely heavily on a prominent enabling technol-
ogy called Asynchronous JavaScript and XML (Ajax) (Garrett, 2005), which is
the key topic of this thesis.

1.2 Ajax

1.2.1 JavaScript and the Document Object Model
In 1995, Netscape 2 introduced a simple API called the Document Object
Model (DOM), and a new client-side scripting language into the browser
called JavaScript. JavaScript is a weakly typed, prototype-based language
with first-class functions. JavaScript 1.1 was submitted to Ecma International
resulting in the standardized version named ECMAScript. Microsoft followed
Netscape by introducing its dialect of the language JScript into Internet Ex-
plorer in 1996.

The Document Object Model (DOM) (W3C, a) is a platform- and language-
neutral standard object model for representing HTML and XML documents.
It provides an API for dynamically accessing, traversing, and updating the
content, structure, and style of such documents.

In the Web browser, a DOM instance can be seen as the run-time represen-
tation of an HTML page; The DOM object is a tree-based model of the rela-
tionships between various HTML elements (e.g., images, paragraphs, forms,
tables) present in the document. The first instance of the object is created af-
ter an HTML page is loaded into the browser and parsed. This object can be
further traversed and modified through JavaScript and the results of modi-
fications are incorporated back into the presented page. There is generally a
one-to-one relation between DOM elements and user interface elements (See
Appendix A for an example of how the DOM is manipulated in JavaScript).

Netscape 2 and 3 supported a simple DOM that offered access to a limited
set of document elements such as images, links, and form elements. This
DOM API was adopted by most browser vendors and incorporated into the
HTML specification as DOM Level 0 by the W3C. later on, Internet Explorer
4 improved the DOM by allowing access to and modification of all document
elements. By 1998, the first specification of DOM (Level 1) was released,
defining the core DOM interfaces, such as Document, Node, Element, and
Attr. DOM Level 2 followed in 2000, as an extension on the previous level, to
define API’s for working with DOM events and stylesheets.

JavaScript was initially used, primarily, for performing simple computa-
tions on the browser and modifying the browser User Interface (UI) through

6 1.2. Ajax

DOM APIs, a technique that was called Dynamic HTML (DHTML), to add
some degree of dynamism to the static browser interface. Significant browser
compatibility issues regarding DOM implementations, however, discouraged
web developers to make much use of DHTML beyond styling menus and
simple form manipulations.

The latest version of the W3C DOM specification is Level 3, released in
2004. Currently, web browsers support many features of the W3C DOM stan-
dard (mostly Level 2).

1.2.2 Cascading Style Sheets

Cascading Style Sheets (CSS) is a standard for specifying the presentation of
HTML (or XML) documents. While HTML is used to define the structure of
a document, CSS is used to specify how the structured elements should be
displayed. The first version of CSS (Level 1) was adopted in 1996 by the WC3,
to define attributes for specifying styling properties such as colors, margins,
and fonts. The second version, CSS Level 2, was released in 1998, to define a
number of advanced features, such as relative, absolute, and fixed positioning
of elements. CSS Level 2 is supported by most modern browsers. A new
recommendation by W3C, CSS Level 3, is currently under development.

1.2.3 The XMLHttpRequest Object

In 1998, Microsoft introduced Remote Scripting, a technology that allowed
scripts running inside a browser, e.g., through a Java Applet, to exchange
information with a server. Shortly after, in 1999, the XMLHttpRequest object
was created as an ActiveX control in Internet Explorer 5. Other browsers (e.g.,
Mozilla, Safari) followed with their own implementation of this object soon.
The XMLHttpRequest object can be accessed in JavaScript to transfer text in
various formats, such as XML, HTML, plain text, JavaScript Object Notation
(JSON), and JavaScript, between the server and the browser (a)synchronously
at the background without the need of a page refresh.

1.2.4 A New Approach to Web Applications

The term Ajax was coined, in February 2005, in an article called ‘Ajax: A New
Approach to Web Applications’ by Garrett (2005), and defined as:

• standards-based presentation using XHTML and CSS;

• dynamic display and interaction using DOM;

• data interchange and manipulation using XML and XSLT;

• asynchronous data retrieval using XMLHttpRequest;

• and JavaScript binding everything together.

Chapter 1. Introduction 7

Figure 1.5 The synchronous interaction pattern of a classical web application (top)
compared with the asynchronous pattern of an AJAX application (bottom). Taken
from Garrett (2005).

8 1.2. Ajax

Figure 1.6 Screen shot of Google Suggest. As a web user types search keywords,
the application retrieves suggestions from the server at the background, and shows
them to the user without having to refresh the whole page.

The term Ajax served to highlight and give a name to a new breed of web
applications that could be seen as a further evolution of the classical web.
Although many of the technologies Ajax is based on are not new, this naming
by Garrett made web developers aware of the possibilities for adopting a new
way of developing applications on the web. Figure 1.5 depicts the classical
synchronous interaction pattern compared with the asynchronous pattern of
an Ajax application.

For more technical details we refer to Appendix A, which describes a sim-
ple single-page Ajax-based example application.

Although there have been some disagreements (Koch, 2005) on what Ajax

is exactly, how new it is, and which essential components the technology
is constituted from, a general acceptance of the fundamental concepts has
been achieved within the web community. The acceptance has mainly been
driven by the many concrete Ajax examples Google has been working on
(even before the term Ajax was coined) from Google Suggest (Figure 1.6),
Google Maps, Gmail, to porting desktop applications like Word to web-based
versions like Google Documents (Figure 1.7).

When we take a look at such applications from a user’s perspective, the
main difference, with respect to classical web applications, is the increased
responsiveness and interactivity. A refresh of the entire page is generally not
seen any longer for each user action and the interaction takes place at a much
finer granularity level.

When compared to RIA technologies such as OpenLaszlo, the main differ-
ence and advantage is that no plugin is required, since Ajax is based on web
standards that modern browsers support already.

Chapter 1. Introduction 9

Building robust Ajax web applications has been made possible thanks to
the evolution of the major browsers (e.g., Firefox) and the way they have
supported web standards such as DOM and JavaScript. In 2006, the W3C
released the first draft specification of XMLHttpRequest (W3C, b) to create an
official web standard for this invaluable component of Ajax technology.

Adopting Ajax for developing web applications has a number of key ad-
vantages that are briefly discussed next.

1.2.5 Multi-page versus Single-page Web Applications

Ajax potentially brings an end to the classical click-and-wait style of web nav-
igation, enabling us to provide the responsiveness and interactivity end users
expect from desktop applications. In a classical web application, the user has
to wait for the entire page to reload to see the response of the server. With
Ajax, however, small delta messages are requested from the server, behind the
scenes, by the Ajax engine and updated on the current page through modifi-
cation to the corresponding DOM-tree. This in sharp contrast to the classical
multi-page style, in which after each state change a completely new DOM-tree
is created from a full page reload.

Ajax gives us a vehicle to build web applications with a single-page web
interface, in which all interactions take place on one page. Single-page web
interfaces can improve complex, non-linear user workflows (Willemsen, 2006)
by decreasing the number of click trails and the time needed (White, 2006) to
perform a certain task, when compared to classical multi-page variants.

Another important aspect of Ajax is that of enriching the web user inter-
face with interactive components and widgets. Examples of widgets, which
can all co-exist on the single-page web interface, include auto-completion for
input fields, in-line editing, slider-based filtering, drag and drop, rich tables
with within-page sorting, shiny photo albums and calendars, to name a few.
These are all web UI components that are made possible through extensive
DOM programming by means of JavaScript and delta client/server comm-
unication.

In most classical web applications, a great deal of identical content is prese-
nt in page sequences. For each request, the response contains all the redun-
dant content and layout, even for very marginal updates. Using Ajax to up-
date only the relevant parts of the page results, as expected, in a decrease
in the bandwidth usage. Experimental results have shown a performance in-
crease of 55 to 73% (Smullen III and Smullen, 2008; Merrill, 2006; White, 2006)
for data transferred over the network, when Ajax is used to conduct partial
updates.

1.2.6 Reverse Ajax: Comet

The classical model of the web requires all communication between the br-
owser and the server to be initiated by the client, i.e., the end user clicks on a
button or link, and thereby requests a new page from the server. No permanent

10 1.2. Ajax

Figure 1.7 Screen shot of Google Documents, a web-based word processor,
spreadsheet, presentation, and form application.

connection is established between client/server and the server is not required
to maintain any state information from the clients.

This pull-based (polling) style of interaction, although scalable, has limita-
tions for applications that require fast data delivery to the clients. Examples
of such applications include auction web sites where the users need to be
informed about higher bids, web-based stock tickers where stock prices are
frequently updated, multi-user collaboration applications, web-based chat ap-
plications, or news portals.

An alternative to the traditional pull-based approach is the push-based
style, where the clients subscribe to their topic of interest, and the server pub-
lishes the changes to the clients asynchronously every time its state changes.

In 1995, Netscape introduced a method (Netscape, 1995) for pushing data
on the web through HTTP Streaming, by using a special MIME type called
multipart/x-mixed-replace. This method simply consists of streaming server
data in the response of a long-lived HTTP connection that is kept open by
server side programming.

The push-based approach has recently gained much attention, thanks to
many advancements in client and server web technologies that make pushing
data from the server, in a seamless manner, possible.

Comet (Russell, 2006) is a neologism to describe this new model of web
data delivery. Although Comet provides multiple techniques for achieving
high data delivery on the web, the common ground for all of them is rely-
ing on standard technologies supported natively by browsers, rather than on
proprietary plugins. Generally, Comet (also known as Reverse Ajax) applica-
tions rely on Ajax with long polling (see Chapter 4) to deliver state changes
to the clients, as fast and reliable as possible. Well-known examples include

Chapter 1. Introduction 11

Figure 1.8 The classical poll-based AJAX interaction pattern (top) compared with
the push-based style of a COMET application (bottom). Taken from Russell (2006).

Google’s web-based chat application in Gmail and the in-browser instant mes-
saging application Meebo3. Figure 1.8 taken from (Russell, 2006), shows from
the perspective of network activity, the difference between the poll-based and
push-based interaction patterns.

1.3 Challenges and Research Questions

The new changes in the web bring not only advantages but also come with a
whole set of new challenges.

3 Meebo, http://www.meebo.com

12 1.3. Challenges and Research Questions

http://www.meebo.com

AJAX

Archite
cture

Analysis & Testing

R
ee

n
g

in
ee

ri
n

g
Figure 1.9 Our research viewpoints on AJAX web applications.

Web sites and applications have been deployed at a fast pace not only by
experts but also by individuals who lack the required training and knowledge
to implement structured systems. Although this phenomenon has helped the
fast adoption of the web itself, it has also drastically decreased the quality of
software that is produced as a result. The manner in which such systems have
been developed, deployed, and managed has raised serious concerns (Ginige
and Murugesan, 2001). In addition, the use of multiple software languages
to develop a single web application has contributed to the complexity of web
systems. As a result, the field has been characterized by a lack of well-defined
design methodologies and development processes (Coda et al., 1998). Hence,
the need many researchers have felt for a new discipline, called Web Engineer-
ing, for web-based systems (Murugesan et al., 2001; Deshpande and Hansen,
2001).

Although developing web applications is different from traditional soft-
ware development and poses additional challenges due to the heterogeneous
and distributed nature, we believe that web engineering can adopt and en-
compass many software engineering principles, that have been proven useful
over the years. In this thesis, we examine challenges of developing interactive
Ajax-based web systems from a software engineering perspective.

Lehman and Belady’s laws of software evolution (Lehman and Belady,
1985) have taught us that software programs require change to remain useful.
Over time, enabling software technologies and our understanding of software
programs, in terms of their models (Jazayeri, 2005), evolve, while the expecta-
tions of the surrounding environment change.

Software that is not modified to meet changing needs (e.g., end users’
expectations) becomes old (Parnas, 1994). Coping with aging software and
evolving technologies is a challenging task for software engineers.

The web is an excellent example of an evolving technology that causes its
applications to age. It started as a simple static page-sequence client/server

Chapter 1. Introduction 13

system. Web applications based on the classical model of the web and the
technologies available in the early nineties, have aged and become out-dated.
Over the course of the past 15 years, many web technologies (e.g., browsers,
servers, web standards) have evolved. These technological advancements have
made it possible to develop web systems that meet up with current user expec-
tations, i.e., a satisfactory degree of responsiveness and interactivity similar
to desktop applications. However, what we witness is that web applications
built with the new models and technologies have issues with existing tools
(e.g., web crawlers) and techniques (e.g., web testing) that are still focused on
the old models (multi-page).

This leads developers to a dilemma: on the one hand, sticking to the cla-
ssical web model means missing on the advantages of the technological inno-
vations and failing to meet today’s expectations. On the other hand, adopting
the new model means renovating the system to meet expectations and, at
the same time, facing many challenges the new model has with existing web
technologies. The challenges are mainly due to the fact that Ajax shatters the
metaphor of a web ‘page’ (i.e., a sequence of web pages connected through
hyperlinks) upon which many web technologies are based. Hence, the Ajax-
based web model will only be widely adopted with success, if the supporting
technologies also evolve and support the new model.

Figure 1.9 shows our software engineering research viewpoints on modern
Ajax web application. Our focus in this work has been on three main research
themes:

Software Architecture to gain an abstract understanding of the new Ajax-
based web model;

Software Reengineering to understand the implications of reengineering cla-
ssical multi-page web systems to single-page Ajax variants;

Software Analysis and Testing to explore strategies for analyzing and test-
ing this new breed of web application.

Below, we discuss these viewpoints and formulate the research questions
that drive the work presented in this thesis.

1.3.1 Architecture

After the neologism Ajax was introduced in 2005, numerous frameworks and
libraries appeared, and many web developers started adopting one or more
of the ideas underpinning Ajax. However, despite all the attention Ajax has
been receiving from the web community, the field is characterized by a lack
of coherent and precisely defined architectural descriptions.

Ajax provides us with a set of techniques to design a new style of web
client/server interaction that was not possible in classical web systems. An
interesting question is whether concepts and principles as developed in the
software architecture research community, and specifically those related to

14 1.3. Challenges and Research Questions

client/server and network-based environments, can be of help in understand-
ing the essential components and architectural properties of Ajax-based web
applications. In such a context, a software architecture is defined (Perry and
Wolf, 1992; Fielding, 2000) by a configuration of architectural elements – pro-
cessing, connecting, and data – constrained in their relationships in order to
achieve a desired set of architectural properties.

Through such an understanding, we could gain a more abstract perspec-
tive on the actual differences between the classical web model and the modern
Ajax-based settings. An abstract model would also enable us to anticipate the
tradeoffs between, e.g., interactivity and scalability, of adopting Ajax tech-
niques.

Thus, our first main research question can be formulated as follows:

Research Question 1

What are the fundamental architectural differences and tradeoffs between
designing a classical and an Ajax-based web application? Can current
architectural styles describe Ajax? If not, can we propose an architectural
style taylored for Ajax?

An architectural style is defined by a coordinated set of architectural con-
straints that restricts the roles of architectural elements and the allowed rela-
tionships among those elements within any architecture that conforms to that
style (Fielding, 2000). Our hypothesis is that Ajax changes the web interac-
tion model so significantly that it cannot be fit into the existing architectural
styles, and hence requires its own architectural style.

1.3.2 Reengineering
Once an abstract perspective on the target model is gained, we focus on ways
classical web applications could be reengineered to Ajax settings.

Many organizations are beginning to consider migration, also known as
Ajaxification, possibilities of their web-based systems to this new paradigm.
Usually, significant investments have been made for classical web-based sys-
tems and most organizations are not likely to throw these valuable assets away
to adopt a new emerging technology.

As a result, the well-known problems of software legacy renovation
(van Deursen et al., 1999) and migration (Brodie and Stonebraker, 1995) are
becoming increasingly important for web applications. If until a few years
ago, the problem revolved solely around migrating legacy desktop systems to
web-based settings, today we have a new challenge of reengineering classic
web applications to Ajax applications as well.

Our assumption is that a multi-page web application already exists, and
our intention is to explore techniques to support its comprehension, analysis,
and restructuring by recovering abstract models from the current implemen-
tation.

Chapter 1. Introduction 15

Research Question 2

Is it possible to support the migration process (Ajaxification) of multi-
page web applications to single-page Ajax interfaces? Can reverse engi-
neering techniques help in automating this process?

Our hypothesis is that reverse engineering (Chikofsky and Cross II, 1990)
techniques can assist us in reconstructing abstract models of the source ap-
plication, by automating (Arnold, 1993) all or parts of the process. Since the
user interface interaction models of the source (page-sequence) and the target
(single-page with UI components, see Chapter 2) systems are substantially
different, user interface reverse engineering (Stroulia et al., 2003) will play an
important role in our quest. Automatically reconstructing an abstract user
interface model of the source multi-page web application is a first, but also a
key step in the migration process.

1.3.3 Analysis and Testing
Our final main question deals with the dependability (Sommerville, 2007)
of Ajax applications. In principle, we are interested in appropriate ways to
analyze and test Ajax systems.

For traditional software, analysis and testing is still largely ad hoc
(Bertolino, 2007) and already a notoriously time-consuming and expensive
process (Beizer, 1990). Classical web applications present even more chal-
lenges (Di Lucca and Fasolino, 2006; Andrews et al., 2005) due to their distr-
ibuted, heterogeneous nature. In addition, web applications have the ability
to dynamically generate different UIs in response to user inputs and server
state (Andrews et al., 2005).

The highly dynamic nature of Ajax user interfaces and their client/server
delta communication adds an extra level of complexity to the classical web
analysis and testing challenges. Therefore, we formulate our third main ques-
tion as:

Research Question 3

What are the challenges for analyzing and testing Ajax applications in
an automatic approach?

which, in turn, is composed of three sub-questions focusing on data deliv-
ery performance, automatic crawling, and user interface testing.

Performance Testing

One of the challenges related to client/server interactions is to ensure data
coherence, i.e., ensuring that the data (state changes) on the server and the
client are synchronized. The hypothesis is that a push-based implementation
offers a higher degree of data coherence when compared to a pull-based one.
But at the same time, it is generally believed that a push-based solution that
keeps open connections for all clients causes scalability problems on the web.

16 1.3. Challenges and Research Questions

To the best of our knowledge, at the time of writing no study had been
conducted to explore the actual tradeoffs in terms of data coherence, server
performance and scalability, network performance, and data delivery reliabil-
ity, involved in applying a push- versus pull-based approach to web-based
settings.

Web applications are distributed systems, and distributed systems are in-
herently more difficult to engineer (Wang et al., 2005) and test than sequential
systems (Alager and Venkatsean, 1993). Controllability, observability (Chen
et al., 2006), and reproducibility are all challenging issues in distributed test-
ing environments. In order to conduct a comparison of different web data
delivery techniques, first an automated, controllable, and repeatable test envi-
ronment has to be set up, to obtain accurate empirical data for each approach.
This leads us to our next research question:

Research Question 3.1

What are the tradeoffs of applying pull- and push-based data delivery
techniques on the web? Can we set up an automated distributed test
environment to obtain empirical data for comparison?

Automatic Crawling

General web search engines, such as Google and Yahoo!, cover only a portion
of the web called the publicly indexable web, which consists of the set of web
pages reachable purely by following hyperlinks. Dynamic content behind
web forms and client-side scripting is generally ignored and referred to as the
hidden web (Raghavan and Garcia-Molina, 2001).

Although there has been extensive research on finding and exposing the
hidden web behind forms (Barbosa and Freire, 2007; de Carvalho and Silva,
2004; Lage et al., 2004; Ntoulas et al., 2005; Raghavan and Garcia-Molina,
2001; Madhavan et al., 2008), the hidden web induced as a result of client-side
scripting in general and Ajax in particular has gained very little attention so
far.

Consequently, while Ajax techniques are very promising in terms of im-
proving rich interactivity and responsiveness, Ajax-based applications may
very well end up in the hidden web. We believe this is one of the main rea-
sons people hesitate to use Ajax on their public web sites.

Crawling Ajax-based web interfaces is fundamentally more challenging
than crawling classical multi-page applications. The main reason is that in
the classical web model, all states are explicit, and each one corresponds to a
unique URL. In Ajax-based applications, however, the state of the user inter-
face is determined dynamically, through event-driven changes in the run-time
DOM-tree. This means that simply extracting and following hyperlinks does
not suffice any longer. New methods and techniques are required to dynam-
ically analyze the complex user interface elements, events, and state changes,
which leads us to our next question:

Chapter 1. Introduction 17

Research Question 3.2

Can Ajax-based web applications be crawled automatically?

Being able to crawl Ajax automatically opens up many analysis opportu-
nities, since we gain access to different dynamic states.

User Interface Testing

Ajax-based web applications rely on stateful asynchronous client/server co-
mmunication, and client-side run-time manipulation of the DOM-tree, which
not only makes them fundamentally different from classical web applications,
but also more error-prone and harder to test.

Traditional web testing techniques (Ricca and Tonella, 2001; Andrews et al.,
2005; Di Lucca et al., 2002a; Elbaum et al., 2003) have serious limitations in
testing modern Ajax-based web applications (Marchetto et al., 2008a).

Therefore, new techniques and tools are needed to test this new class of
software. Whether Ajax applications can be tested automatically, is the subject
of our last research question in this thesis:

Research Question 3.3

Can Ajax-based web user interfaces be tested automatically?

1.4 Research Method and Evaluation

Proposing new concepts, techniques, and tools to support the ideas, forms
the core of our research method. There is a strong emphasis on tools and
automation in this thesis. In fact, this research has resulted in the development
of four tools (Retjax, Chiron, Crawljax, and Atusa), all built in Java and
three already made open source.4

Validity of our methods and tools are assessed by extensive empirical eval-
uation (Wohlin et al., 2005). We use descriptive case studies as suggested by
Yin (2003) and Kitchenham et al. (1995) to investigate the applicability of our
techniques. Representative industrial and open source Ajax applications are
used as subject systems to validate or discover limitations of the techniques.

In Chapter 4, in order to conduct a comparison of a number of data delivery
techniques as accurately as possible and with minimal manual errors, we set
up a controlled experiment (Wohlin et al., 2000).

Critical discussions on the findings are used to achieve analytical general-
izations of the experimental results.

4 http://spci.st.ewi.tudelft.nl/content/software/

18 1.4. Research Method and Evaluation

http://spci.st.ewi.tudelft.nl/content/software/

XXXXXXXXXXRQ
Chapter

2 3 4 5 6

1 X X X
2 X X
3 X X X X
3.1 X X
3.2 X X X
3.3 X X X

Table 1.1 Overview of the research questions and the covering chapters.

1.5 Thesis Outline

Table 1.1 provides an overview of the questions that were investigated in this
research and the corresponding chapters.

In Chapter 2, we examine a number of Ajax frameworks to understand
their common architectural properties. The current state of existing clie-
nt/server architectures is investigated to explore whether Ajax-based inter-
action models can be captured within those styles. Our analysis reveals the
limitations of the classical web architectural style Rest for capturing mod-
ern Ajax-based client/server interactions. Based on these findings, a new
component- and push-based architectural style is proposed, called Spiar, con-
stituting the architectural - processing, connecting, and data - elements of
Ajax applications, and the constraints that should hold between the elements
to meet the desired properties. Chapter 2 sets the foundation for the rest of
this thesis by describing the key characteristics of Ajax-based web architec-
tures.

In Chapter 3, we propose a user interface migration process consisting of
five major steps. First, our ajaxification approach starts by reconstructing
the paths that users can follow when navigating through web pages. We pro-
pose a schema-based clustering technique to group pages that are structurally
similar along the navigational path. Once a simplified model of the naviga-
tional path has been extracted, we can focus on extrapolating candidate user
interface components. For this purpose, we use a differencing technique to
calculate the fragment changes of browsing from one page to another. Af-
ter candidate components have been identified, we can derive an Ajax rep-
resentation for them. An intermediate single-page model can be opted for,
from which specific Ajax implementations can be derived. Finally, through a
model-driven engineering (Schmidt, 2006) approach, a meta-model can be cre-
ated for each target system and the corresponding transformation between the
single-page meta-model and the platform-specific language defined (Gharavi
et al., 2008). The first three steps of this migration process have been imple-
mented in a tool called Retjax, discussed in detail along with the proposed
process in Chapter 3.

In Chapter 4, we investigate the challenges of setting up an automated test-
ing environment for measuring performance data. We present Chiron, our

Chapter 1. Introduction 19

open source, distributed, automated testing framework and how it helps to
obtain reliable data from different web application settings. Using Chiron,
Chapter 4 discusses an experiment that reveals the differences between tra-
ditional pull and Comet-based push solutions in terms of data coherence,
scalability, network usage, and reliability. Such a study helps software engi-
neers to make rational decisions concerning key parameters such as publish
and pull intervals, in relation to, for instance, the anticipated number of web
clients.

Chapter 5 discusses the challenges of crawling Ajax automatically, and pro-
poses a new method for crawling Ajax through dynamic analysis of the user
interface. The method, implemented in an open source tool called Crawljax,
automatically infers a state-flow graph of the application by, simulating user
events on interface elements, and analyzing the internal DOM state, mod-
eling the various navigational paths and states within an Ajax application.
Such a crawling technique has various applications. First, it can serve as a
starting point for adoption by general search engines. Second, such a crawler
can be used to expose the Ajax induced hidden content on the web by au-
tomatically generating a static version of the dynamic user interface (Mesbah
and van Deursen, 2008b). In addition, the ability to automatically exercise
all the executable elements of an Ajax user interface gives us a powerful test
mechanism, which brings us to Chapter 6.

In Chapter 6, we present an automatic testing method that can dynamically
make a full pass over an Ajax application, and examine the user interface be-
havior. To that end, the crawler from Chapter 5 is extended with data entry
point handling to trigger faults through input values. With access to different
dynamic DOM states we can check the user interface against different con-
straints. We propose to express those as invariants on the DOM tree, and
the inferred state machine, which can be checked automatically in any state.
Such invariants are used as oracles, to deal with the well-known oracle prob-
lem. We present our open source testing tool called Atusa, implementing
the approach, offering generic invariant checking components, as well as a
plugin-mechanism to add application-specific state validators, and test suite
generation from the inferred state machine. This tool is used in a number of
case studies to investigate the actual fault revealing capabilities and automa-
tion level of the tool.

1.6 Origin of Chapters and Acknowledgments

Each main chapter in this thesis is directly based on (at least) one peer re-
viewed publication. While all chapters have distinct core contributions, there
is some redundancy, in the introduction of background material and motiva-
tion, to ensure each chapter is self-contained and can be read independent of
the others.

The author of this thesis is the main contributor of all chapters except Chap-
ter 4, in which the first two authors, Engin Bozdag and the author, contributed

20 1.6. Origin of Chapters

equally and we chose to use an alphabetical ordering. All publications have
been co-authored by Arie van Deursen.

Chapter 2 This chapter was published in the Journal of Systems and Software
(JSS), in December 2008, as Mesbah and van Deursen (2008a).

An earlier version of this chapter appeared in the Proceedings of the
6

th Working IEEE/IFIP Conference on Software Architecture (WICSA
2007) (Mesbah and van Deursen, 2007a). Thanks to Engin Bozdag for
his feedback on this chapter.

Chapter 3 This chapter was published in the Proceedings of the 11
th Euro-

pean Conference on Software Maintenance and Reengineering (CSMR
2007) as Mesbah and van Deursen (2007b).

A short version also appeared in the Proceedings of the 29
th Interna-

tional Conference on Software Engineering (ICSE 2007), Doctoral Sym-
posium (Mesbah, 2007).

Chapter 4 This chapter has been accepted for publication in the Journal of
Web Engineering (JWE), in September 2008, as Bozdag et al. (2009).

An earlier version of this chapter appeared in the Proceedings of the
9

th IEEE International Symposium on Web Site Evolution (WSE 2007)
(Bozdag et al., 2007).

Chapter 5 This chapter was published in the Proceedings of the 8
th Interna-

tional Conference on Web Engineering (ICWE 2008) as Mesbah et al.
(2008).

Chapter 6 This chapter has been accepted for publication in the Proceed-
ings of the 31

st International Conference on Software Engineering (ICSE
2009), Research Papers, as Mesbah and van Deursen (2009).

This publication has won one of five ACM SIGSOFT Distinguished Pa-
per awards, which puts it in the top 10% of the accepted papers at ICSE
2009, a conference that had an acceptance rate of 12% to begin with.

Furthermore, our research has resulted in the following publications that
are not directly included in this thesis:

• Modelling and Generating Ajax Applications: A Model-Driven Ap-
proach. In Proceedings of the 7

th International Workshop on Web-
Oriented Software Technologies (IWWOST 2008) (Gharavi et al., 2008).

• Crosscutting Concerns in J2EE Applications. In Proceedings of the 7
th

IEEE International Symposium on Web Site Evolution (WSE 2005) (Mes-
bah and van Deursen, 2005).

Chapter 1. Introduction 21

22 1.6. Origin of Chapters

Chapter

2

A Component- and Push-based
Architectural Style for Ajax

Applications?

A new breed of web application, dubbed Ajax, is emerging in response to a lim-
ited degree of interactivity in large-grain stateless Web interactions. At the heart
of this new approach lies a single page interaction model that facilitates rich in-
teractivity. Also push-based solutions from the distributed systems are being
adopted on the web for Ajax applications. The field is, however, characterized by
the lack of a coherent and precisely described set of architectural concepts. As a
consequence, it is rather difficult to understand, assess, and compare the existing
approaches. We have studied and experimented with several Ajax frameworks
trying to understand their architectural properties. In this chapter, we sum-
marize four of these frameworks and examine their properties and introduce the
Spiar architectural style which captures the essence of Ajax applications. We
describe the guiding software engineering principles and the constraints chosen to
induce the desired properties. The style emphasizes user interface component de-
velopment, intermediary delta-communication between client/server components,
and push-based event notification of state changes through the components, to
improve a number of properties such as user interactivity, user-perceived latency,
data coherence, and ease of development. In addition, we use the concepts and
principles to discuss various open issues in Ajax frameworks and application
development.

2.1 Introduction

Over the course of the past decade, the move from desktop applications
towards web applications has gained much attention and acceptance.

Within this movement, however, a great deal of user interactiveness has been
lost. Classical web applications are based on a multi page interface model, in
which interactions are based on a page-sequence paradigm. While simple and
elegant in design for exchanging documents, this model has many limitations
for developing modern web applications with user friendly human-computer
interaction.

Recently, there has been a shift in the direction of web development to-
wards the new generation of Web 2.0 applications. A new breed of web appli-
cation, dubbed Ajax (Asynchronous JavaScript And XML) (Garrett, 2005), has

?This chapter was published in the Journal of Systems and Software in December 2008 (Mes-
bah and van Deursen, 2008a).

been emerging in response to the limited degree of interactivity in large-grain
stateless web interactions. Ajax utilizes a set of existing web technologies,
previously known as Dynamic HTML (DHTML) and remote scripting (Crane
et al., 2005), to provide a more interactive web-based user interface.

At the heart of this new approach lies a single page interface model that
facilitates rich interactivity. In this model, changes are made to individual
user interface components contained in a web page, as opposed to (refreshing)
the entire page.

Another recent development, under the same umbrella, is applying the
push-based concepts from the distributed systems to the web (Khare, 2005).
For applications that require real-time event notifications, the client-initiated pull
model is very inefficient and might lead to network congestion. The push-
based style, where the server broadcasts the state changes to the clients asyn-
chronously every time its state changes, is emerging as an alternative on the
web, which is known as Comet (Russell, 2006) or Reverse Ajax (Direct Web
Remoting, 2007). Each of these options has its own architectural trade-offs.

Thanks to the momentum of Ajax, the technology has attracted a strong
interest in the web application development community. After the name Ajax

was coined in February 2005 (Garrett, 2005), numerous frameworks1 and li-
braries have appeared, many web applications have adopted one or more of
the ideas underpinning Ajax, and an overwhelming number of articles in
developer sites and professional magazines have appeared.

Adopting Ajax-based techniques is a serious option not only for newly
developed applications, but also for ajaxifying (Mesbah and van Deursen,
2007b) existing web sites if their user friendliness is inadequate.

A software engineer considering adopting Ajax, however, is faced with
a number of challenges. What are the fundamental architectural trade-offs
between designing a legacy web application and an Ajax web application?
How would introducing a push-based style affect the scalability of web ap-
plications? What are the different characteristics of Ajax frameworks? What
do these frameworks hide? Is there enough support for designing such appli-
cations? What problems can one expect during the development phase? Will
there be some sort of convergence between the many different technologies?
Which architectural elements will remain, and which ones will be replaced by
more elegant or more powerful solutions? Addressing these questions calls
for a more abstract perspective on Ajax web applications. However, despite
all the attention the technology is receiving in the web community, there is a
lack of a coherent and precisely described set of architectural formalisms for
Ajax enabled web applications. In this chapter we explore whether concepts
and principles as developed in the software architecture research community
can be of help to answer such questions.

To gain an abstract perspective, we have studied a number of Ajax frame-
works, abstracted their features, and documented their common architectural
elements and desired properties. In particular, we propose Spiar, the Single

1At the time of writing more than 150 frameworks are listed at http://ajaxpatterns.org/
Frameworks.

24 2.1. Introduction

http://ajaxpatterns.org/Frameworks
http://ajaxpatterns.org/Frameworks

Page Internet Application aRchitectural style, which emphasizes user inter-
face component-based development, intermediary delta-communication be-
tween client/server components, and push-based event notification of state
changes through the components, to improve a number of properties such as
user interactivity, user-perceived latency, data coherence, and ease of develop-
ment. The style can be used when high user interaction and responsiveness
are desired in web applications.

One of the challenges of proposing an architectural style is the difficulty
of evaluating the success of the style. As also observed by Fielding (Fielding,
2000), the success of an architecture is ultimately determined by the question
whether a system built using the style actually meets the stated requirements.
Since this is impossible to determine in advance, we will evaluate our style in
the following ways:

1. We investigate how well existing Ajax frameworks such as GWT or
Echo2 are covered by the style;

2. We discuss how a number of typical Ajax architectures (client-centric,
server centric, push-based) are covered by the style;

3. We show how the style can be used to discuss various tradeoffs in the
design of Ajax applications, related to, architectural properties such as
scalability and adaptability.

This chapter is organized as follows. We start out, in Section 2.2 by explor-
ing Ajax, studying four frameworks (Google’s GWT, Backbase, Echo2, and the
push-based Dojo/Cometd framework) that have made substantially different
design choices. Then, in Section 2.3, we survey existing architectural styles
(such as the Representational State Transfer architectural style Rest on which
the World Wide Web is based (Fielding and Taylor, 2002)), and analyze their
suitability for characterizing Ajax. In Sections 2.4–2.7, we introduce Spiar,
describing the architectural properties, elements, views of this style, and the
constraints. Given Spiar, in Section 2.8 we use its concepts and principles to
discuss various open issues in Ajax frameworks and application development
and evaluate the style itself. We conclude with a summary of related work,
contributions, and an outlook to future work.

2.2 Ajax Frameworks

Web application developers have struggled constantly with the limits of the
HTML page-sequence experience, and the complexities of client-side JavaSc-
ript programming to add some degree of dynamism to the user interface.
Issues regarding cross-browser compatibility are, for instance, known to ev-
eryone who has built a real-world web application. The rich user interface
(UI) experience Ajax promises comes at the price of facing all such problems.
Developers are required to have advanced skills in a variety of Web technolo-
gies, if they are to build robust Ajax applications. Also, much effort has to be

Chapter 2. A Component- and Push-based Architectural Style for Ajax 25

spent on testing these applications before going in production. This is where
frameworks come to the rescue. At least many of them claim to.

Because of the momentum Ajax has gained, a vast number of frameworks
are being developed. The importance of bringing order to this competitive
chaotic world becomes evident when we learn that ‘almost one new frame-
work per day’ is being added to the list of known frameworks.2

We have studied and experimented with several Ajax frameworks trying
to understand their architectural properties. We summarize four of these
frameworks in this section. Our selection includes a widely used open source
framework called Echo2, the web framework offered by Google called GWT,
the commercial package delivered by Backbase and the Dojo/Cometd push-
based comet framework. All four frameworks are major players in the Ajax

market, and their underlying technologies differ substantially.

2.2.1 Echo2

Echo2
3 is an open-source Ajax framework which allows the developer to

create web applications using an object-oriented, UI component-based, and
event-driven paradigm for Web development. Its Java Application Framework
provides the APIs (for UI components, property objects, and event/listeners)
to represent and manage the state of an application and its user interface.
Echo applications can be created entirely in server-side Java code using a
component-oriented and event-driven API. Server-side components are ren-
dered into client-side code automatically, and both the client and server-side
code are kept in sync.

All functionality for rendering a component or for communicating with
the client browser is specifically assembled in a separate module called the
Web Rendering Engine. The engine consists of a server-side portion (written
in Java/J2EE) and a client-side portion (JavaScript). The client/server in-
teraction protocol is hidden behind this module and as such, it is entirely
decoupled from other modules. Echo2 has an Update Manager which is re-
sponsible for tracking updates to the user interface component model, and
for processing input received from the rendering agent and communicating it
to the components.

The Echo2 Client Engine runs in the client browser and provides a remote
user interface to the server-side application. Its main activity is to synchronize
client/server state when user operations occur on the interface.

A ClientMessage in XML format is used to transfer the client state changes
to the server by explicitly stating the nature of the change and the component
ID affected. The server processes the ClientMessage, updating the component
model to reflect the user’s actions. Events are fired on interested listeners,
possibly resulting in further changes to the server-side state of the applica-
tion. The server responds by rendering a ServerMessage which is again an

2 http://ajaxpatterns.org/wiki/index.php?title=AJAXFrameworks
3 Echo2 2.0.0, www.nextapp.com/platform/echo2/echo/.

26 2.2. Ajax Frameworks

http://ajaxpatterns.org/wiki/index.php?title=AJAXFrameworks
www.nextapp.com/platform/echo2/echo/

XML message containing directives to perform partial updates to the DOM
representation on the client.

2.2.2 GWT

Google has a novel approach to implementing its Ajax framework, the Google
Web Toolkit (GWT)4. Just like Echo2, GWT facilitates the development of UIs
in a fashion similar to AWT or Swing and comes with a library of widgets
that can be used. The unique character of GWT lies in the way it renders
the client-side UI. Instead of keeping the UI components on the server and
communicating the state changes, GWT compiles all the Java UI components
to JavaScript code (compile-time). Within the components the developer is al-
lowed to use a subset of the Java 1.4’s API to implement needed functionality.

GWT uses a small generic client engine and, using the compiler, all the
UI functionality becomes available to the user on the client. This approach
decreases round-trips to the server drastically. The server is only consulted
if raw data is needed to populate the client-side UI components. This is car-
ried out by making server calls to defined services in an RPC-based style.
The services (which are not the same as Web Services) are implemented in
Java and data is passed both ways over the network, in JSON format, using
serialization techniques.

2.2.3 Backbase

Backbase5 is an Amsterdam-based company that provided one of the first
commercial Ajax frameworks. The framework is still in continuous develop-
ment, and in use by numerous customers world wide.

A key element of the Backbase framework is the Backbase Client Run-time
(BCR). This is a standards-based Ajax engine written in JavaScript that runs
in the web browser. It can be programmed via a declarative user interface lan-
guage called XEL. XEL provides an application-level alternative to JavaScript
and manages asynchronous operations that might be tedious to program and
manage using JavaScript.

BCR’s main functionality is to:

• create a single page interface and manage the widget tree (view tree),

• interpret JavaScript as well as the XEL language,

• take care of the synchronization and state management with the server
by using delta-communication, and asynchronous interaction with the
user through the manipulation of the representational model.

The Backbase framework provides a markup language called Backbase Tag
Library (BTL). BTL offers a library of widgets, UI controls, a mechanism for

4 http://code.google.com/webtoolkit/
5 http://www.backbase.com

Chapter 2. A Component- and Push-based Architectural Style for Ajax 27

http://www.backbase.com

attaching actions to them, as well as facilities for connecting to the server
asynchronously.

The server side of the Backbase framework is formed by BJS, the Backbase
Jsf Server. It is built on top of JavaServer Faces (Jsf)6, the new J2EE presen-
tation architecture. Jsf provides a user interface component-based framework
following the model-view-controller pattern. Backbase Jsf Server utilizes all
standard Jsf mechanisms such as validation, conversion and event processing
through the JSF life-cycle phases. The interaction in Jsf is, however, based
on the classical page sequence model, making integration in a single page
framework non trivial. Backbase extends the JSF request life-cycle to work
in a single-page interface environment. It also manages the server-side event
handlers and the server-side control tree.

Any Java class that offers getters and setters for its properties can be di-
rectly assigned to a UI component property. Developers can use the compo-
nents declaratively (web-scripting) to build an Ajax application. The frame-
work renders each declared server-side UI component to a corresponding
client-side XEL UI component, and keeps track of changes on both compo-
nent trees for synchronization.

The state changes on the client are sent to the server on certain defined
events. Backbase uses DOM events to delegate user actions to BCR which
handles the events asynchronously. The events can initiate a client-side (local)
change in the representational model but at the same time these events can
serve as triggers for server-side event listeners. The server translates these
state changes and identifies the corresponding component(s) in the server
component tree. After the required action, the server renders the changes to
be responded to the engine, again in XEL format.

2.2.4 Dojo and Cometd

The final framework we consider is the combination of the client-side Dojo
and the server-side Cometd frameworks, which together support a push-
based client-server communication. The framework is based on the Bayeux

protocol which the Cometd group7 has recently released, as a response to
the lack of communication standards. For more details see Chapter 4 and
(Bozdag, 2007).

The Bayeux message format is defined in JSON (JavaScript Object Nota-
tion),8 which is a data-interchange format based on a subset of the JavaScript
Programming Language. The protocol has recently been implemented and
included in a number of web servers including Jetty9 and IBM Websphere.10

The frameworks that implement Bayeux currently provide a connection
type called Long Polling for HTTP push. In Long Polling, the server holds
on to the client request, until data becomes available. If an event occurs, the

6 JavaServer Faces Specification v1.1, http://java.sun.com/j2ee/javaserverfaces/
7 http://www.cometd.com
8 http://www.json.org
9 http://www.mortbay.org

10 http://www-306.ibm.com/software/websphere/

28 2.2. Ajax Frameworks

http://www.cometd.com
http://www.json.org
http://www.mortbay.org
http://www-306.ibm.com/software/websphere/

server sends the data to the client and the client has to reconnect. Otherwise,
the server holds on to the connection for a finite period of time, after which
it asks the client to reconnect again. If the data publish interval is low, the
system will act like a pure pull, because the clients will have to reconnect
(make a request) often. If the data publish interval is high, then the system
will act like a pure push.

Bayeux defines the following phases in order to establish a Comet connec-
tion. The client:

1. performs a handshake with the server and receives a client ID,

2. sends a connection request with its ID,

3. subscribes to a channel and receives updates.

Bayeux is supported by the client-side Ajax framework called Dojo.11 It is
currently written entirely in JavaScript and there are plans to adopt a markup
language in the near future. Dojo provides a number of ready-to-use UI wid-
gets which are prepackaged components of JavaScript code, as well as an ab-
stracted wrapper (dojo.io.bind) around various browsers’ implementations of
the XMLHttpRequest object to communicate with the server. Dojo facilitates
the dojo.io.cometd library, to make the connection handshake and subscribe
to a particular channel.

On the server-side, Bayeux is supported by Cometd.12 This is an HTTP-
based event routing framework that implements the Comet style of interac-
tion. It is currently implemented as a module in Jetty.

2.2.5 Features

While different in many ways, these frameworks share some common archi-
tectural characteristics. Generally, the goals of these frameworks can be sum-
marized as follows:

• Hide the complexity of developing Ajax applications - which is a te-
dious, difficult, and error-prone task,

• Hide the incompatibilities between different web browsers and plat-
forms,

• Hide the client/server communication complexities,

• All this to achieve rich interactivity and portability for end users, and
ease of development for developers.

The frameworks achieve these goals by providing a library of user inter-
face components and a development environment to create reusable custom

11 http://dojotoolkit.org
12 http://www.cometd.com

Chapter 2. A Component- and Push-based Architectural Style for Ajax 29

http://dojotoolkit.org
http://www.cometd.com

components. The architectures have a well defined protocol for small interac-
tions among known client/server components. Data needed to be transferred
over the network is significantly reduced. This can result in faster response
data transfers. Their architecture takes advantage of client side processing
resulting in improved user interactivity, smaller number of round-trips, and a
reduced web server load.

The architectural decisions behind these frameworks change the way we
develop web applications. Instead of thinking in terms of sequences of Web
pages, Web developers can now program their applications in the more in-
tuitive (single page) component- and event-based fashion along the lines of,
e.g., AWT and Swing.

2.3 Architectural Styles

In this section, we first introduce the architectural terminology used in this
chapter and explore whether styles and principles as developed in the soft-
ware architecture research community, and specifically those related to netwo-
rk-based environments, can be of help in formalizing the architectural prop-
erties of Ajax applications.

2.3.1 Terminology

In this chapter we use the software architectural concepts and terminology
as used by Fielding (Fielding, 2000) which in turn is based on the work of
Perry and Wolf (Perry and Wolf, 1992). Thus, a software architecture is de-
fined (Perry and Wolf, 1992) as a configuration of architectural elements —
processing, connectors, and data — constrained in their relationships in order
to achieve a desired set of architectural properties.

An architectural style, in turn, (Fielding, 2000) is a coordinated set of ar-
chitectural constraints that restricts the roles of architectural elements and the
allowed relationships among those elements within any architecture that con-
forms to that style. An architectural style constrains both the design elements
and the relationships among them (Perry and Wolf, 1992) in such a way as
to result in software systems with certain desired properties. Clements et al.
(Clements et al., 2002) define an architectural style as a specialization of ele-
ment and relation types, together with a set of constraints on how they can be
used. A style can also be seen as an abstraction of recurring composition and
interaction characteristics in a set of architectures.

An architectural system can be composed of multiple styles and a style
can be a hybrid of other styles (Shaw and Garlan, 1996). Styles can be seen
as reusable (Monroe and Garlan, 1996) common architectural patterns within
different system architectures and hence the term architectural pattern is also
used to describe the same concept (Bass et al., 2003).

The benefits of using styles can be summarized as follows:

• Design reuse: well-understood solutions applied to new problems

30 2.3. Architectural Styles

• Code reuse: shared implementations of invariant aspects of a style

• Understandability and ease of communication: phrases such as ‘client-
server’ or ‘Rest’ make use of a vocabulary conveying a wealth of implicit
information.

• Interoperability: supported by style standardization

• Specific trade-off analysis: enabled by the constrained design space

• Visualizations: specific depictions matching mental models

In our view, being able to understand the tradeoffs inherent in the archi-
tectures (Kazman et al., 1998) of Ajax systems is the essence of using architec-
tural styles. An architectural style enables us to pin-point relevant tradeoffs
in different instantiated architectures.

2.3.2 Existing Styles
Client/server (Sinha, 1992), n-tier (Umar, 1997), and Mobile Code (Carzaniga
et al., 1997; Fuggetta et al., 1998), are all different network-based architectural
styles (Fielding, 2000), which are relevant when considering the characteristics
of Ajax applications.

In addition, user interface applications generally make use of popular
styles such as Module/View/Controller (Krasner and Pope, 1988) to describe
large scale architecture and, in more specific cases, styles like C2 (Taylor et al.,
1996) to rely on asynchronous notification of state changes and request mes-
sages between independent components.

There are also a number of interactional styles, such as event observa-
tion and notification (Rosenblum and Wolf, 1997), publish/subscribe (Eug-
ster et al., 2003), the component and communication model (Hauswirth and
Jazayeri, 1999), and ARRESTED (Khare and Taylor, 2004), which model the
client/server push paradigm for distributed systems.

In our view, the most complete and appropriate style for the Web, thus
far, is the REpresentational State Transfer (Rest) (Fielding and Taylor, 2002).
Rest emphasizes the abstraction of data and services as resources that can
be requested by clients using the resource’s name and address, specified as a
Uniform Resource Locator (URL) (Berners-Lee et al., 1994). The style inherits
characteristics from a number of other styles such as client/server, pipe-and-
filter, and distributed objects.

The style is a description of the main features of the Web architecture
through architectural constraints which have contributed significantly to the
success of the Web.

It revolves around five fundamental notions: a resource which can be any-
thing that has identity, e.g., a document or image, the representation of a resource
which is in the form of a media type, synchronous request-response interaction
over HTTP to obtain or modify representations, a web page as an instance of
the application state, and engines (e.g., browser, crawler) to move from one
state to the next.

Chapter 2. A Component- and Push-based Architectural Style for Ajax 31

Rest specifies a client-stateless-server architecture in which a series of prox-
ies, caches, and filters can be used and each request is independent of the pre-
vious ones, inducing the property of scalability. It also emphasizes a uniform
interface between components constraining information to be transferred in a
standardized form.

2.3.3 A Style for Ajax

Ajax applications can be seen as a hybrid of desktop and web applications,
inheriting characteristics from both worlds. Table 2.1 summarizes the differ-
ences between what Rest provides and what modern Ajax (with Comet) ap-
plications demand. Ajax frameworks provide back-end services through UI
components to the client in an event-driven or push style. Such architectures
are not so easily captured in Rest, due to the following differences:

• While Rest is suited for large-grain hypermedia data transfers, because
of its uniform interface constraint it is not optimal for small data inter-
actions required in Ajax applications.

• Rest focuses on a hyper-linked resource-based interaction in which the
client requests a specific resource. In contrast, in Ajax applications the
user interacts with the system much like in a desktop application, re-
questing a response to a specific action.

• All interactions for obtaining a resource’s representation are performed
through a synchronous request-response pair in Rest. Ajax applica-
tions, however, require a model for asynchronous communication.

• Rest explicitly constrains the server to be stateless, i.e., each request
from the client must contain all the information necessary for the server
to understand the request. While this constraint can improve scalability,
the tradeoffs with respect to network performance and user interactivity
are of greater importance when designing an Ajax architecture.

• Rest is cache-based while Ajax facilitates real-time data retrieval.

• Every request must be initiated by a client, and every response must
be generated immediately; every request can only generate a single re-
sponse (Khare and Taylor, 2004). Comet requires a model which enables
pushing data from the server to the client.

These requirement mismatches call for a new architectural style capable of
meeting the desired properties.

2.4 Architectural Properties

The architectural properties of a software architecture include both the func-
tional properties achieved by the system and non-functional properties, often

32 2.4. Architectural Properties

Rest provides Ajax demands
Large-grain hypermedia data transfers Small data interactions
Resource-based UI component-based
Hyper-linked Action- Event-based
Synchronous request-response Asynchronous interaction
Stateless Stateful
Cache-based Real-time data retrieval
Poll-based Poll and Push

Table 2.1 What REST provides versus what AJAX demands.

referred to as quality attributes (Bass et al., 2003; Offutt, 2002). The properties
could also be seen as requirements since architecting a system requires an
understanding of its requirements.

Below we discuss a number of architectural properties that relate to the
essence of Ajax. Other properties, such as extensibility or security, that may
be desirable for any system but are less directly affected by a decision to adopt
Ajax, are not taken into account. Note that some of the properties discussed
below are related to each other: for instance, user interactivity is influenced
by user-perceived latency, which in turn is affected by network performance.

2.4.1 User Interactivity

The Human-computer interaction literature defines interactivity as the degree
to which participants in a communication process have control over, and can
exchange roles in their mutual discourse. User interactivity is closely related
to usability (Folmer, 2005), the term used in software architecture literature.
Teo et al. (Teo et al., 2003) provide a thorough study of user interactivity on
commercial web applications. Their results suggest that an increased level of
interactivity has positive effects on user’s perceived satisfaction, effectiveness,
efficiency, value, and overall attitude towards a Web site. Improving this
property on the Web has been the main motivating force behind the Ajax

movement.

2.4.2 User-perceived Latency

User-perceived latency is defined as the period between the moment a user
issues a request and the first indication of a response from the system. Gen-
erally, there are two primary ways to improve user-perceived performance.
First, by reducing the round-trip time, defined as time elapsed for a message
from the browser to a server and back again, and second, by allowing the user
to interact asynchronously with the system. This is an important property in
all distributed applications with a front-end to the user.

Chapter 2. A Component- and Push-based Architectural Style for Ajax 33

2.4.3 Network Performance

Network performance is influenced by throughput which is the rate of data
transmitted on the network and bandwidth, i.e., a measure of the maximum
available throughput. Network performance can be improved by means of
reducing the amount and the granularity of transmitted data.

2.4.4 Simplicity

Simplicity or development effort is defined as the effort that is needed to
understand, design, implement, maintain and evolve a web application. It is
an important factor for the usage and acceptance of any new approach.

2.4.5 Scalability

In distributed environments scalability is defined by the degree of a systems
ability to handle a growing number of components. In Web engineering, a
system’s scalability is determined, for instance, by the degree to which a client
can be served by different servers without affecting the results. A scalable
Web architecture can be easily configured to serve a growing number of client
requests.

2.4.6 Portability

Software that can be used in different environments is said to be portable.
On the Web, being able to use the Web browser without the need for any
extra actions required from the user, e.g., downloading plug-ins, induces the
property of portability.

2.4.7 Visibility

Visibility (Fielding, 2000) is determined by the degree to which an external
mediator is able to understand the interactions between two components, i.e.,
the easier it is for the mediator to understand the interactions, the more visible
the interaction between the two components will be. Looking at the current
implementations of Ajax frameworks, visibility in the client/server interac-
tions is low, as they are based on proprietary protocols. Although a high
level of visibility makes the interaction more comprehensible, the correspond-
ing high observability can also have negative effects on security issues. Thus
low visibility is not per se an inferior characteristic, depending on the desired
system property and tradeoffs made.

2.4.8 Reliability

Reliability is defined as the continuity of correct service (Avizienis et al., 2004).
The success of any software system depends greatly on its reliability. On the
Internet, web applications that depend on unreliable software and do not

34 2.4. Architectural Properties

work well, will lose customers (Offutt, 2002). Testing (test automation, unit
and regression testing) resources can improve the reliability level of an appli-
cation. However, web applications are generally known to be poorly tested
compared to traditional desktop applications. In addition to the short time-to-
market pressure, the multi-page interaction style of the web makes it difficult
to test. Adopting a server-side component-based style of web application de-
velopment can improve the testability of the system and as a consequence
its reliability. Note that the dynamic nature of Ajax makes the client-side
actually harder to test (see Chapter 6); However, if the server-side code re-
sponsible for the user interface is implemented in a component-based style,
the functionality is easier to test as separate modules.

2.4.9 Data Coherence

An important aspect of real-time event notification of web data that need
to be available and communicated to the user as soon as they happen, e.g.,
stock prices, is the maintenance of data coherence (Bhide et al., 2002). A
piece of data is defined as coherent, if the data on the server and the client
is synchronized. In web applications adhering to the HTTP protocol, clients
need to frequently pull the data based on a pre-defined interval. In contrast,
servers that adopt push capability maintain state information pertaining to
clients and stream the changes to users as they happen. These two techniques
have different properties with respect to the data coherence achieved (Bozdag
et al., 2007).

2.4.10 Adaptability

Adaptability is defined as the ease with which a system or parts of the sys-
tem may be adapted to the changing environment. In web applications, an
architecture that allows changes on the server to be propagated to the clients
is called adaptable. We use the notion of code mobility (Fuggetta et al., 1998)
to compare the dynamic behavior of different Ajax architectures in terms
of changeability and adaptability. Mobile code is, generally, software code
obtained from remote servers, transferred across a network, and then down-
loaded and executed on the client without explicit installation or execution by
the recipient.

2.5 Spiar Architectural Elements

Following (Fielding, 2000; Perry and Wolf, 1992), the key architectural ele-
ments of Spiar are divided into three categories, namely processing (compo-
nents), data, and connecting elements. An overview of the elements is shown
in Figure 2.1. In this section we explain the elements themselves, while in the
next section we discuss their interaction.

Chapter 2. A Component- and Push-based Architectural Style for Ajax 35

Server App.Client Browser

update

HTTP

Encoder

Decoder

Service
Provider

update
 C

 S

 update invoke update event

DOM
Ajax

Engine
Engine

UI

UI Comp.
event

update

Figure 2.1 Processing View of a SPIAR-based architecture.

2.5.1 Processing Elements

The processing elements are defined as those components that supply the
transformation on the data elements.

The Client Browser offers support for a set of standards such as HTTP, HT-
ML, Cascading Style Sheets, JavaScript, and Document Object Model. It pro-
cesses the representational model of a web page to produce the user interface.
The user interaction can be based on a single page user interface model. All
the visual transitions and effects are presented to the user through this inter-
face. Just like a desktop client application, it consists of a single main page
with a set of identifiable widgets. The properties of widgets can be manipu-
lated individually while changes are made in-place without requiring a page
refresh.

The Ajax Engine is a client engine that loads and runs in the client browser.
There is no need for a plug-in for the web application to function. However,
downloading the engine does introduce an initial latency for the user which
can be compensated by the smaller data transfers once the engine is in place.
The engine is responsible for the initialization and manipulation of the rep-
resentational model. As can be seen in Figure 2.1, the engine handles the
events initiated by the user, communicates with the server, and has the ability
to perform client-side processing.

The Server Application resides on the server and operates by accepting
HTTP-based requests from the network, and providing responses to the re-
quester. All server-side functionality resides in the server application process-
ing element.

The Service Provider represents the logic engine of the server and processes
state changes and user requested actions. It is capable of accessing any re-
source (e.g., database, Web Services) needed to carry out its action. A Service
Provider’s functionality is invoked by event listeners, attached to components,
initiated by incoming requests.

The Delta Encoder/Decoder processes outgoing/incoming delta messages. It
is at this point that the communication protocol between the client and the
server is defined and hidden behind an interface. This element supports delta

36 2.5. Spiar Architectural Elements

communication between client and server which improves user-perceived la-
tency and network performance.

UI Components consist of a set of server-side UI components. The compo-
nent model on the server is capable of rendering the representational model
on the client. Each server-side component contains the data and behavior
of that part of the corresponding client-side widget which is relevant for
state changes; There are different approaches as when and how to render
the client-side UI code. GWT, for instance, renders the entire client-side UI
code compile-time from the server-side Java components. Echo2 which has
a real component-based architecture, on the other hand, renders the compo-
nents at run-time and keeps a tree of components on both client and server
side. These UI components have event listeners that can be attached to client-
side user initiated events such as clicking on a button. This element enhances
simplicity by providing off-the-shelf components to build web applications.

A Push Server resides as a separate module on the server application. This
processing element has the ability to keep an HTTP connection open to push
data from the server to the client. The Service Provider can publish new data
(state changes) to this element.

A Push Client element resides within the client. It can be a separate mod-
ule, or a part of the Ajax Engine. This element can subscribe to a particular
channel on the Push Server element and receive real-time publication data
from the server.

2.5.2 Data Elements

The data elements contain the information that is used and transformed by
the processing elements.

The Representation element consists of any media type just like in Rest.
HTML, CSS, and images are all members of this data element.

The Representational Model is a run-time abstraction of how a UI is repre-
sented on the client browser. The Document Object Model inside the browser
has gained a very important role in Ajax applications. It is through dynam-
ically manipulating this representational model that rich effects have been
made possible. Some frameworks such as Backbase use a domain-specific
language to declaratively define the structure and behavior of the representa-
tional model. Others like GWT use a direct approach by utilizing JavaScript.

Delta communicating messages form the means of the delta communication
protocol between client and server. Spiar makes a distinction between the
client delta data (delta-client) and the server delta data (delta-server). The
former is created by the client to represent the client-side state changes and
the corresponding actions causing those changes, while the latter is the re-
sponse of the server as a result of those actions on the server components.
The delta communicating data are found in a variety of formats in the current
frameworks, e.g., XML, JavaScript Object Notation (JSON), or pure JavaScript.
The client delta messages contain the needed information for the server to
know for instance which action on which component has to be carried out.

Chapter 2. A Component- and Push-based Architectural Style for Ajax 37

1 REQUEST (DELTA-CLIENT):
2

3 POST http://demo.nextapp.com/Demo/app/Demo/app?serviceId=Echo.Synchronize
4 Content-Type: text/xml; charset=UTF-8
5 <client-message trans-id="1">
6 <message-part processor="EchoAction">
7 <action component -id="c_7" name="click"/>
8 </message-part>
9 </client-message>

10

11 RESPONSE (DELTA-SERVER):
12

13 <?xml version="1.0" encoding="UTF-8"?>
14 <server-message
15 xmlns="http://www.nextapp.com/products/echo2/svrmsg/servermessage"
16 trans-id="2">
17 <message-part-group id="update">
18 ...
19 <message-part processor="EchoDomUpdate.MessageProcessor">
20 <dom-add>
21 <content parent-id="c_35_content">
22 <div id="c_36_cell_c_37" style="padding:0px;">
23
24 Welcome to the Echo2 Demonstration Application.
25
26 </div>
27 </content>
28 </dom-add>
29 </message-part>
30 ...
31 </message-part-group>
32 </server-message>

Figure 2.2 An example of Echo2 delta-communication.

As an example, Figure 2.2 illustrates delta-communication in Echo2. Af-
ter the user clicks on a component (button) with ID c 7, the client-side en-
gine detects this click event and creates the delta-client (in Echo2 called
client-message) and posts it to the server as shown in the REQUEST part
of Figure 2.2. The server then, using the information in the delta-client

which, in this case, is composed of the action, component ID, and the event
type, responds with a delta-server in XML format. As can be seen, the
delta-server tells the client-side engine exactly how to update the DOM state
with new style and textual content on a particular parent component with ID
c 35 content.

We distinguish between three types of code that can change the state of the
client: presentational code, functional code, and textual data.

Presentational code as its name suggests has influence on the visual style
and presentation of the application, e.g., CSS, or HTML. Textual data is simply
pure data. The functional code can be executed on the client, e.g., JavaScript
code, or commands in XML format (e.g., dom-add in Figure 2.2). The delta-
server can be composed of any of these three types of code. These three types
of code can influence the Representational model (DOM) of the client appli-
cation which is the run-time abstraction of the presentational code, executed
functional code and textual data.

38 2.5. Spiar Architectural Elements

GWT uses an RPC style of calling services in which the delta-server is
mainly composed of textual data, while in Backbase and Echo2 a component-
based approach is implemented to invoke event listeners, in a mixture of
presentational and functional code.

2.5.3 Connecting Elements

The connecting elements serve as the glue that holds the components together
by enabling them to communicate.

Events form the basis of the interaction model in Spiar. An event is initiated
by each action of the user on the interface, which propagates to the engine.
Depending on the type of the event, a request to the server, or a partial update
of the interface might be needed. The event can be handled asynchronously,
if desired, in which case the control is immediately returned to the user.

On the server, the request initiated by an event invokes a service. The service
can be either invoked directly or through the corresponding UI component’s
event listeners.

Delta connectors are light-weight communication media connecting the en-
gine and the server using a request/response mechanism over HTTP.

Delta updates are used to update the representational model on the client
and the component model on the server to reflect the state changes. While a
delta update of the representational model results in a direct apparent result
on the user interface, an update of the component model invokes the appro-
priate listeners. These updates are usually through procedural invocations of
methods.

Channels are the connecting elements between the push consumer and pro-
ducer. A consumer (receiver) subscribes to a channel, through a handshake
procedure, and receives any information that is sent on the channel by the
producer (information source) as delta push server.

2.6 Architectural Views

Given the processing, data, and connecting elements, we can use different
architectural views to describe how the elements work together to form an
architecture. Here we make use of two processing views, which concentrate
on the data flow and some aspects of the connections among the processing
elements with respect to the data (Fielding, 2000). Such views fit in the Com-
ponents and Connectors viewtype as discussed by Clements et al. (Clements
et al., 2002). We discuss one processing view for a pure component-based
Ajax solution, one for an RPC-based Ajax application, and one view for the
push-based variant.

2.6.1 Ajax view

Figure 2.1 depicts the processing view of an Spiar-based architecture based
on run-time components rendering as in, e.g., Echo2. The view shows the

Chapter 2. A Component- and Push-based Architectural Style for Ajax 39

Server App.Client Browser

update

HTTP

Encoder

Decoder
Service
Provider

invoke C

 S

 update event

DOM
Ajax

Engine
Engine

UI

event

update

Figure 2.3 Processing View of an RPC-based GWT architecture.

interaction of the different components some time after the initial page request
(the engine is running on the client).

User activity on the user interface fires off an event to indicate some kind of
component-defined action which is delegated to the Ajax engine. If a listener
on a server-side component has registered itself with the event, the engine
will make a delta-client message of the current state changes with the cor-
responding events and send it to the server. On the server, the decoder will
convert the message, and identify and notify the relevant components in the
component tree. The changed components will ultimately invoke the event
listeners of the service provider. The service provider, after handling the ac-
tions, will update the corresponding components with the new state which
will be rendered by the encoder. The rendered delta-server message is then
sent back to the engine which will be used to update the representational
model and eventually the interface. The engine has also the ability to up-
date the representational model directly after an event, if no round-trip to the
server is required.

The run-time processing view of the GWT framework is depicted in Fig-
ure 2.3. As can be seen, GWT does not maintain a server-side component tree.
Instead the server-side UI components are transformed into client-side com-
ponents at compile-time. The client engine knows the set and location of all
available components at run-time. The RPC-based interaction with the server
is however still conducted in a delta-communication style. Here, the encoder
and decoder talk directly to the Service Provider without going through the
server-side component model.

Note that each framework uses a different set of Spiar’s architectural el-
ements to present the run-time architectural processing view. See also Sec-
tion 2.8.1 for a discussion on how each approach fits in Spiar.

2.6.2 Comet view
In the majority of the current Comet frameworks the data is pushed directly
to the client as shown in Figure 2.4. This direct approach is fine for imple-
mentations that are not component-based. However, for UI component-based
frameworks, if the push data is directly sent to the client, the client has to

40 2.6. Architectural Views

Server App.Client Browser HTTP

Encoder

Decoder

Service
Provider

event update

DOM
Ajax

Engine
Engine

UI

UI Comp.

update

Push
Server

Push
Client

Source Update

Subscribe

Legend
Channel

data

event

update

 C

 S

update

Figure 2.4 Processing View of a push-based SPIAR architecture.

handle this data itself and update its components locally. To notify UI compo-
nents on the server, the client has to send a client delta back to the server. This
is inefficient, since in many cases, the push server and the application server
are in the same machine or network. The Spiar architectural style thus reveals
an interesting tension between the UI component-based and the push-based
constraint.

A possible solution (Bozdag, 2007) would be to take a short-cut for this
synchronization process. Whenever an event arrives from the Service Provider
(state change, new data), instead of publishing the new data directly to the
client, first the state changes are announced to the UI Components for all the
subscribed clients. The changes are then passed through the encoder to the
Push Server and then passed as push delta-server to the push client.

This approach makes sure that the state on the server is synchronized with
the state on the client for each notification. Figure 2.5 depicts our proposed
push-based view. The push client subscribes to a particular channel through
the push server, and the changes are passed, through the component model,
as push delta server, real-time to the client.

Note that the normal interaction of the client/server as depicted on Fig-
ure 2.1 can continue unhindered by the introduction of this push module.
There are two advantages of this solution. First of all, it allows ∆S to be sent
directly to the user in one step.

Second advantage is the simplicity for the application programmer. With-
out this solution, the programmer has to write explicit JavaScript functions in
order to process the incoming push data. In the proposed solution, no such
function is needed, since the response will be in an expected ∆S format, which
will be processed by the Ajax Engine automatically.

Chapter 2. A Component- and Push-based Architectural Style for Ajax 41

Server App.Client Browser

update

HTTP

Encoder

Decoder

Service
Provider

 S update update

DOM
Ajax

Engine
Engine

UI

UI Comp.

update

Push
Server

Push
Client

Source Update

Subscribe

Legend

S

Channel

Figure 2.5 Proposed push-based integration.

2.7 Architectural Constraints

Architectural constraints can be used as restrictions on the roles of the archi-
tectural elements to induce the architectural properties desired of a system.
Table 2.2 presents an overview of the constraints and induced properties. A
“+” marks a direct positive effect, whereas a “–” indicates a direct negative
effect.

Spiar rests upon the following constraints chosen to retain the properties
identified previously in this chapter.

2.7.1 Single Page Interface

Spiar is based on the client-server style which is presumably the best known
architecture for distributed applications, taking advantage of the separation
of concerns principle in a network environment. The main constraint that dis-
tinguishes this style from the traditional Web architecture is its emphasis on
a single page interface instead of the page-sequence model. This constraint
induces the property of user interactivity. User interactivity is improved be-
cause the interaction is on a component level and the user does not have to
wait for the entire page to be rendered again as a result of each action. Fig-
ure 2.6 and Figure 2.7 show the interaction style in a traditional web and in a
single-page client-centric Ajax application respectively.

2.7.2 Asynchronous Interaction

Ajax applications are designed to have a high user interactivity and a low
user-perceived latency. Asynchronous interaction allows the user to, subse-
quently, initiate a request to the server at any time, and receive the control
back from the client instantly. The requests are handled by the client at the
background and the interface is updated according to server responses. This

42 2.7. Architectural Constraints

Interaction possible

Client Server

Legend

Figure 2.6 Traditional multi-page Web Interaction.

model of interaction is substantially different from the classic synchronous
request, wait for response, and continue model.

2.7.3 Delta-communication

Redundant data transfer which is mainly attributed to retransmissions of un-
changed pages is one of the limitations of classic web applications. Many tech-
niques such as caching, proxy servers and fragment-based resource change
estimation and reduction (Bouras and Konidaris, 2005), have been adopted in
order to reduce data redundancy. Delta-encoding (Mogul et al., 1997) uses
caching techniques to reduce network traffic. However, it does not reduce the
computational load since the server still needs to generate the entire page for
each request (Naaman et al., 2004).

Spiar goes one step further, and uses a delta-communication style of inter-
action. Here merely the state changes are interchanged between the client
and the server as opposed to the full-page retrieval approach in classic web
applications. Delta-communication is based on delta-encoding architectural
principles but is different: delta-communication does not rely on caching and
as a result, the client only needs to process the deltas. All Ajax frameworks
hide the delta-communication details from the developers.

This constraint induces the properties of network performance directly and
as a consequence user-perceived latency and user interactivity. Network per-
formance is improved because there are less redundant data (merely the delta)
being transported. Data coherence is also improved because of the fine-grain
nature of the data which can be transferred to the user faster than when deal-
ing with data contained in large-grain web pages.

2.7.4 User Interface Component-based

Spiar relies on a single page user interface with components similar to that of
desktop applications, e.g., AWT’s UI component model. This model defines
the state and behavior of UI components and the way they can interact.

Chapter 2. A Component- and Push-based Architectural Style for Ajax 43

Single-page UI Ajax Engine

Client Server

Legend

Figure 2.7 Client-centric AJAX Interaction.

UI component programming improves simplicity because developers can
use reusable components to assemble a Web page either declaratively or pro-
grammatically. User interactivity is improved because the user can interact
with the application on a component level, similar to desktop applications.
In addition, testing component-based software is inherently easier than test-
ing traditional page-based web applications, which induces the property of
reliability.

Frameworks adhering to this constraint are very adaptable in terms of code
mobility since state changes in the three code types (2.5.2) can be propagated
to the client.

2.7.5 Web standards-based

Constraining the Web elements to a set of standardized formats is one way
of inducing portability on the Web. This constraint excludes approaches that
need extra functionality (e.g., plug-ins, virtual machine) to run on the Web
browser, such as Flash and Java applets, and makes the client cross-browser
compatible. This constraint limits the nature of the data elements to those that
are supported by web browsers. Also using web standards, web browsers that
abide by standards are easily supported and hence some degree of reliability
is induced (Avizienis et al., 2004).

2.7.6 Client-side Processing

Client-side processing improves user interactivity and user-perceived latency
through round-trip reduction. For instance, client-side form validation re-
duces unnecessary server-side error reports and reentry messages. Addi-
tionally, some server-side processing (e.g., sorting items) can be off-loaded
to clients using mobile code that will improve server performance and in-
crease the availability to more simultaneous connections. As a tradeoff, client
performance can become an issue if many widgets need processing resources

44 2.7. Architectural Constraints

U
se

r
In

te
ra

ct
iv

it
y

U
se

r-
pe

rc
ei

ve
d

La
te

nc
y

N
et

w
or

k
Pe

rf
or

m
an

ce

Si
m

pl
ic

it
y

Sc
al

ab
ili

ty

Po
rt

ab
ili

ty

V
is

ib
ili

ty

D
at

a
C

oh
er

en
ce

R
el

ia
bi

lit
y

A
da

pt
ab

ili
ty

Single-page Interface +
Asynchronous Interaction + +
Delta Communication + + + – – +
Client-side processing + + +
UI Component-based + + + +
Web standards-based + + +
Stateful + + + – –
Push-based Publish/Subscribe + + – – + +

Table 2.2 Constraints and induced properties

on the client. GWT takes advantage of client-side processing to the fullest, by
generating all the UI client-side code as JavaScript and run it on the client.

2.7.7 Stateful

A stateless server is one which treats each request as an independent trans-
action, unrelated to any previous request, i.e., each request must contain all
of the information necessary to understand it, and cannot take advantage of
any stored context on the server (Fielding and Taylor, 2002). Even though the
Web architecture and HTTP are designed to be stateless, it is difficult to think
of stateless Web applications. Within a Web application, the order of interac-
tions is relevant, making interactions depend on each other, which requires
an awareness of the overall component topology. The statefulness is imitated
by a combination of HTTP, client-side cookies, and server-side session man-
agement.

Unlike Rest, Spiar does not constrain the nature of the state explicitly.
Nevertheless, since a stateless approach may decrease network performance
(by increasing the repetitive data), and because of the component-based na-
ture of the user interactions, a stateful solution might become favorable at the
cost of scalability and visibility.

2.7.8 Push-based Publish/Subscribe

The client-server interaction can be realized in both a push- or pull-based
style. In a push-based style (Hauswirth and Jazayeri, 1999), the server broad-
casts the state changes to the clients asynchronously every time its state cha-
nges. Event-based Integration (Barrett et al., 1996) and Asynchronous Rest

(Khare and Taylor, 2004) are event-based styles allowing asynchronous notifi-

Chapter 2. A Component- and Push-based Architectural Style for Ajax 45

cation of state changes by the server. This style of interaction has mainly been
supported in peer-to-peer architectural environments.

In a pull-based style, client components actively request state changes.
Event-driven (Newman and Sproull, 1979) architectures are found in distr-
ibuted applications that require asynchronous communication, for instance, a
desktop application, where user initiated UI inputs serve as the events that
activate a process.

Comet enables us to mimic a push-based publish/subscribe (Eugster et al.,
2003) style of interaction on the web. This ability improves the network perfor-
mance (see Chapter 4) because unnecessary poll requests are avoided. User-
perceived latency, and adaptability are also improved by allowing a real-time
event notification of state changes to clients. The results of our empirical study
in Chapter 4 show that data coherence is improved significantly by this con-
straint, but at the same time the server application performance and reliability
can be deteriorated and as a result scalability can be negatively influenced.

2.8 Discussion and Evaluation

In this section we evaluate Spiar by investigating how well existing Ajax

frameworks and typical Ajax architectures are covered by the style, and dis-
cuss various decisions and tradeoffs in the design of Ajax applications in
terms of the architectural properties.

2.8.1 Retrofitting Frameworks onto Spiar

Each framework presented in Section 2.2 can be an architectural instance of
Spiar, even if not fully complying with all the architectural constraints of
Spiar. Echo2 is the best representative of Spiar because of its fully event-
driven and component-based architecture. The Jsf-based Backbase architec-
ture is also well covered by Spiar even though Jsf is not a real event-based
approach. GWT, on the other hand, is an interesting architecture. Although
the architecture uses UI components during the development phase, these
components are compiled to client-side code. GWT does not rely on a server-
side component-based architecture and hence, does not fully comply with
Spiar. None of these three frameworks has push-based elements. While the
push-based constraint is well represented in the Dojo and Cometd framework,
the component-based constraint is missing here.

Spiar abstracts and combines the component- and push-based styles of
these Ajax frameworks into a new style.

2.8.2 Typical Ajax Configurations

Many industrial frameworks have started supporting the Ajax style of inter-
action on the web. However, because of the multitude of these systems it is
difficult to capture their commonalities and draw sharp lines between their

46 2.8. Discussion and Evaluation

U
se

r
In

te
ra

ct
iv

it
y

U
se

r-
pe

rc
ei

ve
d

La
te

nc
y

N
et

w
or

k
Pe

rf
or

m
an

ce

Si
m

pl
ic

it
y

Sc
al

ab
ili

ty

Po
rt

ab
ili

ty

V
is

ib
ili

ty

D
at

a
C

oh
er

en
ce

R
el

ia
bi

lit
y

A
da

pt
ab

ili
ty

Rest-based Classic Web – – – + + + + – +− –
Client-centric Ajax + + – + –
ARPC Ajax + + + + – –
Push-based Ajax + + – – + +
Spiar-based Ajax + + + + +− + – + + +

Table 2.3 AJAX configurations and properties.

main variations. Using Spiar as a reference point, commonalities and diver-
gences can be identified.

Table 2.3 shows a number of Ajax configurations along with the induced
architectural properties. The first entry is the Rest-based classic Web config-
uration. While simple and scalable in design, it has, a very low degree of
responsiveness, high user-perceived latency, and there is a huge amount of
redundant data transferred over the network.

The second configuration is the Client-centric Ajax. Most Ajax frameworks
started by focusing on the client-side features. Frameworks such as Dojo,
Ext,13 and jQuery14 all provide rich UI widgets on the client, facilitating a
client-centric style of interaction in which most of the functionality is off-
loaded to the browser. Generally, an interaction between components that
share the same location is considered to have a negligible cost when compared
to interaction that is carried out through a network (Carzaniga et al., 1997).
This variant provides a high degree of user interactivity and very low user-
perceived latency. There is, however, no support for adaptability as all the
code is off-loaded to the client and that makes this variant static in terms of
code changes from the server.

Frameworks such as GWT, DWR,15 and JSON-RPC-Java16 support the
Asynchronous Remote Procedure Call (ARPC) style of interaction. In this config-
uration, all the presentational and functional code is off-loaded to the browser
and the server is only asynchronously contacted in case of a change in terms
of raw textual data. Low user-perceived latency, high user interactivity and
reduced server round-trips are the characteristics of this configuration. Even
though the textual data can be dynamically requested from the server, there
is a limited degree of adaptability for the presentational and functional code.

The fourth configuration is a pure push-based interaction in which the
state changes are streamed to the client (by keeping a connection alive), with-

13 http://extjs.com
14 http://jquery.com
15 http://getahead.org/dwr
16 http://oss.metaparadigm.com/jsonrpc/

Chapter 2. A Component- and Push-based Architectural Style for Ajax 47

http://extjs.com
http://jquery.com
http://getahead.org/dwr
http://oss.metaparadigm.com/jsonrpc/

out any explicit request from the client. High level of data coherence and
improved network performance compared to the traditional pull style on the
web are the main positive properties of this variant. High server load and
scalability issues are mainly due to the fact that the server has to maintain
state information about the clients and the corresponding connections.

For the sake of comparison, the last entry in Table 2.3 presents the compo-
nent and push-based Spiar style itself.

2.8.3 Issues with push Ajax

Scalability is the main issue in a push model with a traditional server model.
Comet uses persistent connections, so a TCP connection between the server
and the client is kept alive until an explicit disconnect, timeout or network
error. So the server has to cope with many connections if the event occurs
infrequently, since it needs to have one or more threads for every client. This
will bring problems on scaling to thousands of simultaneous users. There is a
need for better event-based tools on the server. According to our latest find-
ings (Bozdag et al., 2009), push can handle a higher number of clients if new
techniques, such as the continuations (Jetty, 2006) mechanism, are adopted
by server applications. However, when the number of users increases, the
reliability in receiving messages decreases.

The results of our empirical study (Bozdag et al., 2009) show that push
provides high data coherence and high network performance, but at the same
time a Comet server application consumes more CPU cycles as in pull.

A stateful server is more resistant to failures, because the server can save
the state at any given time and recreate it when a client comes back. A push
model, however, due to its list of subscribers is less resilient to failures. The
server has to keep the state, so when the state changes, it will broadcast the
necessary updates. The amount of state that needs to be maintained can be
large, especially for popular data items (Bhide et al., 2002). This extra cost of
maintaining a state and a list of subscribers will also have a negative effect on
scalability.

These scalability issues are also inherited by Spiar as can be seen in Ta-
ble 2.3.

2.8.4 Resource-based versus Component-based

The architecture of the World Wide Web (W3C Technical Architecture Group,
2004) is based on resources identified by Uniform Resource Identifiers (URI),
and on the protocols that support the interaction between agents and re-
sources. Using a generic interface and providing identification that is com-
mon across the Web for resources has been one of the key success factors of
the Web.

The nature of Web architecture which deals with Web pages as resources
causes redundant data transfers (Bouras and Konidaris, 2005). The delta-
communication way of interaction in Spiar is based on the component level

48 2.8. Discussion and Evaluation

and does not comply with the Resource/URI constraint of the Web architec-
ture. The question is whether this choice is justifiable. To be able to answer
this question we need to take a look at the nature of interactions within single
page applications: safe versus unsafe interactions.

2.8.5 Safe versus Unsafe Interactions

Generally, client/server interactions in a Web application can be divided into
two categories of Safe and Unsafe interactions (W3C, 2004). A safe interaction
is one where the user is not to be held accountable for the result of the inter-
action, e.g., simple queries with GET, in which the state of the resources (on
the server) is not changed. An unsafe interaction is one where a user request
has the potential to change the state of the resources, such as a POST with
parameters to change the database.

The web architecture proposes to have unique resource-based addressing
(URL) for safe interactions, while the unsafe ones do not necessarily have to
correspond to one. One of the issues concerning Ajax applications is that
browser history and bookmarks of classic web applications are broken if not
implemented specifically. In Ajax applications, where interaction becomes
more and more desktop-like, where eventually Undo/Redo replaces Back/For-
ward, the safe interactions can remain using specific addressing while the un-
safe ones (POST requests) can be carried out at the background. Both variants
use delta-communication, however, the safe interactions should have unique
addressing and the unsafe one do not necessarily correspond to any Rest-
based resource identified by a URL.

To provide the means of linking to the safe operations in Ajax, the URI’s
fragment identifier (the part after # in the URL) can be adopted. Interpretation
of the fragment identifier is then performed by the engine that dereferences a
URI to identify and represent a state of the application. Libraries such as the
jQuery history/remote plugin17 or the Really Simple History18 support ways
of programatically registering state changes with the browser history through
the fragment identifier.

2.8.6 Client- or server-side processing

Within the current frameworks it is not possible for developers to choose
whether some certain functionality should be processed on the client or on
the server. How the computation is distributed can be an important factor in
tuning a web application. Ajax frameworks architectures should provide the
means for the developer to decide if and to what extent computation should
be done on the client. Also adopting adaptive techniques to choose between
the server or client for processing purposes needs more attention.

17 http://stilbuero.de/jquery/history/
18 http://code.google.com/p/reallysimplehistory/

Chapter 2. A Component- and Push-based Architectural Style for Ajax 49

http://stilbuero.de/jquery/history/
http://code.google.com/p/reallysimplehistory/

UI

Widget View
<<build>>

deltaChange

deltaUpdate

viewChange

1..*

1..*

Web App
1

<<UI Component>>

Page

1..*

Server app Client Browser

Figure 2.8 A single page web application composed of UI components.

2.8.7 Asynchronous Synchronization

The asynchronous interaction in Ajax applications may cause race conditions
if not implemented with care. The user can send a request to the server before
a previous one has been responded. In a server processor that handles the
requests in parallel, the second request can potentially be processed before
the first one. This behavior could have drastic effects on the synchronization
and state of the entire application. A possible solution would be handling
the event-triggered requests for each client sequentially at the cost of server
performance.

2.8.8 Communication Protocol

As we have seen, currently each Ajax framework has implemented its own
specific communication protocol. This makes the visibility of client/server
interactions poor as one must know the exact protocol to be able to make
sense of the delta messages. It also results in a low level of portability for
these applications. For a client to be able to communicate with an Ajax server,
again it needs to know the protocol of that server application. These two
properties can be improved by defining a standard protocol specification for
the communication by and for the Ajax community.

If we look at the current push approaches, we see different techniques on
achieving the push solution itself, but also different measures to deal with
portability. Without a standard here, it will be difficult for a mediator to
understand the interactions between system components, therefore the system
itself will be less visible. The definition and adoption of the Bayeux protocol
is a first attempt in the right direction which will improve both visibility and
portability.

50 2.8. Discussion and Evaluation

2.8.9 Design Models

Figure 2.8 shows a meta-model of an Ajax web application. The UI is com-
posed of widgets of UI components. The client single page is built by the
server-side widgets. Delta changes as well as view changes occur on the wid-
get level. A view change, can be seen as navigating through the available
widgets. Ajax frameworks should provide clear navigational models for de-
velopers. Research is needed to propose design models for Ajax developers
by for instance extending the UML language to model user interaction, nav-
igation through components, asynchronous/synchronous actions and client
versus server side processing.

2.8.10 Scope of Spiar

The essential requirements for an Ajax application are speed of execution and
improved user experience, small size of client/server data, and very specific
interaction behavior. Spiar is a coordinated set of architectural constraints
that attempts to minimize user-perceived latency and network usage, and
improve data coherence and ultimately user experience. Because of these
properties, the components of Ajax frameworks are tightly coupled. Loose
coupling is thus not a property included in Spiar. This inherent tight coupling
also encompasses some scalability tradeoffs.

The style focuses on the front-end of the new breed of web applications, i.e.,
the Service Provider is an abstract component that could be composed of mid-
dle en back-end software. Service-oriented architecture solutions could there-
fore easily be combined with Spiar, e.g., by replacing the Service Provider
with a SOAP server. Spiar elaborates only those parts of the architecture that
are considered indispensable for Ajax interaction.

2.9 Related Work

While the attention for rich Internet applications in general and Ajax in partic-
ular in professional magazines and Internet technology related web sites has
been overwhelming, few research papers have been published on the topic so
far.

A number of technical books have appeared on the subject of developing
Ajax applications. Asleson and Schutta (2005), for instance, focus primarily
on the client side aspects of the technology and remain ‘pretty agnostic’ to
the server side. Crane et al. (2005) provide an in-depth presentation of Ajax

web programming techniques and prescriptions for best practices with de-
tailed discussions of relevant design patterns. They also mention improved
user experience and reduced network latency by introducing asynchronous
interactions as the main features of such applications. While these books fo-
cus mainly on the implementation issues, our work examines the architectural
design decisions and properties from an abstraction level by focusing on the
interactions between the different client/server components.

Chapter 2. A Component- and Push-based Architectural Style for Ajax 51

The push-based style has received extensive attention within the distrib-
uted systems research community. However, most of the work focuses on
client/server distributed systems and non-HTTP multimedia streaming or
multi-casting with a single publisher (Franklin and Zdonik, 1998; Hauswirth
and Jazayeri, 1999). The only work that currently focuses on Ajax is the white-
paper of Khare (2005). Khare discusses the limits of the pull approach and
proposes a push-based approach for Ajax. However, the white-paper does
not evaluate possible issues with this push approach, such as scalability and
performance. Their work on the mod pubsub event router over HTTP (Khare
et al., 2002) is highly related to the concepts of Ajax push implementations.

The page-sequence model of the traditional web architecture makes it dif-
ficult to treat portions of web pages (fragments), independently. Fragment-
based research (Bouras and Konidaris, 2005; Brodie et al., 2005; Challenger
et al., 2005) aims at providing mechanisms to efficiently assemble a web page
from different parts to be able to cache the fragments. Recently proposed
approaches include several server-side and cache-side mechanisms. Server-
side techniques aim at reducing the load on the server by allowing reuse of
previously generated content to serve user requests. Cache-based techniques
attempt to reduce the latency by moving some functionality to the edge of the
network. These fragment-based techniques can improve network and server
performance, and user-perceived latency by allowing only the modified or
new fragments to be retrieved. Although the fragments can be retrieved in-
dependently, these techniques lack the user interface component interactiv-
ity required in interactive applications. The UI component-based model of
the Spiar style in conjunction with its delta-communication provides a means
for a client/server interaction based on state changes that does not rely on
caching.

The Spiar style itself draws from many existing styles (Khare and Taylor,
2004; Newman and Sproull, 1979; Sinha, 1992; Taylor et al., 1996) and software
fields (Fielding, 2000; Mogul et al., 1997; Perry and Wolf, 1992), discussed and
referenced in the chapter. Our work relates closely to the software engineer-
ing principles of the Rest style (Fielding and Taylor, 2002). While Rest deals
with the architecture of the Web (W3C Technical Architecture Group, 2004) as
a whole, Spiar focuses on the specific architectural decisions of Ajax frame-
works.

Parsons (2007) provides an overview of the current state of the web by ex-
ploring the evolving web architectural patterns. After the literature on the
core patterns of traditional web application architectures is presented, the
paper discusses some new emerging patterns, by focusing on the recent liter-
ature on Web 2.0 in general and Ajax in particular.

On the architectural styles front the following styles can be summarized:
Pace (Suryanarayana et al., 2004) an event- based architectural style for trust
management in decentralized applications, TIGRA (Emmerich et al., 2001) a
distributed system style for integrating front-office systems with middle- and
back-office applications, and Aura (Sousa and Garlan, 2002) an architectural
framework for user mobility in ubiquitous environments which uses models

52 2.9. Related Work

of user tasks as first class entities to set up, monitor and adapt computing
environments.

Khare and Taylor (2004) also evaluate and extend Rest for decentralized set-
tings and represent an event-based architectural style called ARRESTED. The
asynchronous extension of Rest, called A+REST, permits a server to broadcast
notifications of its state changes to ‘watchers’.

Recently, Erenkrantz et al. (2007) have re-evaluated the Rest style for new
emerging web architectures. They have also come to the conclusion that Rest

is silent on the area that Ajax expands. They recognize the importance of the
Ajax engine which is seen as the interpretation environment for delivered con-
tent. They also notice, that Rest’s goal was to reduce server-side state load,
while Ajax reduces server-side computational load by adopting client-side
processing, and increases responsivity. Their new style extends Rest and is
called Computational Rest (CREST). CREST requires a transparent exchange
of computation so that the client no longer is seen as merely a presentation
agent for delivered content; ‘it is now an execution environment explicitly
supporting computation’. In other words, CREST much like Spiar recognizes
the significance of the Ajax engine as a processing component. On the other
hand, CREST ignores other important architectural characteristics of Ajax ap-
plications, such as the the delta-communication and asynchronous interaction
covered in Spiar.

2.10 Concluding Remarks

Ajax is a promising solution for the design and implementation of responsive
rich web applications, since it overcomes many of the limitations of the cla-
ssical client-server approach. However, most efforts in this field have been
focused on the implementation of different Ajax tools and frameworks, with
little attention to the formulation of a conceptual architecture for the technol-
ogy.

In this chapter we have discussed Spiar, an architectural style for Ajax.
The contributions of this chapter are in two research fields: web application
development and software architecture.

From a software architecture perspective, our contribution consists of the
use of concepts and methodologies obtained from software architecture re-
search in the setting of Ajax web applications. This chapter further illustrates
how the architectural concepts such as properties, constraints, and different
types of architectural elements can help to organize and understand a com-
plex and dynamic field such as single page Ajax development. In order to
do this, this chapter builds upon the foundations offered by the Rest style,
and offers a further analysis of this style for the purpose of building web
applications with rich user interactivity.

From a web engineering perspective, our contribution consists of an eval-
uation of different variants of Ajax client/server interactions, the Spiar style
itself, which captures the guiding software engineering principles that practi-

Chapter 2. A Component- and Push-based Architectural Style for Ajax 53

tioners can use when constructing and analyzing Ajax applications and eval-
uating the tradeoffs of different properties of the architecture. We further
propose a component- push-based architecture capable of synchronizing the
events both on the server and the client efficiently.

The style is based on an analysis of various Ajax frameworks and config-
urations, and we have used it to address various design tradeoffs and open
issues in Ajax applications.

Ajax development field is young, dynamic and changing rapidly. Cer-
tainly, the work presented in this chapter needs to be incrementally enriched
and revised, taking into account experiences, results, and innovations as they
emerge from the web community.

Future work encompasses the use of Spiar to analyze and influence Ajax

developments. One route we foresee is the extension of Spiar to incorporate
additional models for representing, e.g., navigation or UI components, thus
making it possible to adopt a model-driven approach to Ajax development.
At the time of writing, we are using Spiar in the context of enriching existing
web applications with Ajax capabilities.

54 2.10. Concluding Remarks

Chapter

3

Migrating Multi-page Web
Applications to Single-page Ajax

Interfaces?

Recently, a new web development technique for creating interactive web appli-
cations, dubbed Ajax, has emerged. In this new model, the single-page web
interface is composed of individual components which can be updated/replaced
independently. If until a year ago, the concern revolved around migrating legacy
systems to web-based settings, today we have a new challenge of migrating web
applications to single-page Ajax applications. Gaining an understanding of the
navigational model and user interface structure of the source application is the
first step in the migration process. In this chapter, we explore how reverse en-
gineering techniques can help analyze classic web applications for this purpose.
Our approach, using a schema-based clustering technique, extracts a navigational
model of web applications, and identifies candidate user interface components to
be migrated to a single-page Ajax interface. Additionally, results of a case study,
conducted to evaluate our tool, are presented.

3.1 Introduction

Despite their enormous popularity, web applications have suffered from
poor interactivity and responsiveness towards end users. Interaction in

classic web applications is based on a multi-page interface model, in which
for every request the entire interface is refreshed.

Recently, a new web development technique for creating interactive web
applications, dubbed Ajax (Asynchronous JavaScript And XML) (Garrett,
2005), has emerged. In this new model, the single-page web interface is
composed of individual components which can be updated/replaced inde-
pendently, so that the entire page does not need to be reloaded on each user
action. This, in turn, helps to increase the levels of interactivity, responsive-
ness and user satisfaction.

Adopting Ajax-based techniques is a serious option not only for newly
developed applications, but also for existing web sites if their user friendli-
ness is inadequate. Many organizations are beginning to consider migration
(ajaxification) possibilities to this new paradigm which promises rich interac-
tivity and satisfaction for their clients. As a result, the well-known problem
of legacy migration is becoming increasingly important for web applications.

?This chapter was published in the Proceedings of the 11th European Conference on Software
Maintenance and Reengineering (CSMR 2007) (Mesbah and van Deursen, 2007b).

If until a year ago, the problem revolved around migrating legacy systems
to web applications, today we have a new challenge of migrating classic web
applications to single-page web applications.

The main question addressed in this chapter is how to identify appropri-
ate candidate single-page components from a page sequence interface web
application. Obtaining a clear understanding of the navigational model and
user interface structure of the source application is an essential step in the
migration process.

In this chapter, we present a reverse engineering technique for classification
of web pages. We use a schema-based clustering technique to classify web
pages with similar structures. These clusters are further analyzed to suggest
candidate user interface components for the target Ajax application.

The rest of this chapter is organized as follows. We start out, in Section 3.2
by exploring Ajax and focusing on its characteristics. Section 3.3 presents
the overall picture of the migration process. Section 3.4 describes our page
classification notion and proposes a schema-based clustering approach. Sec-
tion 3.5 outlines how we identify candidate user interface components. The
implementation details of our tool, called Retjax, are explained in Section 3.6.
Section 3.7 evaluates a sample web application and its recovered navigational
and component model by applying Retjax. Section 3.8 discusses the results
and open issues. Section 3.9 covers related work. Finally, Section 3.10 draws
conclusions and presents future work.

3.2 Single-page Meta-model

Figure 3.1 shows a meta-model of a single-page Ajax web application which
is composed of widgets. Each widget, in turn, consists of a set of user inter-
face components. The specific part of the meta-model is target specific, i.e.,
each Ajax framework provides a specific set of UI components at different
levels of granularity. The client side page is composed of client-side views,
which are generated by the server-side widgets/components. Navigation is
through view changes. For each view change, merely the state changes are
interchanged between the client and the server, as opposed to the full-page
retrieval approach in multi-page web applications.

The architectural decisions behind Ajax change the way we develop web
applications. Instead of thinking in terms of sequences of Web pages, Web de-
velopers can now program their applications in the more intuitive single-page
user interface (UI) component-based fashion along the lines of, for instance,
Java AWT and Swing.

3.3 Migration Process

What we would like to achieve is support in migration from a multi-page web
application to a single-page Ajax interface. In this section we describe the
steps needed in such a process.

56 3.2. Single-page Meta-model

Page

Widget View
<<build>>

deltaChange

deltaUpdate

Panel

Textarea

Text

Secret

HiddenSelect

Radio Checkbox

Button

Window
Menubar

Label

Anchor

Image

Modal

Tree

Tab

File

Taskbar PanelCell

viewChange

1..*

1..*

Web App
1

1..*

<<UI Component>>

<<Layout>><<Output>><<Input>> <<Navigation>>

Data

Generic Part

Specific Part

Figure 3.1 The meta-model of a single-page AJAX application composed of UI
components.

Figure 3.2 depicts an overall view of the migration process. Note that we
are primarily focusing on the user interface and not on the server-side code
(which is also an essential part of a migration process). The user interface
migration process consists of five major steps:

1. Retrieving Pages

2. Navigational Path Extraction

3. UI Component Model Identification

4. Single-page UI Model Definition

5. Target UI Model Transformation

Below we briefly discuss each of these steps. The main focus of this chapter
is on steps two and three, i.e., finding candidate user interface components to
be able to define a single-page user interface model. Nevertheless, we will
shortly present how we envision the other steps which are currently part of
our ongoing research.

Chapter 3. Migrating Multi-page Web Applications to Ajax Interfaces 57

Ajax Interface

Classic Web
Application

Nav.
Model

Extraction

Single Page
UI

Metamodel

Single Page
UI Model

Target UI
Metamodel
e.g., BXML,

GWT

Target UI
Model

Target UI Model
Transformation

Generate

Candidate
UI

Components

Nav. Model

Developer

UI Component Model
Identification

Single-page UI Model
Definition

Figure 3.2 Reverse Engineering Classic Web Applications to Ajax Interfaces.

3.3.1 Retrieving Pages

Looking at dynamic web applications from an end-user’s perspective enables
us to gain an understanding of the application without having to cope with
the many different server-side web programming languages. Building a run-
time mirror-copy of the web pages can be carried out by applying static as
well as dynamic analysis techniques. Static analysis can examine the pages
and find href links to other internal pages. Dynamic analysis can help up
to retrieve pages which require specific request parameters (form-based), for
instance, through scenario-based test cases or collecting traces of user actions
(e.g., sessions, input data) interacting with the web application. It is clear that
the more our retrieved mirror-copy resembles the actual web application, the
better our navigational path and UI component identification will be.

3.3.2 Navigational Path Extraction

In order to migrate from a classic web application (source) to a single-page
Ajax interface (target), we first need to gain an understanding of the navi-

58 3.3. Migration Process

gational and structural model of the source application. A navigational path is
the route a user can take while browsing a web application, following links
on the pages. For ajaxification, gaining an understanding of this navigational
path is essential to be able to model the navigation in the single-page user in-
terface model. For instance, knowing that Category pages link with Product
Item List pages, implies that in our single-page model, we need a Category
UI component which can navigate to the Product Item List UI component.

While browsing a web application, the structural changes, for certain pages,
are so minor that we can instantly notice we are browsing pages belonging
to a certain category e.g., Product List. Classifying these similar pages into a
group, simplifies our navigational model. Our hypothesis is that such a clas-
sification also provides a better model to search for candidate user interface
components.

3.3.3 UI Component Model Identification

Within web applications, navigating from one page (A) to another (B) usually
means small changes in the interface. In terms of HTML source code, this
means a great deal of the code in A and B is the same and only a fraction of
the code is new in B. It is this new fraction that we humans distinguish as
change while browsing the application.

Speaking in terms of Ajax components, this would mean that instead of
going from page A to B to see the interface change, we can simply update
that part of A that needs to be replaced with the new fraction from B. Thus,
this fraction of code from page B, becomes a UI component on its own in our
target system.

The identified list of candidate components along with the navigational
model will help us define a single-page user interface model.

3.3.4 Single-page UI Model Definition

Once we have identified candidate components, we can derive an Ajax rep-
resentation for them. We have opted for an intermediate single page model,
from which specific Ajax implementations can be derived.

A starting point for such a model could be formed by user interface lan-
guages such as XUL,1 XIML (Puerta and Eisenstein, 2002), and UIML (Abrams
et al., 1999). However, most such languages are designed for static user inter-
faces with a fixed number of UI components and are less suited for modeling
dynamic interfaces as required in Ajax.

We are currently working on designing an abstract single-page user inter-
face meta-model for Ajax applications. This abstract model should be capable
of capturing dynamic changes, navigational paths as needed in such applica-
tions, and abstract general Ajax components, e.g., Button, Window, Modal, as
depicted in Figure 3.1.

1 http://www.mozilla.org/projects/xul/

Chapter 3. Migrating Multi-page Web Applications to Ajax Interfaces 59

http://www.mozilla.org/projects/xul/

3.3.5 Target UI Model Transformation

For each target system, a meta-model has to be created and the correspond-
ing transformation between the single-page meta-model language and the
platform-specific language defined. The advantage of having an abstract user
interface model is that we can transform it to different Ajax settings. We have
explored a number of Ajax frameworks such as Backbase, Echo2, and GWT,
and have started conducting research to adopt a model-driven approach to
Ajax (Gharavi et al., 2008).

3.4 Navigational Path Extraction

Our ajaxification approach starts by reconstructing the paths that users can
follow when navigating between web pages. This requires that we group
pages that are sufficiently similar and directly reachable from a given page.
For example, a web page A could contain 7 links, 3 of which are similar.
We cluster those 3 pages, and look if the links contained in those 3 pages,
together, could be clustered, and so on. This way we build clusters along with
the navigational paths.

In this section, we discuss our specific notion of web page similarity, and
the steps that we follow to compute the clusters.

3.4.1 Page Classification

Web pages can be classified in many different ways depending on the model
needed for the target view. Draheim et al. (Draheim et al., 2005) list some
of possible classification notions. In this chapter, our target view focuses on
structural classification. Tonella and Ricca (Ricca and Tonella, 2001; Tonella and
Ricca, 2004) present three relevant notions of classification:

• Textual Identity considers two pages the same if they have exactly the same
HTML code,

• Syntactical Identity groups pages with exactly same structure, ignoring the
text between tags, according to a comparison of the syntax trees,

• Syntactical Similarity classifies pages with similar structure, according to a
similarity metric, computed on the syntax trees of the pages.

Textual and Syntactical Identity classification notions have limited capabil-
ities in finding pages that belong to a certain category as they look for exact
matches. Syntactical Similarity is the notion that can help us cluster pages into
useful groups by defining a similarity threshold under which two pages are
considered clones. We propose a new approach based on schema-based similarity.

60 3.4. Navigational Path Extraction

Classic
Web

application

Retrieve
pages

HTML
pages

Page
Schema

Extract Schema

Page
Links

Search Nav Links

Page

For each page

Pair Page
Clones

Detect Schema
Clones

Clusters
Cluster
Clones

Figure 3.3 Schema-based clustering process.

3.4.2 Schema-based Similarity

Many web clustering approaches (Di Lucca et al., 2002b; De Lucia et al., 2004a;
Ricca and Tonella, 2003) base their similarity degree on the computation of the
edit distance between the syntax trees of web pages. This approach, although
useful, has a limited capability to group HTML pages that have similar pre-
sentational structure.

For instance, consider two pages, the first page having two table rows and
the second seven rows with the same structure and number of cells. On
the screen, we instantly classify these two under one category, but the edit
distance of these two pages could be quite high and as thus the classification
metric would not classify them in one cluster. Increasing the metric threshold
is not an option because that results in an increase in the number of incorrectly
combined pages.

To overcome this issue, our approach relies on a comparison of the explicit
schemas of pages. This means, instead of comparing the syntax trees of pages,
we first reverse engineer the schemas of the pages and then compute the edit
distance of the corresponding schemas. Two pages are considered clones if
their schemas are similar. Going back to our example, the two pages can now
be clustered correctly as a table with two row elements has the same schema
as a table with seven row elements.

Chapter 3. Migrating Multi-page Web Applications to Ajax Interfaces 61

3.4.3 Schema-based Clustering

Given the schema-based similarity metric, we can create a schema-based clus-
tering of web pages. We take a tree-based approach for recovering and pre-
senting the navigational paths. In a tree structure with a set of linked nodes,
each node represents a web page with zero or more child nodes and edges
represent web links to other pages. We believe tree structures can provide a
simple but clear and comprehensible abstract view of the navigational path
for web applications.

Figure 3.3 shows our schema-based clustering process. Starting from a
given root node (e.g., index.html), the goal is to extract the navigational path
by clustering similar pages on each navigational level.

It is important to note that we do not conduct clustering of all pages at once.
Instead we walk along the navigational path and for each node we cluster the
pages that are linked with that node. It is important to cluster along with
the navigational path, because we would like to recover the changes in the
interface and later identify candidate UI components. If we cluster all pages
as if they were on a single level, the navigational information will be lost and
that is what we try to avoid.

Algorithm 1 shows how on each level the schemas of linked pages are
compared. The search is depth-first. For each page on the navigational path,
recursively, first the internal links (i.e., links to pages within the web applica-
tion) are extracted. Afterwards, for each found link, the corresponding page
is retrieved and converted to XHTML. The XHTML instance is then examined
to extract an explicit schema. The variables used in the algorithm are local
variables belonging to the page being processed at that level.

After the schemas are extracted, we conduct a pairwise comparison of the
schemas to find similar structures. The structural edit distance between two
schemas is calculated using the Levenshtein (Levenshtein, 1996) method. Af-
ter this step, the connected set contains a list of cloned pair pages (e.g., {(a-b),
(b-c), (d-e)}).

To perform the classification of pages, we provide a practical way in which
the actual computation of the clusters, given a set of clone pairs, i.e., connected,
is simply done by taking the transitive closure of the clone relation (De Lucia
et al., 2005). In this approach, there is no need to define the number of clusters
in advance. The result of calling the transclos function on our given example
would be {(a-b-c), (d-e)}.

Our tool also supports an agglomerative hierarchical manner of classifica-
tion. Hierarchical clustering algorithms, however, require the desired number
of clusters to be defined in advance.

3.4.4 Cluster Refinement/Reduction

Because our search is depth-first, after the first page classification phase, we
can further refine the clusters in order to obtain what we call the simplified
navigational path (SNP).

62 3.4. Navigational Path Extraction

Algorithm 1
1: procedure start (Page p)
2: Set L← extractLinks(p)
3: for i = 0 to L.size− 1 do
4: pl[i]← retrievePage(L(i))
5: px[i]← convertToXHTML(pl[i])
6: ps[i]← extractSchema(px[i])
7: start(pl[i])
8: end for
9: Set connected← ∅

10: for i = 0 to L.size− 1 do
11: for j = i + 1 to L.size− 1 do
12: if distance(ps[i], ps[j]) < threshold then
13: connected← connected ∪ clone(pl[i], pl[j])
14: end if
15: end for
16: end for
17: Set clusters← transclos(connected)
18: write(p, clusters)
19: end procedure

A

B

C

D

E

F

G

H

I

J

K

A

D

E

I

Z Y

X

A

B

C

D

E

F

G

H

I

J

K

Figure 3.4 Refinement and reduction of clusters.

Beginning at the root node, for each cluster c that contains two or more
pages, we examine all outgoing linked pages (from all pages in c) to determine
whether further refinement of the classification is possible on the next levels
of the navigational path. This is done by applying the same classification
technique as explained in 3.4.3.

To simplify the navigational path, we reduce each c to a node containing
only one page. For that, we presently use the simple but effective approach
to choose the largest page as the reduced cluster page. A more elegant (but
more expensive) solution would be to replace the cluster c by a page that is
composed by extracting all common elements of the pages in c. These com-
mon elements can be computed using the shortest common supersequence
algorithm (Barone et al., 2001).

From left to right, Figure 3.4 presents, the initial classification, the refined
classification in which pages F, G, and H are classified into a cluster, and the

Chapter 3. Migrating Multi-page Web Applications to Ajax Interfaces 63

simplified navigational path (SNP) in which Z = B ∪ C, Y = F ∪ G ∪ H, and
X = J ∪ K. Note that this refinement computation is performed until no more
clusters are identified.

3.5 UI Component Identification

As mentioned before, our goal is to determine which parts of the web interface
change as we browse from one page to another. These changes in the interface,
along the navigational path, form the list of candidate components.

3.5.1 Differencing

Once a simplified model of the navigational path has been extracted, we can
focus on extrapolating candidate user interface components. Using the SNP
obtained in the previous step, Algorithm 2 describes how we calculate the
fragment changes using a differencing approach.

Algorithm 2
1: procedure begin (Page p)
2: pr ← removeTexualContent(p)
3: pp← prettyPrint(pr)
4: compare(pp)
5: end procedure
6:
7: procedure compare (Page p)
8: Set L← getLinksOnSNP(p)
9: for i = 0 to L.size− 1 do

10: prl ← removeTexualContent(L(i))
11: ppl ← prettyPrint(prl)
12: candidate[i]← Diff (p 7→ ppl)
13: compare(ppl)
14: end for
15: end procedure

Starting from the root node, we compare the current page (A) with all the
pages on the next level on the SNP to find changes between A and those
linked pages.

We use a modified version of the Diff method. This method only returns
changes of going from A to B that are found on B, ignoring the changes on A.

To be able to conduct proper comparisons we remove all textual content,
i.e., all text between the HTML tags in both pages A and B. We also pretty
print both pages by writing each opening and closing tag on a separate line.

The result is a list of candidate components in HTML code along the navi-
gational path.

64 3.5. UI Component Identification

3.5.2 Identifying Elements

The list of candidate user interface components can be used, for instance, to
gain a visual understanding of the changes while browsing.

The code for a candidate user interface component can also provide us
useful information as what sort of HTML elements it is composed of. The
elements used in the candidate components can lead us towards our choice of
single-page UI components.

To that end, the content of each candidate component is examined by pars-
ing and searching for elements of interest, (e.g., Button, Text, Textarea, Select)
which can be converted to the corresponding single-page instances.

Thus, the end result of this step is a mapping between legacy HTML ele-
ments and candidate single-page user interface components.

3.6 Tool Implementation: Retjax

We have implemented the navigational path extraction and Ajax component
identification approach as just described in a prototype tool called Retjax (Re-
verse Engineer To Ajax). Retjax is written entirely in Java 5 and is based on
a number of open-source libraries. A beta version of the tool will be made
available from our software engineering site swerl.tudelft.nl.

Retjax implements the following steps:

Parsing & Extracting Links.
The first step consists of parsing HTML pages and extracting internal links.
HTML Parser2 is used for his purpose. It is also modified to pretty-print pages
which is a prerequisite for the differencing step.

Cleaning up.
For cleaning up faulty HTML pages and converting them to well-formed
XHTML instances, JTidy3, a Java port of the HTML syntax checker HTML Tidy,
is used. A well-formed XHTML page is required by the schema extractor step.

Schema Extraction.
EXTRACT (Garofalakis et al., 2000) and DTDGenerator4 are tools that can be
used to automatically detect and generate a Document Type Definition (DTD)
from a set of well-formed XML document instances. We have chosen and
modified DTDGenerator to extract the schema of the XHTML version of the
pages. DTDGenerator takes an XML document and infers the corresponding
DTD. It creates an internal list of all the elements and attributes that appear in
the page, noting how they are nested, and which elements contain character
data. This list is used to generate the corresponding DTD according to some
pattern matching rules.

2 http://htmlparser.sourceforge.net/
3 http://jtidy.sourceforge.net/
4 http://saxon.sourceforge.net/dtdgen.html

Chapter 3. Migrating Multi-page Web Applications to Ajax Interfaces 65

swerl.tudelft.nl
http://saxon.sourceforge.net/dtdgen.html

Distance Computation & Clustering.
The Levenshtein edit distance method is implemented in Java and used to
compare the schemas pairwise. Clustering is implemented using an algorithm
which finds the transitive closure of a set of clone pair.

Simplifying Navigational Model.
After clusters have been identified, we simplify the navigational model by
refining the clusters on the next levels and reducing each cluster to a sin-
gle node. In the current implementation, we choose the largest page as the
candidate node.

Differencing.
The Diff algorithm has been implemented extending a Java version5 of the
GNU Diff algorithm. The extended version has the ability to calculate and
print page specific changes between two pages. For instance, the method
diff(A, B, true) returns changes in B ignoring all changes in A.

Presentation.
The tool takes three input parameters namely, location (URI) of the initial page
to start from, a similarity threshold, and the link depth level. Given these
inputs, it automatically produces clusters along the extracted navigational
path in DOT (Visualization) and in XML format. Also a list of connected
found candidate components in XML and HTML format is produced.

3.7 Case Study

3.7.1 JPetStore

We have chosen JPetStore6 as our migration case study, which is a publicly
available dynamic web application based on Sun’s original J2EE PetStore. The
primary differences are that JPetStore, is vendor independent, has a standard-
based multi-page web interface, and is Struts-based, which make it a typical
modern web application.

3.7.2 Reference Classification
The idea of an automatic way of supporting the migration process from multi-
page to single-page web applications came to us when we initially conducted
a manual re-engineering of the JPetStore web application a few months ago.
Our goal was to ajaxify the application using the Backbase7 framework.

Backbase provides a set of server-side UI components, based on the Java-
Server Faces technology. It became immediately evident to us that the fist step
one needs to take in order to conduct such a migration process, is to figure

5 http://www.bmsi.com/java/#diff
6 http://ibatis.apache.org/petstore.html
7 http://www.backbase.com

66 3.7. Case Study

http://www.bmsi.com/java/#diff
http://ibatis.apache.org/petstore.html
http://www.backbase.com

Classification # of pages
Home (Index) 1

Product Categories 5

Product Item Lists 14

Product Items 23

Checkout 1

New Account 1

Sing On 1

View Cart 1

Add Item to Cart 24

Remove Item From Cart 24

Help 1

Table 3.1 JPetstore Reference Page Classification.

index.html

viewCart.shtml.html

signonForm.shtml.html

viewCategory.shtml@categoryId=DOGS.html

viewCategory.shtml@categoryId=CATS.html

viewCategory.shtml@categoryId=BIRDS.html

viewCategory.shtml@categoryId=REPTILES.html

viewCategory.shtml@categoryId=FISH.html

newAccountForm.shtml.html

help.html

viewProduct.shtml@productId=K9-DL-01

viewProduct.shtml@productId=FL-DLH-02.html

viewProduct.shtml@productId=RP-LI-02

viewProduct.shtml@productId=FI-FW-02

viewProduct.shtml@productId=AV-SB-02

viewProduct.shtml@productId=FI-SW-02

viewProduct.shtml@productId=K9-CW-01

viewProduct.shtml@productId=FI-SW-01

viewProduct.shtml@productId=K9-BD-01

viewProduct.shtml@productId=K9-PO-02

viewProduct.shtml@productId=RP-SN-01

viewProduct.shtml@productId=AV-CB-01

viewProduct.shtml@productId=FI-FW-01

viewProduct.shtml@productId=FL-DSH-01

viewItem.shtml@itemId=EST-7

viewItem.shtml@itemId=EST-14

viewItem.shtml@itemId=EST-15

viewItem.shtml@itemId=EST-17

viewItem.shtml@itemId=EST-19

viewItem.shtml@itemId=EST-2

viewItem.shtml@itemId=EST-18

viewItem.shtml@itemId=EST-16

viewItem.shtml@itemId=EST-27

viewItem.shtml@itemId=EST-10

viewItem.shtml@itemId=EST-8

viewItem.shtml@itemId=EST-26

viewItem.shtml@itemId=EST-20

viewItem.shtml@itemId=EST-9

viewItem.shtml@itemId=EST-4

viewItem.shtml@itemId=EST-13

viewItem.shtml@itemId=EST-21

viewItem.shtml@itemId=EST-6

viewItem.shtml@itemId=EST-1

viewItem.shtml@itemId=EST-5

viewItem.shtml@itemId=EST-3

viewItem.shtml@itemId=EST-12

viewItem.shtml@itemId=EST-11

addItemToCart.shtml@workingItemId=EST-11

addItemToCart.shtml@workingItemId=EST-1

addItemToCart.shtml@workingItemId=EST-26

addItemToCart.shtml@workingItemId=EST-5

addItemToCart.shtml@workingItemId=EST-4

addItemToCart.shtml@workingItemId=EST-6

addItemToCart.shtml@workingItemId=EST-20

addItemToCart.shtml@workingItemId=EST-16

addItemToCart.shtml@workingItemId=EST-19

addItemToCart.shtml@workingItemId=EST-17

addItemToCart.shtml@workingItemId=EST-18

addItemToCart.shtml@workingItemId=EST-2

addItemToCart.shtml@workingItemId=EST-9

addItemToCart.shtml@workingItemId=EST-7

addItemToCart.shtml@workingItemId=EST-8

addItemToCart.shtml@workingItemId=EST-21

addItemToCart.shtml@workingItemId=EST-3

addItemToCart.shtml@workingItemId=EST-10

addItemToCart.shtml@workingItemId=EST-12

addItemToCart.shtml@workingItemId=EST-13

addItemToCart.shtml@workingItemId=EST-15

addItemToCart.shtml@workingItemId=EST-14

addItemToCart.shtml@workingItemId=EST-27

removeItemFromCart.shtml@workingItemId=EST-9

removeItemFromCart.shtml@workingItemId=EST-17

removeItemFromCart.shtml@workingItemId=EST-18

removeItemFromCart.shtml@workingItemId=EST-6

removeItemFromCart.shtml@workingItemId=EST-19

removeItemFromCart.shtml@workingItemId=EST-1

removeItemFromCart.shtml@workingItemId=EST-15

removeItemFromCart.shtml@workingItemId=EST-12

removeItemFromCart.shtml@workingItemId=EST-8

removeItemFromCart.shtml@workingItemId=EST-26

removeItemFromCart.shtml@workingItemId=EST-16

removeItemFromCart.shtml@workingItemId=EST-14

removeItemFromCart.shtml@workingItemId=EST-20

removeItemFromCart.shtml@workingItemId=EST-2

removeItemFromCart.shtml@workingItemId=EST-3

removeItemFromCart.shtml@workingItemId=EST-27

removeItemFromCart.shtml@workingItemId=EST-10

removeItemFromCart.shtml@workingItemId=EST-21

removeItemFromCart.shtml@workingItemId=EST-7

removeItemFromCart.shtml@workingItemId=EST-5

switchCartPage.shtml@pageDirection=previous

removeItemFromCart.shtml@workingItemId=EST-13

removeItemFromCart.shtml@workingItemId=EST-4

removeItemFromCart.shtml@workingItemId=EST-11

checkout.shtml

Figure 3.5 Retrieved Clusters Along The Navigational Path.

out the navigational model and UI components of the current implementation
of JPetStore.

Our first step was to create a mirror copy of the web application interface
by retrieving as many pages as possible. A total of 96 pages were retrieved.
The pages were manually examined to document a reference classification
in advance. This reference classification was used for comparing candidate
clusters found by the tool to evaluate the results. The reference contains 11

classifications as shown in Table 3.1.

3.7.3 Automatic Classification

The aim of the case study is to determine to what extent we can use JPet-
Store’s web interface to automatically find a list of candidate user interface
components along with their navigational path.

Chapter 3. Migrating Multi-page Web Applications to Ajax Interfaces 67

index.html

viewCart.shtml.html signonForm.shtml.html

viewCategory.shtml@categoryId=DOGS.html

newAccountForm.shtml.html

help.html viewProduct.shtml@productId=K9-DL-01

viewItem.shtml@itemId=EST-18

addItemToCart.shtml@workingItemId=EST-10

removeItemFromCart.shtml@workingItemId=EST-20 checkout.shtml

Figure 3.6 Reduced Clusters.

In order to conduct a preliminary evaluation of the described reverse en-
gineering process, we used two different methods, namely, our own schema-
based similarity approach (MMS), and our own implementation of a syntax
tree similarity (STS) approach as proposed by, e.g., (De Lucia et al., 2004b).
We also used different thresholds to find out the best achievable results.

In the first step of the reverse engineering process, pages were clustered
along the navigational path (tree-based) and the navigational path was re-
duced by refining the clusters, as shown in Figure 3.5. Subsequently, as il-
lustrated in Figure 3.6, in the second step, found pages in each cluster were
reduced to a single node using the method described in 3.4.4.

Afterwards, candidate UI components were calculated by applying the Dif-
ferencing algorithm as described in Section 3.5.

Figure 3.7 depicts viewing a candidate UI component (HTML code) in a
browser, which is the result of going from the index page to the (dogs) cate-
gory page. As a result, only that fraction of the category page that is unique
with respect to the index page is reported. This way, we are able to visualize
the delta changes (candidate single-page components) of the web interface by
browsing the navigational path.

The list of candidate components and the simplified navigational path help
us model our target single-page interface in the Conallen UML extension
(Conallen, 2003), which is shown in Figure 3.8. Our single-page (called Page),
contains three UI components namely, Category, Cart, and SignOn. Naviga-
tion takes place by changing the view from one component to another. For
instance, from the Category component we can change our view to go to the

68 3.7. Case Study

Figure 3.7 A candidate UI component (Product Category).

Product component. This is a delta change, meaning only that part of the
Page that contained the Category component will be updated to view the
new Product component.

3.7.4 Evaluation

Two well known metrics namely precision and recall were used to evaluate the
results. Precision represents how accurately the clusters from the algorithm
represent the reference classification. Recall measures how many pages in the
reference classification are covered by clusters from the algorithm. We count
only exact matches against the reference classification in the Relevant Clusters
Retrieved (RCR) group. This means, if the algorithm finds a cluster which
contains one or more extra (or one or more less) pages than the corresponding
reference cluster, it is counted in the Irrelevant Clusters Retrieved (ICR).

Other comparison techniques, such as the ones introduced by Koschke and
Eisenbarth (Koschke and Eisenbarth, 2000) and Tzerpos and Holt (Tzerpos
and Holt, 1999) could also have been chosen. However, we would expect
similar results from these techniques as well.

Table 3.2 shows the results. With the syntax tree similarity (STS) approach,
the best recall value obtained was 82 % with a precision of 69 %, using a
similarity threshold of 91 %.

The meta-based similarity (MMS) approach, however, was able to find all
11 documented reference clusters with a recall and precision of 100 % using
a similarity threshold of 98 %. Note that by increasing the threshold to 99 %,
the precision and recall drop to 82 %. This behavior can be explained because
the algorithm expects the schemas to be almost identical, and as a result very
little difference in the corresponding pages is tolerated. This increases the
number of false positives.

Chapter 3. Migrating Multi-page Web Applications to Ajax Interfaces 69

Method Threshold RCR ICR Precision (%) Recall (%)
STS 0.89 6 3 66 54

STS 0.91 9 4 69 82

STS 0.93 7 8 46 63

MMS 0.97 7 1 87 63

MMS 0.98 11 0 100 100

MMS 0.99 9 2 82 82

Table 3.2 Results of Clustering JPetstore Web Interface.

Page W: Category

W: Product

viewProduct

W: Item

viewItemaddItem

addItem

W: Order

checkout

W: Cart

W: Singon

signon

W: Registerregister

viewItem

removeItem

Figure 3.8 Target JPetstore Single-page Interface.

3.8 Discussion

As mentioned before, we came to the idea of a tool support for ajaxification
process when we first conducted a manual migration.

The required knowledge for ajaxification was obtained by manually brows-
ing the interface, from one page to the other, noting the differences, and build-
ing a map of the interaction model. This was when we realized that reverse
engineering techniques should be able to provide some degree of support.
Having a tool which provides us with information about the UI components
needed and their positions on the navigational paths, can be of great value.

Applying the techniques described in this chapter to our case study, we
were able to find all reference classifications. Additionally, with some degree
of manual intervention, we were able to create a single-page model of the

70 3.8. Discussion

target system.
Even though the techniques introduced in this chapter have only been ap-

plied to one case study, considering the results obtained, we believe the ap-
plications can span real-world web application migration cases. Although the
JPetStore interface is very simple, it is representative of dynamic transactional
web applications, and this class of web applications is exactly what we aim
for. Our approach is not meant for web sites that are composed of long pages
such as news, article, or forum sites. We will need to conduct more case
studies to find strengths and weaknesses of our techniques and improve the
tool.

We take a client-side analysis approach. While having the benefit of being
server-code independent, the information that can be inferred from the server-
side, such as scripting languages as JSP, is also essential for conducting a real
migration process.

One of the problems we encountered while carrying out the case study,
was that some HTML pages contained elements that were not well-formed
or were not recognized by the formatter. Even JTidy was not able to fix the
problems and no conversion to XHTML could be conducted. For instance
in a few pages, instead of element a <image ...> was used. Man-
ual intervention was required to fix the problem. This sort of problems are
inherent in web applications and can cause real problems in real-world migra-
tion cases, where standard guidelines are neglected and faulty HTML code is
written/generated.

For a more detailed discussion of the limitations of the proposed approach
see 7.2.

3.9 Related Work

Reverse engineering techniques have been applied to web application settings
primarily to gain a comprehensible view of the systems.

Hassan and Holt (2002) present an approach to recover the architectural
model of a web application by extracting relations between the various com-
ponents and visualizing those relations.

Di Lucca et al. (2002c,d) propose WARE which is a tool for reverse engi-
neering Web applications to the Conallen extension (Conallen, 2003) of UML
models. Draheim et al. (2005), present Revengie to reconstruct form-oriented
analysis models for web applications.

Ricca and Tonella (2001) propose ReWeb, a tool to analyze source code to
recover a navigational model of a web site. They use the models obtained by
ReWeb for testing (Tonella and Ricca, 2004) web applications. Supporting the
migration of static to dynamic web pages is illustrated in (Ricca and Tonella,
2003) by applying an agglomerative hierarchical clustering approach.

De Lucia et al. (2005, 2004b) present a program comprehension approach
to identify duplicated HTML and JSP pages based on a similarity threshold
using Levenshtein string edit distance method. They use three notions of

Chapter 3. Migrating Multi-page Web Applications to Ajax Interfaces 71

similarity namely, structure, content, and scripting code. In (De Lucia et al.,
2004a), the authors apply the techniques in a re-engineering case study.

WANDA (Antoniol et al., 2004) is a tool for dynamic analysis of web ap-
plications. It instruments web pages and collects information during the ex-
ecution. This information is used to extract diagrams, such as component,
deployment, sequence and class diagrams according to Conallen UML exten-
sions.

Cordy et al. (2004) use an island grammar to identify syntactic constructs
in HTML pages. The extracted constructs are then pretty-printed to isolate
potential differences between clones to as few lines as possible and compared
to find candidate clones using the UNIX diff tool.

A study of cloning in 17 web applications is presented by Rajapakse and
Jarzabek (2005), aiming at understanding the nature of web clones and their
sources. Lanubile and Mallardo (2003) discuss a pattern matching algorithm
to compare scripting code fragments in HTML pages.

Stroulia et al. (2003) analyze traces of the system-user interaction to model
the behavior of the user interface for migrating the user interface from a legacy
application to a web-based one. GUI Ripping (Memon et al., 2003) creates a
model from a graphical user interface for testing purposes, i.e., it generates
test cases to detect abnormalities in user interfaces. Vanderdonckt et al. (2001)
propose Vaquista, a XIML-based tool for static analysis of HTML pages. Its
goal is to reverse engineer the user interface model from individual HTML
pages to make them device independent.

Our classification approach is in two ways different from work conducted
earlier on this topic. First, while others have based their structural similarity
notion on the edit distance calculated on the syntax trees of pages, we propose
a meta-model similarity notion and implement a schema-based clustering ap-
proach which, in the case of HTML pages, provides very promising results.
Second, we try to find the clusters along the navigational path (different lev-
els), as opposed to classifying all pages at once (one level) in order to identify
candidate UI components along with their navigational model.

3.10 Concluding Remarks

In this chapter, we emphasized the rise of single-page Ajax applications and
the need for support in migrating classical multi-page web applications to this
new paradigm.

The main contributions of this chapter can be summarized as follows. First,
we proposed a migration process, consisting of five steps: retrieving pages,
navigational path extraction, user interface component model identification,
single-page user interface model definition, and target model transformation.
The second and third steps were described in full detail.

Second, we introduced a novel meta-model similarity metric for web page
classification, which in our case studies achieves a higher recall and precision
than approaches based directly on the HTML syntax trees.

72 3.10. Concluding Remarks

Third, we proposed a schema-based clustering technique that operates per
navigational level, instead of on the full set of web pages. Furthermore, we
provide a mechanism for simplifying navigational paths, allowing us to find
candidate user interface components through a differencing mechanism.

Future work encompasses the in-depth application of our approach in other
case studies and more focus on the last two steps of the proposed migration
process and study how a model-driven approach can be adopted in Ajax de-
velopment. Furthermore, we will investigate how we can take advantage of
dynamic analysis concepts to support the retrieving pages step of the migra-
tion process.

Finally, more research is needed to understand to what extent the server-
side code should be adapted while migrating from a multi-page web applica-
tion to a single-page Ajax interface.

Chapter 3. Migrating Multi-page Web Applications to Ajax Interfaces 73

74 3.10. Concluding Remarks

Chapter

4

Performance Testing of Data
Delivery Techniques for Ajax

Applications?

Ajax applications are designed to have high user interactivity and low user-
perceived latency. Real-time dynamic web data such as news headlines, stock
tickers, and auction updates need to be propagated to the users as soon as possible.
However, Ajax still suffers from the limitations of the Web’s request/response
architecture which prevents servers from pushing real-time dynamic web data.
Such applications usually use a pull style to obtain the latest updates, where the
client actively requests the changes based on a predefined interval. It is possible to
overcome this limitation by adopting a push style of interaction where the server
broadcasts data when a change occurs on the server side. Both these options
have their own trade-offs. This chapter first introduces the characteristics of both
pull and push approaches. It then presents the design and implementation of our
distributed test framework, called Chiron, where different Ajax applications
based on each approach can be automatically tested on. Finally, we present and
discuss the results of our empirical study comparing different web-based data
delivery approaches.

4.1 Introduction

Recently, there has been a shift in the direction of web development. A
new breed of web application, dubbed Ajax (Asynchronous JavaScript

and XML) (Garrett, 2005) is emerging in response to the limited degree of
interactivity in large-grain stateless Web interactions. The intent is to make
web pages feel more responsive by exchanging small amounts of data with
the server behind the scenes and making changes to individual user interface
components. This way, the entire web page does not have to be reloaded each
time the user makes a change.

The term Ajax spread rapidly from a Weblog to the Wall Street Journal
within weeks. The new web applications under the Ajax banner have re-
defined end users’ expectations of what is possible within a Web browser.
However, Ajax still suffers from the limitations of the Web’s request/response
architecture. The classical model of the web called Rest (Fielding and Taylor,
2002) requires all communication between the browser and the server to be
initiated by the client, i.e., the end user clicks on a button or link and thereby

?This chapter has been accepted for publication in the Journal of Web Engineering, in 2009

(Bozdag et al., 2009).

requests a new page from the server. No ‘permanent’ connection is estab-
lished between client/ server and the server is required to maintain no state
information about the clients. This “pull” scheme helps scalability (Fielding
and Taylor, 2002), but precludes servers from sending asynchronous notifica-
tions. There are many cases where it is important to update the client user
interface in response to server-side changes. For example:

• An auction web site, where the users need to be averted that another
bidder has made a higher bid. Figure 4.1 shows a screen-shot taken
from eBay. In a site such as eBay, the user has to continuously press the
‘refresh’ button of his or her browser, to see if somebody has made a
higher bid.

• A stock ticker, where stock prices are frequently updated. Figure 4.2
shows a screen-shot taken from MSN’s MoneyCentral site.1 The right
column contains a stock ticker. The site currently uses a pull-based mech-
anism to update the stock data.

• A chat application, where new sent messages are delivered to all the
subscribers.

• A news portal, where news items are pushed to the subscriber’s browser
when they are published.

Today, such web applications requiring real-time event notification and data de-
livery are usually implemented using a pull style, where the client component
actively requests the state changes using client-side timeouts. An alternative
to this approach is the push-based style, where the clients subscribe to their
topic of interest, and the server publishes the changes to the clients asyn-
chronously every time its state changes.

However, implementing such a push solution for web applications is not
trivial, mainly due to the limitations of the HTTP protocol. It is generally ac-
cepted that a push solution that keeps an open connection for all clients will
cause scalability problems. However, as far as we know, no empirical study
has been conducted into the actual trade-offs involved in applying a push-
versus pull-based approach to browser-based or Ajax applications. Such a
study will answer questions about data coherence, scalability, network usage
and latency. It will also allow web engineers to make rational decisions con-
cerning key parameters such as publish and pull intervals, in relation to, e.g.,
the anticipated number of clients.

In this chapter, which is an extension of our previous work (Bozdag et al.,
2007), we focus on the following challenges:

• How can we set up an automated, controllable, repeatable, and distrib-
uted test environment, so that we can obtain empirical data with high
accuracy for comparing data delivery approaches for Ajax applications?

1 http://moneycentral.msn.com

76 4.1. Introduction

http://moneycentral.msn.com

Figure 4.1 A screenshot taken from eBay. The user has to constantly click the
“Refresh” button to see any updates.

• How does a push-based web data delivery approach compare to a pull-
based one, in terms of data coherence, scalability, network performance,
and reliability?

This chapter is further organized as follows.
We start out, in Section 4.2, by exploring current techniques for real-time

HTTP-based data delivery on the web. Subsequently, in Section 4.3, we dis-
cuss the push-based Bayeux protocol and the DWR library, the two open source
push implementations that we will use in our experiments. In Section 4.4, we
present the experimental design by articulating our research questions and
outlining the proposed approach. The independent and dependent variables
of our experiment are also discussed in this section. A detailed presentation
of our distributed testing framework called Chiron

2 as well as the environ-
ment and applications that we use to conduct our experiments, is shown in
Section 4.5. In Section 4.6 the results of our empirical study involving push
and pull data delivery techniques are covered, followed by a discussion of the
findings of the study and threats to validity in Section 4.7. Finally, in Sec-
tion 4.8, we survey related work on this area, after which we conclude our

2In Greek mythology, Chiron, was the only immortal centaur. He became the tutor for a
number of heroes, including Ajax.

Chapter 4. Performance Testing of Data Delivery Techniques for Ajax 77

Figure 4.2 Stock ticker from MSN MoneyCentral

chapter in Section 4.9 with a summary of our key contributions and sugges-
tions for future work.

4.2 Web-based Real-time Notification

The classical page-sequence web, based on the Rest style, makes a server-
initiated HTTP request impossible. Every request has to be initiated by a
client, precluding servers from sending asynchronous notifications without a
request from the client (Khare and Taylor, 2004). There are several solutions
used in practice that still allow the client to receive (near) real-time updates
from the server. In this section we analyze some of these solutions.

4.2.1 HTTP Pull

Most web applications check with the server at regular user-definable inter-
vals known as Time to Refresh (TTR). This check occurs blindly regardless of
whether the state of the application has changed.

In order to achieve high data accuracy and data freshness, the pulling fre-
quency has to be high. This, in turn, induces high network traffic and possibly
unnecessary messages. The application also wastes some time querying for
the completion of the event, thereby directly impacting the responsiveness to

78 4.2. Web-based Real-time Notification

the user. Ideally, the pulling interval should be equal to the Publish Rate (PR),
i.e., rate at which the state changes. If the frequency is too low, the client can
miss some updates.

This scheme is frequently used in web systems, since it is robust, simple
to implement, allows for offline operation, and scales well to high number
of subscribers (Hauswirth and Jazayeri, 1999). Mechanisms such as Adaptive
TTR (Bhide et al., 2002) allow the server to change the TTR, so that the client
can pull on different frequencies, depending on the change rate of the data.
This dynamic TTR approach in turn provides better results than a static TTR
model (Srinivasan et al., 1998). However, it will never reach complete data
accuracy, and it will create unnecessary traffic.

4.2.2 HTTP Streaming

HTTP Streaming is a basic and old method that was introduced on the web
first in 1995 by Netscape, under the name ‘dynamic document’ (Netscape,
1995). HTTP Streaming comes in two forms namely, Page and Service Stream-
ing.

Page Streaming

This method simply consists of streaming server data in the response of a
long-lived HTTP connection. Most web servers do some processing, send
back a response, and immediately exit. But in this pattern, the connection is
kept open by running a long loop. The server script uses event registration or
some other technique to detect any state changes. As soon as a state change
occurs, it streams the new data and flushes it, but does not actually close the
connection. Meanwhile, the browser must ensure the user-interface reflects
the new data, while still waiting for response from the server to finish.

Service Streaming

Service Streaming relies on the XMLHttpRequest object. This time, it is an
XMLHttpRequest connection that is long-lived in the background, instead
of the initial page load. This brings some flexibility regarding the length
and frequency of connections. The page will be loaded normally (once), and
streaming can be performed with a predefined lifetime for connection. The
server will loop indefinitely just like in page streaming, and the browser has
to read the latest response (responseText) to update its state on the DOM.

4.2.3 Comet or Reverse Ajax

Currently, major Ajax push tools support Service Streaming. The application
of the Service Streaming scheme under Ajax is now known as Reverse Ajax

or Comet (Russell, 2006). Comet enables the server to send a message to the
client when the event occurs, without the client having to explicitly request
it. Such a client can continue with other work while expecting new data from

Chapter 4. Performance Testing of Data Delivery Techniques for Ajax 79

Figure 4.3 Streaming mode for COMET

Figure 4.4 Long polling mode for COMET

the server. The goal is to achieve a real-time update of the state changes and
offer a solution to the problems mentioned in Section 4.2.1.

The Comet scheme is available thanks to the ‘persistent connection’ feature
brought by HTTP/1.1. With HTTP/1.1, unless specified otherwise, the TCP
connection between the server and the browser is kept alive, until an explicit
‘close connection’ message is sent by one of the parties, or a timeout/net-
work error occurs. Prior to persistent connections, a separate TCP connection
was established to fetch each URL, increasing the load on HTTP servers and
causing congestion on the Internet. With persistent connections, fewer TCP
connections are opened and closed, leading to savings both in CPU time for
routers and hosts (clients, servers, proxies, gateways, tunnels, or caches), as
well as in memory usage for TCP protocol control blocks in hosts.

HTTP/1.1 reduces the total number of TCP connections in use. However, it
still states that the protocol must follow the request/response scheme, where
the client makes a request and the server returns a response for this particular
request. Thus, once a complete response is returned, there is no further way
for the server to send data back to the client browser.

Comet implementations have mainly adopted the following techniques to
overcome this problem:

80 4.2. Web-based Real-time Notification

Streaming Figure 4.3 shows how the streaming mode operates. After the ini-
tial request, the server does not close the connection, nor does it give
a full response. As the new data becomes available, the server returns
it to the client in HTTP chunked mode (W3C, 1999), using the same
request and the connection. Typical Comet server implementations im-
plement this feature by opening a hidden iframe element in the browser
after page load, establishing a long-lived connection inside the hidden
iframe. Data is pushed incrementally from the server to the client over
this connection, and rendered incrementally by the web browser (Schie-
mann, 2007).

The problem with this approach is that some web servers might identify
this open-request as idle and close the connection. HTTP chunked mode
might also be not supported in every router that is located on the path.

Long polling Figure 4.4 shows the operation of the long polling mode. In
this mode, once again the server holds on to the client request, however
this time until data becomes available. If an event occurs, the server
sends the data to the client and the client has to reconnect. Otherwise,
the server holds on to the connection for a finite period of time, after
which it asks the client to reconnect again. Long polling (also known
as Asynchronous-Polling) is a mixture of pure server push and client
pull. If the publish interval (or the timeout value) is low, the system acts
more like a pure pull-based style. If the publish interval is high, it will
act more like a pure push approach.

4.3 Comet Implementations

Cometd and DWR are currently two actively developed open source libraries
that bring Comet support to Ajax applications. In the following subsections
we take a closer look at these two libraries.

4.3.1 Cometd Framework and the Bayeux Protocol

As a response to the lack of communication standards for Ajax applications,
the Cometd group3 released a Comet protocol draft called Bayeux (Russell et al.,
2007). The Bayeux message format is defined in JSON (JavaScript Object No-
tation), which is a data-interchange format based on a subset of the JavaScript
Programming Language. The protocol has recently been implemented and
included in a number of web servers including Jetty and IBM Websphere.

This protocol follows the ‘topic-based’ (Eugster et al., 2003) publish-subsc-
ribe scheme, which groups events according to their topic (name) and maps
individual topics to distinct communication channels. Participants subscribe
to individual topics, which are identified by keywords. Like many modern
topic-based engines, Bayeux offers a form of hierarchical addressing, which permits

3 http://www.cometd.com

Chapter 4. Performance Testing of Data Delivery Techniques for Ajax 81

http://www.cometd.com

programmers to organize topics according to containment relationships. It
also allows topic names to contain wildcards, which offers the possibility to
subscribe and publish to several topics whose names match a given set of
keywords. Bayeux defines the following phases in order to establish a Comet

connection:

1. The client performs a handshake with the server, receives a client ID and
list of supported connection types, such as IFrame or long-polling (See
Section 4.2.3).

2. The client sends a connection request with its ID and its preferred con-
nection type.

3. The client later subscribes to a channel and receives updates

Although the Bayeux specification supports both streaming and long
polling modes, the Cometd framework currently only implements the long
polling approach. Please note that, although there are other frameworks that
support the Bayeux protocol, in this chapter we will use the terms Bayeux and
Cometd interchangeably.

4.3.2 Direct Web Remoting (DWR)

Direct Web Remoting (DWR)4 is a Java open source library which allows script-
ing code in a browser to use Java functions running on a web server just as
if they were in the browser. DWR works by dynamically generating JavaSc-
ript based on Java classes. To the user it feels like the execution is taking
place on the browser, but in reality the server is executing the code and DWR
is marshalling the data back and forwards. DWR works similar to the RPC
mechanism (e.g., Java RMI), but without requiring any plugins. It consists of
two main parts:

• A Java Servlet running on the server that processes requests and sends
responses back to the browser.

• A JavaScript engine running in the browser that sends requests and can
dynamically update the DOM with received responses from the server.

From version 2.0 and above DWR supports Comet and calls this type of co-
mmunication “Active Reverse Ajax” (Direct Web Remoting, 2007). Currently,
DWR does not support Bayeux, and has adopted its own protocol to exchange
data. DWR supports the long polling as well as the streaming mode. Because
Cometd has no streaming implementation, we will only use the long polling
mode of both libraries in our experiment, in order to be able to make a com-
parison.

4 http://getahead.org/dwr

82 4.3. Comet Implementations

http://getahead.org/dwr

4.4 Experimental Design

In this section we first present our research questions. Later we describe our
proposed approach, and the independent and dependent variables which we
will use to conduct the experiment and come to answers to our questions.

4.4.1 Goal and Research Questions

We set up our experiments in order to evaluate several dependent variables
using the GQM/MEDEA5 framework proposed by Briand et al. (Briand et al.,
2002). First, we describe the goal, perspective and environment of our experi-
ment:

Goal. To obtain a rigorous understanding of the actual performance trade
offs between a push-based and a pull-based approach to Ajax data delivery.

Perspective:. In particular, we aim at an automated, repeatable experiment,
in which as many (combinations) of the factors that influence performance
(such as the number of users, the number of published messages, the intervals
between messages, etc.) can be taken into account.

Environment. The experiments are targeted at distributed environments,
particularly those with UNIX/Linux nodes. Further relevant factors of these
systems will be described in Section 4.5.2.

We have formulated a number of questions that we would like to find
answers for in each approach. Our research questions can be summarized as:

RQ1 How fast are state changes (new messages) on the server propagated to
the clients?

RQ2 What is the scalability and overall performance of the server?

RQ3 To what extent is the network traffic generated between the server and
clients influenced?

RQ4 How reliable is each approach? Are there messages that are missed or
abundantly received on the clients?

4.4.2 Outline of the Proposed Approach

In order to obtain an answer to our research questions, we propose the fol-
lowing steps:

1. creating two separate web applications, having the same functionality,
using each push library (one for Cometd and one for DWR), consisting
of the client and the server parts,

5Goal Question Metric/MEtric DEfinition Approach

Chapter 4. Performance Testing of Data Delivery Techniques for Ajax 83

2. creating a pull-based web application with the same functionality as the
other two,

3. implementing an application, called Service Provider, which publishes a
variable number of data items at certain intervals,

4. simulating a variable number of concurrent web users operating on each
application, by creating virtual users,

5. gathering data and measuring: the mean time it takes for clients to
receive a new published message, the load on the server, number of
messages sent or retrieved, and the effects of changing the data publish
rate and number of users,

6. coordinating all these tools automatically in order to have consistent test
runs for each combination of the variables,

7. reporting, analyzing, and discussing the measurements found.

4.4.3 Independent Variables

To see how the application server reacts to different conditions, we use differ-
ent combinations of the following independent variables:

Number of concurrent users 100, 500, 1000, 2000, 5000 and 10000; the variation
helps to find a maximum number of users the server can handle simul-
taneously.

Publish interval 1, 5, 15, 30, and 50 seconds; the frequency of the publishing
updates is also important. Because of the long polling implementation in
Cometd and DWR (See Section 4.2), the system should act more like pure
pull when the publish interval is small, and more like pure push when
the publish interval increases. This is because a smaller publish interval
causes many reconnects (See Section 4.2.3).

Pull interval 1, 5, 15, 30, and 50 seconds; when a pull approach is used, the
pulling interval will also have an effect on the measurements.

Application mode Cometd, DWR, and pull; we also made an option in our
framework that allows us to switch between different application modes.

Total number of messages 10; to constrain the period needed to conduct the
experiment, for each test run, we generate a total of 10 publish messages.

4.4.4 Dependent Variables

In order to be able to answer the research questions we measure the following
dependent variables:

84 4.4. Experimental Design

Mean Publish Trip-time (MPT) We define trip-time as follows:

Trip-time = | Data Creation Date − Data Receipt Date |

Data Creation Date is the date on the publishing server the moment it cre-
ates a message, and Data Receipt Date is the date on the client the moment
it receives the message. Trip-time shows how long it takes for a publish
message to reach the client and can be used to find out how fast the
client is notified with the latest events.For each combination of the in-
dependent variables, we calculate the mean of the publish trip-time for
the total number of clients.

We define a piece of data as coherent, if the data on the server and the
client is synchronized. We check the data coherence of each approach by
measuring the trip-time. Accordingly, a data item with a low trip-time
leads to a high coherence degree.

Server Performance (SP) Since push is stateful, we expect it to have more ad-
ministration costs on the server side, using more resources. In order to
compare this with pull, we measure the CPU usage for the push- and
pull-based approaches.

Received Publish Messages (RPM) To see the message overhead, we publish a
total of 10 messages and count the total number of (non unique) mes-
sages received by the clients that could make a connection to the server.
This shows us if a client receives an item multiple times and causes
unnecessary network traffic.

Received Unique Publish Messages (RUPM) It is also interesting to see if all the
10 messages we have published reach the clients that could make a con-
nection to the server. This shows us if a client misses any items.

Received Message Percentage (RMP) It is quite possible that not all the clients
could make a connection, or receive all the messages. Therefore, for
each run, we divide the total number of messages received, by the total
number of messages published.

Network Traffic (NT) In order to see the difference in network traffic, we record
the number of TCP packets coming to and going from the server to the
clients.

4.5 Distributed Testing

In order to measure the impact the various combinations of independent vari-
ables have on the dependent variables, we need a distributed testing infras-
tructure. This infrastructure must make it possible to control independent
variables such as the number of concurrent users and total number of mes-
sages, and observe the dependent variables, such as the trip-time and the
network traffic.

Chapter 4. Performance Testing of Data Delivery Techniques for Ajax 85

Figure 4.5 Design of the Distributed Automated Testing Framework CHIRON

Unfortunately, distributed systems are inherently more difficult to design,
program, and test than sequential systems (Alager and Venkatsean, 1993).
They consist of a varying number of processes executing in parallel. A pro-
cess may also update its variables independently or in response to the ac-
tions of another process. Testing distributed programs is a challenging task
of great significance. Controllability, observability (Chen et al., 2006), and re-
producibility problems might occur in distributed testing environments. In
this section we will present our distributed, automated testing framework
called Chiron and how it helps to decrease the magnitude of these prob-
lems. We have released our testing framework under an open source license.
More information about Chiron can be obtained from the following URL:
http://spci.st.ewi.tudelft.nl/chiron/

4.5.1 The Chiron Distributed Testing Framework

As mentioned in Section 4.4.3, we defined several independent variables in
order to measure several dependent variables (see Section 4.4.4). The combi-
nation of the independent variables (i.e. pull intervals, publish intervals, and
the number of users) is huge and that makes performing the tests manually
an error-prone, and time consuming task.

In addition, the tools and components we use are located in different ma-
chines to simulate real-world environments. This distributed nature con-

86 4.5. Distributed Testing

http://spci.st.ewi.tudelft.nl/chiron/

tributes to the complexity of controlling the experiment manually. This all
makes it difficult to repeat the experiment at later stages with high validity.

In order to overcome these challenges, we have created an integrated per-
formance testing framework called Chiron that automates the whole testing
process. As depicted in Figure 4.5, the controller has direct access to dif-
ferent servers and components (Application server, client simulation server,
the statistic server and the Service Provider). By automating each test run,
the controller coordinates the whole experiment. This way we can repeat the
experiment many times without difficulty and reduce the non-determinism,
which is inherent in distributed systems (Alager and Venkatsean, 1993). Since
no user input is needed during a test run, observability and controllability
problems (Chen et al., 2006) are minimized.

We have implemented Chiron using a number of open source packages. In
particular we use Grinder,6 which seemed to be a good option, providing an
internal TCPProxy, allowing to record and replay events sent by the browser.
It also provides scripting support, which allows us to create a script that sim-
ulates a browser connecting to the push server, subscribing to a particular
stock channel and receiving push data continuously. In addition, Grinder has
a built-in feature that allows us to create multiple threads of a simulating
script.

Figure 4.6 shows the steps Chiron follows for each test iteration. The mid-
dle column denotes the task Chiron performs, the left column denotes the
step number and the right column shows which machine Chiron interacts
with in order to perform the task. For each combination of the independent
variables, Chiron carries out the tasks 3–10:

1. Read the input from the configuration file. This input consists of the
independent variables, but also local and remote folders on different
servers, path to the tools, publish channels, number of nodes that are
used to simulate clients, etc,

2. Start the statistics server to listen for and receive experimental data from
the clients,

3. Generate a Grinder properties file for this iteration with a combina-
tion of independent variables (pull interval, publish interval, number
of users, etc.),

4. Upload the created properties file to the client simulation server,

5. Start the application server that hosts the three different versions (See
Section 4.5.4) of the Stock Ticker web application,

6. Start performance and network traffic measurement tools on the appli-
cation server,

7. Start simulating clients using the generated and uploaded properties
file,

6 http://grinder.sourceforge.net

Chapter 4. Performance Testing of Data Delivery Techniques for Ajax 87

http://grinder.sourceforge.net

Figure 4.6 The steps CHIRON follows for each iteration

88 4.5. Distributed Testing

8. Start the publisher and begin publishing data to the server,

9. When the publisher is done or a time-out has occurred, stop all the
components,

10. Gather and copy the data to the statistics server and get ready for the
next iteration by going to the Grinder properties generation step.

Because of the distributed nature of the simulated clients, we use Log4J’s
SocketServer7 to set up a logging server that listens for incoming log mes-
sages. The clients then send the log messages using the SocketAppender.

We use TCPDump8 to record the number of TCP (HTTP) packets sent to
and from the server on a specific port. Note that we only record packets
coming/going to the simulated clients. We also have created a script that uses
the UNIX top9 utility to record the CPU usage of the application server every
second. This is necessary to observe the scalability and performance of each
approach.

Finally, we use Trilead’s SSH2 library to manage (start, stop, etc) all the
tools mentioned above. Trilead SSH-2 for Java10 is an open source library
which implements the SSH-2 protocol in Java. Since the tools are distributed
on different machines, SSH2 library allows us to automatically issue com-
mands from one single machine, gather the results on different machines and
insert them into our statistics server.

In addition, we have created a Data Analyzer component that parses log files
of the different tools and serializes all the data into a database using Hiber-
nate11 and MySQL Connector/J12. This way, different views on the data can
be obtained easily using queries to the database.

4.5.2 Testing Environment

We use the Distributed ASCI Supercomputer 3 (DAS3)13 to simulate the vir-
tual users on different distributed nodes. The DAS3 cluster at Delft University
of Technology consists of 68 dual-CPU 2.4 GHz AMD Opteron DP 250 com-
pute nodes, each having 4 GB of memory. The cluster is equipped with 1

and 10 Gigabit/s Ethernet, and runs Scientific Linux 4. It is worth noting that
we use a combination of the 64 DAS3 nodes and Grinder threads to simulate
different numbers of users.

The application server runs on a AMD 2x Dual Core Opteron 2212 machine
with 8 GB RAM. The server has Ubuntu 7.10 server edition installed. For the
push version we use the Cometd 6.1.7 and DWR 2.0.2 libraries. Both libraries
run on Jetty, an open source web server implemented entirely in Java. Jetty

7 http://logging.apache.org/log4j/docs/
8 http://www.tcpdump.org/
9 http://www.unixtop.org/

10 http://www.trilead.com/Products/Trilead-SSH-2-Java/
11 http://www.hibernate.org
12 http://www.mysql.com/products/connector/j/
13 http://www.cs.vu.nl/das3/overview.shtml

Chapter 4. Performance Testing of Data Delivery Techniques for Ajax 89

http://logging.apache.org/log4j/docs/
http://www.tcpdump.org/
http://www.unixtop.org/
http://www.trilead.com/Products/Trilead-SSH-2-Java/
http://www.hibernate.org
http://www.mysql.com/products/connector/j/
http://www.cs.vu.nl/das3/overview.shtml

Figure 4.7 Sequence of Events in the Experimental Environment.

uses Java’s new IO package (NIO). The NIO package follows the event-driven
design, which allows the processing of each task as a finite state machine
(FSM). As the number of tasks reach a certain limit, the excess tasks are ab-
sorbed in the server’s event queue. The throughput remains constant and the
latency shows a linear increase. The Event-driven design is supposed to per-
form significantly better than thread-concurrency model (Welsh et al., 2001;
Welsh and Culler, 2003). Jetty also contains a mechanism called Continuations
(Jetty, 2006). This mechanism allows an HTTP request to be suspended and
restarted after a timeout or after an asynchronous event has occurred. This
way less threads are occupied on the server. Note that no other process was
running in this application server other than TCPDump and UNIX top. Their
load on the server and their effect on the results are negligible, since we only
measure the PID of Jetty. Besides, as mentioned, the test machine has 2x Dual
Core processors, and the server never had 100% load, which can be seen in
Section 4.6.2.

The connectivity between the server and DAS3 nodes is through a 100

Mbps ethernet connection.

4.5.3 Example Scenario

Figure 4.7 shows the sequence of events of an example test scenario from the
perspective of the servers:

1. The Service Provider publishes the stock data to the application server
via an HTTP POST request, in which the creation date, the stock ID, and
the stock message are specified.

2. For push: The application server pushes the data to all the subscribers
of that particular stock. For pull: the application server updates the

90 4.5. Distributed Testing

Figure 4.8 Sample Stock Ticker Application

internal stock object, so that when clients send pull requests, they get
the latest data.

3. Each simulated client logs the responses (after some calculation) and
sends it to the statistics server.

4.5.4 Sample Application: Stock Ticker
We have developed a Stock Ticker web application as depicted in Figure 4.8.
As new stock messages come in, the fields are updated in the browser accord-
ingly. As mentioned before, the Stock Ticker has been implemented in three
variants, namely, Cometd, DWR, and pull.

The Cometd version. consists of a JSP page which uses Dojo’s Cometd library
to subscribe to a channel on the server and receive the Stock data. For the
server side, we developed a Java Servlet (PushServlet) that pushes the new
data into the clients’ browsers using the Cometd library.

The DWR version. consists of the same JSP page as the Cometd version, but
uses the DWR library instead of Dojo on the client side. For the server side,
we again have a separate Java Servlet (PushServlet) that pushes the data into
the browsers, but this time it uses the DWR’s Comet servlet.

The pull version. also consists of a JSP page, but instead of Cometd or DWR, it
uses the normal bind method of Dojo to request data from the server. The pull
nature is set using the standard setInterval JavaScript method. The inter-
val at which the client should request/pull for new updates is configurable.
On the server, a PullServlet is created which updates and keeps an internal
stock object (the most recent one) and simply handles and responds to every
incoming request the classical way.

The Service Provider. uses the HTTPClient library14 to publish stock data to
the Servlets. The number of publish messages as well as the interval at which
the messages are published are configurable.

14 http://jakarta.apache.org/commons/httpclient/

Chapter 4. Performance Testing of Data Delivery Techniques for Ajax 91

http://jakarta.apache.org/commons/httpclient/

Concurrent clients. are simulated by using the Grinder TCPProxy to record the
actions of the JSP client pages for push and pull and create scripts for each
in Jython.15 Jython is an implementation of the high-level, dynamic, object-
oriented language Python, integrated with the Java platform. It allows the
usage of Java objects in a Python script and is used by Grinder to simulate
web users. In our framework, we created Jython scripts that are actually
imitating the different versions of the client pages.

4.6 Results and Evaluation

In the following subsections, we present and discuss the results which we ob-
tained using the combination of variables mentioned in Section 4.4.3. Figures
4.9–4.14 depict the results. For each number of clients on the x-axis, the five
publish intervals in seconds (1, 5, 15, 30, 50) are presented as colored bars.
Note that the scale on the y-axis might not be the same for all the graphics.

4.6.1 Publish Trip-time and Data Coherence

Figure 4.9 shows the mean publish trip-time versus the total number of clients
for each publish interval, with Cometd (shown with Bayeux label), DWR and
pull techniques.

As we can see in Figure 4.9, Mean Publish Trip-time (MPT) is, at most, 1200

milliseconds with Cometd, which is significantly better than the DWR and pull
approaches. Surprisingly, DWR’s performance is worse than pull with a pull
interval of 1. However, with a pull interval of 5 or higher, DWR performs
better (with the exception of: clients = 2000, publish interval = 30) than pull.
Also note that MPT is only calculated with the trip-time data of the clients
that actually received the items. As we will see in Section 4.6.4, pull clients
may miss many items, depending on the pull interval. From these results we
can say that pull has a lower degree of data coherence compared to Cometd,
even with a very small pull interval.

4.6.2 Server Performance

Figure 4.10 shows the mean percentage of the server CPU usage. In all sce-
narios, we see that the server load increases as the number of users increases.
With pull, even with a pull interval of 1, the CPU usage is lower than Cometd

and DWR.
However, with push, we notice that even with 10000 users, the server is

not saturated: CPU usage reaches 45% with Cometd, and 55% with DWR.
We assume that this is partly due to the Jetty’s continuation mechanism (See
Section 4.5.2).

15 http://www.jython.org

92 4.6. Results and Evaluation

http://www.jython.org

Figure 4.9 Mean Publish Trip-time

Chapter 4. Performance Testing of Data Delivery Techniques for Ajax 93

Figure 4.10 Server application CPU usage.

94 4.6. Results and Evaluation

4.6.3 Received Publish Messages

Figure 4.11 shows the mean number of received non-unique publish items
versus the total number of clients. Note that this shows the mean of Received
Publish Messages (RPM) for only those clients that could make a connection
to the server and receive data. Also note that if a pull client makes a request
while there is no new data, it will receive the same item again and this pattern
can happen multiple times. This way a client might receive more than 10

messages. As we mentioned in Section 4.2.1, in a pure pull system, the pulling
frequency has to be high to achieve high data coherence. If the frequency is
higher than the data publish interval, the pulling client will pull the same
data more than once, leading to redundant data and overhead.

We notice that with a pull interval of 1, the clients can receive up to ap-
proximately 250 non-unique messages, while we published only 10. In the
same figure we see that push clients (both Cometd and DWR) received ap-
proximately a maximum of 10 messages. This means that, in the worst-case
(pull interval = 1, publish interval = 50) 96% of the total number of pull
requests were unnecessary. In the Cometd and DWR graphics, we see that,
with up to 2000 users the server is very stable; almost all the clients receive
a maximum of 10 published messages. What is interesting, however, as the
number of clients becomes 2000 or more, some data miss begins to occur for
both push approaches. Pull clients also begin to miss some data with 2000

users or more, but the decrease in received data items is much less.

4.6.4 Received Unique Publish Messages

Figure 4.12 shows the mean number of received unique publish items versus
total number of clients. Note that this shows the mean of Received Unique
Publish Messages (RUPM) for only those clients that could make a connection
to the server and receive data.

According to Figure 4.12, if the publish interval is higher or equal to the
pull interval, the client will receive most of the messages. However as we
have discussed in Section 4.6.3, this will generate an unnecessary number of
messages. Looking at the figure again, we see that when the pull interval is
lower than the publish interval, the clients will miss some updates, regardless
of the number of users. So, with the pull approach, we need to know the exact
publish interval. However, the publish interval tends to change, which makes
it difficult for a pure pull implementation to adapt its pull interval.

With Cometd and DWR, almost all messages are received by the users (hav-
ing up to a total of 2000 users). Higher than 2000 users, we see that some data
miss begins to occur for both push libraries.

With pull, a lower pull interval leads to more accuracy. With a pull interval
of 1, the mean number of received items can be as high as 9. With a pull
interval of 5 this number drops to 6.

Chapter 4. Performance Testing of Data Delivery Techniques for Ajax 95

Figure 4.11 Mean Number of Received Publish Messages

96 4.6. Results and Evaluation

Figure 4.12 Mean Number of Received Unique Publish Messages.

Chapter 4. Performance Testing of Data Delivery Techniques for Ajax 97

4.6.5 Received Message Percentage

Figure 4.13 shows us the Received Message Percentage (RMP). We notice that
RMP is significantly higher with Cometd and DWR, compared to pull. We can
also see that RMP decreases significantly in all approaches after 2000 users.
This might depend on many factors, such as, Jetty application server queuing
all the connections, or perhaps, before a client can process the test run ends.
It might also lie within the client simulator, or our statistics server that have
to cope with generating a high number of clients and receive a huge number
of messages. See Section 4.7.2 for a discussion of possible factors that might
have an effect on the results.

However, if we compare RMP of the three approaches for 2000 users or
more, we see that Cometd and DWR clients still receive more data than pull,
and thus have a higher degree of reliability.

4.6.6 Network Traffic

Figure 4.14 shows the results. We notice that, in Cometd and DWR, the number
of TCP packets traveled to/from the server increases as the number of users
increases, rising up to 80,000 packets with Cometd and 250,000 with DWR.
We see that up to 2000 users, the publish interval has almost no effect, show-
ing that the administrative costs of establishing a long polling connection is
negligible. After 2000 users, there is a difference between different publish
intervals, this might be caused by many factors including connection time-
outs. With pull, in worst case scenario (pullInterval =1 , publishInterval =
50, and 1000 users), Network Traffic (NT) rises up to 550,000 packets. This is
almost 7 times more than Cometd and 2 times more than DWR. This number
decreases with lower pull intervals, however as we have discussed in Sec-
tion 4.6.1, high pull intervals will lead to high trip-time and low data coher-
ence. Also note that, with pull, NT increases as the publish interval increases.
This is because a longer publish interval will lead to a longer test run, in turn
leading to more pull requests.

4.7 Discussion

In this section we discuss our findings and try to answer our research ques-
tions. We also present the threats to the validity of our experiment.

4.7.1 The Research Questions Revisited

RQ1 Data coherence: RQ1 inquired how fast the state changes (new mes-
sages) on the server were being propagated to the clients. We expected
that the pull-based clients would have a higher trip-time value and thus
a lower degree of data coherence. Our findings in Section 4.6.1 support
our expectations. Even with a pull interval of 1 second, the trip-time

98 4.7. Discussion

Figure 4.13 Percentage of data items that are delivered to all clients

Chapter 4. Performance Testing of Data Delivery Techniques for Ajax 99

Figure 4.14 Total number of TCP packets coming from/to the server

100 4.7. Discussion

with pull is higher than push. This finding indicates that the push-based
style supports a higher degree of data coherence.

RQ2 Scalability and server performance: RQ2 addressed the issue with the
scalability and the overall performance of the server. Considering our
previous results (Bozdag et al., 2007), we initially expected push to cause
significantly higher server load, compared to pull. However, our new
findings in Section 4.6.2 show that, even though push causes more CPU
usage, the difference is not significant. With push, the server CPU is not
saturated, even with 10000 users. This indicates that both approaches
scale well to thousands of clients.

RQ3 Network traffic: RQ3 tried to find to what extend the network traffic
generated between the server and clients is influenced. We initially ex-
pected a smaller pull interval to create many unnecessary requests and
a high network traffic. Our findings in Section 4.6.3 and Section 4.6.6
supported these predictions. Pull causes the clients to receive a higher
number of redundant messages compared to push, leading to unneces-
sary network traffic. With pull, the number of traveling TCP packets to
and from the server is 7 times more than Cometd.

RQ4 Reliability: RQ4 questioned the reliability of each approach. We ex-
pected that pull-based clients would miss many more data items com-
pared to push clients. Our findings in Section 4.6.5 and Section 4.6.4
show that pull clients with a low pull interval are more up-to-date com-
pared to those with a high pull interval, but also receive many redun-
dant data if the publish interval is high. However, they are still missing
many data items compared to the push-based clients.

4.7.2 Threats to Validity

A fundamental question concerning results from an experiment is how valid
the results are (Wohlin et al., 2000). In this section the validity of our findings
is discussed with respect to internal and external validity. We structure our
discussion according to Wohlin et al. (2000), which in turn is based on the
work of Campbell and Stanley (1963), and T.D.Cook and D.T.Campbell (1979).

Internal Validity

In an experiment, different treatments may be applied to the same object at
different times. Then there is a risk that the history affects the experimental
results, since the circumstances are not the same on both occasions (Wohlin
et al., 2000). We have the following threats to internal validity:

Non-deterministic nature of the distributed environments.
Our experimental setup is distributed on different machines and each test run
for each technique is run on different times of the day. A network congestion

Chapter 4. Performance Testing of Data Delivery Techniques for Ajax 101

at the time of the test, might for example have an effect on the trip-time vari-
able (See Section 4.6.1). We also use the supercomputer (DAS3) to simulate
many clients and at the time of testing there might be other users running
tasks, which might affect the network bandwidth. In order to limit these ef-
fects on the network latency, we placed all the machines in the same LAN,
used the same test-script in all the simulated clients and allocated the same
bandwidth.

Reliability of the tools.
We use several tools to obtain the result data. The shortcomings and the
problems of the tools themselves can have an effect on the outcome. For
example, from all the results we see that the performance suffers after 2000

users for all approaches. This degradation might be caused by the server,
client simulator, or the statistics server. Debugging distributed applications,
to find the cause of such behavior, proved to be very difficult.

Time and Data Coherence.
The time calculation can also be a threat to the internal validity. To measure
the trip-time, the difference between the data creation date and data receipt
date is calculated. However if the time on the publisher and the clients is
different, the trip-time is calculated incorrectly. In order to prevent this, we
made sure that the time on the server and client machines are synchronized
by using the same time server.

We measure the data coherence by taking the trip-time. However, the data
itself must be correct, i.e., the received data must be the same data that was
sent by the server. We rely on HTTP in order to achieve this data correct-
ness. However, additional experiments must include a self check to ensure
this requirement.

External validity

The external validity deals with the ability to generalize results (Wohlin et al.,
2000). There is a risk that the used push libraries are not good representatives
of push, making it difficult to draw general conclusions about the whole push
approach. In order to minimize the risk, we have used two libraries instead
of one, and as we have shown in Section 4.6, we see the same pattern, which
confirms our findings for push. However, we did only use a single web appli-
cation server, because at the time of the testing Jetty was the only open source
and stable Java server that supported NIO. In the future, different application
servers should be included, e.g., Sun’s Grizzly.16

We only used one type of sample application, namely the stock ticker. In
this scenario, we had a single channel with many users, where a data item
is sent to all the push clients. However, there are other use cases, such as a
chat application, where there will be multiple channels with many users. In

16 https://grizzly.dev.java.net/

102 4.7. Discussion

https://grizzly.dev.java.net/

this scenario, a data item will only be sent to the subscribers of that partic-
ular channel. This will have effects on the scalability and other dependent
variables. Therefore, further tests with different use cases are necessary.

In order to limit the external factors that affect the trip-time, we placed all
the test machines in the same network and all the users are granted with the
same bandwidth. In a real-life scenario, users are located at different parts
of the world, and have different bandwidth properties, leading to a bigger
variance in the trip-time. This should be taken into account before deciding
on actual parameters of a web application using push.

During the experiment execution, if a large volume of data exchange oc-
curs, this might lead to concurrency on the access to the shared resources. To
minimize this threat, we run each server (application server, client generator,
statistics server) on different machines. Note that only the client generator is
located in a cluster (DAS3). Other servers are located outside the cluster.

4.8 Related Work

There are a number of papers that discuss server-initiated events, known as
push, however, most of them focus on client/server distributed systems and
non HTTP multimedia streaming or multi-casting with a single publisher
(Acharya et al., 1997; Juvva and Rajkumar, 1999; Franklin and Zdonik, 1998;
Ammar et al., 1998; Trecordi and Verticale, 2000). The only work that focuses
on Ajax is the white-paper of Khare (2005). Khare discusses the limits of the
pull approach for certain Ajax applications and mentions several use cases
where a push application is much more suited. However, the white-paper
does not mention possible issues with this push approach such as scalability
and performance. Khare and Taylor (2004) propose a push approach called
ARRESTED. Their asynchronous extension of Rest, called A+REST, allows the
server to broadcast notifications of its state changes. The authors note that this
is a significant implementation challenge across the public Internet.

The research of Acharya et al. (1997) focuses on finding a balance between
push and pull by investigating techniques that can enhance the performance
and scalability of the system. According to the research, if the server is lightly
loaded, pull seems to be the best strategy. In this case, all requests get queued
and are serviced much faster than the average latency of publishing. The
study is not focused on HTTP.

Bhide et al. (2002) also try to find a balance between push and pull, and
present two dynamic adaptive algorithms: Push and Pull (PaP), and Push or
Pull (PoP). According to their results, both algorithms perform better than
pure pull or push approaches. Even though they use HTTP as messaging
protocol, they use custom proxies, clients, and servers. They do not address
the limitations of browsers nor do they perform load testing with high number
of users.

Hauswirth and Jazayeri (1999) introduce a component and communication
model for push systems. They identify components used in most Publish/Sub-

Chapter 4. Performance Testing of Data Delivery Techniques for Ajax 103

scribe implementations. The paper mentions possible problems with scalabil-
ity, and emphasizes the necessity of a specialized, distributed, broadcasting
infrastructure.

Eugster et al. (2003) compare many variants of Publish/Subscribe schemes.
They identify three alternatives: topic-based, content-based, and type-based. The pa-
per also mentions several implementation issues, such as events, transmission
media and qualities of service, but again the main focus is not on web-based
applications.

Martin-Flatin (1999) compares push and pull from the perspective of net-
work management. The paper mentions the publish/subscribe paradigm and
how it can be used to conserve network bandwidth as well as CPU time on
the management station. Flatin suggests the ‘dynamic document’ solution of
Netscape (1995), but also a ‘position swapping’ approach in which each party
can both act as a client and a server. This solution, however, is not applica-
ble to web browsers. Making a browser act like a server is not trivial and it
induces security issues.

As far as we know, there has been no empirical study conducted to find
out the actual tradeoffs of applying pull/push on browser-based or Ajax ap-
plications.

4.9 Concluding Remarks

In this chapter we have compared pull and push solutions for achieving web-
based real time event notification and data delivery. The contributions of this
chapter include:

• An experimental design permitting the analysis of pull and push ap-
proaches to web data delivery, and the identification of key metrics,
such as the mean publish trip-time, received (unique) publish messages,
and the received message percentage (Section 4.4).

• A reusable software infrastructure, consisting of our automated distrib-
uted Ajax performance testing framework Chiron, Grinder scripts im-
itating clients and a sample application written for Cometd, DWR, and
pull (Section 4.5).

• Empirical results highlighting the tradeoffs between push and pull based
approaches to web-based real time event notification, and the impact of
such characteristics as the number of concurrent users, the publish in-
terval, on, for instance, server performance (Section 4.6).

Our experiment shows that if we want high data coherence and high net-
work performance, we should choose the push approach. Pull cannot achieve
the same data coherence, even with low pull intervals. Push can also handle a
high number of clients thanks to the continuations (Jetty, 2006) mechanism of
Jetty, however, when the number of users increases, the reliability in receiving
messages decreases.

104 4.9. Concluding Remarks

With the pull approach, achieving total data coherence with high network
performance is very difficult. If the pull interval is higher than the publish in-
terval, some data miss will occur. If it is lower, then the network performance
will suffer, in some cases pull causes as high as 7 times more network traffic
compared to push. Pull performs close to push only if the pull interval equals
to publish interval, but never better. Besides, in order to have pull and publish
intervals equal, we need to know the exact publish interval beforehand. The
publish interval on the other hand is rarely static and predictable. This makes
pull useful only in situations where the data is published according to some
pattern.

These results allow web engineers to make rational decisions concerning
key parameters such as pull and push intervals, in relation to, e.g., the an-
ticipated number of clients. Furthermore, the experimental design and the
reusable software infrastructure allows them to repeat similar measurements
for their own (existing or to be developed) applications. We have released
Chiron (open source) through our website (See Section 4.5).

Our future work includes adopting and testing a hybrid approach that
combines pull and push techniques for Ajax applications to gain the benefits
of both approaches. In this approach for example, users can specify a maxi-
mum trip-time, and if the server is under high load, it can switch some push
users to pull. We believe that such optimizations can have a positive effect
on the overall performance. We also intend to extend our testing experiments
with different web application containers such as Grizzly, or different push
server implementations that are based on holding a permanent connection
(e.g., Lightstreamer17) as opposed to the long polling approach discussed in
this chapter.

17 http://www.lightstreamer.com

Chapter 4. Performance Testing of Data Delivery Techniques for Ajax 105

http://www.lightstreamer.com

106 4.9. Concluding Remarks

Chapter

5
Crawling Ajax by Inferring User
Interface State Changes?

Ajax is a very promising approach for improving rich interactivity and respon-
siveness of web applications. At the same time, Ajax techniques shatter the
metaphor of a web ‘page’ upon which general search crawlers are based. This
chapter describes a novel technique for crawling Ajax applications through dy-
namic analysis and reconstruction of user interface state changes. Our method
dynamically infers a ‘state-flow graph’ modeling the various navigation paths
and states within an Ajax application. This reconstructed model can be used to
generate linked static pages. These pages could be used to expose Ajax sites to
general search engines. Moreover, we believe that the crawling techniques that
are part of our solution have other applications, such as within general search
engines, accessibility improvements, or in automatically exercising all user in-
terface elements and conducting state-based testing of Ajax applications. We
present our open source tool called Crawljax which implements the concepts
discussed in this chapter. Additionally, we report a case study in which we apply
our approach to a number of representative Ajax applications and elaborate on
the obtained results.

5.1 Introduction

The web as we know it is undergoing a significant change. A technology
that has gained a prominent position lately, under the umbrella of Web 2.0,

is Ajax (Asynchronous JavaScript and XML) (Garrett, 2005), in which a clever
combination of JavaScript and Document Object Model (DOM) manipulation,
along with asynchronous server communication is used to achieve a high level
of user interactivity. Highly visible examples include Google Maps, Google
Documents, and the recent version of Yahoo! Mail.

With this new change in developing web applications comes a whole set
of new challenges, mainly due to the fact that Ajax shatters the metaphor of
a web ‘page’ upon which many web technologies are based. Among these
challenges are the following:

Searchability ensuring that Ajax sites are indexed by the general search en-
gines, instead of (as is currently often the case) being ignored by them
because of the use of client-side scripting and dynamic state changes in
the DOM;

?This chapter was published in the Proceedings of the 8th International Conference on Web
Engineering (ICWE 2008) (Mesbah et al., 2008).

Testability systematically exercising dynamic user interface (UI) elements and
states of Ajax to find abnormalities and errors;

Accessibility examining whether all states of an Ajax site meet certain accessi-
bility requirements.

One way to address these challenges is through the use of a crawler that
can automatically walk through different states of a highly dynamic Ajax site,
create a model of the navigational paths and states, and generate a traditional
linked page-based static version. The generated static pages can be used, for
instance, to expose Ajax sites to general search engines or to examine the ac-
cessibility (Atterer and Schmidt, 2005) of different dynamic states. Such a
crawler can also be used for conducting state-based testing of Ajax applica-
tions (Marchetto et al., 2008b) and automatically exercising all user interface
elements of an Ajax site in order to find e.g., link-coverage, broken-links, and
other errors.

To date, no crawler exists that can handle the complex client code that is
present in Ajax applications. The reason for this is that crawling Ajax is funda-
mentally more difficult than crawling classical multi-page web applications.
In traditional web applications, states are explicit, and correspond to pages
that have a unique URL assigned to them. In Ajax applications, however, the
state of the user interface is determined dynamically, through changes in the
DOM that are only visible after executing the corresponding JavaScript code.

In this chapter, we propose an approach to analyze and reconstruct these
user interface states automatically. Our approach is based on a crawler that
can exercise client side code, and can identify clickable elements (which may
change with every click) that change the state within the browser’s dynam-
ically built DOM. From these state changes, we infer a state-flow graph, which
captures the states of the user interface, and the possible transitions between
them. This graph can subsequently be used to generate a multi-page static
version of the original Ajax application.

The underlying ideas have been implemented in a tool called Crawljax.1

We have performed an experiment of running our crawling framework over
a number of representative Ajax sites to analyze the overall performance of
our approach, evaluate the effectiveness in retrieving relevant clickables, as-
sess the quality and correctness of the detected states and generated static
pages, and examine the capability of our tool on real sites used in practice
and the scalability in crawling sites with thousands of dynamic states and
clickables. The cases span from internal to academic and external commercial
Ajax web sites.

The chapter is structured as follows. We start out, in Section 5.2 by ex-
ploring the difficulties of crawling and indexing Ajax. In Sections 5.3 and 5.4,
we present a detailed discussion of our new crawling techniques, the genera-
tion process, and the Crawljax tool. In Section 5.5 the results of applying our
methods to a number of Ajax applications are shown, after which Section 5.6

1The tool is available for download from http://spci.st.ewi.tudelft.nl/crawljax/.

108 5.1. Introduction

http://spci.st.ewi.tudelft.nl/crawljax/

discusses the findings and open issues. Section 5.7 presents various applica-
tions of our crawling techniques. We conclude with a brief survey of related
work, a summary of our key contributions, and suggestions for future work.

5.2 Challenges of Crawling Ajax

Ajax has a number of properties making it extremely difficult for, e.g., search
engines to crawl such web applications.

5.2.1 Client-side Execution
The common ground for all Ajax applications is a JavaScript engine which
operates between the browser and the web server, and which acts as an exten-
sion to the browser. This engine typically deals with server communication
and user interface rendering. Any search engine willing to approach such
an application must have support for the execution of the scripting language.
Equipping a general search crawler with the necessary environment compli-
cates its design and implementation considerably. The major search giants
such as Google2 currently have little or no support for executing JavaScript
due to scalability and security issues.

5.2.2 State Changes & Navigation
Traditional web applications are based on the multi-page interface paradigm
consisting of multiple (dynamically generated) unique pages each having a
unique URL. In Ajax applications, not every state change necessarily has an
associated Rest-based (Fielding and Taylor, 2002) URI (see Chapter 2). Ul-
timately, an Ajax application could consist of a single-page with a single
URL. This characteristic makes it very difficult for a search engine to index
and point to a specific state on an Ajax application. For crawlers, navigating
through traditional multi-page web applications has been as easy as extracting
and following the hypertext links (or the src attribute) on each page. In Ajax,
hypertext links can be replaced by events which are handled by the client
engine; it is not possible any longer to navigate the application by simply
extracting and retrieving the internal hypertext links.

5.2.3 Dynamic Document Object Model (DOM)
Crawling and indexing traditional web applications consists of following
links, retrieving and saving the HTML source code of each page. The state
changes in Ajax applications are dynamically represented through the run-
time changes on the DOM. This means that the source code in HTML does
not represent the state anymore. Any search engine aimed at crawling and
indexing such applications, will need to have access to this run-time dynamic
document object model of the application.

2 http://googlewebmastercentral.blogspot.com/2007/11/spiders-view-of-web-20.html

Chapter 5. Crawling Ajax by Inferring User Interface State Changes 109

http://googlewebmastercentral.blogspot.com/2007/11/spiders-view-of-web-20.html

1
2
3 <div onClick="OpenNewsPage();">
4
5 <input type="submit" class="news"/>
6 <div class="news">
7 <!-- jQuery function attaching events to elements
8 having attribute class="news" -->
9 $(".news").click(function() {

10 $("#content").load("news.html");
11 });

Figure 5.1 Different ways of attaching events to elements.

5.2.4 Delta-communication

Ajax applications rely on a delta-communication (see Chapter 2) style of in-
teraction in which merely the state changes are exchanged asynchronously
between the client and the server, as opposed to the full-page retrieval ap-
proach in traditional web applications. Retrieving and indexing the delta
state changes, for instance, through a proxy between the client and the server,
could have the side-effect of losing the context and actual meaning of the cha-
nges. Most of such delta updates become meaningful after they have been
processed by the JavaScript engine on the client and injected into the DOM.

5.2.5 Elements Changing the Internal State

To illustrate the difficulties involved in crawling Ajax, consider Figure 5.1. It
is a highly simplified example, showing different ways in which a news page
can be opened.

The example code shows how in Ajax sites, it is not just the hypertext link
element that forms the doorway to the next state. Note the way events (e.g.,
onClick, onMouseOver) can be attached to DOM elements at run-time. As can
be seen, a div element (line 3) can have an onclick event attached to it so
that it becomes a clickable element capable of changing the internal DOM state
of the application when clicked. The necessary event handlers can also be
programmatically registered in Ajax. The jQuery3 code responsible (lines 9–
11) for attaching the required functionality to the onClick event handlers using
the class attribute of the elements can also be seen.

Finding these clickables at run-time is another non-trivial task for a crawler.
Traditional crawlers as used by search engines will simply ignore all the ele-
ments (not having a proper href attribute) except the one in line 4, since they
rely on JavaScript only.

3 http://jquery.com

110 5.2. Challenges of Crawling Ajax

http://jquery.com

5.3 A Method for Crawling Ajax

The challenges discussed in the previous section will make it clear that crawl-
ing Ajax based on static analysis of, e.g., the HTML and JavaScript code is
not feasible. Instead, we rely on a dynamic approach, in which we actually
exercise clicks on all relevant elements in the DOM. From these clicks, we re-
construct a state-flow graph, which tells us in which states the user interface can
be. Subsequently, we use these states to generate static, indexable, pages.

An overview of our approach is visualized in Figure 5.3. As can be seen,
the architecture can be divided in two parts: (1) inferring the state machine,
and (2) using the state machine to generate indexable pages.

In this section, we first summarize our state and state-flow graph definition,
followed by a discussion of the most important steps in our approach.

5.3.1 User Interface States
In traditional multi-page web applications, each state is represented by a URL
and the corresponding web page. In Ajax however, it is the internal structure
change of the DOM tree on the (single-page) user interface that represents a
state change. Therefore, to adopt a generic approach for all Ajax sites, we
define a state change as a change on the DOM tree caused either by server-
side state changes propagated to the client, or client-side events handled by
the Ajax engine.

5.3.2 The State-flow Graph
The user interface state changes in Ajax can be modeled by recording the paths
(events) to these DOM changes to be able to navigate the different states. For
that purpose we define a state-flow graph as follows:

Definition 1 A state-flow graph for an Ajax site A is a 3 tuple < r, V , E > where:

1. r is the root node (called Index) representing the initial state after A has been fully loaded
into the browser.

2. V is a set of vertices representing the states. Each v ∈ V represents a run-time state in
A.

3. E is a set of edges between vertices. Each (v1, v2) ∈ E represents a clickable c connecting
two states if and only if state v2 is reached by executing c in state v1.

Our state-flow graph is similar to the event-flow graph (Memon et al., 2001),
but different in that in the former vertices are states, where as in the latter
vertices are events.

As an example of a state-flow graph, Figure 5.2 depicts the visualization of
the state-flow graph of a simple Ajax site. It illustrates how from the start page
three different states can be reached. The edges between states are labeled
with an identification (either via its ID-attribute or via an XPath expression)
of the element to be clicked in order to reach the given state. Thus, clicking
on the //DIV[1]/SPAN[4] element in the Index state leads to the S 1 state, from
which two states are reachable namely S 3 and S 4.

Chapter 5. Crawling Ajax by Inferring User Interface State Changes 111

Index

S_1
<onclick, xpath://DIV[1]/SPAN[4]>

S_2
<onmouseover, id:c_9>

S_3
<onclick, xpath://DIV[3]/IMG[1]>

<onmouseover, xpath://SPAN[2]/A[2]>

S_4
<onclick, id:c_3>

Figure 5.2 The state-flow graph visualization.

5.3.3 Inferring the State Machine
The state-flow graph is created incrementally. Initially, it only contains the
root state and new states are created and added as the application is crawled
and state changes are analyzed.

The following components, also shown in Figure 5.3 participate in the con-
struction of the state flow graph:

• Embedded Browser: Our approach is based on an embedded browser
interface (with different implementations: IE, Mozilla) capable of exe-
cuting JavaScript and the supporting technologies required by Ajax (e.g.,
CSS, DOM, XMLHttpRequest).

• Robot: A robot is used to simulate user input (e.g., click, mouseOver, text
input) on the embedded browser.

• Controller: The controller has access to the embedded browser’s DOM
and analyzes and detects state changes. It also controls the Robot’s ac-
tions and is responsible for updating the State Machine when relevant
changes occur on the DOM. After the crawling process is over, the con-
troller also calls the Sitemap and Mirror site generator processes.

• Finite State Machine: The finite state machine is a data component main-
taining the state-flow graph, as well as a pointer to the current state.

The algorithm used by these components to actually infer the state machine
is shown in Algorithm 3. The start procedure (lines 1-8) takes care of initial-
izing the various components and processes involved. The actual, recursive,
crawling procedure starts at line 10: the main steps are explained below.

5.3.4 Detecting Clickables
There is no direct way of obtaining all clickable elements in a DOM-tree,
due to the reasons explained in Section 5.2. Therefore, our algorithm makes
use of a set of candidate elements, which are all exposed to an event type (e.g.,
click, mouseOver). We use the click event type to present our algorithm, note,
however, that other event types can be used just as well to analyze the effects
on the DOM in the same manner.

We distinguish three ways of obtaining the candidate elements:

112 5.3. A Method for Crawling Ajax

Robot

Crawljax Controller Ajax
Engineupdate

 DOM

update

UI

event

Browser click

generate click

update

State
Machine

Sitemap
Generator

Mirror site
Generator

generate
sitemap

generate
mirror

event

Linkerlink
up

DOM to HTML
Transformer

transform

Inferring the State Machine

Generating Indexable Pages

Legend

Control flow

 Data component

Processing component

Access

Event invocation

Output

Sitemap
XML

 Multi-page
HTML Static file

Figure 5.3 Processing view of the crawling architecture.

• In a Full Auto Scan mode, the candidate clickables are labeled as such
based on their HTML tag element name. For example, all elements
with a tag div, a, span, input are considered as candidate clickable. Tag
element selection can also be constrained by the attributes (using wild-
cards). This is the mode that is displayed in Algorithm 3.

• In the annotation mode, we allow the HTML elements to have an attribute
crawljax="true". This gives users the opportunity to explicitly mark
certain elements as to be crawled, or elements to be excluded from the
process by setting the attribute to false. Note that this mode requires
access to the source code of the application for applying the annotations.

• In the configured mode, we allow a user to specify by means of a domain-
specific language which elements should be clicked (explained in more
detail in Section 5.3.8). This allows the most precise control over the
actual elements to be clicked.

Note that, if desirable, these modes can be combined. After the candidate el-
ements have been found, the algorithm proceeds to determine whether these
elements are indeed clickable. For each candidate element, the crawler in-
structs the robot to execute a click (line 15) on the element (or other event
types, e.g., mouseOver), in the browser.

Chapter 5. Crawling Ajax by Inferring User Interface State Changes 113

Algorithm 3 Full Auto Scan
Require: α is the maximum allowed depth level. τ is the similarity threshold

used by the edit distance method.
1: procedure Start (url, Set tags)
2: browser ← initEmbeddedBrowser(url)
3: robot← initRobot()
4: sm← initStateMachine()
5: crawl(null, 0)
6: linkupAndSaveAsHTML(sm)
7: generateSitemap(sm)
8: end procedure
9:

10: procedure Crawl (State ps, depth)
11: if depth < α then
12: cs← sm.getCurrentState()
13: ∆update← diff(ps, cs)
14: Set C ← getCandidateClickables(∆update, tags)
15: for c ∈ C do
16: robot.fireEvent(c, ‘click’)
17: dom← browser.getDom()
18: if distance(cs.getDom(), dom) > τ then
19: xe← getXpathExpr(c)
20: ns← State(c, xe, dom)
21: sm.addState(ns)
22: sm.addEdge(cs, ns, c, ‘click’)
23: sm.changeState(ns)
24: depth++
25: crawl(cs, depth)
26: depth−−
27: sm.changeState(cs)
28: if browser.history.canBack then
29: browser.history.goBack()
30: else
31: browser.reload()
32: List E← sm.getShortestPathTo(cs)
33: for e ∈ E do
34: robot.fireEvent(e.getXpathExpr(), ‘click’)
35: end for
36: end if
37: end if
38: end for
39: end if
40: end procedure

114 5.3. A Method for Crawling Ajax

5.3.5 Creating States

After firing an event on a candidate clickable, the algorithm compares the
resulting DOM tree with the DOM tree as it was just before the event fired, in
order to determine whether the event results in a state change.

For this purpose the edit distance between two DOM trees is calculated (line
17) using the Levenshtein (Levenshtein, 1996) method. A similarity threshold
τ is used under which two DOM trees are considered clones. This threshold
(0.0− 1.0) can be defined by the developer. A threshold of 0 means two DOM
states are seen as clones if they are exactly the same in terms of structure and
content. Any change is, therefore, seen as a state change.

If a change is detected according to our similarity metric, we create (line 19)
a new state and add it to the state-flow graph of the state machine (line 20).
In order to recognize an already met state, we compute a hashcode for each
DOM state, which we use to compare every new state to the list of already
visited states on the state-flow graph. Thus, in line 19 if we have a state
containing the particular DOM tree already, that state is returned, otherwise
a new state is created.

Furthermore, a new edge is created on the graph (line 21) between the state
before the event and the current state. The element on which the event was
fired is also added as part of the new edge. Moreover, the current state pointer
of the state machine is also updated to this newly added state at that moment
(line 22).

5.3.6 Processing Document Tree Deltas

After a clickable has been identified, and its corresponding state created, the
crawl procedure is recursively called (line 23) to find new possible states in
the changes made to the DOM tree.

Upon every new (recursive) entry into the crawl procedure, the first thing
done (line 12) is computing the differences between the previous document
tree and the current one, by means of an enhanced Diff algorithm (Chawathe
et al., 1996; Mesbah and van Deursen, 2007b). Such “delta updates” may be
due, for example, to a server request call that injects new elements into the
DOM. The resulting delta updates are used to find new candidate clickables
(line 13), which are then further processed in a depth-first manner.

It is worth mentioning that in order to avoid a loop, a list of visited elements
is maintained to exclude already checked elements in the recursive algorithm.
We use the tag name, the list of attribute names and values, and the XPath
expression of each element to conduct the comparison. Additionally, a depth
number can be defined to constrain the depth level of the recursive function.

5.3.7 Navigating the States

Upon completion of the recursive call, the browser should be put back into
the state it was in before the call. Unfortunately, navigating (back and forth)

Chapter 5. Crawling Ajax by Inferring User Interface State Changes 115

through an Ajax site is not as easy as navigating a classical web site. A dy-
namically changed DOM state does not register itself with the browser history
engine automatically, so triggering the ‘Back’ function of the browser does
not bring us to the previous state. This complicates traversing the application
when crawling Ajax. We distinguish two situations:

Browser History Support

It is possible to programatically register each state change with the browser
history through frameworks such as the jQuery history/remote plugin4 or
the Really Simple History library.5 If an Ajax application has support for the
browser history (line 25), then for changing the state in the browser, we can
simply use the built-in history back functionality to move backwards (line 26).

Click Through From Initial State

In case the browser history is not supported, which is the case with many
Ajax applications currently, the only way to get to a previous state is by saving
information about the elements and the order in which their execution results
in reaching to a particular state. Once we have such information, we can
reload the application (line 28) and follow and execute the elements from the
initial state to the desired state. As an optimization step, we use Dijkstra’s
shortest path algorithm (Dijkstra, 1959) to find the shortest element execution
path on the graph to a certain state (line 29).

We initially considered using the ID attribute of a clickable element to find
it back after a reload of the page. When we reload the application in the
browser, all the internal objects are replaced by new ones and the ID attribute
would be a way to follow the path to a certain state by clicking on those
elements whose IDs have been saved in the state machine. Soon we realized
that firstly, not all Ajax sites assign ID attributes to the elements and, secondly,
if IDs are provided, they are not always persistent, i.e., they are dynamically
set and can change with each reload.

To overcome these challenges, we adopt XPath to provide a better, more re-
liable, and persistent element identification mechanism. For each state chang-
ing element, we reverse engineer the XPath expression of that element which
gives us its exact location on the DOM (line 18). We save this expression
in the state machine (line 19) and use it to find the element after a reload,
persistently (line 31).

Note that because of side effects of the element execution, there is no guar-
antee that we reach the exact same state when we traverse a path a second
time. It is, however, as close as we can get.

116 5.3. A Method for Crawling Ajax

1 crawl MyAjaxSite {
2 url: http://spci.st.ewi.tudelft.nl/aowe/;
3 navigate Nav1 {
4 event: type=mouseover xpath=/HTML/BODY/SPAN[3];
5 event: type=click id=headline;
6 · · ·
7 }
8 navigate Nav2 {
9 event: type=click

10 xpath="//DIV[contains(.,"Interviews")]";
11 event: type=input id=article "john doe";
12 event: type=click id=search;
13 } · · ·
14 }

Figure 5.4 An instance of CASL.

5.3.8 CASL: Crawling Ajax Specification Language

To give users control over which candidate clickables to select, we have de-
veloped a Domain Specific Language (DSL) (van Deursen et al., 2000) called
Crawling Ajax Specification Language (CASL). Using CASL, the developer can
define the elements (based on IDs and XPath expressions) to be clicked, along
with the exact order in which the crawler should crawl the Ajax applica-
tion. CASL accepts different types of events. The event types include click,
mouseover, and input currently.

Figure 5.4 shows an instance of CASL. Nav1 tells our crawler to crawl by
first firing an event of type mouseover on the element with XPath /HTML/BO-
DY/SPAN[3] and then clicking on the element with ID headline in that order.
Nav2 commands the crawler to crawl to the Interviews state, then insert the
text ‘john doe’ into the input element with ID article and afterward click on
the search element. Using this DSL, the developer can take control of the way
an Ajax site should be crawled.

5.3.9 Generating Indexable Pages

After the crawling Ajax process is finished, the created state-flow graph can
be passed to the generation process, corresponding to the bottom part of Fig-
ure 5.3.

The first step is to establish links for the DOM states by following the
outgoing edges of each state in the state-flow graph. For each clickable, the
element type must be examined. If the element is a hypertext link (an a-
element), the href attribute is updated. In case of other types of clickables
(e.g., div, span) we replace the element by a hypertext link element. The href
attribute in both situations represents the link to the name and location of the
generated static page.

4 http://stilbuero.de/jquery/history/
5 http://code.google.com/p/reallysimplehistory/

Chapter 5. Crawling Ajax by Inferring User Interface State Changes 117

http://stilbuero.de/jquery/history/
http://code.google.com/p/reallysimplehistory/

Case Ajax site Clickable Elements

C1 spci.st.ewi.tudelft.nl/demo/aowe/ testing span 2

Second link

Topics of Interest

C2 PetStore <a class="accordionLink" href="#" id="feline01" onmouseout="this.className=

’accordionLink’;" onmouseover="this.className=’accordionLinkHover’;">Hairy Cat

C3 www.4launch.nl <div onclick="setPrefCookies(’Gaming’, ’DESTROY’, ’DESTROY’);

loadHoofdCatsTree(’Gaming’, 1, ’’)"><a id="uberCatLink1"

class="ubercat" href="javascript:void(0)">Gaming</div>

<td onclick="open url(’..producteninfo.php?productid=037631’,..)">Harddisk Skin</td>

C4 www.blindtextgenerator.com <input type="radio" value="7" name="radioTextname" class="js-textname iradio"

id="idRadioTextname-EN-li-europan"/>

C5 site.snc.tudelft.nl <div class="itemtitlelevel1 itemtitle" id="menuitem 189 e">organisatie</div>

...

C6 www.gucci.coma booties

<div id="thumbnail 7" class="thumbnail highlight"><div

class="darkening"/></div>

a http://www.gucci.com/nl/uk-english/nl/spring-summer-08/womens-shoes/

Table 5.1 Case objects and examples of their clickable elements.

After the linking process, each DOM object in the state-flow graph is trans-
formed into the corresponding HTML string representation and saved on the
file system in a dedicated directory (e.g., /generated/). Each generated static
file represents the style, structure, and content of the Ajax application as seen
in the browser, in exactly its specific state at the time of crawling.

Here, we can adhere to the Sitemap Protocol,6 generating a valid instance of
the protocol automatically after each crawling session consisting of the URLs
of all generated static pages.

5.4 Tool Implementation: Crawljax

We have implemented the concepts presented in this chapter in a tool called
Crawljax. Crawljax is released under the open source BSD license and is
available for download. More information about the tool can be found on our
website http://spci.st.ewi.tudelft.nl/crawljax/.

Crawljax is implemented in Java. We have engineered a variety of software
libraries and web tools to build and run Crawljax. Here we briefly mention
the main modules and libraries.

The embedded browser interface has two implementations: IE-based on
Watij7 and Mozilla-based on XULRunner.8 Webclient9 is used to access the
run-time DOM and the browser history mechanism in the Mozilla browser.
For the Mozilla version, the Robot component makes use of the java.awt.Robot
class to generate native system input events on the embedded browser. The
IE version uses an internal Robot to simulate events.

6 http://www.sitemaps.org/protocol.php
7 http://watij.com
8 http://developer.mozilla.org/en/docs/XULRunner/
9 http://www.mozilla.org/projects/blackwood/webclient/

118 5.4. Tool Implementation: Crawljax

http://www.gucci.com/nl/uk-english/nl/spring-summer-08/womens-shoes/
http://spci.st.ewi.tudelft.nl/crawljax/
http://www.sitemaps.org/protocol.php
http://watij.com
http://developer.mozilla.org/en/docs/XULRunner/
http://www.mozilla.org/projects/blackwood/webclient/

The generator uses JTidy10 to pretty-print DOM states and Xerces11 to se-
rialize the objects to HTML. In the Sitemap Generator, XMLBeans12 generates
Java objects from the Sitemap Schema,13 which after being used by Crawl-
jax to create new URL entries, are serialized to the corresponding valid XML
instance document.

The state-flow graph is based on the JGrapht14 library. The grammar of CASL is
implemented in ANTLR.15 ANTLR is used to generate the necessary parsers
for CASL. In addition, StringTemplate16 is used for generating the source-
code from CASL. Log4j is used to optionally log various steps in the crawling
process, such as the identification of DOM changes and clickables. Crawljax

is entirely based on Maven17 to generate, compile, test (JUnit), release, and
run the application.

5.5 Case Studies

In order to evaluate the effectiveness, correctness, performance, and scalability
of the proposed crawling method for Ajax, we have conducted a number of
case studies, which are described in this section, following Yin’s guidelines
for conducting case studies (Yin, 2003).

5.5.1 Subject Systems

We have selected 6 Ajax sites for our experiment as shown in Table 5.1. The
case ID, the actual site, and a number of real clickables to illustrate the type
of the elements can be seen for each case object.

Our selection criteria include the following: sites that use Ajax to change
the state of the application by using JavaScript, assigning events to HTML
elements, asynchronously retrieving delta updates from the server and per-
forming partial updates on the DOM.

The first site C1 in our case study is an Ajax test site developed internally
by our group using the jQuery Ajax library. Although the site is small, it
is representative by having different types of dynamically set clickables as
shown in Figure 5.1 and Table 5.1.

Our second case object, C2, is Sun’s Ajaxified PetStore 2.018 which is built
on the Java ServerFaces, and the Dojo Ajax toolkit. This open-source web
application is designed to illustrate how the Java EE Platform can be used to
develop an Ajax-enabled Web 2.0 application and adopts many advanced rich
Ajax components.

10 http://jtidy.sourceforge.net
11 http://xerces.apache.org/xerces-j/
12 http://xmlbeans.apache.org
13 http://www.sitemaps.org/schemas/sitemap/0.9/sitemap.xsd
14 http://jgrapht.sourceforge.net
15 http://www.antlr.org
16 http://www.stringtemplate.org
17 http://maven.apache.org
18 http://java.sun.com/developer/releases/petstore/

Chapter 5. Crawling Ajax by Inferring User Interface State Changes 119

http://jtidy.sourceforge.net
http://xerces.apache.org/xerces-j/
http://xmlbeans.apache.org
http://www.sitemaps.org/schemas/sitemap/0.9/sitemap.xsd
http://jgrapht.sourceforge.net
http://www.antlr.org
http://www.stringtemplate.org
http://maven.apache.org
http://java.sun.com/developer/releases/petstore/

The other four cases are all external Ajax sites and we have no access to their
source-code. C4 is an Ajax site that can function as a tool for comparing the
visual impression of different typefaces. C3 (online shop), C5 (sport center),
and C6 (Gucci) are all single-page commercial sites with many clickables and
states.

5.5.2 Experimental Design

Our goals in conducting the experiment include:

G1 Effectiveness: evaluating the effectiveness of obtaining high-quality re-
sults in retrieving relevant clickables including the ones dynamically
injected into the DOM,

G2 Correctness: assessing the quality and correctness of the states and static
pages automatically generated,

G3 Performance: analyzing the overall performance of our approach in terms
of input size versus time,

G4 Scalability: examining the capability of Crawljax on real sites used in
practice and the scalability in crawling sites with thousands of dynamic
states and clickables.

Environment & Tool Configuration.
We use a laptop with Intel Pentium M 765 processor 1.73GHz, with 1GB RAM
and Windows XP to run Crawljax.

Configuring Crawljax itself is done through a simple crawljax.properties
file, which can be used to set the URL of the site to be analyzed, the tag ele-
ments Crawljax should look for, the depth level, and the similarity threshold.
There are also a number of other configuration parameters that can be set,
such as the directory in which the generated pages should be saved in.

Output.
We determine the average DOM string size, number of candidate elements,
number of detected clickables, number of detected states, number of gener-
ated static pages, and performance measurements for crawling and generat-
ing pages separately for each experiment object. The actual generated linked
static pages also form part of the output.

Method of Evaluation.
Since other comparable tools and methods are currently not available to con-
duct similar experiments as with Crawljax, it is difficult to define a baseline
against which we can compare the results. Hence, we manually inspect the
systems under examination and determine which expected behavior should
form our reference baseline.

120 5.5. Case Studies

G1. For the experiment we have manually added extra clickables in dif-
ferent states of C1, especially in the delta updates, to explore whether click-
ables dynamically injected into the DOM can be found by Crawljax. A refer-
ence model was created manually by clicking through the different states in a
browser. In total 16 clickables were noted of which 10 were on the top level,
i.e., index state. To constrain the reference model for C2, we chose two prod-
uct categories, namely CATS and DOGS, from the five available categories.
We annotated 36 elements (product items) by modifying a JavaScript method
which turns the items retrieved from the server into clickables on the inter-
face. For the four external sites (C3–C6) which have many states, it is very
difficult to manually inspect and determine, for instance, the number of ex-
pected clickables and states. Therefore, for each site, we randomly selected 10

clickables in advance by noting their tag name, attributes, and XPath expres-
sion. After each crawling process, we checked the presence of the 10 elements
among the list of detected clickables.

G2. After the generation process the generated HTML files and their con-
tent are manually examined to see whether the pages are the same as the
corresponding DOM states in Ajax in terms of structure, style, and content. Also
the internal linking of the static pages is manually checked. To test the clone
detection ability we have intentionally introduced a clone state into C1.

G3. We measure the time in milliseconds taken to crawl each site. We expect
the crawling performance to be directly proportional to the input size which
is comprised of the average DOM string size, number of candidate elements,
and number of detected clickables and states.

We also measure the generation performance which is the period taken to
generate the static HTML pages from the inferred state-flow graph.

G4. To test the capability of our method in crawling real sites and coping
with unknown environments, we run Crawljax on four external cases C3–
C6. We run Crawljax with depth level 2 on C3 and C5 each having a huge
state space to examine the scalability of our approach in analyzing tens of
thousands of candidate clickables and finding clickables.

5.5.3 Results and Evaluation
Table 5.2 presents the results obtained by running Crawljax on the subject sys-
tems. The measurements were all read from the log file produced by Crawljax

at the end of each process.

G1. As can be seen in Table 5.2, for C1 Crawljax finds all the 16 expected
clickables and states with a precision and recall of 100%.

For C2, 33 elements were detected from the annotated 36. One explanation
behind this difference could be the way some items are shown to the user in
PetStore. PetStore uses a Catalog Browser to show a set of the total number
of the product items. The 3 missing product items could be the ones that were

Chapter 5. Crawling Ajax by Inferring User Interface State Changes 121

C
as

e

D
O

M
st

ri
ng

si
ze

(b
yt

e)

C
an

di
da

te
El

em
en

ts

D
et

ec
te

d
C

lic
ka

bl
es

D
et

ec
te

d
St

at
es

G
en

er
at

ed
St

at
ic

Pa
ge

s

C
ra

w
lP

er
fo

rm
an

ce
(m

s)

G
en

er
at

io
n

Pe
rf

or
m

an
ce

(m
s)

D
ep

th

Ta
gs

C1 4590 540 16 16 16 14129 845 3 A, DIV, SPAN, IMG
C2 24636 1813 33 34 34 26379 1643 2 A, IMG
C3 262505 150 148 148 148 498867 17723 1 A

19247 1101 1071 1071 5012726 784295 2 A, TD
C4 40282 3808 55 56 56 77083 2161 2 A, DIV, INPUT, IMG
C5 165411 267 267 145 145 806334 14395 1 A

32365 1554 1234 1234 6436186 804139 2 A, DIV
C6 134404 6972 83 79 79 701416 28798 1 A, DIV

Table 5.2 Results of running CRAWLJAX on 6 AJAX applications.

never shown on the interface because of the navigational flow e.i., the order
of clickables.

Crawljax was able to find 95% of the expected 10 clickables (noted initially)
for each of the four external sites C3–C6.

G2. The clone state introduced in C1 is correctly detected and that is why we
see 16 states being reported instead of 17. Inspection of the static pages in all
cases shows that the generated pages correspond correctly to the DOM state.

G3. When comparing the results for the two internal sites, we see that it
takes Crawljax 14 and 26 seconds to crawl C1 and C2 respectively. As can be
seen, the DOM in C2 is 5 times and the number of candidate elements 3 times
higher. In addition to the increase in DOM size and the number of candidate
elements, Crawljax cannot rely on the browser Back method when crawling
C2. This means for every state change on the browser Crawljax has to reload
the application and click through to the previous state to go further. This
reloading and clicking through has a negative effect on the performance. The
generation time also doubles for C2 due to the increase in the input size. It is
clear that the running time of Crawljax increases linearly with the size of the
input. We believe that the execution time of a few minutes to crawl and gener-
ate a mirror multi-page instance of an Ajax application automatically without
any human intervention is very promising. Note that the performance is also
dependent on the CPU and memory of the machine Crawljax is running on,
as well as the speed of the server and network properties of the case site. C6,
for instance, is slow in reloading and retrieving updates from its server and
that increases the performance measurement numbers in our experiment.

G4. Crawljax was able to run smoothly on the external sites. Except a
few minor adjustments (see Section 5.6) we did not witness any difficulties.
C3 with depth level 2 was crawled successfully in 83 minutes resulting in

122 5.5. Case Studies

19247 examined candidate elements, 1101 detected clickables, and 1071 de-
tected states. The generation process for the 1071 states took 13 minutes. For
C5, Crawljax was able to finish the crawl process in 107 minutes on 32365

candidate elements, resulting in 1554 detected clickables and 1234 states. The
generation process took 13 minutes. As expected, in both cases, increasing
the depth level from 1 to 2 expands the state space greatly.

5.6 Discussion

5.6.1 Back Implementation

Crawljax assumes that if the Browser Back functionality is implemented, then
it is implemented correctly. An interesting observation was the fact that even
though Back is implemented for some states, it is not correctly implemented
i.e., calling the Back method brings the browser in a different state than ex-
pected which naturally confuses Crawljax. This implies that the Back method
to go to a previous state is not reliable and using the reload and click-through
method is much more safe in this case.

The click-through method is not without limitations either. When the be-
havior of an Ajax application, in terms of the client-side user interface changes,
is non-deterministic, the click-through method is likely to fail in finding an
exact click-path and state match. The order in which clickables are chosen
could generate different states. Even executing the same clickable twice from
an state could theoretically produce two different DOM states depending on,
for instance, server-side factors. We are currently exploring ways to cope with
this issue. One possible direction is seeking a way to re-detect elements on the
click-path, even if their location is changed after a reload. Another possibility
is resetting the server-side state after a reload, which requires access to the
server-side logic.

5.6.2 Constantly Changing DOM

Another interesting observation in C2 in the beginning of the experiment was
that every element was seen as a clickable. This phenomenon was caused by
the banner.js which constantly changed the DOM with textual notifications.
Hence, we had to either disable this banner to conduct our experiment or use
a higher similarity threshold so that the textual changes were not seen as a
relevant state change for detecting clickables.

5.6.3 Cookies

Cookies can also cause some problems in crawling Ajax applications. C3 uses
Cookies to store the state of the application on the client. With Cookies en-
abled, when Crawljax reloads the application to navigate to a previous state,
the application does not start in the expected initial state. In this case, we had
to disable Cookies to perform a correct crawling process.

Chapter 5. Crawling Ajax by Inferring User Interface State Changes 123

5.6.4 State Space

The set of found states and generated HTML pages is by no means com-
plete, i.e., Crawljax generates a static instance of the Ajax application but not
necessarily the instance. This is partly inherent in dynamic web applications.
Any crawler can only crawl and index a snapshot instance of a dynamic web
application in a point of time.

The number of possible states in the state space of almost any realistic web
application is huge and can cause the well-know state explosion problem (Valmari,
1998). Just as a traditional web crawler, Crawljax provides the user with a set
of configurable options to constrain the state space such as the maximum
search depth level, the similarity threshold, maximum number of states per
domain, maximum crawling time, and the option of ignoring external links
and links that match some pre-defined set of regular expressions, e.g., mail:*,
*.ps, *.pdf.

The current implementation of Crawljax keeps the DOM states in the mem-
ory which can lead to an state explosion and out of memory exceptions with
approximately 3000 states on a machine with a 1GB RAM. As an optimiza-
tion step we intend to abstract and serialize the DOM state into a database
and only keep a reference in the memory. This saves much space in the mem-
ory and enables us to handle much more states. With a cache mechanism, the
essential states for analysis can be kept in the memory while the other ones
can be retrieved from the database when needed in a later stage.

5.7 Applications

As mentioned in the introduction, we believe that the crawling and generating
capabilities of our approach have many applications for Ajax sites.

5.7.1 Search Engines

We believe that the crawling techniques that are part of our solution can serve
as a starting point and be adopted by general search engines to be able to
crawl Ajax sites. General web search engines, such as Google and Yahoo!,
cover only a portion of the web called the publicly indexable web which consists
of the set of web pages reachable purely by following hypertext links, ig-
noring forms (Barbosa and Freire, 2007) and client-side scripting. The pages
not reached this way are referred to as the hidden-web, which is estimated to
comprise several millions of pages (Barbosa and Freire, 2007). With the wide
adoption of Ajax techniques that we are witnessing today this figure will only
increase. Although there has been extensive research on crawling and expos-
ing the data behind forms (Barbosa and Freire, 2007; de Carvalho and Silva,
2004; Lage et al., 2004; Ntoulas et al., 2005; Raghavan and Garcia-Molina,
2001), crawling the hidden-web induced as a result of client-side scripting in
general and Ajax in particular has gained very little attention so far. Con-
sequently, while Ajax techniques are very promising in terms of improving

124 5.7. Applications

rich interactivity and responsiveness, Ajax sites themselves may very well be
ignored by the search engines.

5.7.2 Discoverability

There are some industrial proposed techniques that assist in making a modern
Ajax website more accessible and discoverable by general search engines.

Graceful Degradation

In web engineering terms, the concept behind Graceful Degradation (Florins and
Vanderdonckt, 2004) is to design and build for the latest and greatest user-
agent and then add support for less capable devices, i.e., focus on the majority
on the mainstream and add some support for outsiders. Graceful Degradation
allows a web site to ‘step down’ in such a way as to provide a reduced level of
service rather than failing completely. A well-known example is the menu bar
generated by JavaScript which would normally be totally ignored by search
engines. By using HTML list items with hypertext links inside a noscript tag,
the site can degrade gracefully.

Progressive Enhancement

The term Progressive Enhancement19 has been used as the opposite side to Grace-
ful Degradation. This technique aims for the lowest common denominator,
i.e., a basic markup HTML document, and begins with a simple version of the
web site, then adds enhancements and extra rich functionality for the more
advanced user-agents using CSS and JavaScript.

Server-side Generation

Another way to expose the hidden-web content behind Ajax applications is
by making the content available to search engines at the server-side by pro-
viding it in an accessible style. The content could, for instance, be exposed
through RSS feeds. In the spirit of Progressive Enhancement, an approach
called Hijax20 involves building a traditional multi-page website first. Then,
using unobtrusive event handlers, links and form submissions are intercepted
and routed through the XMLHttpRequest object. Generating and serving both
the Ajax and the multi-page version depending on the visiting user-agent is
yet another approach. Another option is the use of XML/XSLT to generate
indexable pages for search crawlers (Backbase, 2005). In these approaches,
however, the server-side architecture will need to be quite modular, capable
of returning delta changes as required by Ajax, as well as entire pages.

19 http://hesketh.com/publications/progressive enhancement paving way for future.html
20 http://www.domscripting.com/blog/display/41

Chapter 5. Crawling Ajax by Inferring User Interface State Changes 125

http://hesketh.com/publications/progressive_enhancement_paving_way_for_future.html
http://www.domscripting.com/blog/display/41

Mirror Site Generation

The Graceful Degradation and Progressive Enhancement approaches men-
tioned constrain the use of Ajax and have limitations in the content exposing
degree. It is very hard to imagine a single-page desktop-style Ajax applica-
tion that degrades into a plain HTML website using the same markup and
client-side code. The more complex the Ajax functionality, the higher the
cost of weaving advanced and accessible functionality into the components.21

The server-side generation approaches increase the complexity, development
costs, and maintainability effort as well. We believe our proposed solution can
assist the web developer in the automatic generation of the indexable version
of their Ajax application (Mesbah and van Deursen, 2008b), thus significantly
reducing the cost and effort of making Ajax sites more accessible to search
engines. Such an automatically built mirror site can also improve the accessi-
bility22 of the application towards user-agents that do not support JavaScript.

5.7.3 Testing

When it comes to states that need textual input from the user (e.g., input
forms) CASL can be very helpful to crawl and generate the corresponding
state. The Full Auto Scan, however, does not have the knowledge to provide
such input automatically. Therefore, we believe a combination of the three
modes to take the best of each could provide us with a tool not only for
crawling but also for automatic testing of Ajax applications.

The ability to automatically exercise all the executable elements of an Ajax

site gives us a powerful test mechanism. The crawler can be utilized to find
abnormalities in Ajax sites. As an example, while conducting the case study,
we noticed a number of 404 Errors and exceptions on C3 and C4 sites. Such er-
rors can easily be detected and traced back to the elements and states causing
the error state in the inferred state-flow graph. The asynchronous interaction
in Ajax can cause race conditions (Chapter 2) between requests and responses,
and the dynamic DOM updates can also introduce new elements which can
be sources of faults. Detection of such conditions by analyzing the generated
state machine and static pages can be assisted as well. In addition, testing
Ajax sites for compatibility on different browsers (e.g., IE, Mozilla) can be
automated using Crawljax.

The crawling methods and the produced state machine can be applied in
conducting state machine testing (Andrews et al., 2005) for automatic test
case derivation, verification, and validation based on pre-defined conditions
for Ajax applications. Chapter 6 presents our automatic testing approach that
is based on Crawljax.

21 http://blogs.pathf.com/agileajax/2007/10/accessibility-a.html
22 http://bexhuff.com/node/165

126 5.7. Applications

http://blogs.pathf.com/agileajax/2007/10/accessibility-a.html
http://bexhuff.com/node/165

5.8 Related Work

The concept behind Crawljax, is the opposite direction of our earlier work
Retjax presented in Chapter 3, in which we try to reverse engineer a tradi-
tional multi-page website to Ajax.

The work of Memon et al. (Memon et al., 2003, 2001) on GUI Ripping for
testing purposes is related to our work in terms of how they reverse engi-
neer an event-flow graph of desktop GUI applications by applying dynamic
analysis techniques.

There are some industrial proposed approaches for improving the accessi-
bility and discoverability of Ajax as discussed in Section 5.7.

There has been extensive research on crawling the hidden-web behind
forms (Barbosa and Freire, 2007; Dasgupta et al., 2007; de Carvalho and Silva,
2004; Lage et al., 2004; Ntoulas et al., 2005; Raghavan and Garcia-Molina,
2001). This is sharp contrast with the the hidden-web induced as a result
of client-side scripting in general and Ajax in particular, which has gained
very little attention so far. As far as we know, there are no academic research
papers on crawling Ajax at the moment.

5.9 Concluding Remarks

Crawling Ajax is the process of turning a highly dynamic, interactive web-
based system into a static mirror site, a process that is important to improve
searchability, testability, and accessibility of Ajax applications. This chapter
proposes a crawling method for Ajax. The main contributions of the chapter
are:

• An analysis of the key problems involved in crawling Ajax applications;

• A systematic process and algorithm to infer a state machine from an
Ajax application, which can be used to generate a static mirror site.
Challenges addressed include the identification of clickable elements,
the detection of DOM changes, and the construction of the state ma-
chine;

• The open source tool Crawljax, which implements this process;

• Six case studies used to evaluate the effectiveness, correctness, perfor-
mance, and scalability of the proposed approach.

Although we have been focusing on Ajax in this chapter, we believe that
the approach could be applied to any DOM-based web application.

Future work consists of conducting more case studies to improve the ability
of finding clickables in different Ajax settings. The fact that the tool is avail-
able for download for everyone, will help to identify exciting case studies.
Furthermore, strengthening the tool by extending its functionality, improving
the performance, and the state explosion optimization are other directions we

Chapter 5. Crawling Ajax by Inferring User Interface State Changes 127

foresee. Exposing the hidden-web induced by Ajax using Crawljax and con-
ducting automatic state-based testing of Ajax application based on the reverse
engineering techniques are other applications we will be working on.

128 5.9. Concluding Remarks

Chapter

6
Invariant-Based Automatic Testing of
Ajax User Interfaces?

Ajax-based Web 2.0 applications rely on stateful asynchronous client/server co-
mmunication, and client-side run-time manipulation of the DOM tree. This not
only makes them fundamentally different from traditional web applications, but
also more error-prone and harder to test. We propose a method for testing Ajax

applications automatically, based on a crawler to infer a flow graph for all (client-
side) user interface states. We identify Ajax-specific faults that can occur in such
states (related to DOM validity, error messages, discoverability, back-button com-
patibility, etc.) as well as DOM-tree invariants that can serve as oracle to detect
such faults. We implemented our approach in Atusa, a tool offering generic
invariant checking components, a plugin-mechanism to add application-specific
state validators, and generation of a test suite covering the paths obtained during
crawling. We describe two case studies evaluating the fault revealing capabilities,
scalability, required manual effort and level of automation of our approach.

6.1 Introduction

Many new web trends have recently appeared under the Web 2.0 umbrella,
changing the web significantly, from read-only static pages to dynamic

user-created content and rich interaction. Many Web 2.0 sites rely heavily on
Ajax (Asynchronous JavaScript and XML) (Garrett, 2005), a prominent en-
abling technology in which a clever combination of JavaScript and Document
Object Model (DOM) manipulation, along with asynchronous client/server
delta-communication (Mesbah and van Deursen, 2008a) is used to achieve a
high level of user interactivity on the web.

With this new change comes a whole set of new challenges, mainly due to
the fact that Ajax shatters the metaphor of a web ‘page’ upon which many
classic web technologies are based. One of these challenges is testing such
applications (Bozdag et al., 2009; Marchetto et al., 2008b; Mesbah et al., 2008).
With the ever-increasing demands on the quality of Web 2.0 applications, new
techniques and models need to be developed to test this new class of software.
How to automate such a testing technique is the question that we address in
this paper.

In order to detect a fault, a testing method should meet the following
conditions (Morell, 1988; Richardson and Thompson, 1988): reach the fault-
execution, which causes the fault to be executed, trigger the error-creation,

?This chapter has been accepted for publication in the Proceedings of the 31st International
Conference on Software Engineering (ICSE 2009) (Mesbah and van Deursen, 2009).

which causes the fault execution to generate an incorrect intermediate state,
and propagate the error, which enables the incorrect intermediate state to prop-
agate to the output and cause a detectable output error.

Meeting these reach/trigger/propagate conditions is more difficult for Ajax

applications compared to classical web applications. During the past years,
the general approach in testing web applications has been to request a re-
sponse from the server (via a hypertext link) and to analyze the resulting
HTML. This testing approach based on the page-sequence paradigm has seri-
ous limitations meeting even the first (reach) condition on Ajax sites. Recent
tools such as Selenium1 use a capture/replay style for testing Ajax applica-
tions. Although such tools are capable of executing the fault, they demand a
substantial amount of manual effort on the part of the tester.

Static analysis techniques have limitations in revealing faults which are
due to the complex run-time behavior of modern rich web applications. It
is this dynamic run-time interaction that is believed (Huang et al., 2005) to
make testing such applications a challenging task. On the other hand, when
applying dynamic analysis on this new domain of web, the main difficulty lies
in detecting the various doorways to different dynamic states and providing
proper interface mechanisms for input values.

In this paper, we discuss challenges of testing Ajax (Section 6.3) and pro-
pose an automated testing technique for finding faults in Ajax user interfaces.
We extend our Ajax crawler, Crawljax (Sections 6.4–6.5), to infer a state-flow
graph for all (client-side) user interface states. We identify Ajax-specific faults
that can occur in such states and generic and application-specific invariants
that can serve as oracle to detect such faults (Section 6.6). From the inferred
graph, we automatically generate test cases (Section 6.7) that cover the paths
discovered during the crawling process. In addition, we use our open source
tool called Atusa (Section 6.8), implementing the testing technique, to conduct
a number of case studies (Section 6.9) to discuss (Section 6.10) and evaluate
the effectiveness of our approach.

6.2 Related Work

Modern web interfaces incorporate client-side scripting and user interface ma-
nipulation which is increasingly separated from server-side application logic
(Stepien et al., 2008). Although the field of rich web interface testing is mainly
unexplored, much knowledge may be derived from two closely related fields:
traditional web testing and GUI application testing.

Traditional Web Testing. Benedikt et al. (2002) present VeriWeb, a tool for
automatically exploring paths of multi-page web sites through a crawler and
detector for abnormalities such as navigation and page errors (which are con-
figurable through plugins). VeriWeb uses SmartProfiles to extract candidate
input values for form-based pages. Although VeriWeb’s crawling algorithm

1 http://selenium.openqa.org

130 6.2. Related Work

http://selenium.openqa.org

has some support for client-side scripting execution, the paper provides in-
sufficient detail to determine whether it would be able to cope with modern
Ajax web applications. VeriWeb offers no support for generating test suites as
we do in Section 6.7.

Tools such as WAVES (Huang et al., 2005) and SecuBat (Kals et al., 2006)
have been proposed for automatically assessing web application security. The
general approach is based on a crawler capable of detecting data entry points
which can be seen as possible points of security attack. Malicious patterns,
e.g., SQL and XSS vulnerabilities, are then injected into these entry points and
the response from the server is analyzed to determine vulnerable parts of the
web application.

A model-based testing approach for web applications was proposed by
Ricca and Tonella (2001). They introduce ReWeb, a tool for creating a model
of the web application in UML, which is used along with defined coverage
criteria to generate test-cases. Another approach was presented by Andrews
et al. (2005), who rely on a finite state machine together with constraints de-
fined by the tester. All such model-based testing techniques focus on classical
multi-page web applications. They mostly use a crawler to infer a naviga-
tional model of the web. Unfortunately, traditional web crawlers are not able
to crawl Ajax applications (see Chapter 5).

Logging user session data on the server is also used for the purpose of
automatic test generation (Elbaum et al., 2003; Sprenkle et al., 2005). This
approach requires sufficient interaction of real web users with the system to
generate the necessary logging data. Session-based testing techniques are
merely focused on synchronous requests to the server and lack the complete
state information required in Ajax testing. Delta-server messages (Mesbah
and van Deursen, 2008a) from the server response are hard to analyze on
their own. Most of such delta updates become meaningful after they have
been processed by the client-side engine on the browser and injected into the
DOM.

Exploiting static analysis of server-side implementation logic to abstract the
application behavior is another testing approach. Artzi et al. (2008) propose a
technique and a tool called Apollo for finding faults in PHP web applications
that is based on combined concrete and symbolic execution. The tool is able
to detect run-time errors and malformed HTML output. Halfond and Orso
(2007) present their static analysis of server-side Java code to extract web ap-
plication request parameters and their potential values. Such techniques have
limitations in revealing faults that are due to the complex run-time behavior
of modern rich web applications.

GUI Application Testing. Reverse engineering a model of the desktop (GUI), to
generate test cases has been proposed by Memon (2007). Ajax applications can
be seen as a hybrid of desktop and web applications, since the user interface
is composed of components and the interaction is event-based. However,
Ajax applications have specific features, such as the asynchronous client/-
server communication and dynamic DOM-based user interface, which make

Chapter 6. Invariant-Based Automatic Testing of Ajax User Interfaces 131

them different from traditional GUI applications (Marchetto et al., 2008b), and
therefore require other testing tools and techniques.

Current Ajax Testing Approaches. The server-side of Ajax applications can be
tested with any conventional testing technique. On the client, testing can be
performed at different levels. Unit testing tools such as JsUnit2 can be used
to test JavaScript on a functional level. The most popular Ajax testing tools
are currently capture/replay tools such as Seleninum, WebKing,3 and Sahi,4
which allow DOM-based testing by capturing events fired by user (tester)
interaction. Such tools have access to the DOM, and can assert expected UI
behavior defined by the tester and replay the events. Capture/replay tools
demand, however, a substantial amount of manual effort on the part of the
tester (Memon, 2007).

Marchetto et al. (2008b) have recently proposed an approach for state-based
testing of Ajax applications. They use traces of the application to construct a
finite state machine. Sequences of semantically interacting events in the model
are used to generate test cases once the model is refined by the tester. In our
approach, we crawl the Ajax application, simulating real user events on the
user interface and infer the abstract model automatically.

6.3 Ajax Testing Challenges

In Ajax applications, the state of the user interface is determined dynamically,
through event-driven changes in the browser’s DOM that are only visible after
executing the corresponding JavaScript code. The resulting challenges can be
explained through the reach/trigger/propagate conditions as follows.

6.3.1 Reach

The event-driven nature of Ajax presents the first serious testing difficulty, as
the event model of the browser must be manipulated instead of just construct-
ing and sending appropriate URLs to the server. Thus, simulating user events
on Ajax interfaces requires an environment equipped with all the necessary
technologies, e.g., JavaScript, DOM, and the XMLHttpRequest object used for
asynchronous communication.

One way to reach the fault-execution automatically for Ajax is by adopting
a web crawler, capable of detecting and firing events on clickable elements on
the web interface. Such a crawler should be able to exercise all user interface
events of an Ajax site, crawl through different UI states and infer a model of
the navigational paths and states.

2 http://jsunit.net
3 http://www.parasoft.com/jsp/products/home.jsp?product=WebKing
4 http://sahi.co.in/w/

132 6.3. Ajax Testing Challenges

http://jsunit.net
http://www.parasoft.com/jsp/products/home.jsp?product=WebKing
http://sahi.co.in/w/

6.3.2 Trigger

Once we are able to derive different dynamic states of an Ajax application,
possible faults can be triggered by generating UI events. In addition input val-
ues can cause faulty states. Thus, it is important to identify input data entry
points, which are primarily comprised of DOM forms. In addition, executing
different sequences of events can also trigger an incorrect state. Therefore, we
should be able to generate and execute different event sequences.

6.3.3 Propagate

In Ajax, any response to a client-side event is injected into the single-page
interface and therefore, faults propagate to and are manifested at the DOM
level. Hence, access to the dynamic run-time DOM is a necessity to be able to
analyze and detect the propagated errors.

Automating the process of assessing the correctness of test case output is
a challenging task, known as the oracle problem (Weyuker, 1982). Ideally a
tester acts as an oracle who knows the expected output, in terms of DOM tree,
elements and their attributes, after each state change. When the state space
is huge, it becomes practically impossible. In practice, a baseline version,
also known as the Gold Standard (Binder, 1999), of the application is used to
generate the expected behavior. Oracles used in the web testing literature are
mainly in the form of HTML comparators (Sprenkle et al., 2007) and validators
(Artzi et al., 2008).

6.4 Deriving Ajax States

Here, we briefly outline our Ajax crawling technique and tool called Crawljax

(see Chapter 5) and the extensions for testing purposes. Crawljax can exercise
client side code, and identify clickable elements that change the state within
the browser’s dynamically built DOM. From these state changes, we infer a
state-flow graph, which captures the states of the user interface, and the possible
event-based transitions between them.

We define an Ajax UI state change as a change on the DOM tree caused ei-
ther by server-side state changes propagated to the client, or client-side events
handled by the Ajax engine. We model such changes by recording the paths
(events) to these DOM changes to be able to navigate between the different
states.

As an example of a state-flow graph, Figure 6.1 displays the state-flow
graph of a simple Ajax site. From the start page three different states can
be reached. The edges between states are labeled with an identification (ID-
attribute or an XPath expression) of the element and the event type to reach
the next state.

Chapter 6. Invariant-Based Automatic Testing of Ajax User Interfaces 133

Index

S_1

<onclick, xpath://DIV[1]/SPAN[4]>

S_2

<onmouseover, id:c_9>

S_3

<ondblclick, xpath://DIV[3]/IMG[1]>

<onmouseover, xpath://SPAN[2]/DIV[2]>

S_4

<onclick, id:c_3>

<onclick, xpath://TABLE[1]/TR[1]/TD[1]/A[1]>

Figure 6.1 The state-flow graph visualization.

Inferring the State Machine. The state-flow graph is created incrementally.
Initially, it only contains the root state and new states are created and added
as the application is crawled and state changes are analyzed.

The following components participate in the construction of the graph:
Crawljax uses an embedded browser interface (with different implementations:
IE, Mozilla) supporting technologies required by Ajax; A robot is used to sim-
ulate user input (e.g., click, mouseOver, text input) on the embedded browser;
The finite state machine is a data component maintaining the state-flow graph, as
well as a pointer to the current state; The controller has access to the browser’s
DOM and analyzes and detects state changes. It also controls the robot’s
actions and is responsible for updating the state machine when relevant cha-
nges occur on the DOM. The algorithm used by these components to actually
infer the state machine is discussed below: the full algorithm along with its
testing-specific extensions is shown in Algorithms 4 and 5 (Section 6.8).

Detecting Clickables. Crawljax implements an algorithm which makes use
of a set of candidate elements, which are all exposed to an event type (e.g., click,
mouseOver). In automatic mode, the candidate clickables are labeled as such
based on their HTML tag element name and attribute constraints. For in-
stance, all elements with a tag div, a, and span having attribute class="menuitem"
are considered as candidate clickable. For each candidate element, the crawler
fires a click on the element (or other event types, e.g., mouseOver), in the em-
bedded browser.

Creating States. After firing an event on a candidate clickable, the algorithm
compares the resulting DOM tree with the way as it was just before the event
fired, in order to determine whether the event results in a state change. If a
change is detected according to the Levenshtein edit distance, a new state is
created and added to the state-flow graph of the state machine. Furthermore,

134 6.4. Deriving Ajax States

a new edge is created on the graph between the state before the event and the
current state.

Processing Document Tree Deltas. After a new state has been detected, the
crawling procedure is recursively called to find new possible states in the
partial changes made to the DOM tree. Crawljax computes the differences
between the previous document tree and the current one, by means of an
enhanced Diff algorithm to detect Ajax partial updates which may be due to a
server request call that injects new elements into the DOM.

Navigating the States. Upon completion of the recursive call, the browser
should be put back into the previous state. A dynamically changed DOM
state does not register itself with the browser history engine automatically, so
triggering the ‘Back’ function of the browser is usually insufficient. To deal
with this Ajax crawling problem, we save information about the elements and
the order in which their execution results in reaching a given state. We then
can reload the application and follow and execute the elements from the initial
state to the desired state. Crawljax adopts XPath to provide a reliable, and
persistent element identification mechanism. For each state changing element,
it reverse engineers the XPath expression of that element which returns its
exact location on the DOM. This expression is saved in the state machine and
used to find the element after a reload. Note that because of side effects of the
element execution and server-side state, there is no guarantee that we reach
the exact same state when we traverse a path a second time. It is, however, as
close as we can get.

6.5 Data Entry Points

In order to provide input values on Ajax web applications, we have adopted
a reverse engineering process, similar to (Benedikt et al., 2002; Huang et al.,
2005), to extract all exposed data entry points. To this end, we have extended
our crawler with the capability of detecting DOM forms on each newly detected
state (this extension is also shown in Algorithm 3).

For each new state, we extract all form elements from the DOM tree. For
each form, a hashcode is calculated on the attributes (if available) and the
HTML structure of the input fields of the form. With this hashcode, custom
values are associated and stored in a database, which are used for all forms
with the same code.

If no custom data fields are available yet, all data, including input fields,
their default values, and options are extracted from the DOM form. Since
in Ajax forms are usually sent to the server through JavaScript functions, the
action attribute of the form does not always correspond to the server-side en-
try URL. Also, any element (e.g., A, DIV) could be used to trigger the right
JavaScript function to submit the form. In this case, the crawler tries to iden-
tify the element that is responsible for form submission. Note that the tester

Chapter 6. Invariant-Based Automatic Testing of Ajax User Interfaces 135

can always verify the submit element and change it in the database, if neces-
sary. Once all necessary data is gathered, the form is inserted automatically
into the database. Every input form provides thus a data entry point and
the tester can later alter the database with additional desired input values for
each form.

If the crawler does find a match in the database, the input values are used
to fill the DOM form and submit it. Upon submission, the resulting state
is analyzed recursively by the crawler and if a valid state change occurs the
state-flow graph is updated accordingly.

6.6 Testing Ajax States Through Invariants

With access to different dynamic DOM states we can check the user inter-
face against different constraints. We propose to express those as invariants
on the DOM tree, which we thus can check automatically in any state. We
distinguish between invariants on the DOM-tree, between DOM-tree states,
and application-specific invariants. Each invariant is based on a fault model
(Binder, 1999), representing Ajax-specific faults that are likely to occur and
which can be captured through the given invariant.

6.6.1 Generic DOM Invariants

Validated DOM. Malformed HTML code can be the cause of many vulnera-
bility and browser portability problems. Although browsers are designed to
tolerate HTML malformedness to some extent, such errors have led to browser
crashes and security vulnerabilities (Artzi et al., 2008). All current HTML val-
idators expect all the structure and content be present in the HTML source
code. However, with Ajax, changes are manifested on the single-page user
interface by partially updating the dynamic DOM through JavaScript. Since
these validators cannot execute client-side JavaScript, they simply cannot per-
form any kind of validation.

To prevent faults, we must make sure that the application has a valid DOM
on every possible execution path and modification step. We use the DOM
tree obtained after each state change while crawling and transform it to the
corresponding HTML instance. A W3C HTML validator serves as oracle to
determine whether errors or warnings occur. Since most Ajax sites rely on a
single-page interface, we use a diff algorithm to prevent duplicate occurrences
of failures that may be the result of a previous state.

No Error Messages in DOM. Our state should never contain a string pattern
that suggests an error message (Benedikt et al., 2002) in the DOM. Error mes-
sages that are injected into the DOM as a result of client-side (e.g., 404 Not
Found, 400 Bad Request) or server-side errors (e.g., Session Timeout, 500 Inter-
nal Server Error, MySQL error) can be detected automatically. The prescribed
list of potential fault patterns should be configurable by the tester.

136 6.6. Testing Ajax States Through Invariants

Other Invariants. In line with the above, further generic DOM-invariants
can be devised, for example to deal with accessibility, link discoverability, or
security constraints on the DOM at any time throughout the crawling process.
We omit discussion of these invariants due to space limitations.

6.6.2 State Machine Invariants

Besides constraints on the DOM-tree in individual states, we can identify re-
quirements on the state machine and its transitions.

No Dead Clickables. One common fault in classical web applications is the
occurrence of dead links which point to a URL that is permanently unavailable.
In Ajax, clickables that are supposed to change the state by retrieving data
from the server, through JavaScript in the background, can also be broken.
Such error messages from the server are mostly swallowed by the Ajax engine,
and no sign of a dead link is propagated to the user interface. By listening
to the client/server request/response traffic after each event (e.g., through a
proxy), dead clickables can be detected.

Consistent Back-Button. A fault that often occurs in Ajax applications is the
broken Back-button of the browser. As explained in Section 5.3, a dynamically
changed DOM state does not register itself with the browser history engine
automatically, so triggering the ‘Back’ function makes the browser completely
leave the application’s web page. It is possible to programatically register each
state change with the browser history and frameworks are appearing which
handle this issue. However, when the state space increases, errors can be made
and some states may be ignored by the developer to be registered properly.
Through crawling, upon each new state, one can compare the expected state
in the graph with the state after the execution of the Back-button and find
inconsistencies automatically.

6.6.3 Application-specific Invariants

We can define invariants that should always hold and could be checked on
the DOM, specific to our Ajax application in development. In our case study,
Section 6.9.2, we describe a number of application-specific invariants. Con-
straints over the DOM-tree can be easily expressed as invariants in Java, for
example through an XPath expression. Typically, this can be coded into one or
two simple Java methods. The resulting invariants can be used to dynamically
search for invariant violations.

6.7 Testing Ajax Paths

While running the crawler to derive the state machine can be considered as
a first full test pass, the state machine itself can be further used for testing
purposes. For example, it can be used to execute different paths to cover the

Chapter 6. Invariant-Based Automatic Testing of Ajax User Interfaces 137

1 @Test
2 public void testcase1() {
3 browser.goToUrl(url);
4

5 /*Element-info: SPAN class=expandable -hitarea */
6 browser.fireEvent(new Eventable(new Identification(
7 "xpath", "//DIV[1]/SPAN[4]"), "onclick"));
8

9 Comp.AssertEquals(oracle.getState("S_1").getDom(), browser.getDom());
10

11 /*Element-info: DIV class=hitarea id=menuitem2 */
12 browser.fireEvent(new Eventable(new Identification(
13 "xpath", "//SPAN[2]/DIV[2]"), "onmouseover"));
14

15 Comp.AssertEquals(oracle.getState("S_3").getDom(), browser.getDom());
16

17 /*Element-info: Form, A href=#submit */
18 handleForm(2473584);
19

20 Comp.AssertEquals(oracle.getState("S_4").getDom(), browser.getDom());
21 }
22

23 private void handleForm(long formId) {
24 Form form = oracle.getForm(formId);
25 if (form != null) {
26 FormHandler.fillFormInDom(browser, form);
27 browser.fireEvent(form.getSubmit());
28 }
29 }

Figure 6.2 A generated JUnit test case.

state machine in different ways. In this section, we explain how to derive a
test suite (implemented in JUnit) automatically from the state machine, and
how this suite can be used for testing purposes.

To generate the test suite, we use the K shortest paths (Yen, 1971) algorithm
which is a generalization of the shortest path problem in which several paths
in increasing order of length are sought. We collect all sinks in our graph, and
compute the shortest path from the index page to each of them. Loops are
included once. This way, we can easily achieve all transitions coverage.

Next, we transform each path found into a JUnit test case, as shown in
Figure 6.2. Each test case captures the sequence of events from the initial state
to the target state. The JUnit test case can fire events, since each edge on the
state-flow graph contains information about the event-type and the element
the event is fired on to arrive at the target state. We also provide all the
information about the clickable element such as tag name and attributes, as
code comments in the generated test method. The test class provides API’s to
access the DOM (browser.getDom()) and elements (browser.getElementBy(how,
value)) of the resulting state after each event, as well as its contents.

If an event is a form submission (annotated on the edge), we generate all
the required information for the test case to retrieve the corresponding input
values from the database and insert them into the DOM, before triggering the
event.

138 6.7. Testing Ajax Paths

6.7.1 Oracle Comparators

After each event invocation the resulting state in the browser is compared with
the expected state in the database which serves as oracle. The comparison can
take place at different levels of abstraction ranging from textual (Sprenkle
et al., 2007) to schema-based similarity as proposed in Chapter 3.

6.7.2 Test-case Execution

Usually extra coding is necessary for simulating the environment where the
tests will be run, which contributes to the high cost of testing (Bertolino, 2007).
We provide a framework to run all the generated tests automatically using a
real web browser and generate success/failure reports. At the beginning of
each test case the embedded browser is initialized with the URL of the Ajax

site under test. For each test case, the browser is first put in its initial index
state. From there, events are fired on the clickable elements (and forms filled
if present). After each event invocation, assertions are checked to see if the
expected results are seen on the web application’s new UI state.

The generated JUnit test suite can be used in several ways. First, it can
be run as is on the current version of the Ajax application, but for instance
with a different browser to detect browser incompatibilities. Furthermore, the
test suite can be applied to altered versions of the Ajax application to support
regression testing: For the unaltered user interface, the test cases should pass,
and only for altered user interface code failures might occur (also helping the
tester to understand what has truly changed). The typical use of the derived
test suite will be to take apart specific generated test cases, and augment
them with application-specific assertions. In this way, a small test suite arises
capturing specific fault-sensitive click trails.

6.8 Tool Implementation: Atusa

We have implemented our testing approach in an open source tool called
Atusa

5 (Automatically Testing UI States of Ajax), available through our web-
site.6 It is based on the crawling capabilities of Crawljax and provides plugin
hooks for testing Ajax applications at different levels. Its architecture can be
divided into three phases:

preCrawling occurs after the application has fully been loaded into the browser.
Examples include authentication plugins to log onto the system and
checks on the HTML source code.

5Atusa is a Persian name, meaning beautiful body. In Ancient Persia, during the Achaemenid
dynasty, Atusa was the daughter of Cyrus the Great, and a half-sister of Cambyses II. -She mar-
ried Darius the Great and gave birth to Xerxes.

6 http://spci.st.ewi.tudelft.nl

Chapter 6. Invariant-Based Automatic Testing of Ajax User Interfaces 139

http://spci.st.ewi.tudelft.nl

Crawljax Controller Ajax
Engineupdate

 DOM

update

UI

event

Embedded
Browser

event

Analyze
Dom

State
Machine

Test-case
Generator

event

Legend

Control flow

 Data component

Processing component

Access

Event invocation

Test
Cases

Static file

DOM
Analyzer

update

inCrawling
plugins

postCrawling
plugins

DB

Robot

Test
Executor

Test
Report

Coverage
Report

report

DOM
Validator

Implementation

Transform
DOM to HTML

Validate HTML Validation
Report

report

generate event

Figure 6.3 Processing view of ATUSA.

inCrawling occurs after each detected state change, different types of invari-
ants can be checked through plugins such as Validated DOM, Consistent
Back-button, and No Error Messages in DOM.

postCrawling occurs after the crawling process is done and the state-flow
graph is inferred fully. The graph can be used, for instance, in a plu-
gin to generate test cases from.

Algorithms 4 and 5 show the hooks along the crawling process. For each
phase, Atusa provides the tester with specific APIs to implement plugins for
validation and fault detection. Atusa offers generic invariant checking com-
ponents, a plugin-mechanism to add application-specific state validators, and
generation of a test suite from the inferred state-flow graph. Figure 6.3 depicts
the processing view of Atusa, showing only the DOM Validator and Test Case
Generator as examples of possible plugin implementations.

Atusa supports looking for many different types of faults in Ajax-based
applications, from errors in the DOM instance, to errors that involve the nav-

140 6.8. Tool Implementation: Atusa

Algorithm 4 Pre/postCrawling hooks
1: procedure Start (url, Set tags)
2: browser ← initEmbeddedBrowser(url)
3: robot← initRobot()
4: sm← initStateMachine()
5: preCrawlingPlugins(browser)
6: crawl(null)
7: postCrawlingPlugins(sm)
8: end procedure
9: procedure Crawl (State ps)

10: cs← sm.getCurrentState()
11: ∆update← diff(ps, cs)
12: analyseForms(∆update)
13: Set C ← getCandidateClickables(∆update, tags)
14: for c ∈ C do
15: generateEvent(cs, c)
16: end for
17: end procedure
18: procedure AnalyseForms (State cs)
19: for f orm ∈ cs.getForms() do
20: id← getHashCode(form)
21: dbForm← database.getForm(id)
22: if dbForm == null then
23: extractInsertForm(form, id)
24: else
25: fillFormInDom(browser, dbForm)
26: generateEvent(cs, dbForm.getSubmit())
27: end if
28: end for
29: end procedure

igational path, e.g., constraints on the length of the deepest paths (Benedikt
et al., 2002), or number of clicks to a certain state. Whenever a fault is detected,
the error report along the causing execution path is saved in the database so
that it can be reproduced later easily.

Implementation. Atusa is implemented in Java 1.6. The state-flow graph is
based on the JGrapht library. The implementation details of the crawler can
be found in Chapter 5. The plugin architecture is implemented through the
Java Plugin Framework (JPF)7 and we use Hibernate, a persistence and query
service, to store the data in the database. Apache Velocity8 templates assist us
in the code generation process of JUnit test cases.

7 http://jpf.sourceforge.net
8 http://velocity.apache.org

Chapter 6. Invariant-Based Automatic Testing of Ajax User Interfaces 141

http://jpf.sourceforge.net
http://velocity.apache.org

Algorithm 5 InCrawling hook while deriving Ajax states
1: procedure GenerateEvent (State cs, Clickable c)
2: robot.fireEvent(c)
3: dom← browser.getDom()
4: if distance(cs.getDom(), dom) > τ then
5: xe← getXpathExpr(c)
6: ns← State(dom)
7: sm.addState(ns)
8: sm.addEdge(cs, ns, Event(c, xe))
9: sm.changeState(ns)

10: inCrawlingPlugins(ns)
11: crawl(cs)
12: sm.changeState(cs)
13: if browser.history.canBack then
14: browser.history.goBack()
15: else
16: browser.reload()
17: List E← sm.getPathTo(cs)
18: for e ∈ E do
19: robot.fireEvent(e)
20: end for
21: end if
22: end if
23: end procedure

6.9 Empirical Evaluation

In order to assess the usefulness of our approach in supporting modern web
application testing, we have conducted a number of case studies, set up fol-
lowing Yin’s guidelines (Yin, 2003).

Goal and Research Questions. Our goal in this experiment is to evaluate
the fault revealing capabilities, scalability, required manual effort and level of
automation of our approach. Our research questions can be summarized as:

RQ1 What is the fault revealing capability of Atusa?

RQ2 How well does Atusa perform? Is it scalable?

RQ3 What is the automation level when using Atusa and how much manual
effort is involved in the testing process?

6.9.1 Study 1: TUDU
Our first experimental subject is the Ajax-based open source TUDU 9 web ap-
plication for managing personal todo lists, which has also been used by other

9 http://tudu.sourceforge.net

142 6.9. Empirical Evaluation

http://tudu.sourceforge.net

LOCServer-side

LOCClient-side

DOMstringsize

CandidateClickables

DetectedClickables

DetectedStates

DetectedEntryPoints

DOMViolations

Back-button

GeneratedTestCases

CoverageServer-side

CoverageClient-side

DetectedFaults

ManualEffort

Performance

3
k

1
1

k
(e

xt
)

2
4

9
0

8
3

3
2

4
2

3
4

4
fo

rm
s

1
8

2
fa

ls
e

3
2

7
3

%
3

5
%

(e
xt

)
8

0
%

2
6

.5
5

.6
5

8
0

(i
nt

)
(b

yt
e)

2
1

in
pu

ts
7

5
%

(i
nt

)
(m

in
ut

es
)

(m
in

ut
es

)

Ta
bl

e
6.

1
T

U
D

U
ca

se
st

ud
y.

Chapter 6. Invariant-Based Automatic Testing of Ajax User Interfaces 143

researchers (Marchetto et al., 2008b). The server-side is based on J2EE and
consists of around 12K lines of Java/JSP code, of which around 3K forms the
presentation layer we are interested in. The client-side extends on a number
of Ajax libraries such as DWR and Scriptaculous,10 and consists of around 11k
LOC of external JavaScript libraries and 580 internal LOC.

To address RQ3 we report the time spent on parts that required manual
work. For RQ1-2, we configured Atusa through its properties file (1 minute),
setting the URL of the deployed site, the tag elements that should be in-
cluded (A, DIV) and excluded (A:title=Log out) during the crawling process,
the depth level (2), the similarity threshold (0.89), and a maximum crawling
time of 60 minutes. Since TUDU requires authentication, we wrote (10 min-
utes) a preCrawling plugin to log into the web application automatically.

As shown in Table 6.1, we measure average DOM string size, number of
candidate elements analyzed, detected clickables and states, detected data
entry points, detected faults, number of generated test cases, and performance
measurements, all of which are printed in a log file by Atusa after each run.

In the initial run, after the login process, Atusa crawled the TUDU applica-
tion, finding the doorways to new states and detecting all possible data entry
points recursively. We analyzed the data entry points in the database and pro-
vided each with custom input values (15 minutes to evaluate the input values
and provide useful values). For the second run, we activated (50 seconds) the
DOM Validator, Back-Button, Error Detector, and Test Case Generator plugins
and started the process. Atusa started crawling and when forms were encoun-
tered, the custom values from the database were automatically inserted into
the browser and submitted. Upon each detected state change, the invariants
were checked through the plugins and reports were inserted into the database
if faults were found. At the end of the crawling process, a test suite was gen-
erated from the inferred state-flow graph.

To the best of our knowledge, there are currently no tools that can automat-
ically test Ajax dynamic states. Therefore, it is not possible to form a base-line
for comparison using, for instance, external crawlers. To assess the effective-
ness of the generated test suite, we measure code coverage on the client as
well as the presentation-tier of the server. Although the effectiveness is not
directly implied by code coverage, it is an objective and commonly used indi-
cator of the quality of a test suite (Halfond and Orso, 2007). To that end, we
instrumented the presentation part of the server code (tudu-dwr) with Clover
and the client-side JavaScript libraries with JSCoverage,11 and deployed the
web application. For each test run, we bring the TUDU database to the origi-
nal state using a SQL script. We run all the test cases against the instrumented
application, through Atusa’s embedded browser, and compute the amount of
coverage achieved for server- and client-side code. In addition, we manually
seeded 10 faults, capable of causing inconsistent states (e.g., DOM malformd-
ness, adding values longer than allowed by the database, adding duplicate

10 http://script.aculo.us
11 http://siliconforks.com/jscoverage/

144 6.9. Empirical Evaluation

http://script.aculo.us
http://siliconforks.com/jscoverage/

todo items, removing all items instead of one) and measured the percentage
of faults detected. The results are presented in Table 6.1.

Findings. Based on these observations we conclude that: The use of Atusa

can help to reveal generic faults, such as DOM violations, automatically; The
generated test suite can give us useful code coverage (73% server-side and 75%
client-side; Note that only partial parts of the external libraries are actually
used by TUDU resulting in a low coverage percentage) and can reveal most
DOM-based faults, 8 of the 10 seeded faults were detected, two faults were
undetected because during the test execution, they were silently swallowed by
the JavaScript engine and did not affect the DOM. It is worth mentioning that
increasing the depth level to 3 significantly increased the measured crawling
time passed the maximum 60 minutes, but dit not influence the fault detection
results. The code coverage, however, improved by approximately 10%; The
manual effort involved in setting up Atusa (less than half an hour in this
case) is minimal; The performance and scalability of the crawling and testing
process is very acceptable (it takes Atusa less than 6 minutes to crawl and test
TUDU, analyzing 332 clickables and detecting 34 states).

6.9.2 Study 2: Finding Real-Life Bugs
Our second case study involves the development of an Ajax user interface in
a small commercial project. We use this case study to evaluate the manual
effort required to use Atusa (RQ3), and to assess the capability of Atusa to
find faults that actually occurred during development (RQ1).

Subject System. The case at hand is Coachjezelf (cjz, “Coach Yourself”),12 a
commercial application allowing high school teachers to assess and improve
their teaching skills. cjz is currently in use by 5000-6000 Dutch teachers, a
number that is growing with approximately 1000 paying users every year.

The relevant part for our case is the interactive table of contents (TOC),
which is to be synchronized with an actual content widget. In older versions
of cjz this was implemented through a Java applet; in the new version this is
to be done through Ajax, in order to eliminate a Java virtual machine depen-
dency.

The two developers working on the case study spent around one week (two
person-weeks) building the Ajax solution, including requirements elicitation,
design, understanding and evaluating the libraries to be used, manual testing,
and acceptance by the customer.

The Ajax-based solution made use of the jQuery13 library, as well as the
treeview,14 history-remote,15 and listen plugins for jQuery. The libraries com-
prise around 10,000 lines of JavaScript, and the custom code is around 150

lines of JavaScript, as well as some HTML and CSS code.
12See www.coachjezelf.nl for more information (in Dutch).
13jquery.com
14http://bassistance.de/jquery-plugins/jquery-plugin-treeview/
15http://stilbuero.de/jquery/history/

Chapter 6. Invariant-Based Automatic Testing of Ajax User Interfaces 145

www.coachjezelf.nl
jquery.com
http://bassistance.de/jquery-plugins/jquery-plugin-treeview/
http://stilbuero.de/jquery/history/

1 //case one: warn about collapsible divs within expandable items

2 String xpathCase1 = "//LI[contains(@class,’expandable ’)]/DIV[contains(@class,’collapsable ’)]";

3

4 //case two: warn about collapsible items within expandable items

5 String xpathCase2 = "//LI[contains(@class,’expandable ’)]/UL/LI[contains(@class,’collapsable ’)]";

Figure 6.4 Example invariants expressed using XPath in Java.

Case study setup. The developers were asked (1) to try to document their
design and technical requirements using invariants, and (2) to write the in-
variants in Atusa plugins to detect errors made during development. After
the delivery of the first release, we evaluated (1) how easy it was to express
these invariants in Atusa; and (2) whether the (generic or application-specific)
plugins were capable of detecting faults.

Application-Specific Invariants. Two sets of invariants were proposed by the
developers. The first essentially documented the (external) treeview compo-
nent, capable of (un)folding tree structures (such as a table of contents).

The treeview component operates by setting HTML class attributes (such
as collapsible, hit-area, and lastExpandable-hitarea) on nested list struc-
tures. The corresponding style sheet takes care of properly displaying the
(un)folded (sub)trees, and the JavaScript intercepts clicks and re-arranges the
class attributes as needed.

Invariants were devised to document constraints on the class attributes.
As an example, the div-element immediately below a li-element that has the
class expandable should have class expandable-hitarea. Another invariant is
that expandable list items (which are hidden) should have their CSS display
type set to “none”.

The second set of invariants specifically dealt with the code written by the
developers themselves. This code took care of synchronizing the interactive
display of the table of contents with the actual page shown. Clicking links
within the page affects the display of the table of contents, and vice versa.

This resulted in essentially two invariants: one to ensure that within the
table of contents at most one path (to the current page) would be open, and
the other that at any time the current page as marked in the table of contents
would actually be displayed in the content pane.

Expressing such invariants on the DOM-tree was quite easy, requiring a
few lines of Java code using XPath. An example is shown in Figure 6.4.

Failures Detected. At the end of the development week, Atusa was used to
test the new Ajax interface. For each type of application-specific invariant,
an inCrawling plugin was added to Atusa. Six types of failures were auto-
matically detected: three through the generic plugins, and three through the
application-specific plugins just described. An overview of the type of failures
found and the invariant violations that helped to detect them is provided in
Table 6.2.

146 6.9. Empirical Evaluation

Fa
il

ur
e

C
au

se
V

io
la

te
d

In
va

ri
an

t
In

va
ri

an
t

ty
pe

Im
ag

es
no

t
di

sp
la

ye
d

Ba
se

U
R

L
in

dy
na

m
ic

lo
ad

D
ea

d
C

lic
ka

bl
es

G
en

er
ic

Br
ok

en
sy

nc
hr

on
iz

at
io

n
in

IE
In

va
lid

H
TM

L
id

D
O

M
-v

al
id

at
or

G
en

er
ic

In
co

ns
is

te
nt

hi
st

or
y

Is
su

e
in
l
i
s
t
e
n

lib
ra

ry
Ba

ck
-B

ut
to

n
G

en
er

ic
Br

ok
en

sy
nc

hr
on

iz
at

io
n

in
IE

Ba
ck

sl
as

h
ve

rs
us

sl
as

h
C

on
si

st
en

t
cu

rr
en

t
pa

ge
Sp

ec
ifi

c
C

or
ru

pt
ed

ta
bl

e
C

od
in

g
er

ro
r

t
r
e
e
v
i
e
w

in
va

ri
an

ts
,C

on
si

st
en

t
cu

rr
en

t
pa

ge
Sp

ec
ifi

c
M

is
si

ng
TO

C
En

tr
ie

s
In

co
m

pl
et

e
in

pu
t

da
ta

C
on

si
st

en
t

cu
rr

en
t

pa
ge

Sp
ec

ifi
c

Ta
bl

e
6.

2
Fa

ul
ts

fo
un

d
in

C
JZ

-A
JA

X
.

Chapter 6. Invariant-Based Automatic Testing of Ajax User Interfaces 147

The application-specific failures were all found through two invariant types:
the Consistent current page, which expresses that in any state the table and the
actual content should be in sync, and the treeview invariants. Note that for cer-
tain types of faults, for instance the treeview corrupted table, a very specific
click trail had to be followed to expose the failure. Atusa gives no guarantee
of covering the complete state of the application, however, since it tries a huge
combination of clickables recursively, it was able to detect such faults, which
were not seen by developers when the application was tested manually.

Findings. Based on these observations we conclude that: The use of Atusa

can help to reveal bugs that are likely to occur during Ajax development and
are difficult to detect manually; Application-specific invariants can help to
document and test the essence of an Ajax application, such as the synchro-
nization between two widgets; The manual effort in coding such invariants in
Java and using them through plugins in Atusa is minimal.

6.10 Discussion

6.10.1 Automation Scope

User interface testing is a broad term, dealing with testing how the applica-
tion and the user interact. This typically is manual in nature, as it includes
inspecting the correct display of menus, dialog boxes, and the invocation of
the correct functionality when clicking them. The type of user interface test-
ing that we propose does not replace this manual testing, but augments it:
Our focus is on finding programming faults, manifested through failures in
the DOM tree. As we have seen, the highly dynamic nature and complexity of
Ajax make it error-prone, and our approach is capable of finding such faults
automatically.

6.10.2 Invariants

Our solution to the oracle problem is to include invariants (as also advocated
by, e.g., Meyer (Meyer, 2008)). Ajax applications offer a unique opportunity
for specifying invariants, thanks to the central DOM data structure. Thus, we
are able to define generic invariants that should hold for all Ajax applications,
and we allow the tester to use the DOM to specify dedicated invariants. Fur-
thermore, the state machine derived through crawling can be used to express
invariants, such as correct Back-button behavior. Again, this state machine
can be accessed by the tester to specify his or her own invariants. These
invariants make our approach much more sophisticated than smoke tests for
user interfaces (as proposed by e.g., Memon (Memon, 2007)) — which we can
achieve thanks to the presence of the DOM and state machine data structures.
Note that just running Crawljax would correspond to conducting a smoke
test: the difficulty with web applications (as opposed to, e.g., Java Swing ap-

148 6.10. Discussion

plications) is that it is very hard to determine when a failure occurs – which
is solved in Atusa through the use of invariants.

6.10.3 Generated versus hand-coded JavaScript
The case studies we conducted involve two different popular JavaScript li-
braries in combination with hand-written JavaScript code. Alternative frame-
works exist, such as Google’s Web Toolkit (GWT)16 in which most of the client-
side code is generated. Atusa is entirely independent of the way the Ajax

application is written, so it can be applied to such systems as well. This will
be particularly relevant for testing the custom JavaScript code that remains to
be hand-written, and which can still be tricky and error-prone. Furthermore,
Atusa can be used by the developers of such frameworks, to ensure that the
generated DOM states are correct.

6.10.4 Manual Effort
The manual steps required to run Atusa consist of configuration, plugin de-
velopment, and providing custom input values, which for the cases conducted
took less than an hour. The hardest part is deciding which application-specific
invariants to adopt. This is a step that is directly connected with the design of
the application itself. Making the structural invariants explicit not only allows
for automated testing, it is also a powerful design documentation technique.
Admittedly, not all web developers will be able to think in terms of invariants,
which might limit the applicability of our approach in practice. Those capa-
ble of documenting invariants can take advantage of the framework Atusa

provides to actually implement the invariants.

6.10.5 Performance and Scalability
Since the state space of any realistic web application is huge and can cause
the well-know state explosion problem, we provide the tester with a set of con-
figurable options to constrain the state space such as the maximum search
depth level, the similarity threshold, maximum number of states per domain,
maximum crawling time, and the option of ignoring external links and links
that match some pre-defined set of regular expressions.The main component
that can influence the performance and scalability is the crawling part. The
performance of Atusa in crawling an Ajax site depends on many factors such
as the speed at which the server can handle requests, how fast the client-side
JavaScript can update the interface, and the size of the DOM tree. Atusa can
scale to sites comprised of thousands of states easily.

6.10.6 Application Size
The two case studies both involve around 10,000 lines of JavaScript library
code, and several hundred lines of application code. One might wonder

16http://code.google.com/webtoolkit/

Chapter 6. Invariant-Based Automatic Testing of Ajax User Interfaces 149

http://code.google.com/webtoolkit/

whether this is too small to be representative. However, our results are based
on dynamic analysis rather than static code analysis, hence the amount of code
is not the determining factor. Instead, the size of the derived state machine is
the factor limiting the scalability of our approach, which is only moderately
(if at all) related to the size of the JavaScript code.

6.10.7 Threats to Validity

Some of the issues concerning the external validity of our empirical evaluation
have been covered in the above discussion on scope, generated code, appli-
cation size, and scalability. Apart from the two case studies described here,
we conducted two more (on TaskFreak17 and the Java PetStore 2.018), which
gave comparable results. With respect to internal validity, we minimized the
chance of Atusa errors by including a rigorous JUnit test suite. Atusa, how-
ever, also makes use of many (complex) third party components, and we did
encounter several problems in some of them. While these bugs do limit the
current applicability of our approach, they do not affect the validity of our
results. As far as the choice of faults in the first case study is concerned, we
selected them form the TUDU bug tracking system, based on our fault models
which we believe are representative of the types of faults that occur during
Ajax development. The choice is, therefore, not biased towards the tool but
the fault models we have. With respect to reliability, our tools and the TUDU
case are open source, making the case fully reproducible.

6.10.8 Ajax Testing Strategies

Atusa is a first, but essential step in testing Ajax applications, offering a so-
lution for the reach/trigger/propagate problem. Thanks to the plugin-based
architecture of Atusa, it now becomes possible to extend, refine, and eval-
uate existing software testing strategies (such as evolutionary, state-based,
category-partition, and selective regression testing) for the domain of Ajax

applications.

6.11 Concluding Remarks

In this chapter, we have proposed a method for testing Ajax applications auto-
matically. Our starting point for supporting Ajax-testing is Crawljax, a crawler
for Ajax applications that we proposed in our earlier work (Mesbah et al.,
2008), which can dynamically make a full pass over an Ajax application. Our
current work resolves the subsequent problems of extending the crawler with
data entry point handling to reach faulty Ajax states, triggering faults in those
states, and propagating them so that failure can be determined. To that end, this
chapter makes the following contributions:

17 http://www.taskfreak.com
18 https://blueprints.dev.java.net/petstore/

150 6.11. Concluding Remarks

http://www.taskfreak.com
https://blueprints.dev.java.net/petstore/

1. A series of fault models that can be automatically checked on any user
interface state, capturing different categories of errors that are likely to
occur in Ajax applications (e.g., DOM violations, error message occur-
rences), through (DOM-based) generic and application-specific invari-
ants which server as oracle.

2. An algorithm for deriving a test suite achieving all transitions coverage
of the state-flow graph obtained during crawling. The resulting test suite
can be refined manually to add test cases for specific paths or states, and
can be used to conduct regression testing of Ajax applications.

3. An open source tool called Atusa implementing the approach, offering
generic invariant checking components as well as a plugin-mechanism
to add application-specific state validators and test suite generation.

4. An empirical validation, by means of two case studies, of the fault re-
vealing capabilities and the scalability of the approach, as well as the
level of automation that can be achieved and manual effort required to
use the approach.

Given the growing popularity of Ajax applications, we see many opportu-
nities for using Atusa in practice. Furthermore, the open source and plugin-
based nature of Atusa makes it a suitable vehicle for other researchers inter-
ested in experimenting with other new techniques for testing Ajax applica-
tions.

Our future work will include conducting further case studies, as well as
the development of Atusa plugins, capable of spotting security vulnerabilities
in Ajax applications.

Chapter 6. Invariant-Based Automatic Testing of Ajax User Interfaces 151

152 6.11. Concluding Remarks

Chapter

7
Conclusion

With the advent of Ajax technologies, a new paradigm for developing in-
teractive web applications has emerged. This dissertation has focused

on better understanding this shifting web paradigm, and the consequences
of moving from the classical multi-page model to an Ajax-based single-page
style. Specifically to that end, this work has examined this new class of soft-
ware from three main software engineering perspectives:

Software Architecture to gain an abstract understanding of the key architec-
tural properties of Ajax applications;

Software Reengineering to understand the implications of a migration from
classical multi-page web systems to single-page Ajax variants;

Software Analysis and Testing to explore strategies for analyzing and testing
this new breed of web application.

7.1 Contributions

The main contributions of the thesis can be summarized as follows:

• A new component- and push-based architectural style, called Spiar, for
single-page Ajax web applications. The style results from a study of dif-
ferent major Ajax frameworks, investigating their salient architectural
properties, key elements, and constraints on those elements required to
achieve the desired properties. We provide a detailed comparison of
what the classical web architecture, called Rest, provides, and what the
modern Ajax systems require. Our style captures the essence of Ajax

frameworks and can be seen as an abstract model of different architec-
tural implementations. As such, Spiar allows to evaluate the tradeoffs
between different architectural properties of Ajax systems.

• A process for migrating multi-page web systems to single-page Ajax-
based interfaces through reverse and model-driven engineering. The
reverse engineering steps of the process have been implemented in a
tool called Retjax. Retjax is capable of inferring a navigational model
of the web interface by conducting a meta-model clustering technique
for web page classification, which we call schema-based clustering. We
have shown that schema-based clustering is more accurate and reliable
in grouping web pages with structural similarity than approaches which
are based on the HTML syntax trees. Additionally, Retjax is capable of
producing a list of candidate UI components for migration, through a
simplification process of clusters along the navigational paths.

• An automated, distributed software testing infrastructure, for conduct-
ing performance analyses of Ajax web applications. The proposed in-
frastructure is implemented in an open source framework called Chi-
ron. Chiron can simulate thousands of concurrent web users and col-
lect data on network usage, server performance, and data coherence. We
have used Chiron to conduct an empirical study for a comparison of the
performance tradeoffs of using push- (Comet) and pull-based web data
delivery techniques on Ajax applications. The results of our empirical
study help engineers to anticipate the effects of key parameters such as
pull and push intervals, and the number of web clients on, for instance,
data coherence and server performance.

• A crawling method for Ajax, based on dynamic analysis of single-page
web interfaces. The method infers a state-flow graph of the navigational
paths by running the web application in an embedded browser, detect-
ing and executing clickable elements, and analyzing the user interface
state changes. The technique is implemented in an open source tool
called Crawljax, which can automatically make a full pass over Ajax

web interfaces.

• An automated technique for testing Ajax user interfaces. The technique
is based on an extension of the crawling technique to dynamically find
the doorways to different states and data entry points on Ajax web inter-
faces. We propose to use invariants, as oracle, on the DOM tree and the
inferred state machine to detect faults. The technique is implemented in
an open source tool called Atusa, offering a plugin-mechanism to add
invariant checking components and application-specific state validators.
Atusa provides a number of generic invariant plugins, such as DOM
validation and test suite generation.

7.2 Research Questions Revisited

In the beginning of this thesis, we formulated a set of research questions.
We believe that the contributions indicate that we have successfully met the
objectives. We will now discuss the results for each chapter individually and
with respect to other chapters.

Research Question 1

What are the fundamental architectural differences and tradeoffs between design-
ing a classical and an Ajax-based web application? Can current architectural
styles describe Ajax? If not, can we propose an architectural style taylored for
Ajax?

In order to answer the first research question, Chapter 2 based its founda-
tion on the software architecture literature, to understand the key properties
of a new, complex, and dynamic software family. Software architecture turned

154 7.2. Research Questions Revisited

out to be an appropriate framework for the study of web evolution, since it
enabled us to describe a family of web systems by abstracting their similarities
and differences.

We studied a number of Ajax systems and evaluated different variants of
Ajax client/server interactions. It turned out that despite their differences in
implementation approaches, a common pattern could be seen in their archi-
tecture in terms of how the different components were interacting to increase
the level of responsiveness and interactivity in web settings. It became obvi-
ous to us that the components and their interactions were far more complex
and fine-grained than what the classical web architecture was prescribing.

Chapter 2 determines the focus of this thesis by describing, through an
architectural style called Spiar, the target system, namely Ajax-based web
applications with a single-page user interface where the state changes are
synchronized between the client and the server through a component-based
model with push capabilities. This chapter described the main architectural
differences with respect to classical web systems, e.g., client/server delta co-
mmunication, asynchronous interaction, interface delta updates, component-
based. These differences in turn serve as the basis for the problem definition,
motivation and possible solutions for all subsequent chapters.

Spiar, can be used to describe not only Ajax-based architectures but also
any type of Rich Internet Application by replacing some of the architectural
elements and fine-tuning the architectural properties. For instance, the DOM-
based representational model can be replaced with a Flash-based model. This
replacement changes the standards-based property to proprietary. The delta co-
mmunication remains intact since in all RIAs, state changes occur partially
and incrementally.

Research Question 2

Is it possible to support the migration process (Ajaxification) of multi-page web
applications to single-page Ajax interfaces? Can reverse engineering techniques
help in automating this process?

While Chapter 2 helped us gain a thorough understanding of the target sys-
tem, in Chapter 3 we proposed a systematic approach to migration of multi-
page web applications (source) to Ajax-based single-page interfaces composed
of UI components (target).

Chapter 3 focused on reverse engineering a navigational model of the
source system, by retrieving all possible pages automatically, clustering simi-
lar pages based on a page meta-model (schema-based) notion along the nav-
igational path, simplifying the clusters and the navigational model, and per-
forming a step-wise comparison of the changes when going up the naviga-
tional path, to detect candidate UI components.

It turned out in Chapter 3 that this schema-based similarity metric can re-
sult in a much higher precision and recall, compared with approaches that
are based directly on the HTML code, when detecting clone pages with sim-
ilar structures. However, to automatically group pages in clusters, Chapter 3

Chapter 7. Conclusion 155

applied the transitive property of clone pairs. For this reason, it is possible
that the algorithm finds larger clusters than expected.

Although Chapter 3 proposed a complete migration approach, it specifi-
cally focused on the first part, namely reverse engineering an abstract model
of the source multi-page interface for the purpose of migration towards a
component-based single-page interface.

Automating a migration process is a daunting task, still very ad hoc, and
due to the complexity of web systems, full automation is probably not achiev-
able. Nevertheless, reverse engineering techniques, implemented in a tool
called Retjax, proved to be a great vehicle in automating parts of the process
of program comprehension and inferring abstract models from the source
system.

The applicability of the proposed approach is currently limited to web ap-
plications with simple user interfaces. A limitation of the approach is cur-
rently the static analysis technique adopted to retrieve client pages from the
source system. In fact, Retjax navigates anchors/links that are found in the
HTML code of navigated pages. However, a URL link, could generate differ-
ent client pages at multiple requests from the server.

The retrieval phase of Retjax is, to certain extent, similar to what Crawljax

does, i.e., inferring an abstract model of the web application. The edit dis-
tance method used is also the same in both approaches. The difference lies in
the fact that Retjax conducts a static analysis of the HTML code to detect hy-
perlinks, while Crawljax performs a dynamic analysis of all possible clickable
elements to find state changes. It is thus possible to augment Retjax with the
capabilities of Crawljax to retrieve a more complete navigational model from
the target system.

The second part of the migration process, namely single-page model defi-
nition and target UI model transformation, is missing in this thesis. We have,
however, initiated research (Gharavi et al., 2008) to adopt a model-driven engi-
neering approach to Ajax, which could be integrated in the migration process.

Retjax is geared towards classic multi-page web applications and although
the intention is to use the resulting candidate components for migration to-
wards Ajax, the tool itself is not Ajax specific. In fact, Retjax can be used
as a clustering tool on any standards-based web application. The schema-
based clustering approach has various applications in cases where web page
comparison on an structural level plays an important role.

Research Question 3

What are the challenges for analyzing and testing Ajax applications in an auto-
matic approach?

Ajax applications have a number of characteristics that make them chal-
lenging for automatic analysis and testing. First of all, like classical web sys-
tems, Ajax applications have a distributed client/server nature, and testing
distributed systems is known to be very demanding. Ajax settings do, how-
ever, pose a greater challenge than conventional web settings, since the client

156 7.2. Research Questions Revisited

plays a more prominent role in the client/server distributed spectrum, as
more logic is being ported from the server-side to the client-side.

In addition, unlike traditional object-oriented systems, the heterogeneous
nature of web applications increases the difficulty of useful analysis based
on inspections of the source code. Static analysis techniques, which are com-
monly used with success on object-oriented applications, have serious limi-
tations in analyzing modern Ajax applications where understanding the run-
time behavior is crucial. As we have seen in Chapter 5, even simply finding
and following links is not possible any longer on Ajax interfaces by static
analysis of the source code. Using dynamic analysis to gather data from a
running web program seems then the right direction to take, which in turn
has its own difficulties and limitations, such as incompleteness and scalability
(Cornelissen et al., 2009).

Research Question 3.1
What are the tradeoffs of applying pull- and push-based data delivery techniques
on the web? Can we set up an automated distributed test environment to obtain
empirical data for comparison?

Conducting an experiment to compare the actual tradeoffs of pull and push
based web data delivery techniques turned out to be a difficult task, as ex-
plained in Chapter 4. Our first attempt in conducting the experiment con-
sisted of a great deal of manual work, from starting the servers, the client
simulation processes, to gathering and saving the run-time information, pars-
ing the data, and generating graphs. The difficulty in coordination of the dif-
ferent modules in such a distributed environment encouraged us to opt for an
automated approach, implemented in Chiron. Besides decreasing the manual
effort, such an automated testing environment greatly increases the accuracy
of the experiment, since similar test runs can be sequentially performed with
exactly the same parameters.

The proposed experiments are very complex, since the execution environ-
ment contains various distributed interacting concurrent software processes
and distributed hardware devices. For these reasons, the execution of our
experiments is subject to validation threats, as discussed thoroughly in Chap-
ter 4.

Although the experiment in Chapter 4 has been conducted on one sam-
ple application, and the Comet push servers are still experimental, the results
show a promising trend in web data delivery techniques which clearly out
perform pull-based approaches in terms of data coherence and network per-
formance. Currently, scalability of the server, when a high number of clients
has to be served, is the main concern when push is used.

Chiron is not bound to any specific web technology and almost every as-
pect of the tool is configurable, and since it has been made open source, simi-
lar experiments by others can be carried out to dynamically analyze the run-
time performance properties of web systems.

Chapter 7. Conclusion 157

Research Question 3.2

Can Ajax-based web applications be crawled automatically?

Simply, statically analyzing and retrieving anchors/links in the HTML
source code, as conducted by classical web crawlers, is not sufficient any
longer. The run-time manipulation of the DOM object within the browser,
the fact that resources are not bound to a specific URL, and the extensive use
of JavaScript for binding events to any type of HTML elements (DIV, SPAN), all
contribute to the complexity of crawling Ajax-based web interfaces.

Despite all these challenges, we were successful in proposing a method
for automatically detecting clickables, and navigating through dynamic door-
ways of Ajax applications, as explained in Chapter 5. In fact, to the best of our
knowledge, Crawljax is the first Ajax crawler available, capable of making a
full pass of a running Ajax application.

The method proposed is based on dynamic analysis of the web interface, as
seen from the web user’s perspective. We have opted for using a real browser
(embedded in our crawling tool), which we believe is the best way to analyze
highly dynamic web applications, since the browser forms the natural engine
for all the required technologies, e.g., DOM, JavaScript. The fundamental
elements in our approach are access to the run-time DOM object and the
ability to generate events on the browser interface, to systematically run and
analyze the interface changes and reverse engineer a state-flow graph of the
application’s navigational structure.

While Retjax, as presented in Chapter 3, reverse engineers a multi-page
web application to a single-page one, Crawljax does the opposite, i.e., it ex-
tracts an abstract model (multi-page) of the different states from a single-page
web application.

We strongly believe that such a crawler has many applications, when it
comes to analyzing and testing, not only Ajax-based, but also any standards-
based web application. Even non standard-based interfaces (RIAs) could
reuse a similar approach for crawling if access to run-time interface elements
can be provided.

Research Question 3.3

Can Ajax-based web user interfaces be tested automatically?

In Chapter 6, we proposed to dynamically change the state and analyze the
changes through Crawljax and find faults automatically by defining generic
and application-specific invariants that should hold in the entire state space.
The crawler was first extended to detect and provide interface mechanisms for
handling forms, which are the data entry points in web applications. Through
these data entry points, various data inputs can be inserted on the interface
and sent to the server systematically.

One of the main challenges in automated testing is the process of assessing
the correctness of test output. In Chapter 6, we have opted for using invariants
on DOM states as well as the inferred state machine to specify the expected

158 7.2. Research Questions Revisited

correct behavior. Violations in the invariants can be seen as candidate faults.
The invariants can be generic, such as DOM validation and correctness, or
application-specific, constraining DOM elements’ properties, relations, and
occurrences.

The proposed technique in Chapter 6 provides evidence that automatic test-
ing of dynamic interfaces is possible through invariants. Invariants not only
help during the test process to automate the oracle, but at the same time they
can form an appropriate vehicle for documenting the system behavior, espe-
cially in web-based applications where documenting the dynamic behavior is
far from trivial.

As a comparison, Chiron, presented in Chapter 4, analyzes the behavior
of the web application by simulating a high number of clients and examining
system properties such as server performance, network usage, data coherence,
etc. On the other hand, Atusa focuses on testing the run-time behavior of one
single web application, by simulating user events on the client interface and
analyzing the response.

Atusa does not replace manual user interface testing, but augments it. One
limitation of our approach is the state space explosion, which is an inherent
problem in all state-based testing approaches and our tool is not an exception,
although we do provide a number of mechanisms to constrain the state space,
as discussed in Chapter 6.

7.3 Evaluation

In this section we discus our research challenges and the threats to validity of
our results.

The work described in this thesis started under the Single Page Computer
Interaction (SPCI) project, a project initiated by:

• Backbase, a computer software company specialized in creating Ajax-
based web applications, founded in 2003 in Amsterdam, see 2.2.3 for
more details about their Ajax framework.

• CWI, the Dutch National Research Institute for Mathematics and Com-
puter Science, and

• the Delft University of Technology.

In fact, the term Ajax was not even coined yet when the project’s proposal
was written. The goal of the project was to better understand the implications
of adopting modern standards-based single-page web applications.

One challenge we faced at the start of the project was that the literature
on modern web applications in general and Ajax in particular, appeared to
be a scarcely populated area. Many traditional software and web engineering
techniques appeared to be unfit for Ajax and therefore had to be adapted to
the new requirements.

Chapter 7. Conclusion 159

Empirical evaluation (Wohlin et al., 2000) is an effective way to asses the
validity of any new concept or method. As far as the proposed Spiar archi-
tectural style (Chapter 2) is concerned, empirical evaluation is very challeng-
ing, if not impossible. Therefore, we have taken an analytical approach in
evaluating Spiar by discussing the rationale behind the style and its scope
regarding different web architectures. We have conducted a controlled exper-
iment (Wohlin et al., 2000) in Chapter 4 and have empirically evaluated Retjax

(Chapter 3), Crawljax (Chapter 5), and Atusa (Chapter 6) by conducting case
studies (Yin, 2003; Kitchenham et al., 1995) and reporting the results. One
challenge in conducting the case studies was the lack of existing comparable
methods and tools to form a comparison baseline (Kitchenham et al., 2002)
for the results.

Another issue we faced revolved around finding industrial real-world cases
for the evaluation part, which can be seen as an external threat to validity.
Due to the relatively new nature of the technology, we were not able to find
as many industrial Ajax-based applications to conduct experiments on, as we
had wished for. Therefore, most of our case study subjects are open source
applications. Although the size of the chosen case subjects is relatively small,
they are representative of the type of web applications our methods are fo-
cused on, i.e., standards-based single-page web applications. With respect to
reliability and replication, the open source nature of both the case subjects
and the tools makes the experiment and case studies fully reproducible.

As far as the internal validity is concerned, we minimized the chance of
development errors by including rigorous unit testing for all the implemented
tools. We have used various external libraries and third party components,
and while we did encounter problems in some of them, they do not affect
the validity of our results. Sections 4.7 and 6.10 provide a more detailed
discussion of the threats to validity.

Our emphasis in this thesis has been on ideal ultimate standards-based
‘single-page’ web interfaces. As we have seen in this work, single-page web
interfaces are great if the surrounding web technologies, such as crawlers and
browsers, also support them. We believe that for the time being, a hybrid
approach which unifies the benefits of both dynamic fine-grained single-page
and static large-grain multi-page approaches, is the best option for developing
web applications without having to face the negative side effects of the two
ends, i.e., issues with amnesic pages without any history, linking, bookmark-
ing, indexing by general search engines on the one hand, and low latency,
responsiveness and interactivity on the other hand.

It is worth mentioning that for closed (authenticated) web applications,
single-page interfaces are ideal since many of the issues mentioned above,
such as discoverability by search engines, do not play a role.

Our Spiar architectural style is deduced from single-page Ajax applica-
tions. Whether such a style can support hybrid architectures needs further
exploration. Our crawling and testing methods should have no difficulties
in dealing with such hybrid settings, although here again, more experiments
need to be carried out.

160 7.3. Evaluation

A great deal of our work has focused on Ajax from a client’s perspective,
since we believe the client-side is where the main changes have taken place.
Further work is needed in exploring the implications on the server-side by
inspecting the server-side code. In Chapter 3, we opted for analyzing the
generated web pages to build a navigational model. For a migration process,
it is also valuable to analyze the server side code (e.g., JSP, PHP) to infer an
augmented abstract model of the application.

Our analysis of the client-side behavior has been founded mainly on dy-
namic analysis. Statically analyzing the client-side JavaScript and server-side
code for program comprehension, analysis, and testing could also result in
interesting results. Each approach considers only a subset of possible execu-
tions in its own way, and hence, static and dynamic analysis techniques could
be combined (Ernst, 2003) to augment one another.

7.4 Future Work and Recommendations

Ajax development field is young, dynamic, and changing rapidly. Certainly,
the work presented in this dissertation needs to be incrementally enriched
and revised, taking into account experiences, results, and innovations as they
emerge from the industry as well as the research community. Conducting case
studies in larger web projects, in particular projects of industrial nature in the
industry-as-laboratory style (Potts, 1993), forms an important part of the fu-
ture work. Improving the quality and performance of the proposed methods
and tools is a natural extension of the work presented in this research.

An interesting direction to investigate comprises abstracting from the im-
plementation details through a Model-driven Engineering (Schmidt, 2006) ap-
proach, in which the Ajax application (i.e., the UI components and their topol-
ogy) is defined in a modeling language and the corresponding web code is
automatically generated. This approach enables us to define the application
once and generate the same application to different frameworks.

The user interface components and the event-based interaction between
them form the founding elements in Ajax-based web systems, whereas in
classic web applications the notions of web pages and hypertext links are
central. Therefore, modeling Ajax applications requires a different approach
than what the current web modeling methods (Ceri et al., 2000; Conallen,
2003; Koch and Kraus, 2002) provide.

We have started (Gharavi et al., 2008) adopting a model-driven approach
for Ajax web application development. How an Ajax web application can be
modeled best, while having the ultimate goal of code generation from the
models in mind, is an interesting direction for future work. In particular,
future work encompasses modeling event-based interactions between user in-
terface components in an abstract way in single-page web applications.

Our crawler currently compares the DOM tree after each event generation
to find out whether a state change has occurred. One possible enhancement
of Crawljax in future work is adopting an embedded browser with support

Chapter 7. Conclusion 161

for DOM mutation events (W3C, a). The mutation event module was introduced
in DOM Level 2 and is designed to allow notification of document structural
changes, including attribute and text modifications. This way, by subscribing
to the mutation events, the crawler is automatically informed of DOM cha-
nges and thus redundant DOM comparisons can be avoided, which in turn
increases the crawling performance. Another issue is coping with DOM cha-
nges that are not directly caused by an event fired by the crawler, such as
pushed content from the server.

The dynamic user interface components and the huge combinations of click
trails in changing the state, makes modern web interfaces very challenging to
analyze and test. Atusa, currently detects and executes clickable elements
in a top-down, depth-first manner. This implies that first, the inferred state
machine is one possible instance of the state space, and second, the order
of the events could have an influence on the faults executed and detected.
How these parameters influence the effectiveness of the testing approach, and
whether click trails that mimic a web user’s actions would help the tool in
finding more relevant faults, are all questions that form possible extensions
of the work presented in this thesis. In addition, further work is needed to
explore possibilities of implementing useful and robust oracle comparators
and element identification mechanisms in the generated test cases (from the
state machine by Atusa) for conducting regression testing.

Testing modern web applications for security vulnerabilities is far from
trivial. Currently, we are exploring (Bezemer et al., 2009) ways Atusa can be
used to spot security violations in single-page web applications comprised
of various web widgets created by different developers. Generally, each web
widget should operate in its own environment. As any program code, widgets
can be used for malicious purposes. Security becomes an important aspect
when third-parties are allowed to build and include new widgets in public
catalogs. Example scenarios include when a malicious widget changes the
content of another widget to trick the user into releasing sensitive information,
or even worse, listens to the account details a user enters in another widget
(e.g., PayPal or Email widgets) and sends the data to a malicious site.

Automatically detecting security vulnerabilities such as Cross-Site Script-
ing (XSS) (Wassermann and Su, 2008) and taking preventive measures by, for
instance, instrumenting the JavaScript code (Yu et al., 2007), in Ajax applica-
tions are other interesting research areas that require more attention.

7.5 Concluding Remarks

The work presented in this dissertation aims at advancing the state-of-the-art
in comprehending, analyzing, and testing standards-based single-page web
applications, by means of a new architectural style, a significant set of tech-
niques and tools, and case study reports. These contributions are aimed at
helping software and web engineers better comprehend and deal with the
complexity of highly dynamic and interactive web systems.

162 7.5. Concluding Remarks

Appendix

A

A Single-page Ajax Example
Application

This appendix contains a very simple example to present the underlying
concepts behind Ajax, which are described in Chapters 1 and 2.

A.1 The HTML Single-page

Figure A.1 shows the main (and only) HTML page of the example site. This
is the page that is retrieved by the browser on the initial request to the server.
The page contains a number of elements. The HEADER includes links to a Java-
Script file and a style sheet for presentation. The BODY consists of a heading
(H3) and a container (DIV). As can be seen, the DIV container encompasses
some plain text as well as a clickable element (A).

1 <html>
2 <head>
3 <script type="text/javascript" src="ajax.js"></script>
4 <link rel="stylesheet" href="style.css" type="text/css">
5 <title>Single-page Ajax Site</title>
6 </head>
7 <body>
8
9 <h3>Welcome to the Ajax demo site!</h3>

10 <div id="container">
11 This is where the remote content is injected.
12 Click
13 </div>
14
15 </body>
16 </html>

Figure A.1 The Index HTML page.

A.2 The Run-time DOM

After the HTML content is received from the server, the browser parses the
page and creates a Document Object Model (DOM) instance, which can be
seen as a tree representing the run-time elements and their properties, as
shown in Figure A.2. This DOM-tree is then used to build the browser user
interface. Figure A.2 also shows the rendered page after the initial load by the
browser.

Figure A.2 The run-time Document Object Model after the page is fully loaded into
the browser (bottom) and the rendered user interface (top).

A.3 Requesting Data

What we would like to achieve is to get web content, not as whole pages but
as fragments from the server, and update the page dynamically without a
page refresh. To that end, we use JavaScript to access the XMLHttpRequest
object and the run-time DOM-tree to achieve our goal.

Figure A.3 presents the JavaScript code that is included in the HTML page
(see line 3 in Figure A.1). Our JavaScript code begins by instantiating a correct
XMLHttpRequest object. Note that different browsers (e.g., IE, Firefox) have
different implementations for this object. The loadFragment function shows
how the XMLHttpRequest object can be used to transfer data between the
browser/server. The method takes a number of parameters:

method can have a value of GET or POST. A variety of other HTTP methods
(W3C, b) are also possible.

url may be either a relative or an absolute URL which points to a resource.

164 A.3. Requesting Data

1 if(navigator.appName == "Microsoft Internet Explorer") {
2 var xmlHttpRequestObject = new ActiveXObject("Microsoft.XMLHTTP");
3 } else {
4 var xmlHttpRequestObject = new XMLHttpRequest();
5 }
6

7 var COMPLETED = 4;
8 var SUCCESS = 200;
9

10 function loadFragment(method, url, params, target_element_id , callbackFunction) {
11 xmlHttpRequestObject.open(method, url, true);
12 xmlHttpRequestObject.onreadystatechange = function() {
13 if (xmlHttpRequestObject.readyState == COMPLETED
14 && xmlHttpRequestObject.status == SUCCESS) {
15 callbackFunction(target_element_id , xmlHttpRequestObject.responseText);
16 }
17 }
18

19 if (method == "POST") {
20 xmlHttpRequestObject.setRequestHeader("Content-type",
21 "application/x-www-form-urlencoded");
22 } else {
23 xmlHttpRequestObject.setRequestHeader("Content-type",
24 "text/plain");
25 }
26

27 xmlHttpRequestObject.send(params);
28 }
29

30 function insertIntoDOMElement(target_element_id , data) {
31 var element = document.getElementById(target_element_id);
32 element.innerHTML = data;
33 }
34

35 function getData(url, target_element_id) {
36 loadFragment(’GET’, url, null, target_element_id , insertIntoDOMElement);
37 }
38

39 function submitData(url, target_element_id) {
40 var params = "val1=" + document.getElementById(’val1’).value +
41 "&val2=" + document.getElementById(’val2’).value +
42 "&calc=" + document.getElementById(’calc’).value;
43

44 loadFragment(’POST’, url, params, target_element_id , insertIntoDOMElement);
45 }

Figure A.3 The JAVASCRIPT code. XMLHttpRequest is used to asynchronously
transfer data between the web server and the browser.

Appendix A. A Single-page Ajax Example Application 165

params a string representing the request content. Used with the POST method
to send form parameters to the server.

target element id the ID of the DOM element where the response content sh-
ould be injected into.

callbackFunction handles the response content.

Using these parameters, the loadFragment function sends a request to the
server and calls the callback function when a valid response is obtained from
the server.

The getData function is a wrapper function which calls the loadFragment
function with the correct parameters.

The getData function is attached to the onclick attribute of the clickable el-
ement, as can be seen in line 12 of Figure A.1. This function is called with two
parameters, namely server.php as the URL, and container as the target ele-
ment ID. This gives us the desired behavior that when the element is clicked
by the user, the getData method is called, which in turn calls the loadFragment
function to get data from the server.php URL on the server.

A.4 The Server-side Code

Figure A.4 show the contents of our server.phpwhich simply returns the code
for a HTML form.

1 <?php
2 echo ("<form>Calculation:

3 <input type=’text’ id=’val1’> (value1)

4 <input type=’text’ id=’calc’> (method: add, sub, mul, div)

5 <input type=’text’ id=’val2’> (value2) =

6 <div id=’result’></div>
7 <input type=’button’ value=’Calculate’
8 onclick=’submitData(\"calculate.php\", \"result\")’>
9 </form>");

10 ?>

Figure A.4 server.php source code.

A.5 DOM Injection

Once the response of the server is successfully arrived at the browser, the
callback function is called. The insertIntoDOMElement function takes the ID
of the target element and the response data, as parameters. It uses the ID to
find a reference to the corresponding run-time element in the DOM instance
(line 28 in Figure A.3). Once a reference has been found, the response data is
injected into the inner part of that element. As soon as the content is injected

166 A.4. The Server-side Code

Figure A.5 The run-time DOM instance after the new content is retrieved and in-
jected into the DOM-tree (bottom) and the updated user interface (top).

into the target DOM element (in this case the DIV element with ID content), the
browser updates the user interface.

This way a complete client/server round-trip can be made and the user
interface of the browser can be updated in the background, without having
to refresh the page. Figure A.5 depicts the updated DOM and browser user
interface.

Appendix A. A Single-page Ajax Example Application 167

A.6 Submitting Data

The new state contains a form which we use as a simple calculator. The user
fills in the first and second digits along with one of the four supported opera-
tions for addition (add), subtraction (sub), multiplication (mul), and division
(div). Upon clicking on the button labeled Calculate, an event is fired which
calls the submitData JavaScript function (see lines 36–41 in Figure A.3), with
calculate.php as URL and result as the target element ID. This function sim-
ply retrieves the input values filled in by the user on the form and calls the
loadFragment function with relevant parameter, i.e., ‘POST’ as method, and the
input values as params.

Figure A.6 shows the server-side PHP code that is responsible for the cal-
culation. Based on the value of the three request parameters (val1, val2, calc),
a response in returned to the browser.

1 <?php
2 function calculate($val1, $val2, $calc) {
3 if(is_numeric($val1) && is_numeric($val2) && $calc != null)
4 {
5 switch($calc) {
6 case "add" : $result= $val1 + $val2; break;
7 case "sub" : $result= $val1 - $val2; break;
8 case "mul" : $result= $val1 * $val2; break;
9 case "div" : $result= $val1 / $val2; break;

10 }
11 return "Result: $result ";
12 }
13 else{
14 return "Invalid input, please try again!";
15 }
16 }
17

18 $num1 = trim($_REQUEST[’val1’]);
19 $num2 = trim($_REQUEST[’val2’]);
20

21 echo calculate($num1, $num2, $_REQUEST[’calc’]);
22 ?>

Figure A.6 Server-side PHP calculator.

The response is then injected into the DIV element with ID result. Figure A.7
shows the request/response, focusing on the response returned by the server
as a delta fragment. It also shows the updated browser user interface, in
which the result of the calculation can be seen. Note that all the user interface
updates have taken place on a single page. This is evident by the fact that the
address-bar of the browser is still pointing to the same index HTML page.

168 A.6. Submitting Data

Figure A.7 The request/response traffic (bottom) and the updated user interface
(top).

Appendix A. A Single-page Ajax Example Application 169

170 A.6. Submitting Data

Samenvatting?

Analyse en Testing van Ajax-gebaseerde Single-page Web-applicaties
Ali Mesbah

Inleiding en Probleemdefinitie

Desktop-applicaties worden meer en meer vervangen door web-applicaties.
Dit brengt grote voordelen met zich mee: geen gedoe met installatie,

toegankelijkheid vanaf elke computer die een internetconnectie heeft, en altijd
de beschikking over de nieuwste versie van de applicatie.

Tot voor kort was de browser niet meer dan een programma om een serie
hypertekstpaginas, opgemaakt in HTML, te bekijken. Dit klassieke multi-
pagemodel heeft echter zijn langste tijd gehad: veel aandacht gaat tegen-
woordig uit naar een nieuwe type web-applicaties, genaamd Ajax (Garrett,
2005). Het is een antwoord op de beperkte interactiviteit van de bestaande
toestandsloze webinteracties. In deze nieuwe benadering is het interactie-
model gebaseerd op één enkele pagina, samengesteld uit diverse gebruikers-
interfacecomponenten, met als doel web-applicaties veel interactiever te ma-
ken. In plaats van de hele pagina te verversen vinden de wijzigingen plaats
op componentniveau. Tegenwoordig bevatten web-applicaties allerlei rijke
gebruikersinterface-widgets, zoals sliders, tabs, in- en uitklappende fragmen-
ten, en zooming, welke geheel in de browser draaien. De techniek die dit alles
mogelijk maakt is bekend onder de naam Ajax: een afkorting voor Asynchro-
nous JavaScript and XML.

JavaScript is de geı̈nterpreteerde scripting-taal die door alle browsers ge-
sproken wordt: hiermee kunnen de fraaie gebruikersinterface-widgets wor-
den gemaakt, en acties aan bepaalde gebruikersinterface-events (zoals speci-
fieke clicks) worden gehangen. Het asynchrone deel van Ajax zorgt ervoor
dat de web-applicatie niet meer hoeft te wachten op resultaten die het van
bv. een webserver wil halen: de applicatie, en dus de gebruikersinteractie,
kan gewoon doorgaan terwijl op de achtergrond de browser informatie van
de webserver betrekt. Mede hierdoor krijgt de web-applicatie het responsieve
karakter dat we van desktopapplicaties gewend zijn. De rol van XML in Ajax,
tot slot, zit hem in de communicatie tussen de webbrowser en server. Bijzon-
der aan Ajax is dat deze communicatie gebruikmaakt van “deltas”, waarmee
alleen wijzigingen in de toestand van de gebruikersinterface worden doorge-
geven. Zo wordt voorkomen dat de volledige toestand van de pagina steeds
opnieuw van de server gehaald moet worden. In plaats daarvan wordt de-
ze toestand bijgehouden binnen de browser, middels het Document Object
Model (DOM).

?Deze samenvatting is gedeeltelijk verschenen in twee Nederlandse publicaties: (Mesbah and
van Deursen, 2006) en (van Deursen and Mesbah, 2008).

Echter, de introductie van deze technologie verloopt niet probleemloos.
Voor de software-ontwikkelaar die overweegt Ajax toe te passen blijft name-
lijk nog een reeks vragen open. Heeft het gebruik van Ajax invloed op de
architectuur? Hoe kunnen traditionele web-applicaties worden gemigreerd
naar moderne single-page Ajax varianten? Hoe staat het met de betrouw-
baarheid en veiligheid wanneer veel JavaScript code wordt geladen? Hoe
bereikbaar zijn de dynamische toestanden voor zoekmachines? Hoe zit het
met de performance, aan de kant van zowel de server als de browser? Is
al dat geprogrammeer in JavaScript nog wel te doorgronden voor de gemid-
delde software-ontwikkelaar? En: als de code niet gemakkelijk kan worden
doorgrond, hoe kan dan aannemelijk worden gemaakt dat de applicatie doet
wat zij moet doen?

Het vinden van een antwoord op dergelijke vragen is van groot belang voor
de praktijk, en is een uitdaging die dit proefschrift aangaat.

Resultaten

De belangrijkste resultaten van dit proefschrift kunnen als volgt worden sa-
mengevat.

Architectuur. Er zijn talloze software-raamwerken en -bibliotheken geschre-
ven die gebaseerd zijn op Ajax, en er komen nog dagelijks nieuwe bij. Om de
essentie van Ajax te begrijpen, hebben we getracht een wat abstracter perspec-
tief op Ajax te ontwikkelen. In dit kader hebben we diverse Ajax-raamwerken
bestudeerd om hun architectuurkenmerken in kaart te brengen, zoals voorge-
steld in hoofdstuk 2. Onze analyse van de bestaande literatuur over software-
architectuur en -raamwerken heeft geleid tot onze nieuwe architectuurstijl ge-
naamd Spiar. Deze stijl combineert een serie gewenste eigenschappen (t.w. in-
teractiviteit en ontwikkelgemak) met vereisten waaraan een Ajax-architectuur
moet voldoen (zoals componentgebaseerde gebruikersinterfaces en deltacom-
municatie tussen client en server) om deze eigenschappen te realiseren. We
hebben aan de hand van onze Spiar-architectuurstijl laten zien hoe concepten
vanuit de architectuurwereld, zoals architectuureigenschappen, -restricties, en
-elementen, ons kunnen steunen om een complexe en dynamische technologie
als Ajax te begrijpen. Ons werk is gestoeld op de grondslagen van de klas-
sieke webstijl (Rest) en biedt een analyse van deze stijl met betrekking tot het
bouwen van moderne web-applicaties. Spiar beschrijft de essentie van Ajax

en software engineering-principes die door ontwikkelaars gebruikt kunnen
worden tijdens het bouwen en analyseren van Ajax-applicaties.

Migratie. De kernvraag die in hoofdstuk 3 wordt behandeld is hoe we
automatisch bestaande traditionele multi-page web-applicaties kunnen mi-
greren naar single-page Ajax. Hiertoe hebben we onderzocht hoe single-
page gebruikersinterfacecomponent-kandidaten gedetecteerd kunnen worden
in traditionele web-applicaties. Het begrijpen van het navigatiemodel van het
te migreren systeem is cruciaal in een migratieproces. Ons onderzoek naar dit
probleem richt zich erop om met behulp van reverse engineering-algoritmen

172

een dergelijk model te creëren, door alle mogelijke pagina’s automatisch te
benaderen, soortgelijke pagina’s te clusteren met een meta-model (schemage-
baseerde) vergelijkingsmethode, de clusters van pagina’s te vereenvoudigen,
en de clusters op het navigatiepad te vergelijken om mogelijke componentkan-
didaten te detecteren. Deze techniek is geı̈mplementeerd in het gereedschap
“Retjax”.

Performance. Normaal gesproken vragen webclients zelf actief aan de server
of er nieuwe data beschikbaar is (via de zogeheten “pull” techniek). Met een
nieuwe technologie voor Ajax-applicaties, Comet, krijgt de server de mogelijk-
heid om zelf nieuwe data te pompen naar de webclient (“push” techniek). Om
de voor- en nadelen van elke aanpak te bestuderen hebben we in hoofdstuk 4

aan geautomatiseerde en gedistribueerde testing infrastructuur “Chiron” ge-
werkt en de broncode openbaar gemaakt. Chiron kan duizenden webgebrui-
kers tegelijkertijd simuleren en informatie verzamelen over netwerkverkeer,
serverprestaties, en data-coherentie. De resultaten van ons empirisch onder-
zoek laten zien wat de effecten van de kernparameters kunnen zijn, zoals
push en pull intervallen, en het aantal webgebruikers, bv. op datacoherentie
en serverprestaties.

Bereikbaarheid. Het gebruik van Ajax kan problemen veroorzaken t.a.v. de
bereikbaarheid door zoekmachines, zoals die van Google. Dergelijke zoek-
machines zijn gebaseerd op een robot die automatisch alle pagina’s van een
web-applicatie afloopt. Vanuit het oogpunt van schaalbaarheid en veiligheid
voeren ze daarbij momenteel geen client-side code uit. Het is echter juist
dit soort code waar Ajax-applicaties van afhankelijk zijn, en een aanzienlijk
deel van de in een website aanwezige informatie is onbereikbaar indien Ja-
vaScript niet wordt uitgevoerd. Met andere woorden, op dit moment bevin-
den Ajax-applicaties zich in het zogenaamde “hidden web”, d.i. het gedeelte
van het wereldwijde web dat niet door zoekmachines bereikt wordt. Tradi-
tionele crawling-technieken die gebaseerd zijn op statische analyse om auto-
matisch links in HTML-broncode te detecteren en de betreffende webpagina’s
van de server te halen, ondersteunen niet het dynamische aspect van Ajax.
Ons onderzoek naar dit probleem richt zich erop om methoden te vinden
waarmee de zeer dynamische toestanden van Ajax-applicaties automatisch
genavigeerd kunnen worden. Hiertoe hebben we een algoritme ontwikkeld en
deze geı̈mplementeerd in het openbaar beschikbare gereedschap “Crawljax”.
Zoals beschreven in hoofdstuk 5 is Crawljax in staat automatisch clickables te
vinden en door te klikken, en intussen een model van gebruikersinterfacetoe-
standen en de transities daartussen af te leiden uit een Ajax-applicatie. Voor
zover wij weten is Crawljax de eerste beschikbare Ajax crawler.

Betrouwbaarheid. Met Ajax worden de grenzen opgezocht van wat mogelijk
is met HTML, JavaScript, en HTTP. Bovendien werkt Ajax met asynchrone
communicatie, en wordt aan de server- en client-kant een toestand synchroon
gehouden door delta’s heen en weer te sturen. De resulterende program-
matuur kan behoorlijk complex zijn: het programmeren van Ajax is bijzon-

Samenvatting 173

der foutgevoelig. Geautomatiseerd testen van een Ajax-applicatie kan helpen
sommige van de typische Ajax-fouten te vinden. Net als bij het onderzoek
naar bereikbaarheid, speelt hier het automatisch crawlen (doorklikken) van
een Ajax-applicatie een sleutelrol. De uitdaging daarbij bestaat niet alleen
uit het invullen van invoervelden, maar ook uit het bepalen wanneer de ge-
teste applicatie zich incorrect gedraagt (het “oracle-probleem”). De oplos-
sing die in dit proefschrift in hoofdstuk 6 is onderzocht, spitst zich toe op
de mate waarin (generieke en applicatiespecifieke) structurele invarianten op
de DOM-boom hier een rol in kunnen spelen. Bovendien hebben we een al-
goritme ontwikkeld waarmee uit het gedistilleerde model tijdens het crawlen
automatisch test cases gegenereerd kunnen worden. Onze testing techniek
is geı̈mplementeerd in het open-source gereedschap “Atusa”. Atusa biedt de
testers een serie test-plugins, en een infrastructuur waarin ontwikkelaars zelf
met gemak specifieke plugins kunnen bouwen en toevoegen.

Conclusie

Met dit proefschrift hebben we beoogd de stand der techniek te versterken op
het gebied van het begrijpen, analyseren, en testen van standaard-gebaseerde
single-page web-applicaties. Dit heeft geleid tot een nieuwe architectuurstijl,
een uitgebreide verzameling van technieken, bijbehorende software-gereedsc-
happen, en rapporten van uitgevoerde empirische evaluaties. Deze contribu-
ties zijn bedoeld om software engineers beter te laten omgaan met de com-
plexiteit en het zeer dynamische karakter van interactieve websystemen.

174

Bibliography

Abrams, M., Phanouriou, C., Batongbacal, A. L., Williams, S. M., and Shuster,
J. E. (1999). UIML: An appliance-independent XML user interface language.
In WWW ’99: 8th International Conference on World Wide Web, pages 1695–1708.
(Cited on page 59.)

Acharya, S., Franklin, M., and Zdonik, S. (1997). Balancing push and pull
for data broadcast. In SIGMOD ’97: ACM SIGMOD International Conference on
Management of Data, pages 183–194. ACM Press. (Cited on page 103.)

Alager, S. and Venkatsean, S. (1993). Hierarchy in testing distributed pro-
grams. In Proceedings of the 1st International Workshop on Automated and Algorithmic
Debugging (AADEBUG’93), pages 101–116. Springer-Verlag. (Cited on pages 17,
86, and 87.)

Allaire, J. (2002). Macromedia Flash MX-A next-generation rich client.
Macromedia white paper. http://www.adobe.com/devnet/flash/whitepapers/
richclient.pdf. (Cited on page 5.)

Ammar, M., Almeroth, K., Clark, R., and Fei, Z. (1998). Multicast delivery of
web pages or how to make web servers pushy. Proceedings of the Workshop
on Internet Server Performance. (Cited on page 103.)

Andrews, A., Offutt, J., and Alexander, R. (July 2005). Testing web appli-
cations by modeling with FSMs. Software and Systems Modeling, 4(3):326–345.
(Cited on pages 16, 18, 126, and 131.)

Antoniol, G., Di Penta, M., and Zazzara, M. (2004). Understanding web
applications through dynamic analysis. In IWPC ’04: 12th IEEE International
Workshop on Program Comprehension, page 120. IEEE Computer Society. (Cited
on page 72.)

Arnold, R. S. (1993). Software Reengineering. IEEE Computer Society Press.
(Cited on page 16.)

Artzi, S., Kieżun, A., Dolby, J., Tip, F., Dig, D., Paradkar, A., and Ernst, M. D.
(2008). Finding bugs in dynamic web applications. In Proc. Int. Symp. on Software
Testing and Analysis (ISSTA’08), pages 261–272. ACM. (Cited on pages 131, 133,
and 136.)

Asleson, R. and Schutta, N. T. (2005). Foundations of Ajax. Apress. (Cited on
page 51.)

Atterer, R. and Schmidt, A. (2005). Adding usability to web engineering
models and tools. In Proceedings of the 5th International Conferencee on Web Engineer-
ing (ICWE’05), pages 36–41. Springer. (Cited on page 108.)

http://www.adobe.com/devnet/flash/whitepapers/richclient.pdf
http://www.adobe.com/devnet/flash/whitepapers/richclient.pdf

Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C. (2004). Basic con-
cepts and taxonomy of dependable and secure computing. IEEE Trans. on
Dependable and Secure Computing, 1(1):11–33. (Cited on pages 34 and 44.)

Backbase (2005). Designing rich internet applications for search engine ac-
cessibility. backbase.com Whitepaper. (Cited on page 125.)

Barbosa, L. and Freire, J. (2007). An adaptive crawler for locating hidden-
web entry points. In WWW ’07: Proceedings of the 16th international conference on
World Wide Web, pages 441–450. ACM Press. (Cited on pages 17, 124, and 127.)

Barone, P., Bonizzoni, P., Vedova, G. D., and Mauri, G. (2001). An approxima-
tion algorithm for the shortest common supersequence problem: an experi-
mental analysis. In SAC ’01: ACM symposium on Applied computing, pages 56–60.
ACM Press. (Cited on page 63.)

Barrett, D. J., Clarke, L. A., Tarr, P. L., and Wise, A. E. (1996). A framework
for event-based software integration. ACM Trans. Softw. Eng. Methodol., 5(4):378–
421. (Cited on page 45.)

Bass, L., Clements, P., and Kazman, R. (2003). Software architecture in practice, 2nd
ed. Addison-Wesley. (Cited on pages 30 and 33.)

Beizer, B. (1990). Software Testing Techniques (2nd ed.). Van Nostrand Reinhold
Co. (Cited on page 16.)

Benedikt, M., Freire, J., , and Godefroid, P. (2002). VeriWeb: Automatically
testing dynamic web sites. In Proc. 11th Int. Conf. on World Wide Web (WWW’02).
(Cited on pages 130, 135, 136, and 141.)

Berners-Lee, T. (1996). WWW: Past, present, and future. IEEE Computer,
29(10):69–77. (Cited on page 1.)

Berners-Lee, T., Masinter, L., and McCahill, M. (1994). RFC 1738: Uniform
Resource Locators (URL). W3C. (Cited on pages 2 and 31.)

Bertolino, A. (2007). Software testing research: Achievements, challenges,
dreams. In ICSE Future of Software Engineering (FOSE’07), pages 85–103. IEEE
Computer Society. (Cited on pages 16 and 139.)

Bezemer, C.-P., Mesbah, A., and van Deursen, A. (2009). Automated security
testing of web widget interactions. Technical Report TUD-SERG-2009-011,
Delft University of Technology. (Cited on page 162.)

Bhide, M., Deolasee, P., Katkar, A., Panchbudhe, A., Ramamritham, K., and
Shenoy, P. (2002). Adaptive push-pull: Disseminating dynamic web data.
IEEE Trans. Comput., 51(6):652–668. (Cited on pages 35, 48, 79, and 103.)

Binder, R. V. (1999). Testing object-oriented systems: models, patterns, and tools.
Addison-Wesley. (Cited on pages 133 and 136.)

176 Bibliography

Bouras, C. and Konidaris, A. (2005). Estimating and eliminating redundant
data transfers over the Web: a fragment based approach: Research articles.
Int. J. Commun. Syst., 18(2):119–142. (Cited on pages 43, 48, and 52.)

Bozdag, E. (2007). Integration of HTTP push with a JSF Ajax framework.
Master’s thesis, Delft University of Technology. (Cited on pages 28 and 41.)

Bozdag, E., Mesbah, A., and van Deursen, A. (2007). A comparison of push
and pull techniques for Ajax. In Proceedings of the 9th IEEE International Symposium
on Web Site Evolution (WSE’07), pages 15–22. IEEE Computer Society. (Cited on
pages 21, 35, 76, and 101.)

Bozdag, E., Mesbah, A., and van Deursen, A. (2009). Performance testing of
data delivery techniques for Ajax applications. Journal of Web Engineering, 0(0).
To appear. (Cited on pages 21, 48, 75, and 129.)

Briand, L. C., Morasca, S., and Basili, V. R. (2002). An operational process for
goal-driven definition of measures. IEEE Trans. Softw. Eng., 28(12):1106–1125.
(Cited on page 83.)

Brodie, D., Gupta, A., and Shi, W. (2005). Accelerating dynamic web content
delivery using keyword-based fragment detection. J. Web Eng., 4(1):079–099.
(Cited on page 52.)

Brodie, M. L. and Stonebraker, M. (1995). Migrating legacy systems: gateways,
interfaces & the incremental approach. Morgan Kaufmann Publishers Inc. (Cited
on page 15.)

Campbell, D. and Stanley, J. (1963). Experimental and Quasi-Experimental Designs
for Research. Rand-McNally. (Cited on page 101.)

Carzaniga, A., Picco, G. P., and Vigna, G. (1997). Designing distributed ap-
plications with mobile code paradigms. In Proceedings of the 19th International
Conference on Software Engineering (ICSE’97), pages 22–32. ACM Press. (Cited on
pages 31 and 47.)

Ceri, S., Fraternali, P., and Bongio, A. (2000). Web modeling language
(WebML): a modeling language for designing web sites. Computer Networks,
33(1-6):137–157. (Cited on page 161.)

Challenger, J., Dantzig, P., Iyengar, A., and Witting, K. (2005). A Fragment-
based approach for efficiently creating dynamic Web content. ACM Trans.
Inter. Tech., 5(2):359–389. (Cited on page 52.)

Chawathe, S. S., Rajaraman, A., Garcia-Molina, H., and Widom, J. (1996).
Change detection in hierarchically structured information. In SIGMOD ’96:
Proceedings of the 1996 ACM SIGMOD international conference on Management of data,
pages 493–504. ACM Press. (Cited on page 115.)

Bibliography 177

Chen, J., Hierons, R. M., and Ural, H. (2006). Overcoming observability prob-
lems in distributed test architectures. Inf. Process. Lett., 98(5):177–182. (Cited
on pages 17, 86, and 87.)

Chikofsky, E. J. and Cross II, J. H. (1990). Reverse engineering and design
recovery: A taxonomy. IEEE Softw., 7(1):13–17. (Cited on page 16.)

Clements, P., Garlan, D., Bass, L., Stafford, J., Nord, R., Ivers, J., and Little, R.
(2002). Documenting Software Architectures: Views and Beyond. Pearson Education.
(Cited on pages 30 and 39.)

Coda, F., Ghezzi, C., Vigna, G., and Garzotto, F. (1998). Towards a soft-
ware engineering approach to web site development. In Proceedings of the 9th
international Workshop on Software specification and design (IWSSD’98), page 8. IEEE
Computer Society. (Cited on page 13.)

Conallen, J. (2003). Building Web Applications with UML (2nd Edition). Addison-
Wesley. (Cited on pages 68, 71, and 161.)

Cordy, J. R., Dean, T. R., and Synytskyy, N. (2004). Practical language-
independent detection of near-miss clones. In CASCON ’04: Conference of the
Centre for Advanced Studies on Collaborative research, pages 1–12. IBM Press. (Cited
on page 72.)

Cornelissen, B., Zaidman, A., van Deursen, A., Moonen, L., and Koschke,
R. (2009). A systematic survey of program comprehension through dynamic
analysis. IEEE Transactions on Software Engineering (TSE). To appear. (Cited on
page 157.)

Crane, D., Pascarello, E., and James, D. (2005). Ajax in Action. Manning Pub-
lications Co. (Cited on pages 24 and 51.)

Dasgupta, A., Ghosh, A., Kumar, R., Olston, C., Pandey, S., and Tomkins,
A. (2007). The discoverability of the web. In WWW ’07: Proceedings of the 16th
international conference on World Wide Web, pages 421–430. ACM Press. (Cited on
page 127.)

de Carvalho, A. F. and Silva, F. S. (2004). Smartcrawl: a new strategy for the
exploration of the hidden web. In WIDM ’04: Proceedings of the 6th annual ACM
international workshop on Web information and data management, pages 9–15. ACM
Press. (Cited on pages 17, 124, and 127.)

De Lucia, A., Francese, R., Scanniello, G., and Tortora, G. (2004a). Reengi-
neering web applications based on cloned pattern analysis. In IWPC ’04: 12th
IEEE International Workshop on Program Comprehension, page 132. IEEE Computer
Society. (Cited on pages 61 and 72.)

De Lucia, A., Francese, R., Scanniello, G., and Tortora, G. (2005). Understand-
ing cloned patterns in web applications. In IWPC ’05: 13th International Workshop
on Program Comprehension, pages 333–336. IEEE Computer Society. (Cited on
pages 62 and 71.)

178 Bibliography

De Lucia, A., Scanniello, G., and Tortora, G. (2004b). Identifying clones in
dynamic web sites using similarity thresholds. In International Conference on
Enterprise Information Systems, pages 391–396. (Cited on pages 68 and 71.)

Deshpande, Y. and Hansen, S. (2001). Web engineering: Creating a discipline
among disciplines. IEEE MultiMedia, 8(2):82–87. (Cited on page 13.)

van Deursen, A., Klint, P., and Verhoef, C. (1999). Research issues in software
renovation. In Fundamental Approaches to Software Engineering (FASE ’99), volume
1577 of Lecture Notes in Computer Science, pages 1–21. Springer-Verlag. (Cited on
page 15.)

van Deursen, A., Klint, P., and Visser, J. (2000). Domain-specific languages:
an annotated bibliography. SIGPLAN Not., 35(6):26–36. (Cited on page 117.)

van Deursen, A. and Mesbah, A. (2008). Ajax probleemloos? Automatisering
Gids, 41(50). (Cited on page 171.)

Di Lucca, G., Fasolino, A., and Faralli, F. (2002a). Testing web applications.
In ICSM ’02: International Conference on Software Maintenance, pages 310–319. IEEE
Computer Society. (Cited on page 18.)

Di Lucca, G. A., Di Penta, M., and Fasolino, A. R. (2002b). An approach to
identify duplicated web pages. In COMPSAC ’02: 26th International Computer Soft-
ware and Applications Conference, pages 481–486. IEEE Computer Society. (Cited
on page 61.)

Di Lucca, G. A. and Fasolino, A. R. (2006). Testing web-based applications:
The state of the art and future trends. Inf. Softw. Technol., 48(12):1172–1186.
(Cited on page 16.)

Di Lucca, G. A., Fasolino, A. R., Pace, F., Tramontana, P., and De Carlini, U.
(2002c). Comprehending web applications by a clustering based approach.
In IWPC ’02: 10th International Workshop on Program Comprehension, page 261. IEEE
Computer Society. (Cited on page 71.)

Di Lucca, G. A., Fasolino, A. R., Pace, F., Tramontana, P., and de Carlini, U.
(2002d). WARE: A tool for the reverse engineering of web applications. In
CSMR ’02: 6th European Conference on Software Maintenance and Reengineering, pages
241–250. IEEE Computer Society. (Cited on page 71.)

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs.
Numerische Mathematik, 1(1):269–271. (Cited on page 116.)

Direct Web Remoting (2007). Reverse Ajax documentation. http://getahead.
org/dwr/reverse-ajax. (Cited on pages 24 and 82.)

Draheim, D., Lutteroth, C., and Weber, G. (2005). A source code independent
reverse engineering tool for dynamic web sites. In CSMR ’05: 9th European Con-
ference on Software Maintenance and Reengineering, pages 168–177. IEEE Computer
Society. (Cited on pages 60 and 71.)

Bibliography 179

http://getahead.org/dwr/reverse-ajax
http://getahead.org/dwr/reverse-ajax

Elbaum, S., Karre, S., and Rothermel, G. (2003). Improving web application
testing with user session data. In Proc. 25th Int Conf. on Software Engineering
(ICSE’03), pages 49–59. IEEE Computer Society. (Cited on pages 18 and 131.)

Emmerich, W., Ellmer, E., and Fieglein, H. (2001). TIGRA an architectural
style for enterprise application integration. In ICSE ’01: 23rd International Con-
ference on Software Engineering, pages 567–576. IEEE Computer Society. (Cited
on page 52.)

Erenkrantz, J. R., Gorlick, M., Suryanarayana, G., and Taylor, R. N. (2007).
From representations to computations: the evolution of web architectures.
In Proceedings of the 6th joint meeting of the European software engineering conference and
the ACM SIGSOFT symposium on The foundations of software engineering (ESEC-FSE’07),
pages 255–264. ACM. (Cited on page 53.)

Ernst, M. D. (2003). Static and dynamic analysis: Synergy and duality. In
Proceedings of the Workshop on Dynamic Analysis (WODA’03), pages 24–27. (Cited on
page 161.)

Eugster, P. T., Felber, P. A., Guerraoui, R., and Kermarrec, A.-M. (2003). The
many faces of publish/subscribe. ACM Comput. Surv., 35(2):114–131. (Cited on
pages 31, 46, 81, and 104.)

Fielding, R. (2000). Architectural styles and the design of network-based software archi-
tectures. PhD thesis, UC, Irvine, Information and Computer Science. (Cited
on pages 4, 15, 25, 30, 31, 34, 35, 39, and 52.)

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and
Berners-Lee, T. (1999). Hypertext Transfer Protocol – HTTP/1.1. (Cited on
page 2.)

Fielding, R. and Taylor, R. N. (2002). Principled design of the modern Web
architecture. ACM Trans. Inter. Tech. (TOIT), 2(2):115–150. (Cited on pages 25,
31, 45, 52, 75, 76, and 109.)

Florins, M. and Vanderdonckt, J. (2004). Graceful degradation of user inter-
faces as a design method for multiplatform systems. In IUI ’04: Proceedings
of the 9th international conference on Intelligent user interfaces, pages 140–147. ACM
Press. (Cited on page 125.)

Folmer, E. (2005). Software Architecture analysis of Usability. PhD thesis, Univ. of
Groningen, Mathematics and Computer Science. (Cited on page 33.)

Franklin, M. and Zdonik, S. (1998). data in your face: push technology in
perspective. In SIGMOD ’98: Proceedings of the 1998 ACM SIGMOD international
conference on Management of data, pages 516–519. ACM Press. (Cited on pages 52

and 103.)

Fuggetta, A., Picco, G. P., and Vigna, G. (1998). Understanding code mobility.
IEEE Trans. Softw. Eng., 24(5):342–361. (Cited on pages 31 and 35.)

180 Bibliography

Garofalakis, M., Gionis, A., Rastogi, R., Seshadri, S., and Shim, K. (2000).
XTRACT: a system for extracting document type descriptors from XML doc-
uments. In SIGMOD ’00: ACM SIGMOD international conference on Management of
data, pages 165–176. ACM Press. (Cited on page 65.)

Garrett, J. (February 2005). Ajax: A new approach to web applications.
Adaptive path. http://www.adaptivepath.com/publications/essays/archives/
000385.php. (Cited on pages 6, 7, 8, 23, 24, 55, 75, 107, 129, and 171.)

Gharavi, V., Mesbah, A., and van Deursen, A. (2008). Modelling and generat-
ing Ajax applications: A model-driven approach. In Proceedings of the 7th ICWE
International Workshop on Web-Oriented Software Technologies (IWWOST’08), pages 38–
43. (Cited on pages 19, 21, 60, 156, and 161.)

Ginige, A. and Murugesan, S. (2001). Web engineering: An introduction.
IEEE MultiMedia, 8(1):14–18. (Cited on page 13.)

Halfond, W. and Orso, A. (2007). Improving test case generation for web
applications using automated interface discovery. In Proceedings of the ESEC/FSE
conference, pages 145–154. ACM. (Cited on pages 131 and 144.)

Hassan, A. E. and Holt, R. C. (2002). Architecture recovery of web appli-
cations. In ICSE ’02: 24th International Conference on Software Engineering, pages
349–359. ACM Press. (Cited on page 71.)

Hauswirth, M. and Jazayeri, M. (1999). A component and communicat-
ion model for push systems. In 7th European Software Engineering Conference
(ESEC/FSE-7), pages 20–38. Springer-Verlag. (Cited on pages 31, 45, 52, 79,
and 103.)

Huang, Y.-W., Tsai, C.-H., Lin, T.-P., Huang, S.-K., Lee, D. T., and Kuo, S.-Y.
(2005). A testing framework for web application security assessment. J. of
Computer Networks, 48(5):739–761. (Cited on pages 130, 131, and 135.)

Jazayeri, M. (2005). Species evolve, individuals age. In Proceedings of the 8th In-
ternational Workshop on Principles of Software Evolution (IWPSE’05), pages 3–12. IEEE
Computer Society. (Cited on page 13.)

Jetty (2006). Jetty webserver documentation - continuations. Mortbay Con-
sulting, http://docs.codehaus.org/display/JETTY/Continuations. (Cited on
pages 48, 90, and 104.)

Juvva, K. and Rajkumar, R. (1999). A real-time push-pull communications
model for distributed real-time and multimedia systems. Technical Report
CMU-CS-99-107, School of Computer Science, Carnegie Mellon University.
(Cited on page 103.)

Kals, S., Kirda, E., Kruegel, C., and Jovanovic, N. (2006). Secubat: a web
vulnerability scanner. In Proc. 15th int. conf. on World Wide Web (WWW’06), pages
247–256. ACM. (Cited on page 131.)

Bibliography 181

http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://docs.codehaus.org/display/JETTY/Continuations

Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., and Carriere, J.
(1998). The architecture tradeoff analysis method. In 4th IEEE International Con-
ference on Engineering of Complex Computer Systems, pages 68–78. IEEE Computer
Society. (Cited on page 31.)

Khare, R. (2005). Beyond Ajax: Accelerating web applications with Real-
Time event notification. http://www.knownow.com/products/docs/whitepapers/
KN-Beyond-AJAX.pdf. (Cited on pages 24, 52, and 103.)

Khare, R., Rifkin, A., Sitaker, K., and Sittler, B. (2002). mod pubsub: an
open-source event router for Apache. (Cited on page 52.)

Khare, R. and Taylor, R. N. (2004). Extending the Representational State
Transfer (REST) architectural style for decentralized systems. In 26th Interna-
tional Conference on Software Engineering (ICSE’04), pages 428–437. IEEE Computer
Society. (Cited on pages 31, 32, 45, 52, 53, 78, and 103.)

Kitchenham, B., Pickard, L., and Pfleeger, S. L. (1995). Case studies for
method and tool evaluation. IEEE Softw., 12(4):52–62. (Cited on pages 18

and 160.)

Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C.,
Emam, K. E., and Rosenberg, J. (2002). Preliminary guidelines for empirical
research in software engineering. IEEE Trans. Softw. Eng., 28(8):721–734. (Cited
on page 160.)

Koch, N. and Kraus, A. (2002). The expressive power of UML-based web
engineering. In IWWOST ’02: 2nd International Workshop on Web-oriented Software
Technology, pages 105–119. CYTED. (Cited on page 161.)

Koch, P.-P. (March 2005). Ajax, promise or hype? http://www.quirksmode.

org/blog/archives/2005/03/ajax promise or.html. (Cited on page 9.)

Koschke, R. and Eisenbarth, T. (2000). A framework for experimental evalu-
ation of clustering techniques. In IWPC ’00: 8th International Workshop on Program
Comprehension, page 201. IEEE Computer Society. (Cited on page 69.)

Krasner, G. E. and Pope, S. T. (1988). A cookbook for using the model-view
controller user interface paradigm in Smalltalk-80. Journal of Object Oriented
Program, 1(3):26–49. (Cited on page 31.)

Lage, J. P., da Silva, A. S., Golgher, P. B., and Laender, A. H. F. (2004). Auto-
matic generation of agents for collecting hidden web pages for data extrac-
tion. Data Knowl. Eng., 49(2):177–196. (Cited on pages 17, 124, and 127.)

Lanubile, F. and Mallardo, T. (2003). Finding function clones in web applica-
tions. In CSMR ’03: 7th European Conference on Software Maintenance and Reengineer-
ing, page 379. IEEE Computer Society. (Cited on page 72.)

Lehman, M. M. and Belady, L. A. (1985). Program evolution: processes of software
change. Academic Press Professional, Inc. (Cited on page 13.)

182 Bibliography

http://www.knownow.com/products/docs/whitepapers/KN-Beyond-AJAX.pdf
http://www.knownow.com/products/docs/whitepapers/KN-Beyond-AJAX.pdf
http://www.quirksmode.org/blog/archives/2005/03/ajax_promise_or.html
http://www.quirksmode.org/blog/archives/2005/03/ajax_promise_or.html

Levenshtein, V. L. (1996). Binary codes capable of correcting deletions, in-
sertions, and reversals. Cybernetics and Control Theory, 10:707–710. (Cited on
pages 62 and 115.)

Madhavan, J., Ko, D., Kot, L., Ganapathy, V., Rasmussen, A., and Halevy, A.
(2008). Google’s deep web crawl. Proc. VLDB Endow., 1(2):1241–1252. (Cited
on page 17.)

Marchetto, A., Ricca, F., and Tonella, P. (2008a). A case study-based compar-
ison of web testing techniques applied to ajax web applications. Int. Journal on
Software Tools for Technology Transfer, 10(6):477–492. (Cited on page 18.)

Marchetto, A., Tonella, P., and Ricca, F. (2008b). State-based testing of Ajax
web applications. In Proc. 1st IEEE Int. Conference on Sw. Testing Verification and Val-
idation (ICST’08), pages 121–130. IEEE Computer Society. (Cited on pages 108,
129, 132, and 144.)

Martin-Flatin, J.-P. (1999). Push vs. pull in web-based network management.
http://arxiv.org/pdf/cs/9811027. (Cited on page 104.)

Memon, A. (2007). An event-flow model of GUI-based applications for
testing: Research articles. Softw. Test. Verif. Reliab., 17(3):137–157. (Cited on
pages 131, 132, and 148.)

Memon, A., Banerjee, I., and Nagarajan, A. (2003). GUI ripping: Reverse
engineering of graphical user interfaces for testing. In 10th Working Conference
on Reverse Engineering (WCRE’03), pages 260–269. IEEE Computer Society. (Cited
on pages 72 and 127.)

Memon, A., Soffa, M. L., and Pollack, M. E. (2001). Coverage criteria for
GUI testing. In Proceedings ESEC/FSE’01, pages 256–267. ACM Press. (Cited on
pages 111 and 127.)

Merrill, C. L. (2006). Using Ajax to improve the bandwidth performance
of web applications. http://www.webperformanceinc.com/library/reports/

AjaxBandwidth/. (Cited on page 10.)

Mesbah, A. (2007). Ajaxifying classic web applications. In Proceedings of the 29th
International Conference on Software Engineering, Doctoral Symposium (ICSE’07), pages
81–82. IEEE Computer Society. (Cited on page 21.)

Mesbah, A., Bozdag, E., and van Deursen, A. (2008). Crawling Ajax by infer-
ring user interface state changes. In Proc. 8th Int. Conference on Web Engineering
(ICWE’08), pages 122–134. IEEE Computer Society. (Cited on pages 21, 107,
129, and 150.)

Mesbah, A. and van Deursen, A. (2005). Crosscutting concerns in J2EE ap-
plications. In Proceedings of the 7th International Symposium on Web Site Evolution
(WSE’05), pages 14–21. IEEE Computer Society. (Cited on page 21.)

Bibliography 183

http://arxiv.org/pdf/cs/9811027
http://www.webperformanceinc.com/library/reports/AjaxBandwidth/
http://www.webperformanceinc.com/library/reports/AjaxBandwidth/

Mesbah, A. and van Deursen, A. (2007a). An architectural style for Ajax. In
Proceedings of the 6th Working IEEE/IFIP Conference on Software Architecture (WICSA’07),
pages 44–53. IEEE Computer Society. (Cited on page 21.)

Mesbah, A. and van Deursen, A. (2007b). Migrating multi-page web appli-
cations to single-page Ajax interfaces. In Proc. 11th Eur. Conf. on Sw. Maintenance
and Reengineering (CSMR’07), pages 181–190. IEEE Computer Society. (Cited on
pages 21, 24, 55, and 115.)

Mesbah, A. and van Deursen, A. (2006). De architectuur van Ajax ontrafeld.
Informatie, 12(10):50–56. (Cited on page 171.)

Mesbah, A. and van Deursen, A. (2008a). A component- and push-
based architectural style for Ajax applications. Journal of Systems and Software,
81(12):2194–2209. (Cited on pages 21, 23, 129, and 131.)

Mesbah, A. and van Deursen, A. (2008b). Exposing the hidden-web induced
by Ajax. Technical Report TUD-SERG-2008-001, Delft University of Technol-
ogy. (Cited on pages 20 and 126.)

Mesbah, A. and van Deursen, A. (2009). Invariant-based automatic testing
of Ajax user interfaces. In Proceedings of the 31st International Conference on Software
Engineering (ICSE’09), Research Papers, page 11 pp. IEEE Computer Society. (Cited
on pages 21 and 129.)

Meyer, B. (2008). Seven principles of software testing. IEEE Computer, 41(8):99–
101. (Cited on page 148.)

Mogul, J. C., Douglis, F., Feldmann, A., and Krishnamurthy, B. (1997). Po-
tential benefits of delta encoding and data compression for HTTP. In ACM
SIGCOMM Conf. on Applications, technologies, architectures, and protocols for computer
communication, pages 181–194. ACM. (Cited on pages 43 and 52.)

Monroe, R. T. and Garlan, D. (1996). Style-based reuse for software architec-
tures. In ICSR ’96: 4th International Conference on Software Reuse, pages 84–93. IEEE
Computer Society. (Cited on page 30.)

Morell, L. (1988). Theoretical insights into fault-based testing. In Proc. 2nd
Workshop on Software Testing, Verification, and Analysis, pages 45–62. (Cited on
page 129.)

Murugesan, S., Deshpande, Y., Hansen, S., and Ginige, A. (2001). Web en-
gineering: a new discipline for development of web-based systems. Web
Engineering, 2016(0):3–13. (Cited on page 13.)

Naaman, M., Garcia-Molina, H., and Paepcke, A. (2004). Evaluation of
ESI and class-based delta encoding. In 8th International Workshop Web content
caching and distribution, pages 323–343. Kluwer Academic Publishers. (Cited on
page 43.)

184 Bibliography

Netscape (1995). An exploration of dynamic documents. http://hoolan.net/
spec/WWW/pushpull/. (Cited on pages 11, 79, and 104.)

Newman, W. M. and Sproull, R. F. (1979). Principles of Interactive Computer Graph-
ics. McGraw-Hill. 2nd Edition. (Cited on pages 46 and 52.)

Ntoulas, A., Zerfos, P., and Cho, J. (2005). Downloading textual hidden web
content through keyword queries. In JCDL ’05: Proceedings of the 5th ACM/IEEE-
CS joint conference on Digital libraries, pages 100–109. ACM Press. (Cited on
pages 17, 124, and 127.)

Offutt, J. (2002). Quality attributes of web software applications. IEEE Softw.,
19(2):25–32. (Cited on pages 33 and 35.)

O’Reilly, T. (2005). What is Web 2.0: Design patterns and business models
for the next generation of software. Oreillynet. http://www.oreillynet.com/
pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html. (Cited on page 5.)

Parnas, D. L. (1994). Software aging. In Proceedings of the 16th international con-
ference on Software engineering (ICSE’94), pages 279–287. IEEE Computer Society
Press. (Cited on page 13.)

Parsons, D. (2007). Evolving architectural patterns for web applications. In
Proceedings of the 11th Pacific Asia Conference on Information Systems (PACIS), pages
120–126. (Cited on page 52.)

Perry, D. E. and Wolf, A. L. (1992). Foundations for the study of software
architecture. SIGSOFT Softw. Eng. Notes, 17(4):40–52. (Cited on pages 15, 30, 35,
and 52.)

Potts, C. (1993). Software-engineering research revisited. IEEE Softw., 10(5):19–
28. (Cited on page 161.)

Puerta, A. and Eisenstein, J. (2002). XIML: a common representation for
interaction data. In IUI ’02: 7th international conference on Intelligent user interfaces,
pages 214–215. ACM Press. (Cited on page 59.)

Raghavan, S. and Garcia-Molina, H. (2001). Crawling the hidden web. In
VLDB ’01: Proceedings of the 27th International Conference on Very Large Data Bases,
pages 129–138. Morgan Kaufmann Publishers Inc. (Cited on pages 17, 124,
and 127.)

Rajapakse, D. C. and Jarzabek, S. (2005). An investigation of cloning in web
applications. In ICWE ’05: 5th International Conference on Web Engineering, pages
252 – 262. Springer. (Cited on page 72.)

Ricca, F. and Tonella, P. (2001). Analysis and testing of web applications. In
ICSE’01: 23rd Int. Conf. on Sw. Eng., pages 25–34. IEEE Computer Society. (Cited
on pages 18, 60, 71, and 131.)

Bibliography 185

http://hoolan.net/spec/WWW/pushpull/
http://hoolan.net/spec/WWW/pushpull/
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

Ricca, F. and Tonella, P. (2003). Using clustering to support the migration
from static to dynamic web pages. In IWPC ’03: 11th IEEE International Workshop
on Program Comprehension, page 207. IEEE Computer Society. (Cited on pages 61

and 71.)

Richardson, D. and Thompson, M. (1988). The RELAY model of error detec-
tion and its application. In Proc. 2nd Workshop on Software Testing, Verification, and
Analysis, pages 223–230. (Cited on page 129.)

Rosenblum, D. S. and Wolf, A. L. (1997). A design framework for internet-
scale event observation and notification. In ESEC/FSE ’97: Proceedings of the 6th
European conference held jointly with the 5th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 344–360. Springer-Verlag New York,
Inc. (Cited on page 31.)

Russell, A. (2006). Comet: Low latency data for the browser. http://alex.
dojotoolkit.org/?p=545. (Cited on pages 11, 12, 24, and 79.)

Russell, A., Wilkins, G., and Davis, D. (2007). Bayeux - a JSON protocol for
publish/subscribe event delivery protocol, 0.1draft3. http://svn.xantus.org/
shortbus/trunk/bayeux/bayeux.html. (Cited on page 81.)

Schiemann, D. (2007). The forever-frame technique. http://cometdaily.com/
2007/11/05/the-forever-frame-technique. (Cited on page 81.)

Schmidt, D. C. (2006). Model-driven engineering. Computer, 39(2):25–31.
(Cited on pages 19 and 161.)

Shaw, M. and Garlan, D. (1996). Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall. (Cited on page 30.)

Sinha, A. (1992). Client-server computing. Communications of the ACM, 35(7):77–
98. (Cited on pages 31 and 52.)

Smullen III, C. W. and Smullen, S. A. (March 2008). An experimental study of
ajax application performance. Journal of Software, 3(3):30–37. (Cited on page 10.)

Sommerville, I. (2007). Software Engineering. Addison-Wesley Longman Pub-
lishing Co., Inc., 8 edition. (Cited on page 16.)

Sousa, J. P. and Garlan, D. (2002). Aura: an architectural framework for user
mobility in ubiquitous computing environments. In WICSA 3: IFIP 17th World
Computer Congress - TC2 Stream / 3rd IEEE/IFIP Conference on Software Architecture,
pages 29–43. Kluwer, B.V. (Cited on page 52.)

Sprenkle, S., Gibson, E., Sampath, S., and Pollock, L. (2005). Automated re-
play and failure detection for web applications. In ASE’05: Proc. 20th IEEE/ACM
Int. Conf. on Automated Sw. Eng., pages 253–262. ACM. (Cited on page 131.)

186 Bibliography

http://alex.dojotoolkit.org/?p=545
http://alex.dojotoolkit.org/?p=545
http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html
http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html
http://cometdaily.com/2007/11/05/the-forever-frame-technique
http://cometdaily.com/2007/11/05/the-forever-frame-technique

Sprenkle, S., Pollock, L., Esquivel, H., Hazelwood, B., and Ecott, S. (2007).
Automated oracle comparators for testing web applications. In Proc. 18th IEEE
Int. Symp. on Sw. Reliability (ISSRE’07), pages 117–126. IEEE Computer Society.
(Cited on pages 133 and 139.)

Srinivasan, R., Liang, C., and Ramamritham, K. (1998). Maintaining temporal
coherency of virtual data warehouses. In Proceedings of the IEEE Real-Time Systems
Symposium (RTSS’98), page 60. IEEE Computer Society. (Cited on page 79.)

Stepien, B., Peyton, L., and Xiong, P. (2008). Framework testing of web
applications using TTCN-3. Int. Journal on Software Tools for Technology Transfer,
10(4):371–381. (Cited on page 130.)

Stroulia, E., El-Ramly, M., Iglinski, P., and Sorenson, P. (2003). User interface
reverse engineering in support of interface migration to the web. Automated
Software Eng., 10(3):271–301. (Cited on pages 16 and 72.)

Suryanarayana, G., Erenkrantz, J. R., Hendrickson, S. A., and Taylor, R. N.
(2004). PACE: An architectural style for trust management in decentralized
applications. In Proceedings of the 4th Working IEEE/IFIP Conference on Software Ar-
chitecture (WICSA’04), page 221. IEEE Computer Society. (Cited on page 52.)

Taylor, R. N., Medvidovic, N., Anderson, K. M., E. J. Whitehead, J., Robbins,
J. E., Nies, K. A., Oreizy, P., and Dubrow, D. L. (1996). A component- and
message-based architectural style for GUI software. IEEE Trans. Softw. Eng.,
22(6):390–406. (Cited on pages 31 and 52.)

T.D.Cook and D.T.Campbell (1979). QuasiExperimentation Design and Analysis
Issues for Field Settings. Houghton Mifflin Company. (Cited on page 101.)

Teo, H.-H., Oh, L.-B., Liu, C., and Wei, K.-K. (2003). An empirical study
of the effects of interactivity on web user attitude. Int. J. Hum.-Comput. Stud.,
58(3):281–305. (Cited on page 33.)

Tonella, P. and Ricca, F. (2004). Statistical testing of web applications. J. Softw.
Maint. Evol., 16(1-2):103–127. (Cited on pages 60 and 71.)

Trecordi, V. and Verticale, G. (2000). An architecture for effective push/pull
web surfing. In 2000 IEEE International Conference on Communications, volume 2,
pages 1159–1163. (Cited on page 103.)

Tzerpos, V. and Holt, R. C. (1999). MoJo: A distance metric for software
clusterings. In WCRE ’99: 6th Working Conference on Reverse Engineering, pages
187–193. IEEE Computer Society. (Cited on page 69.)

Umar, A. (1997). Object-oriented client/server Internet environments. Prentice Hall
Press. (Cited on page 31.)

Valmari, A. (1998). The state explosion problem. In LNCS: Lectures on Petri Nets
I, Basic Models, Advances in Petri Nets, pages 429–528. Springer-Verlag. (Cited on
page 124.)

Bibliography 187

Vanderdonckt, J., Bouillon, L., and Souchon, N. (2001). Flexible reverse engi-
neering of web pages with VAQUISTA. In WCRE ’01: 8th Working Conference on
Reverse Engineering, page 241. IEEE Computer Society. (Cited on page 72.)

W3C. Document Object Model (DOM). http://www.w3.org/DOM/. (Cited on
pages 4, 6, and 162.)

W3C. XMLHttpRequest. W3C Working Draft http://www.w3.org/TR/
XMLHttpRequest/. (Cited on pages 10 and 164.)

W3C (1995). Common gateway interface (cgi)/1.1 specification. http://www.
w3.org/CGI/. (Cited on page 3.)

W3C (1999). Chunked transfer coding. http://www.w3.org/Protocols/

rfc2616/rfc2616-sec3.html#sec3.6.1. (Cited on page 81.)

W3C (Mar. 21 2004). URIs, Addressability, and the use of HTTP GET and
POST. W3C Tag Finding. (Cited on page 49.)

W3C Technical Architecture Group (Dec. 15, 2004). Architecture of the World
Wide Web, Volume One. W3C Recommendation. (Cited on pages 48 and 52.)

Wang, Y., Rutherford, M. J., Carzaniga, A., and Wolf, A. L. (2005). Automat-
ing experimentation on distributed testbeds. In Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering (ASE’05), pages 164–173.
ACM. (Cited on page 17.)

Wassermann, G. and Su, Z. (2008). Static detection of cross-site scripting vul-
nerabilities. In Proceedings of the 30th international conference on Software engineering
(ICSE’08), pages 171–180. ACM. (Cited on page 162.)

Welsh, M., Culler, D., and Brewer, E. (2001). Seda: an architecture for well-
conditioned, scalable internet services. SIGOPS Oper. Syst. Rev., 35(5):230–243.
(Cited on page 90.)

Welsh, M. and Culler, D. E. (2003). Adaptive overload control for busy inter-
net servers. In USENIX Symposium on Internet Technologies and Systems. (Cited on
page 90.)

Weyuker, E. J. (1982). On testing non-testable programs. The Computer Journal,
25(4):465–470. (Cited on page 133.)

White, A. (2006). Measuring the benefits of ajax. http://www.developer.com/
java/other/article.php/3554271. (Cited on page 10.)

Willemsen, J. (November 2006). Improving user workflows with single-page
user interfaces. http://www.uxmatters.com/MT/archives/000149.php. (Cited on
page 10.)

Wohlin, C., Host, M., and Henningsson, K. (2005). Empirical research meth-
ods in software and web engineering. In Web Engineering, pages 409–429.
Springer Verlag. (Cited on page 18.)

188 Bibliography

http://www.w3.org/DOM/
http://www.w3.org/TR/XMLHttpRequest/
http://www.w3.org/TR/XMLHttpRequest/
 http://www.w3.org/CGI/
 http://www.w3.org/CGI/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.6.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.6.1
http://www.developer.com/java/other/article.php/3554271
http://www.developer.com/java/other/article.php/3554271
http://www.uxmatters.com/MT/archives/000149.php

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén,
A. (2000). Experimentation in software engineering: an introduction. Kluwer Academic
Publishers. (Cited on pages 18, 101, 102, and 160.)

Yen, J. Y. (1971). Finding the k shortest loopless paths in a network. Manag.
Sci., 17(11):712–716. (Cited on page 138.)

Yin, R. K. (2003). Case Study Research: Design and Methods. SAGE Publications
Inc, 3d edition. (Cited on pages 18, 119, 142, and 160.)

Yu, D., Chander, A., Islam, N., and Serikov, I. (2007). JavaScript instrumenta-
tion for browser security. In Proceedings of the 34th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (POPL’07), pages 237–249. ACM.
(Cited on page 162.)

Zakon, R. H. (2006). Hobbes’ internet timeline. Online. http://zakon.org/
robert/internet/timeline/. (Cited on page 2.)

Bibliography 189

http://zakon.org/robert/internet/timeline/
http://zakon.org/robert/internet/timeline/

190 Bibliography

Curriculum Vitae

Personal Data

Full name
Ali Mesbah

Date of birth
May 23, 1978

Place of birth
Karaj, Tehran, Iran

Education

April 2006 – May 2009
PhD Student (AiO) at Delft University of Technology, Delft, under the
supervision of prof. dr. Arie van Deursen.

May 2005 – March 2006
PhD Student (AiO) at the Centrum Wiskunde & Informatica (CWI),
Amsterdam, under the supervision of prof. dr. Arie van Deursen.

September 1997 – June 2003
BSc and MSc degrees in Computer Science from Delft University of
Technology, specialized in Software Engineering.

September 1994 – May 1997
International General Certificate of Secondary Education (IGCSE) and
International Baccalaureate (IB) diplomas from Arnhem International
School.

Employment

November 2001 – Present
Software engineer at West Consulting BV, Delft, The Netherlands.

October 2000 – October 2001
Web developer at Active Interface Solutions, Rotterdam, The Nether-
lands.

Titles in the IPA Dissertation Series since 2005

E. Ábrahám. An Assertional Proof Sys-
tem for Multithreaded Java -Theory and Tool
Support- . Faculty of Mathematics
and Natural Sciences, UL. 2005-01

R. Ruimerman. Modeling and Remodeling
in Bone Tissue. Faculty of Biomedical
Engineering, TU/e. 2005-02

C.N. Chong. Experiments in Rights Con-
trol - Expression and Enforcement. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2005-03

H. Gao. Design and Verification of Lock-
free Parallel Algorithms. Faculty of
Mathematics and Computing Sci-
ences, RUG. 2005-04

H.M.A. van Beek. Specification and Anal-
ysis of Internet Applications. Faculty of
Mathematics and Computer Science,
TU/e. 2005-05

M.T. Ionita. Scenario-Based System Ar-
chitecting - A Systematic Approach to De-
veloping Future-Proof System Architectures.
Faculty of Mathematics and Com-
puting Sciences, TU/e. 2005-06

G. Lenzini. Integration of Analysis
Techniques in Security and Fault-Tolerance.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2005-07

I. Kurtev. Adaptability of Model Trans-
formations. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2005-08

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Network Re-
liability. Faculty of Science, UU. 2005-
09

O. Tveretina. Decision Procedures for
Equality Logic with Uninterpreted Func-
tions. Faculty of Mathematics and
Computer Science, TU/e. 2005-10

A.M.L. Liekens. Evolution of Finite Popu-
lations in Dynamic Environments. Faculty
of Biomedical Engineering, TU/e.
2005-11

J. Eggermont. Data Mining using Genetic
Programming: Classification and Symbolic
Regression. Faculty of Mathematics
and Natural Sciences, UL. 2005-12

B.J. Heeren. Top Quality Type Error Mes-
sages. Faculty of Science, UU. 2005-13

G.F. Frehse. Compositional Verification of
Hybrid Systems using Simulation Relations.
Faculty of Science, Mathematics and
Computer Science, RU. 2005-14

M.R. Mousavi. Structuring Structural
Operational Semantics. Faculty of
Mathematics and Computer Science,
TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis of Prob-
abilistic Systems. Faculty of Mathemat-
ics and Computer Science, TU/e.
2005-16

T. Gelsema. Effective Models for the Struc-
ture of pi-Calculus Processes with Replica-
tion. Faculty of Mathematics and
Natural Sciences, UL. 2005-17

P. Zoeteweij. Composing Constraint
Solvers. Faculty of Natural Sciences,
Mathematics, and Computer Sci-
ence, UvA. 2005-18

J.J. Vinju. Analysis and Transformation
of Source Code by Parsing and Rewriting.
Faculty of Natural Sciences, Mathe-
matics, and Computer Science, UvA.
2005-19

M.Valero Espada. Modal Abstraction and
Replication of Processes with Data. Fac-
ulty of Sciences, Division of Mathe-
matics and Computer Science, VUA.
2005-20

A. Dijkstra. Stepping through Haskell.
Faculty of Science, UU. 2005-21

Y.W. Law. Key management and link-layer
security of wireless sensor networks: energy-
efficient attack and defense. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2005-22

E. Dolstra. The Purely Functional Software
Deployment Model. Faculty of Science,
UU. 2006-01

R.J. Corin. Analysis Models for Security
Protocols. Faculty of Electrical Engi-
neering, Mathematics & Computer
Science, UT. 2006-02

P.R.A. Verbaan. The Computational Com-
plexity of Evolving Systems. Faculty of
Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers. For-
mal Specification and Analysis of Hybrid
Systems. Faculty of Mathematics
and Computer Science and Faculty
of Mechanical Engineering, TU/e.
2006-04

M. Kyas. Verifying OCL Specifications of
UML Models: Tool Support and Composi-
tionality. Faculty of Mathematics and
Natural Sciences, UL. 2006-05

M. Hendriks. Model Checking Timed Au-
tomata - Techniques and Applications. Fac-
ulty of Science, Mathematics and
Computer Science, RU. 2006-06

J. Ketema. Böhm-Like Trees for Rewriting.
Faculty of Sciences, VUA. 2006-07

C.-B. Breunesse. On JML: topics in tool-
assisted verification of JML programs. Fac-
ulty of Science, Mathematics and
Computer Science, RU. 2006-08

B. Markvoort. Towards Hybrid Molecu-
lar Simulations. Faculty of Biomedical
Engineering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured Data.
Faculty of Mathematics and Natural
Sciences, UL. 2006-10

G. Russello. Separation and Adaptation of
Concerns in a Shared Data Space. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2006-11

L. Cheung. Reconciling Nondeterminis-
tic and Probabilistic Choices. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-12

B. Badban. Verification techniques for Ex-
tensions of Equality Logic. Faculty of Sci-
ences, Division of Mathematics and
Computer Science, VUA. 2006-13

A.J. Mooij. Constructive formal methods
and protocol standardization. Faculty of
Mathematics and Computer Science,
TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for Hy-
brid Systems. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2006-15

M.E. Warnier. Language Based Security
for Java and JML. Faculty of Science,
Mathematics and Computer Science,
RU. 2006-16

V. Sundramoorthy. At Home In Service
Discovery. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2006-17

B. Gebremichael. Expressivity of Timed
Automata Models. Faculty of Science,
Mathematics and Computer Science,
RU. 2006-18

L.C.M. van Gool. Formalising Interface
Specifications. Faculty of Mathematics
and Computer Science, TU/e. 2006-
19

C.J.F. Cremers. Scyther - Semantics and
Verification of Security Protocols. Faculty

of Mathematics and Computer Sci-
ence, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Channels
for Exogenous Coordination of Distributed
Systems: Semantics, Implementation and
Composition. Faculty of Mathematics
and Natural Sciences, UL. 2006-21

H.A. de Jong. Flexible Heterogeneous Soft-
ware Systems. Faculty of Natural Sci-
ences, Mathematics, and Computer
Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time reconfig-
urable Network-on-Chip for streaming DSP
applications. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2007-02

M. van Veelen. Considerations on Model-
ing for Early Detection of Abnormalities in
Locally Autonomous Distributed Systems.
Faculty of Mathematics and Com-
puting Sciences, RUG. 2007-03

T.D. Vu. Semantics and Applications of
Process and Program Algebra. Faculty of
Natural Sciences, Mathematics, and
Computer Science, UvA. 2007-04

L. Brandán Briones. Theories for Model-
based Testing: Real-time and Coverage.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2007-05

I. Loeb. Natural Deduction: Sharing by
Presentation. Faculty of Science, Math-
ematics and Computer Science, RU.
2007-06

M.W.A. Streppel. Multifunctional Ge-
ometric Data Structures. Faculty of
Mathematics and Computer Science,
TU/e. 2007-07

N. Trčka. Silent Steps in Transition Sys-
tems and Markov Chains. Faculty of
Mathematics and Computer Science,
TU/e. 2007-08

R. Brinkman. Searching in encrypted
data. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2007-09

A. van Weelden. Putting types to good
use. Faculty of Science, Mathematics
and Computer Science, RU. 2007-10

J.A.R. Noppen. Imperfect Information in
Software Development Processes. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2007-11

R. Boumen. Integration and Test plans for
Complex Manufacturing Systems. Faculty
of Mechanical Engineering, TU/e.
2007-12

A.J. Wijs. What to do Next?: Analysing
and Optimising System Behaviour in Time.
Faculty of Sciences, Division of
Mathematics and Computer Science,
VUA. 2007-13

C.F.J. Lange. Assessing and Improving the
Quality of Modeling: A Series of Empir-
ical Studies about the UML. Faculty of
Mathematics and Computer Science,
TU/e. 2007-14

T. van der Storm. Component-based Con-
figuration, Integration and Delivery. Fac-
ulty of Natural Sciences, Mathe-
matics, and Computer Science,UvA.
2007-15

B.S. Graaf. Model-Driven Evolution
of Software Architectures. Faculty of
Electrical Engineering, Mathematics,
and Computer Science, TUD. 2007-
16

A.H.J. Mathijssen. Logical Calculi for
Reasoning with Binding. Faculty of
Mathematics and Computer Science,
TU/e. 2007-17

D. Jarnikov. QoS framework for Video
Streaming in Home Networks. Faculty of
Mathematics and Computer Science,
TU/e. 2007-18

M. A. Abam. New Data Structures and
Algorithms for Mobile Data. Faculty of
Mathematics and Computer Science,
TU/e. 2007-19

W. Pieters. La Volonté Machinale: Under-
standing the Electronic Voting Controversy.
Faculty of Science, Mathematics and
Computer Science, RU. 2008-01

A.L. de Groot. Practical Automaton Proofs
in PVS. Faculty of Science, Mathe-
matics and Computer Science, RU.
2008-02

M. Bruntink. Renovation of Idiomatic
Crosscutting Concerns in Embedded Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer
Science, TUD. 2008-03

A.M. Marin. An Integrated System to
Manage Crosscutting Concerns in Source
Code. Faculty of Electrical Engineer-
ing, Mathematics, and Computer
Science, TUD. 2008-04

N.C.W.M. Braspenning. Model-based In-
tegration and Testing of High-tech Multi-
disciplinary Systems. Faculty of Me-
chanical Engineering, TU/e. 2008-05

M. Bravenboer. Exercises in Free Syntax:
Syntax Definition, Parsing, and Assimila-
tion of Language Conglomerates. Faculty
of Science, UU. 2008-06

M. Torabi Dashti. Keeping Fairness Alive:
Design and Formal Verification of Opti-
mistic Fair Exchange Protocols. Faculty
of Sciences, Division of Mathematics
and Computer Science, VUA. 2008-
07

I.S.M. de Jong. Integration and Test
Strategies for Complex Manufacturing Ma-
chines. Faculty of Mechanical Engi-
neering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with Coalge-
bras. Faculty of Science, Mathematics
and Computer Science, RU. 2008-09

L.G.W.A. Cleophas. Tree Algorithms:
Two Taxonomies and a Toolkit. Faculty of
Mathematics and Computer Science,
TU/e. 2008-10

I.S. Zapreev. Model Checking Markov
Chains: Techniques and Tools. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2008-11

M. Farshi. A Theoretical and Experimental
Study of Geometric Networks. Faculty of
Mathematics and Computer Science,
TU/e. 2008-12

G. Gulesir. Evolvable Behavior Specifi-
cations Using Context-Sensitive Wildcards.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2008-13

F.D. Garcia. Formal and Computational
Cryptography: Protocols, Hashes and Com-
mitments. Faculty of Science, Math-
ematics and Computer Science, RU.
2008-14

P. E. A. Dürr. Resource-based Verification
for Robust Composition of Aspects. Fac-
ulty of Electrical Engineering, Math-
ematics & Computer Science, UT.
2008-15

E.M. Bortnik. Formal Methods in Support
of SMC Design. Faculty of Mechanical
Engineering, TU/e. 2008-16

R.H. Mak. Design and Performance Anal-
ysis of Data-Independent Stream Processing
Systems. Faculty of Mathematics and
Computer Science, TU/e. 2008-17

M. van der Horst. Scalable Block Process-
ing Algorithms. Faculty of Mathemat-
ics and Computer Science, TU/e.
2008-18

C.M. Gray. Algorithms for Fat Objects:
Decompositions and Applications. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2008-19

J.R. Calamé. Testing Reactive Systems
with Data - Enumerative Methods and Con-
straint Solving. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2008-20

E. Mumford. Drawing Graphs for
Cartographic Applications. Faculty of
Mathematics and Computer Science,
TU/e. 2008-21

E.H. de Graaf. Mining Semi-structured
Data, Theoretical and Experimental Aspects
of Pattern Evaluation. Faculty of Math-
ematics and Natural Sciences, UL.
2008-22

R. Brijder. Models of Natural Computa-
tion: Gene Assembly and Membrane Sys-
tems. Faculty of Mathematics and
Natural Sciences, UL. 2008-23

A. Koprowski. Termination of Rewrit-
ing and Its Certification. Faculty of
Mathematics and Computer Science,
TU/e. 2008-24

U. Khadim. Process Algebras for Hy-
brid Systems: Comparison and Develop-
ment. Faculty of Mathematics and
Computer Science, TU/e. 2008-25

J. Markovski. Real and Stochastic Time
in Process Algebras for Performance Eval-
uation. Faculty of Mathematics and
Computer Science, TU/e. 2008-26

H. Kastenberg. Graph-Based Software
Specification and Verification. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2008-27

I.R. Buhan. Cryptographic Keys from
Noisy Data Theory and Applications. Fac-
ulty of Electrical Engineering, Math-
ematics & Computer Science, UT.
2008-28

R.S. Marin-Perianu. Wireless Sensor Net-
works in Motion: Clustering Algorithms for

Service Discovery and Provisioning. Fac-
ulty of Electrical Engineering, Math-
ematics & Computer Science, UT.
2008-29

M.H.G. Verhoef. Modeling and Validat-
ing Distributed Embedded Real-Time Con-
trol Systems. Faculty of Science, Math-
ematics and Computer Science, RU.
2009-01

M. de Mol. Reasoning about Functional
Programs: Sparkle, a proof assistant for
Clean. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2009-
02

M. Lormans. Managing Requirements
Evolution. Faculty of Electrical En-
gineering, Mathematics, and Com-
puter Science, TUD. 2009-03

M.P.W.J. van Osch. Automated Model-
based Testing of Hybrid Systems. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant Soft-
ware Systems. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2009-05

M.J. van Weerdenburg. Efficient Rewrit-
ing Techniques. Faculty of Mathemat-
ics and Computer Science, TU/e.
2009-06

H.H. Hansen. Coalgebraic Modelling: Ap-
plications in Automata Theory and Modal
Logic. Faculty of Sciences, Division
of Mathematics and Computer Sci-
ence, VUA. 2009-07

A. Mesbah. Analysis and Testing of
Ajax-based Single-page Web Applications.
Faculty of Electrical Engineering,
Mathematics, and Computer Sci-
ence, TUD. 2009-08

	Contents
	Preface
	List of Acronyms
	Introduction
	Web Evolution
	Static Hypertext Documents
	Dynamically Generated Pages
	Web Architecture
	Rich Internet Applications
	Web 2.0

	Ajax
	JavaScript and the Document Object Model
	Cascading Style Sheets
	The XMLHttpRequest Object
	A New Approach to Web Applications
	Multi-page versus Single-page Web Applications
	Reverse Ajax: Comet

	Challenges and Research Questions
	Architecture
	Reengineering
	Analysis and Testing

	Research Method and Evaluation
	Thesis Outline
	Origin of Chapters

	A Component- and Push-based Architectural Style for Ajax
	Introduction
	Ajax Frameworks
	Echo2
	GWT
	Backbase
	Dojo and Cometd
	Features

	Architectural Styles
	Terminology
	Existing Styles
	A Style for Ajax

	Architectural Properties
	User Interactivity
	User-perceived Latency
	Network Performance
	Simplicity
	Scalability
	Portability
	Visibility
	Reliability
	Data Coherence
	Adaptability

	Spiar Architectural Elements
	Processing Elements
	Data Elements
	Connecting Elements

	Architectural Views
	Ajax view
	Comet view

	Architectural Constraints
	Single Page Interface
	Asynchronous Interaction
	Delta-communication
	User Interface Component-based
	Web standards-based
	Client-side Processing
	Stateful
	Push-based Publish/Subscribe

	Discussion and Evaluation
	Retrofitting Frameworks onto Spiar
	Typical Ajax Configurations
	Issues with push Ajax
	Resource-based versus Component-based
	Safe versus Unsafe Interactions
	Client- or server-side processing
	Asynchronous Synchronization
	Communication Protocol
	Design Models
	Scope of Spiar

	Related Work
	Concluding Remarks

	Migrating Multi-page Web Applications to Ajax Interfaces
	Introduction
	Single-page Meta-model
	Migration Process
	Retrieving Pages
	Navigational Path Extraction
	UI Component Model Identification
	Single-page UI Model Definition
	Target UI Model Transformation

	Navigational Path Extraction
	Page Classification
	Schema-based Similarity
	Schema-based Clustering
	Cluster Refinement/Reduction

	UI Component Identification
	Differencing
	Identifying Elements

	Tool Implementation: Retjax
	Case Study
	JPetStore
	Reference Classification
	Automatic Classification
	Evaluation

	Discussion
	Related Work
	Concluding Remarks

	Performance Testing of Data Delivery Techniques for Ajax
	Introduction
	Web-based Real-time Notification
	HTTP Pull
	HTTP Streaming
	Comet or Reverse Ajax

	Comet Implementations
	Cometd Framework and the Bayeux Protocol
	Direct Web Remoting (DWR)

	Experimental Design
	Goal and Research Questions
	Outline of the Proposed Approach
	Independent Variables
	Dependent Variables

	Distributed Testing
	The Chiron Distributed Testing Framework
	Testing Environment
	Example Scenario
	Sample Application: Stock Ticker

	Results and Evaluation
	Publish Trip-time and Data Coherence
	Server Performance
	Received Publish Messages
	Received Unique Publish Messages
	Received Message Percentage
	Network Traffic

	Discussion
	The Research Questions Revisited
	Threats to Validity

	Related Work
	Concluding Remarks

	Crawling Ajax by Inferring User Interface State Changes
	Introduction
	Challenges of Crawling Ajax
	Client-side Execution
	State Changes & Navigation
	Dynamic Document Object Model (DOM)
	Delta-communication
	Elements Changing the Internal State

	A Method for Crawling Ajax
	User Interface States
	The State-flow Graph
	Inferring the State Machine
	Detecting Clickables
	Creating States
	Processing Document Tree Deltas
	Navigating the States
	CASL: Crawling Ajax Specification Language
	Generating Indexable Pages

	Tool Implementation: Crawljax
	Case Studies
	Subject Systems
	Experimental Design
	Results and Evaluation

	Discussion
	Back Implementation
	Constantly Changing DOM
	Cookies
	State Space

	Applications
	Search Engines
	Discoverability
	Testing

	Related Work
	Concluding Remarks

	Invariant-Based Automatic Testing of Ajax User Interfaces
	Introduction
	Related Work
	Ajax Testing Challenges
	Reach
	Trigger
	Propagate

	Deriving Ajax States
	Data Entry Points
	Testing Ajax States Through Invariants
	Generic DOM Invariants
	State Machine Invariants
	Application-specific Invariants

	Testing Ajax Paths
	Oracle Comparators
	Test-case Execution

	Tool Implementation: Atusa
	Empirical Evaluation
	Study 1: TUDU
	Study 2: Finding Real-Life Bugs

	Discussion
	Automation Scope
	Invariants
	Generated versus hand-coded JavaScript
	Manual Effort
	Performance and Scalability
	Application Size
	Threats to Validity
	Ajax Testing Strategies

	Concluding Remarks

	Conclusion
	Contributions
	Research Questions Revisited
	Evaluation
	Future Work and Recommendations
	Concluding Remarks

	A Single-page Ajax Example Application
	The HTML Single-page
	The Run-time DOM
	Requesting Data
	The Server-side Code
	DOM Injection
	Submitting Data

	Samenvatting (Dutch Summary)
	Bibliography
	Curriculum Vitae

