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Abstract

ShadowTLS is a new type of circumvention tool where the
relay forwards traffic to a legitimate (unblocked) TLS server
until the end of the handshake, and then connects the client
to a hidden proxy server (e.g. Shadowsocks). In contrast to
previous probe-resistant proxies, this design can evade SNI-
based blocking, since to the censor it appears as a legitimate
TLS connection to an unblocked domain.

In this paper, we describe several attacks against Shad-
owTLS which would allow a censor to identify if a suspected
IP is hosting a ShadowTLS relay or not (and block it accord-
ingly), distinguishing it from the legitimate TLS servers it
mimics. Our attacks require only a few TCP connections to
the suspected IP, a capability that censors including China
have already demonstrated in order to block previous proxies.

We evaluate these vulnerabilities by performing Internet-
wide scans to discover potential ShadowTLS relays, and find
over 15K of them. We also describe mitigations against this
attack that ShadowTLS (and proxies like it) can implement,
and work with the ShadowTLS developers to deploy these
fixes.

1 Introduction

Internet censors often employ protocol-specific allowlists in
an attempt to block circumvention proxies without negatively
impacting legitimate uncensored traffic. One example is a
TLS allowlist, where a censor will only allow a TLS connec-
tion through if the plaintext SNI or server certificate is an
allowed domain (such as a popular website). Connections to
domains that are not in the allowed list are blocked, making
it difficult for users to connect to proxies using TLS.
ShadowTLS [13, 14] is a TLS-based circumvention proxy
gaining popularity in China that aims to circumvent this type
of TLS allowlist blocking by relaying the TLS handshake to
existing unblocked websites, and then switching to a proxy
server afterward for the proxy requests and responses. In a typ-
ical setup of ShadowTLS, shown in Figure |, a ShadowTLS
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client performs a TLS handshake with a ShadowTLS relay,
that forwards the handshake messages to a legitimate HTTPS
server (mask site) that is on the censors allowed list. After the
handshake completes, the relay forwards subsequent data to a
proxy server, such as a Shadowsocks [5] or V2Ray [4]. Since
the initial handshake will appear to have been performed with
a legitimate (and unblocked) TLS website, the idea is that the
censor will not be able to distinguish these proxies from the
popular websites they mimic, making them harder to block.

In this paper, we identify and evaluate several attacks
against ShadowTLS’ mimicry technique. In particular, de-
spite its design, we find ways a censor could actively probe a
ShadowTLS relay or passively analyze client traffic in order
to distinguish ShadowTLS relays from the legitimate TLS
servers they mimic. To evaluate our attacks, we perform an
Internet-wide scan of TLS servers behaving similar to Shad-
owTLS, and identify over 15K deployments of the proxy.

We suggest changes to the ShadowTLS design that could
mitigate these problems, and work with the developers to
get them implemented and deployed. We also discuss other
types of attacks that may pose a threat to ShadowTLS and
similar TLS-based proxies. To our knowledge, our work is
the first to investigate the emerging technique of censorship
circumvention used by ShadowTLS.

2 Background

2.1 Motivation

Prior to ShadowTLS, fully-encrypted proxies like Shadow-
socks were popular in censoring countries like China [15].
Fully-encrypted proxies work by encrypting every byte, in-
cluding headers, to avoid matching a specific protocol fin-
gerprint. However, these protocols can still stand out and
be blocked by censors due to specific patterns/behaviors. Re-
cently, China has performed active probing attacks to discover
and block Shadowsocks servers [1]. Although countermea-
sures have been researched and deployed [11], there are more
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Figure 1: In a typical ShadowTLS setup, the client within a
firewall will perform the TLS handshake with a relay across
the firewall. The relay will forward these handshake packets
to a Mask Site which is a legitimate (unblocked) HTTPS
server. Once the handshake is done, all following packets are
forwarded to a proxy server.

recent reports showing that Shadowsocks and other fully-
encrypted proxies being detected and blocked passively [2].

TLS-based proxies avoid many of the shortcomings of fully-
encrypted ones. Since TLS traffic is ubiquitous online [8],
censors are unlikely to block the protocol outright.

However, TLS-based circumvention tools face several chal-
lenges. One major challenge on the server side is that the
proxy needs to appear to host a realistic TLS service or web-
site without any identifiable features unique to the proxy.
Otherwise, censors could actively probe suspected proxies
and block them based on the presence of such unique features,
such as discrepancies in content or TLS protocol fingerprints.

Proxies must also commit to a real domain, since the do-
main used is visible to the censor in the Client Hello Server
Name Indication (SNI) extension and the censor can actively
probe the server to obtain its certificate. The domain that the
proxy uses must be popular, or censors could easily block
proxies by maintaining a domain allowlist, and blocking TLS
connections to domains not on that list. This technique has
already been observed in Quanzhou, China [3].

2.2 ShadowTLS

ShadowTLS attempts to solve these server mimicry issues
by “putting on a play” in front of the censor. ShadowTLS
operates using four components, as shown in Figure 1:

* A client starts a TCP connection with the relay, and
performs a TLS handshake with the relay.

* The relay forwards the client’s TLS handshake messages
to a relay-chosen mask site, which is a popular website
not blocked by the censor. Effectively, the client is per-
forming a TLS handshake with the mask site, with the
relay acting as an intermediary. The relay does not learn
the negotiated secret.
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Figure 2: Data flow diagram of ShadowTLS
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 After the TLS handshake between the client and mask
site is complete, the client begins to send data intended
for the proxy server (e.g. Shadowsocks traffic) through
the same TCP connection.

* Following the handshake, the relay forwards data to the

proxy server.

In this way, as shown in Figure 2, the client performs a
TLS handshake with the mask site (via the relay’s IP), which
circumvents the censor’s TLS certificate or domain allowlist.
Once the handshake is complete, the client uses the connec-
tion to communicate with the proxy server (e.g. Shadow-
socks). A similar idea levering mask sites was introduced (but
not deployed) by Conjure [10].

For ShadowTLS to work, the relay needs to know if the TLS
handshake has completed in order to relay subsequent (non-
TLS) data to the proxy server. In ShadowTLS, the relay uses
the ChangeCipherSpec message followed by an encrypted
Handshake message (the Finished message) as a signal that
the TLS handshake is finished. However, in TLS 1.3, these
messages are encrypted and sent as TLS Application Data
(0x17) records, making it difficult for the relay to know when
the handshake has completed. For this reason, ShadowTLS
only supports TLS 1.2 and earlier, where the handshake mes-
sages are not completely encrypted.

3 Security Analysis of ShadowTLS

3.1 Threat Model

We assume a censor with similar demonstrated capabilities to
that of the Great Firewall of China. In particular, the censor is
able to passively observe traffic between the client and relay,
and can block, inject, or spoof fake requests or responses. The
censor can also actively probe suspected proxies and observe
responses. We assume the censor is unwilling to block all
TLS traffic, but may maintain a list of allowed domains that
can appear in a TLS certificate or Client Hello SNI field, and
block any other connections, as seen in Quanzhou [3]. We
assume the client and relay have a shared secret that the censor
is not privy to, such as the secret used in Shadowsocks.



3.2 Attacks

In this section, we present attacks we have identified based
on program analysis and experiments with our own Shad-
owTLS v0.1.4 instances. These attacks exploit behavior dif-
ferences between a ShadowTLS relay and other well-known
TLS server implementations, such as those deployed at the
mask sites ShadowTLS uses.

TLS fingerprinting Prior work has shown that the TLS
fingerprint of the Client Hello message can be used to dis-
tinguish TLS implementations [12], and this attack has been
used by censors previously to block circumvention tools [9].

We measured the TLS fingerprint of the ShadowTLS client
against the TLSFingerprint.io database, which collects TLS
fingerprints from a university network tap. We found that the
fingerprint produced by ShadowTLS (ebaa863800590426)
was not observed in the tap dataset collected by TLSFinger-
print.io, meaning the client fingerprint is likely unique to the
ShadowTLS tool and could be used by censors to block it.
To address this issue, we recommend that ShadowTLS use
a library such as uTLS [16] to mimic more popular TLS
fingerprints and avoid this attack.

Alternative protocols TLS servers often return errors if
they receive a malformed request. For instance, sending a
non-TLS record to a TLS server could result in a TLS Alert
response, indicating the request was not understood. Alterna-
tively, some TLS server implementations will respond to other
protocols they can parse, such as HTTP, to help out users that
have mistakenly connected using the wrong protocol.

While not being defined in any standard/specification, we
find many TLS implementations will respond when they re-
ceive a plaintext HTTP request instead of a TLS Client Hello
as the first message in a connection. We performed an Internet
wide scan of servers running on TCP port 443, and found that
over 75% of them responded with either a non-TLS response
(e.g. an HTTP error response), or reset the TCP connection.
Only 17% of them behaved like ShadowTLS, which closed
the connection with a FIN-ACK. This means that over 80% of
servers running on TLS port 443 can be trivially distinguished
from ShadowTLS by seeing how they respond to a plaintext
HTTP request.

TLS Application Data records Normal TLS connections
encapsulate all data in TLS records, which contain a short
header specifying record type, TLS version, and length of the
data, followed by the data itself. Sending data without this
header is undefined behavior, and could trigger a response that
distinguishes normal TLS servers from ShadowTLS relays.
By analyzing the source code of ShadowTLS and our own
network traces while using it, we observe that after the hand-
shake, ShadowTLS does not encapsulate data in TLS records.

This presents two potential attacks: first, a censor could pas-
sively observe that data to a ShadowTLS server is not encap-
sulated in TLS records after the TLS handshake. Second, the
censor could actively probe the ShadowTLS server, complete
the TLS handshake to the mask site, and then check to see
how the server responds to being sent random data.

A normal TLS server should error or close the connection,
since it has received an invalid TLS record. However, Shad-
owTLS will forward the data to the proxy (e.g. Shadowsocks),
and the server would ignore the data (since the probing censor
does not have the shared secret required to use the proxy).
Thus, a real TLS server would close the connection, while
ShadowTLS would remain silent by ignoring the invalid TLS
record.

Response | Non-record Ratio Bad MAC  Ratio
Fatal Alert 269M 87.3% 284 M 88.9%
Reset 25M 8.2% 24M 7.5%
Closed 1.2M 3.8% 821 K 2.6%
Alert 167K 0.5% 288 K 0.9%

No Response 44 K 0.14% 40K 0.12%
Non-TLS 2K 0.01% 5K 0.02%
Total 30.8 M 31.9M

Table 1: Response from TLS Servers after we send Non-TLS
Record Data (Non-record) or a well-formed TLS record but
with an incorrect MAC tag (Bad MAC) following a successful
TLS handshake. ShadowTLS’ relay behavior is in Bold.

We used ZMap [18] and our own custom TLS tool written
in Go to perform an Internet-wide scan and determine what
fraction of tcp/443 servers would complete a TLS handshake,
but then silently ignore non-record data. To each server, we
sent 35 bytes of ASCII, with an invalid record type, TLS
version, but an accurate length field to avoid potentially trig-
gering buggy implementations. We found that over 99% of
the 30 million TLS hosts we completed handshakes with re-
sponded to our invalid record, most frequently with a fatal
TLS alert. Only 0.14% of hosts behaved like ShadowTLS by
not responding and keeping the connection open.

Corrupted TLS Application Data TLS protects against
tampering by using a MAC or authenticated cipher on Appli-
cation Data records. If a TLS host receives an Application
Data record that does not properly decrypt or has an invalid
MAC, the TLS RFCs [6,7,17] specifies that a fatal TLS alert
(bad_record_mac) must be sent, and the connection must be
closed.

In ShadowTLS, the relay does not have the shared secret
negotiated between the client and mask site, meaning the
relay cannot validate Application Data records to determine
if the MAC is valid or it decrypts properly. Instead, after the
handshake ShadowTLS indifferently redirects data received
to the proxy server.
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Technique Ratio
Plain HTTP Request  17.0%

Non-TLS Record Data  0.14%
Corrupted TLS Application Data  0.12%
Combined 0.05%

Table 2: The ratio of TLS servers on the Internet that respond
like a ShadowTLS relay to each active probing technique.
When the results of these attacks were combined, only a very
small fraction of hosts (0.05%) behaved like ShadowTLS.

Therefore, a censor could actively probe a suspicious Shad-
owTLS relay, first by completing the handshake, and then
sending a TLS Application Data record with correct version
and length but random (and therefore invalid) encrypted data
in its payload. According to the TLS specifications, a nor-
mal TLS server should close the connection with a fatal TLS
alert, but ShadowTLS might not send a response, due to the
fact that the payload does not come with the correct proxy
(e.g. Shadowsocks) secret and many proxy servers such as
Shadowsocks silently ignore any invalid payload.

We again performed an Internet-wide scan to see what frac-
tion of hosts behaved like ShadowTLS and silently ignored
corrupt TLS Application Data records. We found only 0.12%
of hosts behaved like ShadowTLS, making it possible for
censors to distinguish it from real TLS servers.

Fixing this issue will require a design change to how Shad-
owTLS relays operate, which we discuss in Section 4.

Combining active attacks While each of the active prob-
ing attacks can distinguish ShadowTLS relays from a large
majority of TLS servers, we find that these attacks work even
better in concert. Table 2 shows that by combining these three
attacks, our Internet-wide scan reveals approximately 15K
servers (0.05%) on the Internet that behave similarly to Shad-
owTLS. Of these, only 6K of them provided TLS certificates
for domains of the Alexa Top 1000 domains, with the most
frequent being subdomains of webex.com (5969 servers) and
zoom.us (149 servers). While many of these servers may be
non-ShadowTLS, and we cannot confirm what fraction of
them truly are, this low number suggests these attacks would
be feasible and effective in practice.

While we cannot determine our actual false negative rate,
we can get a sense of our true positive rate. We set up four
public ShadowTLS relays prior to our scans, and confirmed
that our scans discovered all four of our relays, and labelled
them as ShadowTLS based on their responses.

Less Efficient: Redirecting Connections A strong censor
could also try to prevent use of ShadowTLS by redirecting
connections to their alternative “true” destination resolved
from the SNI in the ClientHello message. However, our ex-
periment results in Appendix A.l indicate that this attack is

neither efficient nor accurate enough.

4 Defenses

An underlying issue in all of the attacks we discovered is that
a censor is able to observe a behavioral discrepancy between
the ShadowTLS relay and the mask site it is mimicking. We
note that if the ShadowTLS relay forwarded all packets to
the mask site (and relayed responses), our attacks would not
work. Of course, we need some way for packets to still reach
the proxy server, otherwise ShadowTLS would only function
as a transparent TCP relay.

To defend against these attacks, we suggest a subtle change
to the ShadowTLS design. Rather than having the relay switch
over to forwarding to the proxy after the TLS handshake,
we instead have the ShadowTLS relay to forward only TLS
Application Data records that are encrypted and authenticated
under a secret known only to the client and relay. The client
will complete the TLS handshake as it currently does, and
then will change the secret that it uses to encrypt/authenticate
the TLS Application Data records that follow to one derived
from the server random and client-relay shared secret. When
the relay receives an Application Data record, it validates it
using the same information. If validation fails, the record is
forwarded to the mask site. Otherwise, the relay removes the
TLS record and forwards the payload to the proxy.

This prevents our attacks, since the censor will not have
the client-relay shared secret. Therefore, any packets that they
attempt to send will end up being forwarded to the mask site,
and the ShadowTLS relay will not have any application-layer
distinguishing features: all of its responses to the censor will
come from the true mask site that it is mimicking.

Responsible disclosure We disclosed our attacks to the
ShadowTLS developers, and they incorporated our suggested
defense. As of ShadowTLS v0.2.3, relays are no longer vul-
nerable to the active probing attacks we identified.

5 Conclusion

We presented several techniques to identify ShadowTLS re-
lays on the Internet that would be possible for censors to
implement and deploy. We evaluate our attacks with Internet-
wide scans, and find only 15K servers behave like a Shad-
owTLS relay among over 30 million HTTPS servers on the
Internet. This is concerning, as it suggests censors could use
these attacks to actively probe and block ShadowTLS relays.
To address this, we identify a small design change to Shad-
owTLS that defends against these attacks generally, and we
worked with the ShadowTLS developers to implement and
deploy this fix, protecting future ShadowTLS users from the
active probing attacks we discovered.
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A Less Efficient Attacks

A.1 Redirecting connections

A censor could also try to prevent use of ShadowTLS al-
together, by redirecting connections to their “true” destina-
tion. For instance, when a client sends a Client Hello with
a server name indication (SNI), the censor could perform a
DNS lookup for the domain, and if the IP returned is different
from the one the client is connected to, the censor could start
a new TCP connection to the correct IP, and relay packets
from the client to that IP. If the client were communicating
to a ShadowTLS relay before, the censor would effectively
redirect them to the mask site’s actual IP address, bypassing
the ShadowTLS relay.

However, such an attack might break legitimate TLS con-
nections. For instance, if the censor used a different DNS
resolver than the client, or the client is connecting to a private
network address not reflected in public DNS. To evaluate this,
we looked at TLS connections from our university’s network,
and collected the Client Hello SNI and destination server IP.
We collected 27M <SNI, IP> pairs over 24 hours , and iden-
tified 472K unique pairs. We then queried DNS for each SNI
domain to obtain the lookup IP(s), and compared it to the IP
in the connection (the original IP). We found 6K SNIs that
did not resolve, and 141K SNIs where the original IP was
found in the A record. In other words, SNIs of about 325K
pairs resolve to different IP addresses.
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We perform a TLS connection using Zgrab2, to see if the
first resolved IP of these 325K pairs will complete a TLS
connection for the desired domain. If it does not, then we label
the original <SNI, IP> pair as potentially being disrupted by
this attack. We find that 4K failed with the original IP and
2K failed with the IP from DNS lookup. The intersection of
these two sets is 1K SNIs, we determine that 1K unique SNIs
would be affected.

However, those SNIs made up 315K of the 27M connec-
tions collected. Therefore, 1.1% of connections we observed
on our tap could be “disrupted” if a censor implemented this
attack. We find Amazon Web Services, Apple iCloud and
Hulu SNIs among the connections we expect to fail. This
likely makes this attack too costly for a censor to deploy to
all traffic.



