PacBi@®

SMRT® Link
Python AP

reference
(v13.0)

Research use only. Not for use in diagnostic procedures.
P/N 103-285-100 Version 01 (December 2023)
© 2023 Pacific Biosciences of California, Inc. (“PacBio”)

Information in this document is subject to change without notice. PacBio assumes no responsibility for any errors or
omissions in this document.

PACBIO DISCLAIMS ALL WARRANTIES WITH RESPECT TO THIS DOCUMENT, EXPRESS, STATUTORY, IMPLIED OR
OTHERWISE, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY,
NONINFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL PACBIO BE LIABLE, WHETHER IN
CONTRACT, TORT, WARRANTY, PURSUANT TO ANY STATUTE, OR ON ANY OTHER BASIS FOR SPECIAL, CONSEQUENTIAL,
INCIDENTAL, EXEMPLARY OR INDIRECT DAMAGES IN CONNECTION WITH (OR ARISING FROM) THIS DOCUMENT,
WHETHER OR NOT FORESEEABLE AND WHETHER OR NOT PACBIO IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Certain notices, terms, conditions and/or use restrictions may pertain to your use of PacBio products and/or third party
products. Refer to the applicable PacBio terms and conditions of sale and to the applicable license terms at
pacb.com/license.

Trademarks:

Pacific Biosciences, the PacBio logo, PacBio, Circulomics, Omnione, SMRT, SMRTbell, Iso-Seq, Sequel, Nanobind, SBB, Revio,
Onso, Apton, and Kinnex are trademarks of Pacific Biosciences of California Inc. (PacBio).

See https://qgithub.com/broadinstitute/cromwell/blob/develop/LICENSE.txt for Cromwell redistribution information.

PacBio

1305 O’Brien Drive
Menlo Park, CA 94025
www.pacb.com

https://www.pacb.com/legal-and-trademarks/product-license-and-use-restrictions/
https://github.com/broadinstitute/cromwell/blob/develop/LICENSE.txt

PacBi®

SMRT?® Link Python API reference (v13.0)

L0 oo 11T o o 3
Viewing APl information........ooieiiiii i ——— 3
Python reference ClIENT ... 3
Python reference client setup INStruCtioONS ..o ————— 4
How to query one or more runs and their details..........ccccvviiiiinii i ————————— 4
How to retrieve all dataset IDs and movie names produced by @ run...........ccovviiiiiiis e 6
How to query all the dataset details for a top-level dataset and all of its child datasets......c.ccccccccccvimrrrrriiicccceeeennnnn, 7
How to query PO, P1, and P2 MetriCS sssssssss s s s s ssssssssssssssss s s sssssssssssssssssssssssssssssssssnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnns 9
How to export demultiplexed datasets ..o ————— 9
g Lo T o e L8 =T Vo F= 1 - E= - 12
How to terminate @ SMRT LiNK JOD ... cciiiiiiiiccccecrr s sssssssssssr s s s s ss s ssssmse e e e sesss s s s ssme s e e s eesssssmnme s e e e sesssssannneenessnsssssnnnneennssnnen 12
How to get all created, running, successful, failed, or terminated analysis JobSccccoccmmmriiiicccsrcrinr s 13
How to poll for a job to successfully complete within a specified timeout..........cccccer i, 14
[oY o e F =T oV TN W1 T | 14
[oY o e W= oV TN 1T 4 R =3 T o 14
How to create a run design by importing a run design CSV ... ssssrrr s sssss s e s s mnne s e e e snnnn 15
How to find the Run QC reports associated with an analysis jobcccoccoiiiininccc e 16
How to find the contents of specific RUN QC rePOrtScccciiiiiiiiiiniiririrr e 19
How to query instrument status, such as Running or Complete..........cccccvmmiinimmii s 19
L 103 oI o 1R = YA T T o 19
How to start a SMRT Link job for a specific WOrkflow ..o 20
How to combine a sample split across multiple Cells.......... . 21

How to poll every 10 minutes until a collection is complete, then launch a HiFi Mapping job using the official
PacBio hg38 reference, and poll until it completes successfully ... 21

How to find information about the Run QC reports associated with an analysis jobccccceviiiiicsice, 22

How to export demultiplexed dataset metrics as @ CSV file ... 22

SMRT Link Python API reference v13.0

Introduction

The SMRT Link web services API, provided by PacBio, allows integration of SMRT Link with third-party
software. It is also used for accessing features such as designing and performing quality control on
instrument runs, querying new data from the instrument, and starting analyses on the sequence data.

This document includes Python examples for using the API to perform the tasks listed in the Table of
Contents.

Viewing API information

For detailed information on the SMRT Link web services API calls, including definitions and examples, see
Swagger-generated information here:

https://<server name>:8243/sl/docs/services/#/default

where <server name>:8243 is the name and port number of your local SMRT Link server.

Python reference client

SMRT Link v13.0 includes a new Python reference client covering the most common API methods. The
Python reference client provides concise and self-documenting examples of how to use the PacBio API, and
is easily portable to other languages. As the Python reference client is not a full SDK, it deals only with
simple Python types (int, str, float, 1ist, dict) rather than more complex objects.

The code for the Python reference client can be downloaded on github here.

The Python reference client is redistributable as a standalone library with no non-standard dependencies
(only the requests library available on PyPI).

The Python reference client is required to use the Python examples in this document. The Python reference
client includes methods for all of the following API calls:

Runs:

Get run(s)

Get run xml

Get run collection(s)

Get run from collection

Get run collection reports
Get run collection barcodes
Get run collection hifi reads

datasets

Get run reports

Get run design

Import run design CSV
Delete run

Import run xml

Update run xml

Chem bundile:

Get active bundle metadata
Get chemistry bundle metadata
Get active bundle file

Get chemistry bundle file

Jobs:

Get job

Get job reports

Download job report resources
Get job datastore

Get job entry points

Get job datasets

Get job options

Download job datastore file
Get analysis jobs

Get analysis jobs by state

Get analysis jobs by parent
Get SMRT Analysis nested jobs
Create analysis job

Terminate analysis job

Get import dataset jobs
Create import dataset [zip] job
Create import collection job
Create merge datasets job
Get pipeline(s)

Poll for successful job

Datasets:

Get consensus read sets

Get consensus read sets by movie
Get barcoded child datasets
Get subread sets

Get references

Get barcode sets

Get consensus read set

Get subread set

Get reference set

Get barcode set

Get consensus read set reports
Get barcode set contents

Get barcode set record names
Get dataset metadata

Get dataset jobs

Get dataset search

https://github.com/PacificBiosciences/pbcommand/blob/develop/pbcommand/services/smrtlink_client.py

SMRT Link Python API reference v13.0

Python reference client setup instructions

If you downloaded the Python reference client to your local directory:

1.

Make sure the requests module is installed for Python3. This will vary depending on your system,
but pip3 install requests is one option.

Start the Python3 interpreter. (Version 3.9 or later is required.)

Import the Python reference client:

from smrtlink client import SmrtLinkClient

Set up the Python reference client with your SMRT Link server:

client = SmrtLinkClient.connect ("<your-SMRT-Link-server-name>", "smrt-
link-username", "password")

If you have SMRT Link v13.0 installed, do the following:

1.

2.

Start the Python3 interpreter bundled with SMRT Link:
$SMRT ROOT/smrtcmds/bin/python3

Import the Python reference client:
from pbcommand.services.smrtlink client import SmrtLinkClient

Set up the Python reference client with your SMRT Link server:
client = SmrtLinkClient.connect ("<your-SMRT-Link-server-name>", "smrt-
link-username", "password")

Security note: We recommend that you use a dedicated API client user that is separate from your usual
network-wide login. SMRT Link administrators can define local users that only have access to the GUI and
API without being able to log in to any other system.

How to query one or more runs and their details

You can find the run ID by using the runs endpoint and specifying a query to search for the desired run:

GET /smrt-link/runs

Following is an example of how to do this using Python:

runs

client.getiruns(nameZNone, reserved=None, instrumentType=None,
chipType=None, collectionUuid=None, movieName=None)

Example request:

runs

client.get runs(instrumentType = "Revio")

In this example, you can query a run based on the following parameters:

name (str): Filter by run name; partial matches are supported.

reserved (bool): Filter by reservation status; set to t rue for runs selected on instrument.
instrumentType (str): Filter by instrument type (Revio, Sequel2e, or Sequel?).
chipType (str): Filter by chip type (8mChip or 25mChip).

collectionUuid (str): Retrieve the run for a specific collection UUID.

movieName (str): Filter by movie name associated with one of the runs.

SMRT Link Python API reference v13.0

Following is an example of what this returns:
{

"reserved": true, "numLRCells":
"20230414 Revio",

0,
"name" :

"completedAt": "2023-04-17T04:19:50.718z",
"chemistrySwVersion": "1.2.3.11111",
"instrumentType": "Revio",

"chipType": "25mChip",

"instrumentName": "12345e",

"context": "rl234 20230414 212018",

"instrumentSwVersion":
1,

"1.1.1.11111",
"numCellsCompleted":
"totalCells": 1,
"primaryAnalysisSwVersion": "12.0.0.0",
"status": "Complete",
"numStandardCells": 1,
"createdAt": "2023-04-14T18:17:23
"startedAt": "2023-04-14T21:20:44
"createdBy": "bobsmith",
"totalSamples": 97,
"numCellsFailed": O,

"plate2": "1234567800301580073920231018",
"instrumentSerialNumber": "12345",

"2023-04-18T00:13

.849z",
.o057z",

"transfersCompletedAt": t42.
"uniqueId":
"ccsExecutionMode": "OnInstrument"

}

032z",

"0al2bcd2-5916-4142-9082-220a7bb04d13",

reserved means that the run design was used on an instrument. If false, that means the run

design was created in SMRT Link, but has not yet been used in a run.

run.

createdAt is the time the run design was created.
startedAt is the time the user pressed the button to close the Revio instrument door and begin a

completedAt is the time when all of the instrument’s movies have finished acquiring and after the

cleanup; that is, instrument state = complete, Aborted, OF Terminated. The cleanup is skipped if

another run has been pre-loaded.

® https://my-smrtlink-server:8243/sl/runs

PacBi@® #ns-

Runs / Run Details

My__ Run_Name

+ Overview

Run Created:
2023-10-07, 10:17:27 PM

Completed Cells:
4

Run Start:

2021-10-08, 02:23:02 PM

Failed Cells:
0

Run Complete:

Time remaining for PostProcessing:
2023-10-10, 02:28:14 AM =

Created By:
bsmith

Transfer Complete:
2023-10-10, 05:01:48 AM
Instrument Name:

my-instrument

uniqueID is the Run UUID you see in the SMRT Link URL on the Run Details page:

12a3bc45-1299-49¢c6-9f84-9ceac118ce9e

context is the Run ID you see in the SMRT Link GUI on the Run Details page:

COMPLETE

View Run Design | * Export m

Run ID:
r12345e_20231008_191807

Instrument SN:

12345e

Instrument Control SW Version:
1111111111

Instrument Chemistry Bundle:
11121111

Primary SW Version:
11121111

SMRT Link Python API reference v13.0

How to retrieve all dataset IDs and movie hames produced by a
run

You can find all the datasets produced by a run by using the runs endpoint and specifying a query to search
for collections with a matching run ID:

GET /smrt-link/runs/{run_id}/collections
Following is an example of how to do this using Python:
collections = client.get run collections(run id = "<run id>")

Following is an example of what this returns:

"name": "SequelZe hifi 20231010 cell4",
"completedAt": "2023-10-10T12:01:48.810z",
"instrumentName": "12345e",

"context": "m64263e 211009 220021",

"well™: "DO1",

"projectId": 1,

"sequencingKit": "123456101826100062822",

"status": "Complete",

"instrumentId": "12345e",

"startedAt": "2021-10-09T22:00:22.030z",
"createdBy": "bobsmith",

"cellType": "Standard",

"uniqueId": "702d5232-9c2d-4£92-a35a-784949£9db0e",
"collectionPathUri": "/data/hifiviral/r64263e 20211008 _191807/4_DO1",
"ccsExecutionMode": "OnInstrument",

"runId": "186f258a-dac7-479d-al22-aalebbbcab57",
"ccsId": "9dbcaaf6-298a-465a-ad56-3175d1151c57",
"movieMinutes": 480.0

"name": "SequelZe hifiviral 20211010 celld",
"completedAt": "2021-10-10T04:39:54.9552",
"instrumentName": "12345e",

"context": "m64263e 211009 134807",

"well™: "CO1",

"projectId": 1,

"sequencingKit": "122894101826100062822",

"status": "Complete",

"importedAt": "2023-08-25T08:18:42.900z2",
"instrumentId": "64263e",

"startedAt": "2021-10-09T13:48:08.6772",
"createdBy": "bobsmith",

"cellType": "Standard",

"uniqueId": "c2690435-3336-4cb2-9bcl-b509d6901bbc",
"collectionPathUri": "/data/hifiviral/r64263e 20211008 191807/3 CO1",
"ccsExecutionMode": "OnInstrument",

"runId": "186f258a-dac7-479d-al22-aalebbbcab57",
"ccsId": "caz24d2be-daee-480f-b3e6-c352104aff4d",
"movieMinutes": 480.0

6

SMRT Link Python API reference v13.0

by

+ ccsIdisthe Dataset UUID that is visible at the top level of Data Management.
« runIdisthe Run ID you see in the URL in SMRT Link on the Runs/Run Details page:

® https://my-smrtlink-server:8243/sl/runs

12a3bc45-1299-49¢6-9f84-9ceac118ce9e

+ context is the movie name that is part of the output dataset you see on the Run Details page in

SMRT Link.
How to query all the dataset details for
of its child datasets
Following is an example of how to do this using Python:

parent dataset
child datasets

client.get consensusreadset (datset
client.get barcoded child datasets(parent dataset id

a top-level dataset and all

id =

<dataset id>)

<ccsID>,

barcode name=None,

biosample name=None)

You can use this, for example, to find all the UUID’s of your child datasets.

For Revio or Sequel lle runs demultiplexed on-instruments, the parent dataset ID is the same as the ccsId

referenced in the collections endpoint.

Following is an example of what this returns:

"instrumentControlVersion": "1.1.1.111111",

"tags": "ccs,testdata,barcoded",
"instrumentName": "my-instrument",

"uuid": "d717£f468-e8f2-44cc-9a25-a50d699319b0",
"dnaBarcodeName": "bc2082--bc2082",
"totallLength": 1003747,

"projectId": 1,

"numRecords": 160,

"wellSampleName": "My-sample AOL",
"bioSampleName": "EC 40 82",

"version": "3.0.1",

"cellId": "DA120589",

"id": 286,

"md5": "c93c21ab91289d707e7adf31df57a949",
"parentName": "My-sample A0l-Celll (CCS) (all samples)",
"importedAt": "2023-08-25T12:16:50.8982",
"JjobId": 164,

"createdAt": "2023-08-25T12:13:48.489z",
"isActive": true,

"createdBy": "bsmith",

"wellName": "AQO1",

"cellIndex": O,

"parentUuid": "£f6dba83f-36b5-4443-b6fd-c8730ae350ad",
"metadataContextId": "m64004 210910 192345",

7

SMRT Link Python API reference v13.0

"numChildren": O,

"numResources": 1,

"runName": "20231110 my run",

"datasetType": "PacBio.DataSet.ConsensusReadSet",
"comments": "ccs dataset converted"

"name": "My-sample A0l1-Celll (CCS) (BS 43 85)",
"updatedAt": "2023-08-25T12:13:48.5602Z",
"path": "<path>",

"instrumentControlVersion™: "1.1.1.111111",
"tags": "ccs,testdata,barcoded",
"instrumentName": "my-instrument",

"uuid": "65bad2ac-ab5fl-4f43-be2a-a26d32118dc4",
"dnaBarcodeName": "bc2085--bc2085",
"totallLength": 1176220,

"projectId": 1,

"numRecords": 140,

"wellSampleName": "My-sample AOL",

"bioSampleName": "BS 43 85",

"version": "3.0.1",

"cellId": "DA120589",

"id": 285,

"md5": "90607244e2d16c7035d6b652aabbeb8a",
"parentName": "My-sample A(Q0l-Celll (CCS) (all samples)",

"importedAt": "2023-08-25T12:16:50.8512",
"jobId": 164,
"createdAt": "2023-08-25T12:13:48.5602",

"isActive": true,
"createdBy": "bsmith",
"wellName": "AQO1",

"cellIndex": O,

"parentUuid": "£f6dba83f-36b5-4443-b6fd-c8730ae350ad",
"metadataContextId": "m64004 210910 192345",
"numChildren": O,

"numResources": 1,

"runName": "20231110 my run",

"datasetType": "PacBio.DataSet.ConsensusReadSet",
"comments": "ccs dataset converted"”

"name": "My-sample A0l1-Celll (CCs) (BS 40 81)",
"updatedAt": "2023-08-25T12:13:48.4562",
"path": " <path>.consensusreadset.xml",
"instrumentControlVersion"™: "1.1.1.111111",
"tags": "ccs, testdata,barcoded",
"instrumentName": "my-instrument",

"uyuid": "2b94dbb5-0be6-42b9%9-aa6c-a630c48ale2d",
"dnaBarcodeName": "bc2081--bc2081",

"totalLength": 780298,
"projectId": 1,

"numRecords": 87,
"wellSampleName": "My-sample AOLl",
"bioSampleName": "BS 40 81",
"version": "3.0.1",

SMRT Link Python API reference v13.0

"cellId": "DA120589",

"id": 284,
"md5": "2e34c910£9e9856d8215382024e34109",
"parentName": "My-sample A0l-Celll (CCS) (all samples)",

"importedAt": "2023-08-25T12:16:50.8042z",
"JobId": 164,
"createdAt™: "2023-08-25T12:13:48.4562",

"isActive": true,
"createdBy": "bsmith",
"wellName": "AQO1",

"cellIndex": 0O,

"parentUuid": "f6dba83f-36b5-4443-b6fd-c8730ae350ad",
"metadataContextId": "m64004 210910 192345",
"numChildren": O,

"numResources": 1,

"runName": "20231110 my run ",

"datasetType": "PacBio.DataSet.ConsensusReadSet",
"comments": "ccs dataset converted"”

by

How to query PO, P1, and P2 metrics

You can query PO, P1, and P2 loading metrics using the SMRT Link API. The following example searches run
collection reports for the Loading Report and extracts the PO, P1, and P2 values from it. You need the Run
UUID and Collection UUID.

Following is an example of how to do this using Python:

reports = client.get run collection reports(<run_uuid>, <collection uuid>)
for r in reports:
if "loading" in r["reportTypeId"]:
report uuid = r["dataStoreFile"] ["uuid"]
report = client.load datastore report file(report uuid)
print ({attr["id"]:attr["value"] for attr in report["attributes"]})

Following is an example of what this returns:

{'loading xml report.productive zmws': 8014671,
'loading xml report.productivity 0 n': 808345,

'loading xml report.productivity 1 n': 6161738,
'loading xml report.productivity 2 n': 1044588}

How to export demultiplexed datasets

You can retrieve the demultiplexed "child" datasets for a PacBio instrument run, optionally filtering by
barcode name (such as bc2001--bc2001) or biosample name.

Note: Biosample name = well name = well sample name = collection name.

Following is an example of how to do this using Python:

#first get the collection id
collection id = client.get run collections(<run_id>)

9

SMRT Link Python API reference v13.0

This returns:
{

"name": "20230414 84026 16kbHG002 97barcodes ",
"completedAt": "2023-04-18T00:13:42.0322",
"instrumentName": "my-instrument",
"context": "m84026 230415 224020 s3",
"well™: "CO1",
"projectId": 1,
"sequencingKit": "030158102118800101823",
"labelNumber": "00739",
"status": "Complete",
"importedAt": "2023-04-17T23:55:12.727z2",
"instrumentId": "84026",
"startedAt": "2023-04-15T22:40:24.0062",
"createdBy": "admin",
"cellType": "Standard",
"uniqueId": "69b09865-5c23-4717-92ad-75968a43£443",
"collectionPathUri": "/collections/349/r84026_20230414_212018/2_co01",
"ccsExecutionMode": "OnInstrument",
"runId": "0£99fea6-5916-4142-9b82-220a7bb04d13",
"ccsId": "3acce2c3-d904-4d08-abal0-2628d0dcccbf",
"movieMinutes": 1440.0

#uniquelId is the collection id

demuxed datasets = client.get run collection hifi reads barcoded datasets (<run_id>,
<collection_id>,
barcode name=None,

biosample name=None)

Following is an example of what this returns:
[

"name": "20230414 84026 225pM 97Barcodes bsmith",
"updatedAt": "2023-04-17T23:55:12.721z",
"path": "<path>.consensusreadset.xml",
"instrumentControlVersion"™: "1.1.1.11111",
"tags": "ccs,barcoded",

"instrumentName": "my-instrument",

"uuid": "abl234cd-5efg-7h99-0000-0a1209170alb",
"dnaBarcodeName": "bc2096--bc2096",
"totalLength": 891005473,

"projectId": 1,

"numRecords": 56787,

"wellSampleName": "my wellsamplename",
"bioSampleName": "my biosamplename",

"version": "3.0.1",

"cellId": "1000000475102202200071423",

"id": 132,

"md5": "33c8697d37a3feb9fbb844c913ea916c",
"parentName": "20230414 84026 225pM 97Barcodes",
"importedAt": "2023-04-17T23:55:12.7212z2",
"jobId": 27,

10

SMRT Link Python API reference v13.0

"createdAt": "2023-04-17T23:55:12.721z",

"isActive": true,
"createdBy": "bsmith",
"wellName": "CO1",

"cellIndex": 6,

"parentUuid": "3acce2c3-d904-4d08-aba0-2628d0dcccbf",
"metadataContextId": "ml12345 230415 224020 s3",
"numChildren": O,

"numResources": 1,

"runName": "20230414 84026 16kbHG002 97Barcodes",
"datasetType": "PacBio.DataSet.ConsensusReadSet",
"comments": "Record generated by rungc-reports"

"name": "20230414 84026 16kbHG002 97Barcodes-Cell7 (225pM 16kb HG002)",
"updatedAt": "2023-04-17T23:55:12.647z2",
"path": "<path>.consensusreadset.xml",
"instrumentControlVersion": "1.1.1.11111",
"tags": "ccs,barcoded",

"instrumentName": "my-instrument",

"uuid": "7960507a-437a-455b-alb0-9cc6a9c2386d",
"dnaBarcodeName": "bc2095--bc2095",
"totalLength": 553068822,

"projectId": 1,

"numRecords": 37200,

"wellSampleName": "20230414 84026 16kbHG002 97Barcodes",
"bioSampleName": "225pM l6kb HG0O2",

"version": "3.0.1",

"cellId": "1000000475102202200071423",

"id": 131,

"md5": "f21fcf132a20e009b13836cfc403cels",

"parentName": "20230414 84026 16kbHG002 97Barcodes-Cell7 (all samples)",
"importedAt": "2023-04-17T23:55:12.6472",

"jobId": 27,

"createdAt": "2023-04-17T23:55:12.647z2",

"isActive": true,

"createdBy": "admin",

"wellName": "CO1",

"cellIndex": 6,

"parentUuid": "3acce2c3-d904-4d08-aba0-2628d0dcccbf",
"metadataContextId": "m84026 230415 224020 s3",
"numChildren": O,

"numResources": 1,

"runName": "20230414 84026 16kbHG002 97Barcodes",
"datasetType": "PacBio.DataSet.ConsensusReadSet",
"comments": "Record generated by rungc-reports"

11

SMRT Link Python API reference v13.0

How to query datasets

You can retrieve a list of HiFi datasets, with optional search parameters.

Following is an example of how to do this using Python:

client.get consensusreadsets (name=None,
bioSampleName=None,
wellSampleName=None,
metadataContectId=None)

Following is a partial list of supported search terms:
* name (dataset name)
* bioSampleName
* wellSampleName
* metadataContextId (movie name)
You can find the name (dataset name), wellSampleName, and bioSampleName in the SMRT Link GUI here:

View: Projects ® Data HiFi Reads s
Datasets | *2 L] Displaying rows 1to 14 out of 94

Data Set Details > Sample Details Run Data > Metadata >

Demuitiplexed Subsets || §Well Sample Name § ¥ RunName || ¥V Date Created ¥ ¥V Created By . V)| Bio Sample Name | ¥ Barcode Name || V Total Length of Reads Instrument Name |/ 'Version || ¥

You can find the Movie Name by clicking the dataset name and viewing the Dataset Details page.
Search term notes:

+ String searches are always case-insensitive.

+ Most of the non-timestamp string fields in the data model are searchable using partial strings by
adding the prefix 1ike: to the search term, such as
client.get consensusreadsets (bioSampleName="1ike:HG002")

+ The prefixes not : (inequality), unlike:, start: and end: are also supported.

« For numerical fields, not:, 1t:, 1te:, gt:,and gte: are supported, as well as
range: {start}, {end}.

How to terminate a SMRT Link job

You can immediately terminate an analysis job.
Following is an example of how to do this using Python:

client.terminate analysis job(job id)

This returns:

{'message': 'Cromwell workflow <uuid> TERMINATED for <job id>'"}

12

SMRT Link Python API reference v13.0

How to get all created, running, successful, failed, or terminated
analysis jobs

You can search for all analysis jobs of a specific state: CREATED, SUBMITTED, RUNNING, SUCCESSFUL,
FAILED, TERMINATED, Or ABORTED.

Following is an example of how to do this using Python:

terminated jobs = client.get analysis jobs by state(state)

Following is an example that returns all jobs that were terminated:

terminated jobs = client.get analysis jobs by state(state = 'TERMINATED')

Following is an example of what this returns:

[{

"subJobTypeId": "cromwell.workflows.pb assembly hifi",
"name": "test",

"updatedAt": "2023-09-20T07:51:05.6372",

"workflow": "{}",

"path": "<path>",

"state": "TERMINATED",

"tags": "",

"uuid": "1b717£91-6651-45d3-b8cf-elbdb4427f6a",
"externalJobId": "547075£8-674d-4fbb-alba-69£55c627892",
"jobStartedAt": "2023-09-20T07:50:10.3732",
"applicationName": "Genome Assembly",

"projectId": 1,

"childJobsCount": O,

"jobCompletedAt": "2023-09-20T07:51:05.6372",

"jobTypeId": "analysis",

"id": 627,

"smrtlinkVersion": "1.1.1.11111",

"comment": "Description for job Run Analysis Application",

"isNested": false,

"createdAt": "2023-09-20T07:50:05.5672",

"isActive": true,

"createdBy": "bsmith",

"createdByEmail": "bsmith@company.com",

"isMultidob": false,

"jsonSettings": "",

"jobUpdatedAt™: "2023-09-20T07:51:05.6372"
H

13

SMRT Link Python API reference v13.0

How to poll for a job to successfully complete within a specified
timeout

You can poll a submitted job of any type until it completes successfully within the specified timeout, or raise
an exception.

Following is an example of how to do this using Python:
client.poll for successful job(job id, sleep time, max time) :
Following is an example of what this returns:

finished job = client.poll for successful job(job id=<job id>,
sleep time=120,
max_ time=28800)

How to query a Run XML

You can retrieve the XML data model for a PacBio instrument run.
Following is an example of how to do this using Python:

run_xml = client.get run xml (run_id)

This returns the XML as a string; this is the primary format that SMRT Link uses to send instructions to the
instrument, and much of it will end up in the output dataset XMLs (with further modifications from the
instrument software).

How to query a run design
Following is an example of how to do this using Python:
run _design = client.get run design(run_ id)

Following is an example of what this returns for an AAV run:
{
"chipType": "25mChip",

"createdBy": "bsmith",
"experimentDescription": "",
"experimentId": "",
"experimentName": "",
"instrumentType": "Revio",
"runDescription": "",
"runName": "Bsmith Run 09.28.2023 18:27",
"samples": [

{

"application": "AAVAnalysis",

"includeCpG": true,

"isBarcoded": true,

"sampleDescription": "",

"readSegmentation": false,

"demuxMode": "OnInstrument",

"yuid": "9aaee069-8ecf-4b4f-8f37-d0bd6cal3abb5a",
"ccsUuid": "Ofab0fc2-4cl3-496c-aa06-352a30539e6£",
"includeLowQuality": true,

14

SMRT Link Python API reference v13.0

"barcodeCsvFileName": "",
"sampleName": "test-well",

"ccsMode": "OnInstrument",
"includeKinetics": false,
"useDynamicLoading": true,

"loadingConcentration": 0.0,
"projectId": 1,
"adapter": "maslo",
"barcodedSamples": [
{
"bioSampleName": "Bio Sample 1",
"dnaBarcodeName": "bc2001--bc2001",

"uuid": "560148e0-c4a4-4512-9e2c-2c3a89%9a80f6d"
}
1,

"scIsoSeq": false,

"controlKit": "Lxxxxx102798000123199",
"templatePrepKit": "Lxxxxx999999001123199",
"movieTimeHours": 24.0,

"barcodesFasta":

">bc2001\nATCGTGCGACGAGTAT\n>bc2002\nTGCATGTCATGAGTAT\n>bc2003\nACGAGTGCTCGAGTAT\n>bc200
A\nTGCAGTGCTCGAGTAT\n>bc2005\nTGACTCGATCGAGTAT\n>bc2006 \nCATGCGATCTGAGTAT\n>...\n",

"libraryType": "AAV",
"automationParameters": [
{
"name": "MovieLength",
"valueDataType": "Double",
"simpleValue": "1440"
}
I
"sequencingKit": "000000102118800110723",
"labelNumber": "12345",
"primaryAutomationName": "",
"emitSubreadsPercent": 0,
"copyFiles": [1],
"barcodeUuid": "43f950a9-8bde-3855-6b25-c13368069745",
"insertSize": 500,
"wellName": "AO1",
"consensusMode": "strand",
"symmetricBarcodes": true,
"cellType": "human",
"minBarcodeScore": 80,
"heteroduplexDetection": false,
"plateNumber": 1,
"bindingKit": "Lxxxxx102739100123123"

1,

"uuid": "ed27lelb-efa4-4999-ab7f-a945350348c3"

How to create a run design by importing a run design CSV
Following is an example of how to do this using Python:

client.import run design csv(csv_file)

15

SMRT Link Python API reference v13.0

How to find the Run QC reports associated with an analysis job

You can obtain all collection-level reports associated with a run. (Note: This was introduced in SMRT Link
v13.0.)

Following is an example of how to do this using Python:
run_reports = client.get run reports(run_ id)

This returns information about the following reports, including when the report was created and the path to
the report. (Note: To get the content of the reports, see How to find the contents of specific Run QC
reports.)

. import dataset.report detect cpg methyl
* collection.barcode preview report

. import dataset.report adapters

. import dataset.report loading

. import dataset.report raw data

. import dataset.report barcode

. import dataset.report control

. import dataset.report ccs2

. import dataset.report ccs_processing

Following is an example of what this returns:
[

"dataStoreFile": {
"createdAt": "2023-09-28T08:21:56.4262",

"description": "detect cpg methyl",

"fileSize": 1420,

"fileTypeId": "PacBio.FileTypes.JsonReport",

"importedAt": "2023-09-28T08:22:03.9972",

"isActive": true,

"modifiedAt": "2023-09-28T08:21:56.4262",

"name": "Report detect cpg methyl",

"path": "<directories>/reports/detect cpg methyl.report.json",
"sourceId": "import dataset.report detect cpg methyl",

"uuid": "4229c152-4e49-4199-adaa-d6d91££d83b3"
by
"reportTypeId": "import dataset.report detect cpg methyl"
b
{
"dataStoreFile": {
"createdAt": "2023-09-28T08:16:51.6702",

"description": "PacBio Report barcode preview report (6ad9%e5df-5aaf-44d3-9499-
5ad7al0cclo3d) ",
"fileSize": 5381,

"fileTypeId": "PacBio.FileTypes.JsonReport",
"importedAt": "2023-09-28T08:16:51.6832",
"isActive": true,

"modifiedAt": "2023-09-28T08:16:51.670Z2",

"name": "Barcode Preview Report",

"path": "<path>/barcode preview report.report.json",
"sourceId": "collection.barcode preview report",

"uuid": "6ad9%e5df-5aaf-44d3-9499-5ad7alccle3d"
16

SMRT Link Python API reference v13.0

by
"reportTypeId": "collection.barcode preview report"
}y
{
"dataStoreFile": {
"createdAt"™: "2023-09-28T08:21:56.448z2",

"description": "PacBio Report adapter xml report (d340b519-6fdc-401a-b3b0-

731245ec6c26) ",
"fileSize": 836,

"fileTypeId": "PacBio.FileTypes.JsonReport",
"importedAt": "2023-09-28T08:22:03.998z",
"isActive": true,

"modifiedAt": "2023-09-28T08:21:56.4482z",
"name": "Adapter Report",

"path": "<path> /adapter.report.json",
"sourceId": "import dataset.report adapters",

"uuid": "d340b519-6fdc-401la-b3b0-731245ec6c26"
s
"reportTypeId": "import dataset.report adapters"
b
{
"dataStoreFile": {
"createdAt": "2023-09-28T08:21:56.4512",

"description": "PacBio Report loading xml report (a33dfa8c-e591-453d-afe2-

d4f6aab379b6) ",
"fileSize": 4106,

"fileTypeId": "PacBio.FileTypes.JsonReport",
"importedAt": "2023-09-28T08:22:03.998z",

"isActive": true,

"modifiedAt": "2023-09-28 <path> /loading.report.json",
"sourceId": "import dataset.report loading",

"uuid": "a33dfa8c-e591-453d-a%e2-d4f6aab379b6"
by
"reportTypeId": "import dataset.report loading"
bo
{
"dataStoreFile": {
"createdAt": "2023-09-28T08:21:56.4622",

"description": "PacBio Report raw _data report (924e472c-caal-4d3d-bfl0-
df09b850915b) ",

"fileSize": 3390,

"fileTypeId": "PacBio.FileTypes.JsonReport",
"importedAt": "2023-09-28T08:22:03.999z",
"isActive": true,

"modifiedAt": "2023-09-28T08:21:56.46272",
"name": "Raw Data Report",

"path": "<path>/raw data.report.json",
"sourceId": "import dataset.report raw data",

"uuid": "924e472c-caal0-4d3d-bf10-df09p850915b"
b
"reportTypeId": "import dataset.report raw data"
by
{
"dataStoreFile": {
"createdAt": "2023-09-28T08:21:56.6192",

"description": "PacBio Report barcode (63facc29-49f2-4df8-84df-75711813efac)"

17

SMRT Link Python API reference v13.0

"fileSize": 33184,

"fileTypeId": "PacBio.FileTypes.JsonReport",
"importedAt": "2023-09-28T08:22:04.000z",
"isActive": true,

"modifiedAt": "2023-09-28T08:21:56.6192",
"name": "Report barcode",

"path": "<path> /barcodes.report.json",
"sourceId": "import dataset.report barcode",

"uuid": "63facc29-49f2-4df8-84df-75711813efac"
}y
"reportTypeId": "import dataset.report barcode"
I
{
"dataStoreFile": {
"createdAt": "2023-09-28T08:21:56.600z",

"description": "PacBio Report control (2155f2a7-dfa9-4cc2-8el4d-b7677406a8ae)",
"fileSize": 2155,

"fileTypeId": "PacBio.FileTypes.JsonReport",

"importedAt": "2023-09-28T08:22:03.999z",

"isActive": true,

"modifiedAt": "2023-09-28T08:21:56.600Z2",

"name": "Control Report",

"path": "<path>/control.report.json",

"sourceId": "import dataset.report control",

"uuid": "2155f2a7-dfa9-4cc2-8el4-b7677406a8ae"
by
"reportTypeId": "import dataset.report control"
by
{
"dataStoreFile": {
"createdAt": "2023-10-25T08:23:00.230z2",

"description": "PacBio Report ccs2 (e4363794-b72b-40bf-b881-180bf733416a)",
"fileSize": 9777,

"fileTypeId": "PacBio.FileTypes.JsonReport",

"importedAt": "2023-10-25T08:23:16.8952",

"isActive": true,

"modifiedAt": "2023-10-25T08:23:00.2302",

"name": "CCS Analysis Report",

"path": "<path>/reports/ccs.report.json",

"sourceId": "import dataset.report ccs2",

"uuid": "e4363794-b72b-40bf-b881-180bf733416a"
by

"reportTypeId": "import dataset.report ccs2"

18

SMRT Link Python API reference v13.0

How to find the contents of specific Run QC reports
You can obtain the contents of the following Run QC reports:

e Detect CpG Methylation Report
e Barcode Preview Report

e Adapter Report

¢ Loading Report

¢ Raw Data Report

e Report barcode

e Control Report

¢ CCS Analysis Report

Following is an example of how to do this using Python:

reports = client.get run reports(run id)

For r in reports:
report uuid = r["dataStoreFile"] ["uuid"]
report = client.load datastore report file(report uuid)

How to query instrument status, such as Running or Complete

You can obtain the instrument state of an instrument using the instrument’s serial number.

The possible instrument states are:

Starting, WarmUp, SelfTest, Ready, Running, ShuttingDown, Problem. (Ready indicates thatthe
prior run was complete and the instrument is ready to begin sequencing again.)

Following is an example of how to do this using Python:

instrument state = client.get instrument state(serial)

To obtain the instrument states of all your instruments:

instrument states = client.get instrument states()

How to query a job

You can retrieve a job of any type by integer ID or UUID.
Following is an example of how to do this using Python:
job = client.get job(job_id)

Following is an example of what this returns:
{

"subJobTypeId": "cromwell.workflows.pb segment reads",
"name": "Read Segmentation with multiple cells",
"updatedAt™: "2023-09-28T08:28:49.099z",

"workflow": "{}",

"path": "<path>",

"state": "SUCCESSFUL",

19

SMRT Link Python API reference v13.0

"tags": "testkit",

"uuid": "d6eT7b447-4af2-4fb2-9b8b-4188a930aa28",
"externalJdobId": "d698e9f9-c521-449d-961d-b7946931eabf",
"jobStartedAt": "2023-09-28T08:24:36.9862",
"applicationName": "Read Segmentation",

"projectId": 1,

"childJobsCount": O,

"jobCompletedAt": "2023-09-28T08:28:49.099z2",

"jobTypeId": "analysis",

"id": 131,

"smrtlinkVersion": "1.1.1.11111",

"comment": "Description for job Run Analysis Application",

"isNested": false,
"createdAt": "2023-09-28T08:24:35.732z",

"isActive": true,

"createdBy": "bsmith",

"createdByEmail": "bsmith@comp[any.com",

"isMultiJob": false,

"JsonSettings": "{\"name\":\"Read Segmentation with multiple cells\"...}",

"jobUpdatedAt": "2023-09-28T08:28:49.0997Z"
}

How to start a SMRT Link job for a specific workflow
Following is an example of how to do this using Python:

job = client.create analysis job (options)

You can submit a SMRT Analysis job to be run as soon as possible. (This requires that all input datasets
have already been imported.)

Options:
Job options schema:

* pipelineId:Stringsuchas 'cromwell.workflows.pb align ccs'.
* name: Job name string.

* entryPoints: List of dataset entry points.

* taskOptions: List of workflow task options.

* projectId:intornull.

* presetIdistringornull.

Entry point model:

* entryld: Pre-setidentifier,can be any of eid ccs,eid barcode,eid ref dataset,
eid barcode 2,0reid subread.

+ fileTypeId: Dataset MetaType, from the top-level XML tag.
+ datasetId: Dataset UniquelD (UUID).

Task/workflow option model:

* optionId: String ID such as mapping min length.
+ value: string, float, int, bool, or occasionally null.
* optionTypeId: Type of value field.

20

SMRT Link Python API reference v13.0

How to combine a sample split across multiple cells

Following is an example of how to do this using Python:

DS TYPE = "PacBio.DataSet.ConsensusReadSet"
datasets = client.get consensusreadsets (bioSampleName="MySamplel234")
job = client.create merge datasets job([d["uuid"] for d in datasets])

job = client.poll for successful job(job["id"])

datastore = client.get job datastore(job["id"])

merged datasets = [f for f in datastore if f["fileTypeId"] == DS TYPE]

merged datasets = client.get consensusreadsets (jobId=job["id"])

How to poll every 10 minutes until a collection is complete, then
launch a HiFi Mapping job using the official PacBio hg38

reference, and poll until it completes successfully

Following is an example of how to do this using Python:

import time

collection = client.get run collection(run id, collection_ id)
while True:
dataset = client.get dataset search(collection["ccsId"])
if dataset:
break
else:

time.sleep (600)
job = client.create analysis job ({
"name": "My Mapping Job",
"pipelineId": "cromwell.workflows.pb align ccs",
"entryPoints": [
{
"entryId": "my id",
"datasetId": collection["ccsId"],

"fileTypeId": "PacBio.DataSet.ConsensusReadSet"
by
{
"entryId": "my id ref dataset",
"datasetId": "abl234cd-5efg-7h99-0000-0a1209170alb",
"fileTypeId": "PacBio.DataSet.ReferenceSet"
}
1,
"taskOptions": []

})
job = client.poll for successful job(job["id"])

21

SMRT Link Python API reference v13.0

How to find information about the Run QC reports associated with
an analysis job

You can obtain all collection-level reports associated with a run. (Note: This was Introduced in SMRT Link
13.0)

Following is an example of how to do this using Python:

entry points = client.get job entry points(job id)

movie names = set([])

for entry point in entry points:

if entry point["datasetType"] == "PacBio.DataSet.ConsensusReadSet":

dataset = client.get consensusreadset (entry point["datasetUUID"])
movie names.append(dataset["metadataContextId"])

gc_reports = []

for movie name in movie names:

runs = client.get runs(movieName=movie name)
if len(runs) == 1:
collections = client.get run collection(runs([0] ["unique id"])
for collection in collections:
if collection["context"] == movie name:
reports = client.get collection reports(run_id,

collection["unique id"])
gc_reports.append (reports)

How to export demultiplexed dataset metrics as a CSV file

Following is an example of how to do this using Python. Note: This also requires the pbcommand library
distributed with SMRT Link, but it is also possible to extract these data data from the raw report JSON.

from pbcommand.pb io import load report from json
from pbcommand.services.smrtlink client import SmrtLinkClient

def export barcodes report csv(server, user, password, dataset uuid, output file):
client = SmrtLinkClient.connect (server, user, password)
reports = client.get consensusreadset reports(dataset uuid)
for report file in reports:
if "barcode" in report file["reportTypeId"]:
rpt uuid = report file["dataStoreFile"] ["uuid"]
report json = client.load datastore report file(rpt uuid)
report = load report from json(report json)
report.tables[0].to csv(output file)
break
else:
raise RuntimeError (f"Can't find barcodes report for {dataset uuid}")

22

	Cover
	Source SMRT Link Python API Reference v13.0

