WG14/N1256

Contents
Foreword

Introduction

1.

Scope

2. Normative references

3. Terms, definitions, and symbols
4,
5.

Conformance

Environment .

5.1 Conceptual models ..
5.1.1 Translation environment
5.1.2 Execution environments

5.2 Environmental considerations
5.2.1 Character sets
5.2.2 Character display semantlcs
5.2.3 Signals and interrupts
5.2.4 Environmental limits

Language

6.1 Notation

6.2 Concepts Coe
6.2.1 Scopes of ldentlflers
6.2.2 Linkages of identifiers
6.2.3 Name spaces of identifiers
6.2.4 Storage durations of objects
6.2.5 Types .
6.2.6 Representations of types

6.2.7 Compatible type and comp03|te type

6.3 Conversions Co.
6.3.1 Arithmetic operands
6.3.2 Other operands
6.4 Lexical elements
6.4.1 Keywords
6.4.2 Identifiers .
6.4.3 Universal character names
6.4.4 Constants .
6.4.5 String literals
6.4.6 Punctuators
6.4.7 Header names
6.4.8 Preprocessing numbers
6.4.9 Comments
6.5 Expressions

Contents

Committee Draft — Septermber 7, 2007

|SO/IEC 9899:TC3

ISO/IEC 9899:TC3

6.6
6.7

6.8

6.9

6.10

6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8
6.5.9
6.5.10
6.5.11
6.5.12
6.5.13
6.5.14
6.5.15
6.5.16
6.5.17

Primary expressions

Postfix operators

Unary operators

Cast operators .
Multiplicative operators
Additive operators

Bitwise shift operators
Relational operators

Equality operators

Bitwise AND operator
Bitwise exclusive OR operator
Bitwise inclusive OR operator
Logical AND operator
Logical OR operator
Conditional operator
Assignment operators
Comma operator

Constant expressions
Declarations

6.7.1
6.7.2
6.7.3
6.7.4
6.7.5
6.7.6
6.7.7
6.7.8

Storage-class specifiers
Type specifiers

Type qualifiers
Function specifiers
Declarators

Type names

Type definitions
Initialization

Statements and blocks

6.8.1
6.8.2
6.8.3
6.8.4
6.8.5
6.8.6

Labeled statements

Compound statement
Expression and null statements
Selection statements

Iteration statements

Jump statements

External definitions

6.9.1
6.9.2

Function definitions
External object definitions

Preprocessing directives

6.10.1
6.10.2
6.10.3
6.10.4
6.10.5
6.10.6

Conditional inclusion
Source file inclusion
Macro replacement
Line control

Error directive
Pragma directive

Contents

Committee Draft — Septermber 7, 2007

WG14/N1256

69
69
78
81
82
82
84
85
86
87
88
88
89
89
90
91
94
95
97
98
99
108
112
114
122
123
125
131
131
132
132
133
135
136
140
141
143
145
147
149
151
158
159
159

WG14/N1256

6.11 Future language directions
6.11.1 Floating types
6.11.2 Linkages of identifiers
6.11.3 External names .
6.11.4 Character escape sequences
6.11.5 Storage-class specifiers
6.11.6 Function declarators
6.11.7 Function definitions
6.11.8 Pragma directives
6.11.9 Predefined macro names
7. Library .
7.1 Introduction
7.1.1 Definitions of terms
7.1.2 Standard headers
7.1.3 Reserved identifiers
7.1.4 Use of library functions
7.2 Diagnostics <assert . h>
7.2.1 Program diagnostics
7.3 Complex arithmetic <conpl ex. h>
7.3.1 Introduction
7.3.2 Conventions
7.3.3 Branchcuts . . . :
734 TheCX LI M TED_ RANGE pragma
7.3.5 Trigonometric functions .
7.3.6 Hyperbolic functions .
7.3.7 Exponential and logarithmic functlons
7.3.8 Power and absolute-value functions
7.3.9 Manipulation functions
7.4 Character handling <ct ype. h>
7.4.1 Character classification functions
7.4.2 Character case mapping functions
7.5 Errors<errno. h> .. .
7.6 Floating-point environment <f env. h>
7.6.1 The FENV_ACCESS pragma
7.6.2 Floating-point exceptions
7.6.3 Rounding
7.6.4 Environment .
7.7 Characteristics of floating types <f I oat h> .
7.8 Format conversion of integer types <i nt t ypes. h>

6.10.7 Null directive .
6.10.8 Predefined macro names
6.10.9 Pragma operator

7.8.1 Macros for format specifiers . .
7.8.2 Functions for greatest-width integer types

Contents

Committee Draft — Septermber 7, 2007

|SO/IEC 9899:TC3

160
160
161
163
163
163
163
163
163
163
163
163
163

164
164
164
165
166
166
169
169
170
170
171
171
171
172
174
176
177
178
181
181
184
186
187
189
190
193
194
197
198
198
199

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007

Vi

7.9
7.10
7.11

7.12

7.13

7.14

7.15

7.16

7.17
7.18

7.19

Alternative spellings <i s0646. h>

Sizes of integer types<l im t s. h>
Localization <l ocal e. h>

7.11.1 Locale control

7.11.2 Numeric formatting conventlon |an|ry
Mathematics <mat h. h> .

7.12.1 Treatment of error condltlons

7.12.2 The FP_CONTRACT pragma

7.12.3 Classification macros

7.12.4 Trigonometric functions

7.12.5 Hyperbolic functions .

7.12.6 Exponential and logarithmic functlons
7.12.7 Power and absolute-value functions
7.12.8 Error and gamma functions

7.12.9 Nearest integer functions

7.12.10 Remainder functions

7.12.11 Manipulation functions

7.12.12 Maximum, minimum, and posmve dlfference functlons

7.12.13 Floating multiply-add

7.12.14 Comparison macros

Nonlocal jJumps <set j np. h>

7.13.1 Save calling environment

7.13.2 Restore calling environment

Signal handling <si gnal . h>

7.14.1 Specify signal handling

7.14.2 Send signal .
Variable arguments <st dar g. h>

7.15.1 Variable argument list access macros
Boolean type and values <st dbool . h>
Common definitions <st ddef . h>

Integer types <st di nt . h>

7.18.1 Integer types .
7.18.2 Limits of specified- W|dth mteger types
7.18.3 Limits of other integer types

7.18.4 Macros for integer constants
Input/output <st di 0. h>

7.19.1 Introduction

7.19.2 Streams

7193 Files

7.19.4 Operations on flles

7.19.5 File access functions

7.19.6 Formatted input/output functlons
7.19.7 Character input/output functions
7.19.8 Direct input/output functions

Contents

WG14/N1256

202
203
204
205
206
212
214
215
216
218
221
223
228
230
231
235
236
238
239
240
243
243
244
246
247
248
249
249
253
254
255
255
257
259
260
262
262
264
266
268
270
274
296
301

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

7.20

7.21

1.22
7.23

7.24

7.25

7.26

7.19.9 File positioning functions

7.19.10 Error-handling functions

General utilities <st dl i b. h>

7.20.1 Numeric conversion functions .
7.20.2 Pseudo-random sequence generation functlons
7.20.3 Memory management functions

7.20.4 Communication with the environment

7.20.5 Searching and sorting utilities

7.20.6 Integer arithmetic functions .
7.20.7 Multibyte/wide character conversion functlons
7.20.8 Multibyte/wide string conversion functions

String handling <st ri ng. h>

7.21.1 String function conventions

7.21.2 Copying functions

7.21.3 Concatenation functions

7.21.4 Comparison functions

7.21.5 Search functions

7.21.6 Miscellaneous functions

Type-generic math <t gmat h. h>

Date and time <t i ne. h>

7.23.1 Components of time

7.23.2 Time manipulation functions

7.23.3 Time conversion functions . .
Extended multibyte and wide character utllltles <wc har h>
7.24.1 Introduction

7.24.2 Formatted wide character mput/output functlons
7.24.3 Wide character input/output functions

7.24.4 General wide string utilities .

7.24.5 Wide character time conversion functlons .
7.24.6 Extended multibyte/wide character conversion utllltles
Wide character classification and mapping utilities <wct ype. h>
7.25.1 Introduction

7.25.2 Wide character classmcatlon utllltles

7.25.3 Wide character case mapping utilities

Future library directions .

7.26.1 Complex arithmetic <corrp| ex. h>

7.26.2 Character handling <ct ype. h>

7.26.3 Errors <errno. h> .

7.26.4 Format conversion of integer types <| nt t ypes h>
7.26.5 Localization <I ocal e. h>

7.26.6 Signal handling <si gnal . h> Do

7.26.7 Boolean type and values <st dbool . h>

7.26.8 Integer types <st di nt . h>

7.26.9 Input/output <st di 0. h>

Contents

302
304
306
307
312
313
315
318
320
321
323
325
325
325
327
328
330
333
335
338
338
339
341
348
348
349
367
371
385
386
393
393
394
399
401
401
401
401
401
401
401
401
401
402

vii

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

7.26.10 General utilities<stdlib.h> 402
7.26.11 String handling <st ri ng. h> Co Y (2
7.26.12 Extended multibyte and wide character utllltles

<wchar.h> . . R [0 4

7.26.13 Wide character classmcatlon and mapplng utllltles
<wctype.h> L0 .o 402
Annex A (informative) Language syntax summary - (O
Al Lexicalgrammar 403
A.2 Phrase structure grammar 409
A.3 Preprocessing directives & ()
Annex B (informative) Library summary S
B.1 Diagnostics <assert. h> e ¥ K
B.2 Complex<conmplex.h> 419
B.3 Character handling <ctype.h> 421
B.4 Errors<errno.h> . . . e 2 |
B.5 Floating- p0|ntenV|ronment<fenv h> e |
B.6 Characteristics of floating types<float.h> 422
B.7 Format conversion of integer types <i nttypes. h> 422
B.8 Alternative spellings <i so646.h> 423
B.9 Sizes of integer types<limts. h> Y < A
B.10 Localization<l ocale.h> 423
B.11 Mathematics<math.h> 423
B.12 Nonlocal jumps <set j np. h> Y W2
B.13 Signal handling<signal .h> 428
B.14 Variable arguments <stdarg.h> 428
B.15 Boolean type and values <st dbool . h> Y Y24 s
B.16 Common definitions<stddef.h> 429
B.17 Integer types<stdint.h> 429
B.18 Input/output <st di 0. h> e A
B.19 General utilities <st dl i b. h> e X
B.20 String handling<string.h> 433
B.21 Type-generic math <t gmat h. h> 7
B.22 Date and time <t i ne. h> . R 7
B.23 Extended multibyte/wide character utllltles <vvchar h> 435
B.24 Wide character classification and mapping utilities <wct ype. h> . . . 437
Annex C (informative) Sequencepoints 439
Annex D (normative) Universal character names for identifiers 440
Annex E (informative) Implementation limits Y 7.)
Annex F (normative) IEC 60559 floating-point arithmetic 444
F.1 Introduction 4
F2 Types e 4 ¥ Vi
F.3 Operatorsandfunctlons N 72 1)

viii Contents

WG14/N1256 Committee Draft — Septermber 7, 2007

F.4 Floating to integer conversion
F.5 Binary-decimal conversion
F.6 Contracted expressions

F.7 Floating-point environment
F.8 Optimization .
F.9 Mathematics <mat h. h>

Annex G (informative) IEC 60559-compatible complex arithmetic
G.1 Introduction
G.2 Types
G.3 Conventions
G.4 Conversions
G.5 Binary operators
G.6 Complex arithmetic <corrp| ex. h>
G.7 Type-generic math <t grmat h. h>

Annex H (informative) Language independent arithmetic
H.1 Introduction
H.2 Types
H.3 Notification

Annex | (informative) Common warnings

Annex J (informative) Portability issues
J.1 Unspecified behavior
J.2 Undefined behavior :
J.3 Implementation-defined behaV|or
J.4 Locale-specific behavior
J.5 Common extensions

Bibliography
Index

Contents

|SO/IEC 9899:TC3

447
447
448
448
451
454

467
467
467
467
468
468
472
480

481
481
481
485

487

489
489
492
505
512
513

516
519

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

X Contents

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

Foreword

ISO (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission) form the specialized system for worldwide
standardization. National bodies that are member of ISO or IEC participate in the
development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. 1SO and IEC
technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with 1SO and IEC, also
take part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC
Directives, Part 3.

In the field of information technology, ISO and IEC have established a joint technical
committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint technical
committee are circulated to national bodies for voting. Publication as an International
Standard requires approval by at least 75% of the national bodies casting a vote.

International Standard ISO/IEC 9899 was prepared by Joint Technical Committee
ISO/IEC JTC 1, Information technology, Subcommittee SC 22, Programming languages,
their environments and system software interfaces. The Working Group responsible for
this standard (WG 14) maintains a site on the World Wide Web at
http://ww. open-std. org/ JTCLl/ SC22/ Wz14/ containing additional
information relevant to this standard such as a Rationale for many of the decisions made
during its preparation and a log of Defect Reports and Responses.

This second edition cancels and replaces the first edition, 1SO/IEC 9899:1990, as
amended and corrected by ISO/IEC 9899/COR1:1994, ISO/IEC 9899/AMD1:1995, and
ISO/IEC 9899/COR2:1996. Major changes from the previous edition include:

— restricted character set support via digraphs and <i so646. h> (originally specified
in AMD1)

— wide character library support in <wchar. h> and <wctype. h> (originally
specified in AMD1)

— more precise aliasing rules via effective type

— restricted pointers

— variable length arrays

— flexible array members

— st at i c and type qualifiers in parameter array declarators
— complex (and imaginary) support in <conpl ex. h>

— type-generic math macros in <t gmat h. h>

— thel ong | ong i nt type and library functions

Foreword Xi

ISO/IEC 9899:TC3

Xii

Committee Draft — Septermber 7, 2007

increased minimum translation limits

additional floating-point characteristics in <f | oat . h>

remove impliciti nt

reliable integer division

universal character names (\ u and \
extended identifiers

U)

WG14/N1256

hexadecimal floating-point constants and % and %A pri nt f /scanf conversion

specifiers

compound literals
designated initializers
/| comments

extended integer types and library functions in <i ntt ypes. h>and <st di nt . h>

remove implicit function declaration

preprocessor arithmetic done ini nt max_t /ui nt max_t

mixed declarations and code

new block scopes for selection and iteration statements

integer constant type rules
integer promotion rules

macros with a variable number of arguments

the vscanf family of functions in <st di 0. h>and <wchar . h>
additional math library functions in <mat h. h>

treatment of error conditions by math library functions (mat h_er r handl i ng)

floating-point environment access in <f env. h>
IEC 60559 (also known as IEC 559 or IEEE arithmetic) support

trailing comma allowed in enumdeclaration

% f conversion specifier allowed in
inline functions

the snpri nt f family of functions in <st di 0. h>

boolean type in <st dbool . h>
idempotent type qualifiers
empty macro arguments

printf

Foreword

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

— new structure type compatibility rules (tag compatibility)
— additional predefined macro names

— _Pragnma preprocessing operator

— standard pragmas

— __func__ predefined identifier

— va_copy macro

— additional st r f t i me conversion specifiers

— LIA compatibility annex

— deprecate unget c at the beginning of a binary file

— remove deprecation of aliased array parameters

— conversion of array to pointer not limited to lvalues

— relaxed constraints on aggregate and union initialization
— relaxed restrictions on portable header names

— r et ur n without expression not permitted in function that returns a value (and vice
versa)

Annexes D and F form a normative part of this standard; annexes A, B, C, E, G, H, I, J,
the bibliography, and the index are for information only. In accordance with Part 3 of the
ISO/IEC Directives, this foreword, the introduction, notes, footnotes, and examples are
also for information only.

Foreword xiii

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

| ntroduction

With the introduction of new devices and extended character sets, new features may be
added to this International Standard. Subclauses in the language and library clauses warn
implementors and programmers of usages which, though valid in themselves, may
conflict with future additions.

Certain features are obsolescent, which means that they may be considered for
withdrawal in future revisions of this International Standard. They are retained because
of their widespread use, but their use in new implementations (for implementation
features) or new programs (for language [6.11] or library features [7.26]) is discouraged.

This International Standard is divided into four major subdivisions:

— preliminary elements (clauses 1-4);

— the characteristics of environments that translate and execute C programs (clause 5);
— the language syntax, constraints, and semantics (clause 6);

— the library facilities (clause 7).

Examples are provided to illustrate possible forms of the constructions described.
Footnotes are provided to emphasize consequences of the rules described in that
subclause or elsewhere in this International Standard. References are used to refer to
other related subclauses. Recommendations are provided to give advice or guidance to
implementors. Annexes provide additional information and summarize the information
contained in this International Standard. A bibliography lists documents that were
referred to during the preparation of the standard.

The language clause (clause 6) is derived from “The C Reference Manual”.
The library clause (clause 7) is based on the 1984 /usr/group Sandard.

Xiv Introduction

INTERNATIONAL STANDARD ©ISO/IEC ISO/IEC 9899:TC3

Programming languages — C

1. Scope

This International Standard specifies the form and establishes the interpretation of
programs written in the C programming language.”) It specifies

— the representation of C programs;

— the syntax and constraints of the C language;

— the semantic rules for interpreting C programs;

— the representation of input data to be processed by C programs;

— the representation of output data produced by C programs;

— the restrictions and limits imposed by a conforming implementation of C.
This International Standard does not specify

— the mechanism by which C programs are transformed for use by a data-processing
system;

— the mechanism by which C programs are invoked for use by a data-processing
system;

— the mechanism by which input data are transformed for use by a C program;

— the mechanism by which output data are transformed after being produced by a C
program;

— the size or complexity of a program and its data that will exceed the capacity of any
specific data-processing system or the capacity of a particular processor;

1) This International Standard is designed to promote the portability of C programs among a variety of
data-processing systems. It is intended for use by implementors and programmers.

81 General 1

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

— all minimal requirements of a data-processing system that is capable of supporting a
conforming implementation.

2. Normativereferences

The following normative documents contain provisions which, through reference in this
text, constitute provisions of this International Standard. For dated references,
subsequent amendments to, or revisions of, any of these publications do not apply.
However, parties to agreements based on this International Standard are encouraged to
investigate the possibility of applying the most recent editions of the normative
documents indicated below. For undated references, the latest edition of the normative
document referred to applies. Members of 1SO and IEC maintain registers of currently
valid International Standards.

ISO 31-11:1992, Quantities and units — Part 11: Mathematical signs and symbols for
use in the physical sciences and technology.

ISO/IEC 646, Information technology — ISO 7-bit coded character set for information
interchange.

ISO/IEC 2382-1:1993, Information technology — Vocabulary — Part 1: Fundamental
terms.

ISO 4217, Codes for the representation of currencies and funds.

ISO 8601, Data elements and interchange formats — Information interchange —
Representation of dates and times.

ISO/IEC 10646 (all parts), Information technology — Universal Multiple-Octet Coded
Character Set (UCS).

IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems (previously
designated IEC 559:1989).

2 General 82

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

3. Terms, definitions, and symbols

For the purposes of this International Standard, the following definitions apply. Other
terms are defined where they appear in italic type or on the left side of a syntax rule.
Terms explicitly defined in this International Standard are not to be presumed to refer
implicitly to similar terms defined elsewhere. Terms not defined in this International
Standard are to be interpreted according to ISO/IEC 2382-1. Mathematical symbols not
defined in this International Standard are to be interpreted according to ISO 31-11.

3.1
access
[@xecution-time action[to read or modify the value of an object

NOTE 1 Where only one of these two actions is meant, “read” or “modify” is used.
NOTE 2 "Modify” includes the case where the new value being stored is the same as the previous value.

NOTE 3 Expressions that are not evaluated do not access objects.

3.2

alignment

requirement that objects of a particular type be located on storage boundaries with
addresses that are particular multiples of a byte address

3.3

argument

actual argument

actual parameter (deprecated)

expression in the comma-separated list bounded by the parentheses in a function call
expression, or a sequence of preprocessing tokens in the comma-separated list bounded
by the parentheses in a function-like macro invocation

3.4
behavior
external appearance or action

34.1
implementation-defined behavior
unspecified behavior where each implementation documents how the choice is made

EXAMPLE An example of implementation-defined behavior is the propagation of the high-order bit
when a signed integer is shifted right.

3.4.2

locale-specific behavior

behavior that depends on local conventions of nationality, culture, and language that each
implementation documents

8§3.4.2 General 3

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

EXAMPLE An example of locale-specific behavior is whether the i sl ower function returns true for
characters other than the 26 lowercase Latin letters.

3.4.3

undefined behavior

behavior, upon use of a nonportable or erroneous program construct or of erroneous data,
for which this International Standard imposes no requirements

NOTE Possible undefined behavior ranges from ignoring the situation completely with unpredictable
results, to behaving during translation or program execution in a documented manner characteristic of the

environment (with or without the issuance of a diagnostic message), to terminating a translation or
execution (with the issuance of a diagnostic message).

EXAMPLE An example of undefined behavior is the behavior on integer overflow.

3.4.4

unspecified behavior

use of an unspecified value, or other behavior where this International Standard provides
two or more possibilities and imposes no further requirements on which is chosen in any
instance

EXAMPLE An example of unspecified behavior is the order in which the arguments to a function are
evaluated.

3.5
bit

unit of data storage in the execution environment large enough to hold an object that may
have one of two values

NOTE It need not be possible to express the address of each individual bit of an object.

3.6

byte

addressable unit of data storage large enough to hold any member of the basic character
set of the execution environment

NOTE 1 Itis possible to express the address of each individual byte of an object uniquely.

NOTE 2 A byte is composed of a contiguous sequence of bits, the number of which is implementation-
defined. The least significant bit is called the low-order bit; the most significant bit is called the high-order
bit.

3.7

character

[@bstractl) member of a set of elements used for the organization, control, or
representation of data

3.7.1

character

single-byte character

[CLCDbit representation that fits in a byte

4 General §3.7.1

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

3.7.2

multibyte char acter

sequence of one or more bytes representing a member of the extended character set of
either the source or the execution environment

NOTE The extended character set is a superset of the basic character set.

3.7.3

wide char acter

bit representation that fits in an object of type wchar _t, capable of representing any
character in the current locale

3.8

constraint

restriction, either syntactic or semantic, by which the exposition of language elements is
to be interpreted

3.9

correctly rounded result

representation in the result format that is nearest in value, subject to the current rounding
mode, to what the result would be given unlimited range and precision

3.10

diagnostic message

message belonging to an implementation-defined subset of the implementation’s message
output

3.11

forward reference

reference to a later subclause of this International Standard that contains additional
information relevant to this subclause

3.12

implementation

particular set of software, running in a particular translation environment under particular
control options, that performs translation of programs for, and supports execution of
functions in, a particular execution environment

3.13

implementation limit

restriction imposed upon programs by the implementation

3.14

obj ect

region of data storage in the execution environment, the contents of which can represent
values

8§3.14 General 5

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

NOTE When referenced, an object may be interpreted as having a particular type; see 6.3.2.1.

3.15

parameter

formal parameter

formal argument (deprecated)

object declared as part of a function declaration or definition that acquires a value on
entry to the function, or an identifier from the comma-separated list bounded by the
parentheses immediately following the macro name in a function-like macro definition

3.16

recommended practice

specification that is strongly recommended as being in keeping with the intent of the
standard, but that may be impractical for some implementations

3.17
value
precise meaning of the contents of an object when interpreted as having a specific type

3.17.1
implementation-defined value
unspecified value where each implementation documents how the choice is made

3.17.2
indeterminate value
either an unspecified value or a trap representation

3.17.3

unspecified value

valid value of the relevant type where this International Standard imposes no
requirements on which value is chosen in any instance

NOTE An unspecified value cannot be a trap representation.

3.18

X0
ceiling of x: the least integer greater than or equal to x

EXAMPLE [2.4js 3, (2. 40jis —2.

3.19

XO
floor of x: the greatest integer less than or equal to x

EXAMPLE [2.4jis 2, [32. 40jis 3.

6 General §3.19

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

4. Conformance

In this International Standard, “shall” is to be interpreted as a requirement on an
implementation or on a program; conversely, *“shall not” is to be interpreted as a
prohibition.

If a “shall” or ““shall not™ requirement that appears outside of a constraint is violated, the
behavior is undefined. Undefined behavior is otherwise indicated in this International
Standard by the words “undefined behavior™ or by the omission of any explicit definition
of behavior. There is no difference in emphasis among these three; they all describe
“behavior that is undefined”.

A program that is correct in all other aspects, operating on correct data, containing
unspecified behavior shall be a correct program and act in accordance with 5.1.2.3.

The implementation shall not successfully translate a preprocessing translation unit
containing a #er r or preprocessing directive unless it is part of a group skipped by
conditional inclusion.

A strictly conforming program shall use only those features of the language and library
specified in this International Standard.?) It shall not produce output dependent on any
unspecified, undefined, or implementation-defined behavior, and shall not exceed any
minimum implementation limit.

The two forms of conforming implementation are hosted and freestanding. A conforming
hosted implementation shall accept any strictly conforming program. A conforming
freestanding implementation shall accept any strictly conforming program that does not
use complex types and in which the use of the features specified in the library clause
(clause 7) is confined to the contents of the standard headers <fl oat. h>,
<i s0646. h>, <limts.h> <stdarg. h> <stdbool.h>, <stddef. h>, and
<st di nt . h>. A conforming implementation may have extensions (including additional
library functions), provided they do not alter the behavior of any strictly conforming
program.®

2) A strictly conforming program can use conditional features (such as those in annex F) provided the
use is guarded by a #i f def directive with the appropriate macro. For example:

#ifdef __STDC IEC 559 _ /* FE_UPWARD defined */

[* ..*
f eset r ound(FE_UPWARD) ;
[* %

#endi f

3) This implies that a conforming implementation reserves no identifiers other than those explicitly
reserved in this International Standard.

84 General 7

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

A conforming program is one that is acceptable to a conforming implementation.®

An implementation shall be accompanied by a document that defines all implementation-
defined and locale-specific characteristics and all extensions.

Forward references. conditional inclusion (6.10.1), error directive (6.10.5),
characteristics of floating types <f | oat . h> (7.7), alternative spellings <i s0646. h>
(7.9), sizes of integer types <l i m ts. h> (7.10), variable arguments <st dar g. h>
(7.15), boolean type and values <stdbool.h> (7.16), common definitions
<st ddef . h> (7.17), integer types <st di nt . h> (7.18).

4) Strictly conforming programs are intended to be maximally portable among conforming
implementations. Conforming programs may depend upon nonportable features of a conforming
implementation.

8 General 84

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

5. Environment

An implementation translates C source files and executes C programs in two data-
processing-system environments, which will be called the translation environment and
the execution environment in this International Standard. Their characteristics define and
constrain the results of executing conforming C programs constructed according to the
syntactic and semantic rules for conforming implementations.

Forward references: In this clause, only a few of many possible forward references
have been noted.

5.1 Conceptual models
5.1.1 Trandlation environment
5.1.1.1 Program structure

A C program need not all be translated at the same time. The text of the program is kept
in units called source files, (or preprocessing files) in this International Standard. A
source file together with all the headers and source files included via the preprocessing
directive #i ncl ude is known as a preprocessing translation unit. After preprocessing, a
preprocessing translation unit is called a translation unit. Previously translated translation
units may be preserved individually or in libraries. The separate translation units of a
program communicate by (for example) calls to functions whose identifiers have external
linkage, manipulation of objects whose identifiers have external linkage, or manipulation
of data files. Translation units may be separately translated and then later linked to
produce an executable program.

Forward references. linkages of identifiers (6.2.2), external definitions (6.9),
preprocessing directives (6.10).

5.1.1.2 Trandation phases

The precedence among the syntax rules of translation is specified by the following
phases.”)

1. Physical source file multibyte characters are mapped, in an implementation-
defined manner, to the source character set (introducing new-line characters for
end-of-line indicators) if necessary. Trigraph sequences are replaced by
corresponding single-character internal representations.

5) Implementations shall behave as if these separate phases occur, even though many are typically folded
together in practice. Source files, translation units, and translated translation units need not |
necessarily be stored as files, nor need there be any one-to-one correspondence between these entities |
and any external representation. The description is conceptual only, and does not specify any |
particular implementation.

§5.1.1.2 Environment 9

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Each instance of a backslash character (\) immediately followed by a new-line
character is deleted, splicing physical source lines to form logical source lines.
Only the last backslash on any physical source line shall be eligible for being part
of such a splice. A source file that is not empty shall end in a new-line character,
which shall not be immediately preceded by a backslash character before any such
splicing takes place.

The source file is decomposed into preprocessing tokens® and sequences of
white-space characters (including comments). A source file shall not end in a
partial preprocessing token or in a partial comment. Each comment is replaced by
one space character. New-line characters are retained. Whether each nonempty
sequence of white-space characters other than new-line is retained or replaced by
one space character is implementation-defined.

Preprocessing directives are executed, macro invocations are expanded, and
__Pragma unary operator expressions are executed. If a character sequence that
matches the syntax of a universal character name is produced by token
concatenation (6.10.3.3), the behavior is undefined. A #i ncl ude preprocessing
directive causes the named header or source file to be processed from phase 1
through phase 4, recursively. All preprocessing directives are then deleted.

Each source character set member and escape sequence in character constants and
string literals is converted to the corresponding member of the execution character
set; if there is no corresponding member, it is converted to an implementation-
defined member other than the null (wide) character.”

Adjacent string literal tokens are concatenated.

White-space characters separating tokens are no longer significant. Each
preprocessing token is converted into a token. The resulting tokens are
syntactically and semantically analyzed and translated as a translation unit.

All external object and function references are resolved. Library components are
linked to satisfy external references to functions and objects not defined in the
current translation. All such translator output is collected into a program image
which contains information needed for execution in its execution environment.

Forward references. wuniversal character names (6.4.3), lexical elements (6.4),
preprocessing directives (6.10), trigraph sequences (5.2.1.1), external definitions (6.9).

6)

7)

10

As described in 6.4, the process of dividing a source file’s characters into preprocessing tokens is
context-dependent. For example, see the handling of < within a #i ncl ude preprocessing directive.

An implementation need not convert all non-corresponding source characters to the same execution
character.

Environment §5.1.1.2

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

5.1.1.3 Diagnostics

A conforming implementation shall produce at least one diagnostic message (identified in
an implementation-defined manner) if a preprocessing translation unit or translation unit
contains a violation of any syntax rule or constraint, even if the behavior is also explicitly
specified as undefined or implementation-defined. Diagnostic messages need not be
produced in other circumstances.?)

EXAMPLE An implementation shall issue a diagnostic for the translation unit:

char i;

int i;
because in those cases where wording in this International Standard describes the behavior for a construct
as being both a constraint error and resulting in undefined behavior, the constraint error shall be diagnosed.

5.1.2 Execution environments

Two execution environments are defined: freestanding and hosted. In both cases,
program startup occurs when a designated C function is called by the execution
environment. All objects with static storage duration shall be initialized (set to their
initial values) before program startup. The manner and timing of such initialization are
otherwise unspecified. Program termination returns control to the execution
environment.

Forward references. storage durations of objects (6.2.4), initialization (6.7.8).
5.1.2.1 Freestanding environment

In a freestanding environment (in which C program execution may take place without any
benefit of an operating system), the name and type of the function called at program
startup are implementation-defined. Any library facilities available to a freestanding
program, other than the minimal set required by clause 4, are implementation-defined.

The effect of program termination in a freestanding environment is implementation-
defined.

5.1.2.2 Hosted environment

A hosted environment need not be provided, but shall conform to the following
specifications if present.

8) The intent is that an implementation should identify the nature of, and where possible localize, each
violation. Of course, an implementation is free to produce any number of diagnostics as long as a
valid program is still correctly translated. It may also successfully translate an invalid program.

§5.1.2.2 Environment 11

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

5.1.2.2.1 Program startup

The function called at program startup is named mai n. The implementation declares no
prototype for this function. It shall be defined with a return type of i nt and with no
parameters:

int main(void) { /* .. * }

or with two parameters (referred to here as ar gc and ar gv, though any names may be
used, as they are local to the function in which they are declared):

int main(int argc, char *argv[]) { /* .. */ }
or equivalent;?) or in some other implementation-defined manner.

If they are declared, the parameters to the nai n function shall obey the following
constraints:

— The value of ar gc shall be nonnegative.
— ar gv[ar gc] shall be a null pointer.

— If the value of ar gc is greater than zero, the array members ar gv[O] through
argv[argc- 1] inclusive shall contain pointers to strings, which are given
implementation-defined values by the host environment prior to program startup. The
intent is to supply to the program information determined prior to program startup
from elsewhere in the hosted environment. If the host environment is not capable of
supplying strings with letters in both uppercase and lowercase, the implementation
shall ensure that the strings are received in lowercase.

— If the value of argc is greater than zero, the string pointed to by ar gv[O]
represents the program name; ar gv[O] [O] shall be the null character if the
program name is not available from the host environment. If the value of ar gc is
greater than one, the strings pointed to by ar gv[1] through ar gv[argc- 1]
represent the program parameters.

— The parameters ar gc and ar gv and the strings pointed to by the ar gv array shall
be modifiable by the program, and retain their last-stored values between program
startup and program termination.

5.1.2.2.2 Program execution

In a hosted environment, a program may use all the functions, macros, type definitions,
and objects described in the library clause (clause 7).

9) Thus, i nt can be replaced by a typedef name defined as i nt, or the type of ar gv can be written as
char ** argv,andsoon.

12 Environment §5.1.2.2.2

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

5.1.2.2.3 Program ter mination

If the return type of the mai n function is a type compatible with i nt, a return from the
initial call to the mai n function is equivalent to calling the exi t function with the value
returned by the mai n function as its argument;}?) reaching the } that terminates the
mai n function returns a value of 0. If the return type is not compatible with i nt, the
termination status returned to the host environment is unspecified.

Forward references. definition of terms (7.1.1), the exi t function (7.20.4.3).
5.1.2.3 Program execution

The semantic descriptions in this International Standard describe the behavior of an
abstract machine in which issues of optimization are irrelevant.

Accessing a volatile object, modifying an object, modifying a file, or calling a function
that does any of those operations are all side effects,'?) which are changes in the state of
the execution environment. Evaluation of an expression may produce side effects. At
certain specified points in the execution sequence called sequence points, all side effects
of previous evaluations shall be complete and no side effects of subsequent evaluations
shall have taken place. (A summary of the sequence points is given in annex C.)

In the abstract machine, all expressions are evaluated as specified by the semantics. An
actual implementation need not evaluate part of an expression if it can deduce that its
value is not used and that no needed side effects are produced (including any caused by
calling a function or accessing a volatile object).

When the processing of the abstract machine is interrupted by receipt of a signal, only the
values of objects as of the previous sequence point may be relied on. Objects that may be
modified between the previous sequence point and the next sequence point need not have
received their correct values yet.

The least requirements on a conforming implementation are:

— At sequence points, volatile objects are stable in the sense that previous accesses are
complete and subsequent accesses have not yet occurred.

10) In accordance with 6.2.4, the lifetimes of objects with automatic storage duration declared in mai n
will have ended in the former case, even where they would not have in the latter.

11) The IEC 60559 standard for binary floating-point arithmetic requires certain user-accessible status
flags and control modes. Floating-point operations implicitly set the status flags; modes affect result
values of floating-point operations. Implementations that support such floating-point state are
required to regard changes to it as side effects — see annex F for details. The floating-point
environment library <f env. h> provides a programming facility for indicating when these side
effects matter, freeing the implementations in other cases.

§5.1.2.3 Environment 13

10

11

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

— At program termination, all data written into files shall be identical to the result that
execution of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place as specified in
7.19.3. The intent of these requirements is that unbuffered or line-buffered output
appear as soon as possible, to ensure that prompting messages actually appear prior to
a program waiting for input.

What constitutes an interactive device is implementation-defined.

More stringent correspondences between abstract and actual semantics may be defined by
each implementation.

EXAMPLE 1 An implementation might define a one-to-one correspondence between abstract and actual
semantics: at every sequence point, the values of the actual objects would agree with those specified by the
abstract semantics. The keyword vol at i | e would then be redundant.

Alternatively, an implementation might perform various optimizations within each translation unit, such
that the actual semantics would agree with the abstract semantics only when making function calls across
translation unit boundaries. In such an implementation, at the time of each function entry and function
return where the calling function and the called function are in different translation units, the values of all
externally linked objects and of all objects accessible via pointers therein would agree with the abstract
semantics. Furthermore, at the time of each such function entry the values of the parameters of the called
function and of all objects accessible via pointers therein would agree with the abstract semantics. In this
type of implementation, objects referred to by interrupt service routines activated by the si gnal function
would require explicit specification of vol ati | e storage, as well as other implementation-defined
restrictions.

EXAMPLE 2 In executing the fragment

char c¢1, c2;
[* .. *
cl = cl + c2;

the *“integer promotions” require that the abstract machine promote the value of each variable to i nt size
and then add the two i nt s and truncate the sum. Provided the addition of two char s can be done without
overflow, or with overflow wrapping silently to produce the correct result, the actual execution need only
produce the same result, possibly omitting the promotions.

EXAMPLE 3 Similarly, in the fragment
float f1, f2;

doubl e d;
[* ... %
fi1=1%f2* d;

the multiplication may be executed using single-precision arithmetic if the implementation can ascertain
that the result would be the same as if it were executed using double-precision arithmetic (for example, if d
were replaced by the constant 2. 0, which has type doubl e).

14 Environment §5.1.2.3

12

13

14

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

EXAMPLE 4 Implementations employing wide registers have to take care to honor appropriate
semantics. Values are independent of whether they are represented in a register or in memory. For
example, an implicit spilling of a register is not permitted to alter the value. Also, an explicit store and load
is required to round to the precision of the storage type. In particular, casts and assignments are required to
perform their specified conversion. For the fragment

doubl e d1, d2;

float f;

dl = f = expression;

d2 = (float) expression;

the values assigned to d1 and d2 are required to have been converted to f | oat .

EXAMPLE 5 Rearrangement for floating-point expressions is often restricted because of limitations in
precision as well as range. The implementation cannot generally apply the mathematical associative rules
for addition or multiplication, nor the distributive rule, because of roundoff error, even in the absence of
overflow and underflow. Likewise, implementations cannot generally replace decimal constants in order to
rearrange expressions. In the following fragment, rearrangements suggested by mathematical rules for real
numbers are often not valid (see F.8).

double x, vy, z;
[* %

X = (x *vy) * z; [/l notequivalenttox *=y * z;
zZ =(x-vy) +y; Il notequivalenttoz = x;
Z =X + X *y; /1 notequivalenttoz = x * (1.0 + vy);
y =x 1/ 5.0; /'l notequivalenttoy = x * 0. 2;
EXAMPLE 6 To illustrate the grouping behavior of expressions, in the following fragment
int a, b;
I* .

a=a+ 32760 + b + 5;
the expression statement behaves exactly the same as
a = (((a + 32760) + b) + 5);

due to the associativity and precedence of these operators. Thus, the result of the sum (a + 32760) is
next added to b, and that result is then added to 5 which results in the value assigned to a. On a machine in
which overflows produce an explicit trap and in which the range of values representable by an i nt is
[-32768, +32767], the implementation cannot rewrite this expression as

a = ((a+b) + 32765);

since if the values for a and b were, respectively, —32754 and -15, the sum a + b would produce a trap
while the original expression would not; nor can the expression be rewritten either as

((a + 32765) + b);

a
or

a (a + (b + 32765));

since the values for a and b might have been, respectively, 4 and -8 or =17 and 12. However, on a machine
in which overflow silently generates some value and where positive and negative overflows cancel, the
above expression statement can be rewritten by the implementation in any of the above ways because the
same result will occur.

§5.1.2.3 Environment 15

15

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

EXAMPLE 7 The grouping of an expression does not completely determine its evaluation. In the
following fragment

#include <stdio.h>

int sum;

char *p;

/* ... */

sum = sum * 10 - "0" + (*p++ = getchar());

the expression statement is grouped as if it were written as
sum = (((sum * 10) - "0") + ((*(p++)) = (getchar())));

but the actual increment of p can occur at any time between the previous sequence point and the next
sequence point (the ;), and the call to getchar can occur at any point prior to the need of its returned
value.

Forward references. expressions (6.5), type qualifiers (6.7.3), statements (6.8), the
signal function (7.14), files (7.19.3).

16 Environment §5.1.2.3

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

5.2 Environmental considerations
5.2.1 Character sets

Two sets of characters and their associated collating sequences shall be defined: the set in
which source files are written (the source character set), and the set interpreted in the
execution environment (the execution character set). Each set is further divided into a
basic character set, whose contents are given by this subclause, and a set of zero or more
locale-specific members (which are not members of the basic character set) called
extended characters. The combined set is also called the extended character set. The
values of the members of the execution character set are implementation-defined.

In a character constant or string literal, members of the execution character set shall be
represented by corresponding members of the source character set or by escape
sequences consisting of the backslash \ followed by one or more characters. A byte with
all bits set to 0, called the null character, shall exist in the basic execution character set; it
is used to terminate a character string.

Both the basic source and basic execution character sets shall have the following
members: the 26 uppercase letters of the Latin alphabet

A B CDEFGH 1T J K L M

N O P QR ST UV WX Y Z
the 26 lowercase letters of the Latin alphabet
a b c de f gh i1 j k I m

n o p qgr s t uwvw Xy z
the 10 decimal digits

O 1 2 3 45 6 7 8 9
the following 29 graphic characters

Pt o# % & T (D) *+ , - . [/ -

;< =>20 1"~ _ {1 } -
the space character, and control characters representing horizontal tab, vertical tab, and
form feed. The representation of each member of the source and execution basic
character sets shall fit in a byte. In both the source and execution basic character sets, the
value of each character after O in the above list of decimal digits shall be one greater than
the value of the previous. In source files, there shall be some way of indicating the end of
each line of text; this International Standard treats such an end-of-line indicator as if it
were a single new-line character. In the basic execution character set, there shall be
control characters representing alert, backspace, carriage return, and new line. If any

other characters are encountered in a source file (except in an identifier, a character
constant, a string literal, a header name, a comment, or a preprocessing token that is never

§5.2.1 Environment 17

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

converted to a token), the behavior is undefined.

A letter is an uppercase letter or a lowercase letter as defined above; in this International
Standard the term does not include other characters that are letters in other alphabets.

The universal character name construct provides a way to name other characters.

Forward references. universal character names (6.4.3), character constants (6.4.4.4),
preprocessing directives (6.10), string literals (6.4.5), comments (6.4.9), string (7.1.1).

5.2.1.1 Trigraph sequences

Before any other processing takes place, each occurrence of one of the following
sequences of three characters (called trigraph sequences'?) is replaced with the
corresponding single character.

??7= # ??2) 1] 2?20 |
2 [7?7 N ??> }
??/ \ ?72< { 27 ~

No other trigraph sequences exist. Each ? that does not begin one of the trigraphs listed
above is not changed.

EXAMPLE 1

becomes
#define arraycheck(a, b) a[b] || b[al
EXAMPLE 2 The following source line
printf(""Eh???/n");
becomes (after replacement of the trigraph sequence ??/)
printf(""Eh?\n"");
5.2.1.2 Multibyte characters
The source character set may contain multibyte characters, used to represent members of
the extended character set. The execution character set may also contain multibyte

characters, which need not have the same encoding as for the source character set. For
both character sets, the following shall hold:

— The basic character set shall be present and each character shall be encoded as a
single byte.

— The presence, meaning, and representation of any additional members is locale-
specific.

12) The trigraph sequences enable the input of characters that are not defined in the Invariant Code Set as
described in ISO/IEC 646, which is a subset of the seven-bit US ASCII code set.

18 Environment 8§5.2.1.2

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

— A multibyte character set may have a state-dependent encoding, wherein each
sequence of multibyte characters begins in an initial shift state and enters other
locale-specific shift states when specific multibyte characters are encountered in the
sequence. While in the initial shift state, all single-byte characters retain their usual
interpretation and do not alter the shift state. The interpretation for subsequent bytes
in the sequence is a function of the current shift state.

— A byte with all bits zero shall be interpreted as a null character independent of shift
state. Such a byte shall not occur as part of any other multibyte character.

For source files, the following shall hold:

— An identifier, comment, string literal, character constant, or header name shall begin
and end in the initial shift state.

— An identifier, comment, string literal, character constant, or header name shall consist
of a sequence of valid multibyte characters.

5.2.2 Character display semantics

The active position is that location on a display device where the next character output by
the f put ¢ function would appear. The intent of writing a printing character (as defined
by the i spri nt function) to a display device is to display a graphic representation of
that character at the active position and then advance the active position to the next
position on the current line. The direction of writing is locale-specific. If the active
position is at the final position of a line (if there is one), the behavior of the display device
Is unspecified.

Alphabetic escape sequences representing nongraphic characters in the execution
character set are intended to produce actions on display devices as follows:

\ a (alert) Produces an audible or visible alert without changing the active position.

\ b (backspace) Moves the active position to the previous position on the current line. If
the active position is at the initial position of a line, the behavior of the display
device is unspecified.

\ f (form feed) Moves the active position to the initial position at the start of the next
logical page.

\ n (new line) Moves the active position to the initial position of the next line.
\ r (carriage return) Moves the active position to the initial position of the current line.

\'t (horizontal tab) Moves the active position to the next horizontal tabulation position
on the current line. If the active position is at or past the last defined horizontal
tabulation position, the behavior of the display device is unspecified.

\'v (vertical tab) Moves the active position to the initial position of the next vertical
tabulation position. If the active position is at or past the last defined vertical

§5.2.2 Environment 19

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

tabulation position, the behavior of the display device is unspecified.

Each of these escape sequences shall produce a unique implementation-defined value
which can be stored in a single char object. The external representations in a text file
need not be identical to the internal representations, and are outside the scope of this
International Standard.

Forward references: thei spri nt function (7.4.1.8), the f put ¢ function (7.19.7.3).
5.2.3 Signalsand interrupts

Functions shall be implemented such that they may be interrupted at any time by a signal,
or may be called by a signal handler, or both, with no alteration to earlier, but still active,
invocations’ control flow (after the interruption), function return values, or objects with
automatic storage duration. All such objects shall be maintained outside the function
image (the instructions that compose the executable representation of a function) on a
per-invocation basis.

5.2.4 Environmental limits

Both the translation and execution environments constrain the implementation of
language translators and libraries. The following summarizes the language-related
environmental limits on a conforming implementation; the library-related limits are
discussed in clause 7.

5.2.4.1 Trandation limits

The implementation shall be able to translate and execute at least one program that
contains at least one instance of every one of the following limits:'®

— 127 nesting levels of blocks
— 63 nesting levels of conditional inclusion

— 12 pointer, array, and function declarators (in any combinations) modifying an
arithmetic, structure, union, or incomplete type in a declaration

— 63 nesting levels of parenthesized declarators within a full declarator
— 63 nesting levels of parenthesized expressions within a full expression

— 63 significant initial characters in an internal identifier or a macro name (each
universal character name or extended source character is considered a single
character)

— 31 significant initial characters in an external identifier (each universal character name
specifying a short identifier of 0000FFFF or less is considered 6 characters, each

13) Implementations should avoid imposing fixed translation limits whenever possible.

20 Environment §5.2.4.1

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

universal character name specifying a short identifier of 00010000 or more is
considered 10 characters, and each extended source character is considered the same
number of characters as the corresponding universal character name, if any)4

— 4095 external identifiers in one translation unit

— 511 identifiers with block scope declared in one block

— 4095 macro identifiers simultaneously defined in one preprocessing translation unit
— 127 parameters in one function definition

— 127 arguments in one function call

— 127 parameters in one macro definition

— 127 arguments in one macro invocation

— 4095 characters in a logical source line

— 4095 characters in a character string literal or wide string literal (after concatenation)
— 65535 bytes in an object (in a hosted environment only)

— 15 nesting levels for #i ncl uded files

— 1023 case labels for a swi t ch statement (excluding those for any nested swi t ch
statements)

— 1023 members in a single structure or union

— 1023 enumeration constants in a single enumeration

— 63 levels of nested structure or union definitions in a single struct-declaration-list
5.2.4.2 Numerical limits

An implementation is required to document all the limits specified in this subclause,
which are specified in the headers <l i m t s. h>and <f | oat . h>. Additional limits are
specified in <st di nt . h>.

Forward references. integer types <st di nt . h> (7.18).
5.2.4.2.1 Sizesof integer types<limts. h>

The values given below shall be replaced by constant expressions suitable for use in #i f
preprocessing directives. Moreover, except for CHAR BI T and MB_LEN MAX, the
following shall be replaced by expressions that have the same type as would an
expression that is an object of the corresponding type converted according to the integer
promotions. Their implementation-defined values shall be equal or greater in magnitude

14) See “future language directions” (6.11.3).

§5.2.4.2.1 Environment 21

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007

(absolute value) to those shown, with the same sign.

22

number of bits for smallest object that is not a bit-field (byte)
CHAR BI' T 8

minimum value for an object of type si gned char

SCHAR M N -127 /1 —(2"-1)
maximum value for an object of type si gned char

SCHAR MAX +127 [/ 2"-1

maximum value for an object of type unsi gned char
UCHAR MAX 255 /] 28-1

minimum value for an object of type char
CHAR_M N see below

maximum value for an object of type char
CHAR_MAX see below

WG14/N1256

maximum number of bytes in a multibyte character, for any supported locale

MB_LEN MAX 1

minimum value for an object of type short i nt
SHRT_M N -32767 /1 -(2¥®-1)

maximum value for an object of type short i nt
SHRT _MAX +32767 /1 2¥-1

maximum value for an object of type unsi gned short i nt
USHRT_MAX 65535 // 2*-1

minimum value for an object of type i nt
INT_M N -32767 /1 -(2® -1)

maximum value for an object of type i nt
| NT_MAX +32767 [/ 2¥ -1

maximum value for an object of type unsi gned i nt
Ul NT_MAX 65535 // 2% -1

minimum value for an object of type | ong i nt
LONG M N - 2147483647 [—(2%1-1)

maximum value for an object of type | ong i nt
LONG_MAX +2147483647 [/ 2%1-1

maximum value for an object of type unsi gned | ong i nt
ULONG_VAX 4294967295 /| 2%-1

Environment

85.24.2.1

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

— minimum value for an object of type | ong | ong i nt

LLONG M N -9223372036854775807 // —(2%-1)
— maximum value for an object of type | ong | ong i nt
LLONG_MAX +9223372036854775807 // 2% -1

— maximum value for an object of type unsi gned |1 ong | ong i nt
ULLONG MAX 18446744073709551615 // 2% -1

If the value of an object of type char is treated as a signed integer when used in an
expression, the value of CHAR_M N shall be the same as that of SCHAR_M N and the
value of CHAR _MAX shall be the same as that of SCHAR MAX. Otherwise, the value of
CHAR M N shall be 0 and the value of CHAR _MAX shall be the same as that of
UCHAR MAX.1®) The value UCHAR MAX shall equal 2B/ T — 1,

Forward references: representations of types (6.2.6), conditional inclusion (6.10.1).
5.2.4.2.2 Characteristics of floating types <f | oat . h>

The characteristics of floating types are defined in terms of a model that describes a
representation of floating-point numbers and values that provide information about an
implementation’s floating-point arithmetic.'® The following parameters are used to
define the model for each floating-point type:

sign (1)
base or radix of exponent representation (an integer > 1)
exponent (an integer between a minimum e,,;, and a maximum €,)
precision (the number of base-b digits in the significand)
K nonnegative integers less than b (the significand digits)

-~ O D T O»

A floating-point number (x) is defined by the following model:
p
Xx=sb® > fb™ enin<e<enn
k=1

In addition to normalized floating-point numbers (f; > 0 if x # 0), floating types may be
able to contain other kinds of floating-point numbers, such as subnormal floating-point
numbers (x #0, e =eq,, f; =0) and unnormalized floating-point numbers (x # 0,
e > e f; =0), and values that are not floating-point numbers, such as infinities and
NaNs. A NaN is an encoding signifying Not-a-Number. A quiet NaN propagates
through almost every arithmetic operation without raising a floating-point exception; a
signaling NaN generally raises a floating-point exception when occurring as an

15) See 6.2.5.

16) The floating-point model is intended to clarify the description of each floating-point characteristic and
does not require the floating-point arithmetic of the implementation to be identical.

8§5.2.4.2.2 Environment 23

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

arithmetic operand.1”

An implementation may give zero and non-numeric values (such as infinities and NaNs) a
sign or may leave them unsigned. Wherever such values are unsigned, any requirement
in this International Standard to retrieve the sign shall produce an unspecified sign, and
any requirement to set the sign shall be ignored.

The accuracy of the floating-point operations (+, -, *, /) and of the library functions in
<mat h. h> and <conpl ex. h> that return floating-point results is implementation-
defined, as is the accuracy of the conversion between floating-point internal
representations and string representations performed by the library functions in
<stdi 0. h>, <stdl i b. h>, and <wchar . h>. The implementation may state that the
accuracy is unknown.

All integer values in the <f | oat . h> header, except FLT_ROUNDS, shall be constant
expressions suitable for use in #i f preprocessing directives; all floating values shall be
constant expressions. All except DECI MAL_DI G FLT_EVAL_METHOD, FLT_RADI X,
and FLT_ROUNDS have separate names for all three floating-point types. The floating-
point model representation is provided for all values except FLT _EVAL_METHOD and
FLT_ROUNDS.

The rounding mode for floating-point addition is characterized by the implementation-
defined value of FLT _ROUNDS:®)

-1 indeterminable
0 toward zero
1 tonearest
2 toward positive infinity
3 toward negative infinity

All other values for FLT_ROUNDS characterize implementation-defined rounding
behavior.

Except for assignment and cast (which remove all extra range and precision), the values
of operations with floating operands and values subject to the usual arithmetic
conversions and of floating constants are evaluated to a format whose range and precision
may be greater than required by the type. The use of evaluation formats is characterized
by the implementation-defined value of FLT_EVAL_NMETHOD:'?

17) 1EC 60559:1989 specifies quiet and signaling NaNs. For implementations that do not support
IEC 60559:1989, the terms quiet NaN and signaling NaN are intended to apply to encodings with
similar behavior.

18) Evaluation of FLT_ROUNDS correctly reflects any execution-time change of rounding mode through
the function f eset r ound in <f env. h>,

24 Environment 85.2.4.2.2

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

-1 indeterminable;
0 evaluate all operations and constants just to the range and precision of the
type;
1 evaluate operations and constants of type fl oat and doubl e to the

range and precision of the doubl e type, evaluate | ong doubl e
operations and constants to the range and precision of the | ong doubl e
type;

2 evaluate all operations and constants to the range and precision of the
| ong doubl e type.

All other negative values for FLT_EVAL_METHOD characterize implementation-defined
behavior.

The values given in the following list shall be replaced by constant expressions with
implementation-defined values that are greater or equal in magnitude (absolute value) to
those shown, with the same sign:

— radix of exponent representation, b
FLT_RADI X 2

— number of base-FLT_RADI X digits in the floating-point significand, p
FLT _MANT_DI G
DBL_MANT_DI G
LDBL_MANT_DI G
— number of decimal digits, n, such that any floating-point number in the widest

supported floating type with p,. radix b digits can be rounded to a floating-point
number with n decimal digits and back again without change to the value,

U prnax 10950 b if b is a power of 10
Bﬂl + Pmax 109, b[J otherwise

DECI MAL_DI G 10

— number of decimal digits, g, such that any floating-point number with g decimal digits
can be rounded into a floating-point number with p radix b digits and back again
without change to the q decimal digits,

19) The evaluation method determines evaluation formats of expressions involving all floating types, not
just real types. For example, if FLT_EVAL_ METHOD is 1, then the product of two fl oat
_Compl ex operands is represented in the doubl e _Conpl ex format, and its parts are evaluated to
doubl e.

8§5.2.4.2.2 Environment 25

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Uplog,, b if b is a power of 10
(P — 1) logy, b{ otherwise
FLT DI G 6
DBL_DI G 10
LDBL_DI G 10

minimum negative integer such that FLT _RADI X raised to one less than that power is
a normalized floating-point number, ey,

FLT_M N_EXP
DBL_M N_EXP
LDBL_M N_EXP

minimum negative integer such that 10 raised to that power is in the range of
normalized floating-point numbers, aog10 b%i"‘lg

FLT M N_10_EXP - 37
DBL_M N_10_EXP - 37
LDBL_M N _10_EXP - 37

maximum integer such that FLT_RADI X raised to one less than that power is a
representable finite floating-point number, €.«

FLT_MAX_EXP

DBL_MAX_EXP

LDBL_MAX_EXP

maximum integer such that 10 raised to that power is in the range of representable
finite floating-point numbers, dog,,((1 — b™P)b®=)

FLT _MAX_10_EXP +37
DBL_MAX_10 EXP +37
LDBL_MAX_10_ EXP +37

10 The values given in the following list shall be replaced by constant expressions with

11

implementation-defined values that are greater than or equal to those shown:

— maximum representable finite floating-point number, (1 — b™P) b

FLT_MAX 1E+37
DBL_ MAX 1E+37
LDBL_ MAX 1E+37

The values given in the following list shall be replaced by constant expressions with
implementation-defined (positive) values that are less than or equal to those shown:

— the difference between 1 and the least value greater than 1 that is representable in the

given floating point type, b'™P
Environment 8§5.2.4.2.2

12

13

14

WG14/N1256 Committee Draft — Septermber 7, 2007

FLT_EPSI LON 1E-5
DBL_EPSI LON 1E-9
LDBL_EPSI LON 1E-9

— minimum normalized positive floating-point number, b~
FLT_M N 1E- 37
DBL_M N 1E- 37
LDBL_M N 1E- 37

Recommended practice

|SO/IEC 9899:TC3

Conversion from (at least) doubl e to decimal with DECI MAL_DI G digits and back

should be the identity function.

EXAMPLE 1 The following describes an artificial floating-point representation that meets the minimum
requirements of this International Standard, and the appropriate values in a <f | oat . h> header for type

fl oat:

6
x =516 f,167% -31<e<+32
k=1

FLT_RADI X 16
FLT_MANT_DI G 6
FLT_EPSI LON 9. 53674316E- 07F
FLT DI G 6
FLT_M N_EXP -31
FLT M N 2. 93873588E- 39F
FLT_M N_10_EXP -38
FLT_MAX_EXP +32
FLT_MAX 3. 40282347E+38F
FLT_MAX_10_EXP +38

EXAMPLE 2 The following describes floating-point representations that also meet the requirements for
single-precision and double-precision normalized numbers in IEC 60559,%% and the appropriate values in a

<f | oat . h> header for types f | oat and doubl e:

24
X; =828 5 f, 2% -125<e<+128
k=1

53
Xg=s2¢ S f 2% -1021 < e< +1024
k=1

FLT_RADI X 2

DECI MAL_DI G 17

FLT_MANT_DI G 24

FLT_EPSI LON 1. 19209290E- 07F // decimal constant
FLT_EPSI LON OX1P-23F // hexconstant

20) The floating-point model in that standard sums powers of b from zero, so the values of the exponent

limits are one less than shown here.

85.2.4.2.2 Environment

27

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

FLT_DI G 6

FLT_M N_EXP -125

FLT_M N 1. 17549435E- 38F // decimal constant
FLT M N OX1P- 126F // hex constant
FLT_ M N_10_EXP -37

FLT_MAX_EXP +128

FLT_MAX 3. 40282347E+38F // decimal constant
FLT MAX OX1.fffffePl27F // hexconstant
FLT _MAX_10_EXP +38

DBL_MANT DI G 53

DBL_EPSI LON 2. 2204460492503131E- 16 // decimal constant
DBL_EPSI LON OX1P-52 // hexconstant
DBL_DI G 15

DBL_M N_EXP -1021

DBL_M N 2.2250738585072014E- 308 // decimal constant
DBL_M N 0X1P-1022 // hexconstant
DBL_M N_10_EXP -307

DBL_MAX_EXP +1024

DBL_MAX 1.7976931348623157E+308 // decimal constant
DBL_MAX OX1L.fffffffffffffPLO23 // hexconstant
DBL_MAX_ 10 EXP +308

If a type wider than doubl e were supported, then DECI MAL_DI G would be greater than 17. For
example, if the widest type were to use the minimal-width IEC 60559 double-extended format (64 bits of
precision), then DECI MAL_DI Gwould be 21.

Forward references. conditional inclusion (6.10.1), complex arithmetic
<conpl ex. h> (7.3), extended multibyte and wide character utilities <wchar. h> |
(7.24), floating-point environment <f env. h> (7.6), general utilities <stdli b. h> |
(7.20), input/output <st di 0. h> (7.19), mathematics <mat h. h> (7.12).

28 Environment §5.2.4.2.2

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

6. Language
6.1 Notation

In the syntax notation used in this clause, syntactic categories (nonterminals) are
indicated by italic type, and literal words and character set members (terminals) by bol d
type. A colon (:) following a nonterminal introduces its definition. Alternative
definitions are listed on separate lines, except when prefaced by the words “one of”. An
optional symbol is indicated by the subscript “opt™, so that

{ expressiongpt }
indicates an optional expression enclosed in braces.

When syntactic categories are referred to in the main text, they are not italicized and
words are separated by spaces instead of hyphens.

A summary of the language syntax is given in annex A.
6.2 Concepts
6.2.1 Scopes of identifiers

An identifier can denote an object; a function; a tag or a member of a structure, union, or
enumeration; a typedef name; a label name; a macro name; or a macro parameter. The
same identifier can denote different entities at different points in the program. A member
of an enumeration is called an enumeration constant. Macro names and macro
parameters are not considered further here, because prior to the semantic phase of
program translation any occurrences of macro names in the source file are replaced by the
preprocessing token sequences that constitute their macro definitions.

For each different entity that an identifier designates, the identifier is visible (i.e., can be
used) only within a region of program text called its scope. Different entities designated
by the same identifier either have different scopes, or are in different name spaces. There
are four kinds of scopes: function, file, block, and function prototype. (A function
prototype is a declaration of a function that declares the types of its parameters.)

A label name is the only kind of identifier that has function scope. It can be used (in a
got o statement) anywhere in the function in which it appears, and is declared implicitly
by its syntactic appearance (followed by a : and a statement).

Every other identifier has scope determined by the placement of its declaration (in a
declarator or type specifier). If the declarator or type specifier that declares the identifier
appears outside of any block or list of parameters, the identifier has file scope, which
terminates at the end of the translation unit. If the declarator or type specifier that
declares the identifier appears inside a block or within the list of parameter declarations in
a function definition, the identifier has block scope, which terminates at the end of the
associated block. If the declarator or type specifier that declares the identifier appears

§6.2.1 Language 29

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

within the list of parameter declarations in a function prototype (not part of a function
definition), the identifier has function prototype scope, which terminates at the end of the
function declarator. If an identifier designates two different entities in the same name
space, the scopes might overlap. If so, the scope of one entity (the inner scope) will be a
strict subset of the scope of the other entity (the outer scope). Within the inner scope, the
identifier designates the entity declared in the inner scope; the entity declared in the outer
scope is hidden (and not visible) within the inner scope.

Unless explicitly stated otherwise, where this International Standard uses the term
“identifier”” to refer to some entity (as opposed to the syntactic construct), it refers to the
entity in the relevant name space whose declaration is visible at the point the identifier
occurs.

Two identifiers have the same scope if and only if their scopes terminate at the same
point.

Structure, union, and enumeration tags have scope that begins just after the appearance of
the tag in a type specifier that declares the tag. Each enumeration constant has scope that
begins just after the appearance of its defining enumerator in an enumerator list. Any
other identifier has scope that begins just after the completion of its declarator.

Forward references: declarations (6.7), function calls (6.5.2.2), function definitions
(6.9.1), identifiers (6.4.2), name spaces of identifiers (6.2.3), macro replacement (6.10.3),
source file inclusion (6.10.2), statements (6.8).

6.2.2 Linkages of identifiers

An identifier declared in different scopes or in the same scope more than once can be
made to refer to the same object or function by a process called linkage.?® There are
three kinds of linkage: external, internal, and none.

In the set of translation units and libraries that constitutes an entire program, each
declaration of a particular identifier with external linkage denotes the same object or
function. Within one translation unit, each declaration of an identifier with internal
linkage denotes the same object or function. Each declaration of an identifier with no
linkage denotes a unique entity.

If the declaration of a file scope identifier for an object or a function contains the storage-
class specifier st at i c, the identifier has internal linkage.??

For an identifier declared with the storage-class specifier ext er n in a scope in which a

21) There is no linkage between different identifiers.

22) A function declaration can contain the storage-class specifier st ati ¢ only if it is at file scope; see
6.7.1.

30 Language 86.2.2

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

prior declaration of that identifier is visible,?® if the prior declaration specifies internal or

external linkage, the linkage of the identifier at the later declaration is the same as the
linkage specified at the prior declaration. If no prior declaration is visible, or if the prior
declaration specifies no linkage, then the identifier has external linkage.

If the declaration of an identifier for a function has no storage-class specifier, its linkage
is determined exactly as if it were declared with the storage-class specifier ext er n. If
the declaration of an identifier for an object has file scope and no storage-class specifier,
its linkage is external.

The following identifiers have no linkage: an identifier declared to be anything other than
an object or a function; an identifier declared to be a function parameter; a block scope
identifier for an object declared without the storage-class specifier ext er n.

If, within a translation unit, the same identifier appears with both internal and external
linkage, the behavior is undefined.

Forward references: declarations (6.7), expressions (6.5), external definitions (6.9),
statements (6.8).

6.2.3 Name spaces of identifiers

If more than one declaration of a particular identifier is visible at any point in a
translation unit, the syntactic context disambiguates uses that refer to different entities.
Thus, there are separate name spaces for various categories of identifiers, as follows:

— label names (disambiguated by the syntax of the label declaration and use);

— the tags of structures, unions, and enumerations (disambiguated by following any?*
of the keywords st r uct , uni on, or enum;

— the members of structures or unions; each structure or union has a separate name
space for its members (disambiguated by the type of the expression used to access the
member via the . or - > operator);

— all other identifiers, called ordinary identifiers (declared in ordinary declarators or as
enumeration constants).

Forward references: enumeration specifiers (6.7.2.2), labeled statements (6.8.1),
structure and union specifiers (6.7.2.1), structure and union members (6.5.2.3), tags
(6.7.2.3), the got o statement (6.8.6.1).

23) As specified in 6.2.1, the later declaration might hide the prior declaration.

24) There is only one name space for tags even though three are possible.

86.2.3 Language 31

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.2.4 Storagedurations of objects

An object has a storage duration that determines its lifetime. There are three storage
durations: static, automatic, and allocated. Allocated storage is described in 7.20.3.

The lifetime of an object is the portion of program execution during which storage is
guaranteed to be reserved for it. An object exists, has a constant address,?® and retains
its last-stored value throughout its lifetime.?®) If an object is referred to outside of its
lifetime, the behavior is undefined. The value of a pointer becomes indeterminate when
the object it points to reaches the end of its lifetime.

An object whose identifier is declared with external or internal linkage, or with the
storage-class specifier st ati ¢ has static storage duration. Its lifetime is the entire
execution of the program and its stored value is initialized only once, prior to program
startup.

An object whose identifier is declared with no linkage and without the storage-class
specifier st at i ¢ has automatic storage duration.

For such an object that does not have a variable length array type, its lifetime extends
from entry into the block with which it is associated until execution of that block ends in
any way. (Entering an enclosed block or calling a function suspends, but does not end,
execution of the current block.) If the block is entered recursively, a new instance of the
object is created each time. The initial value of the object is indeterminate. If an
initialization is specified for the object, it is performed each time the declaration is
reached in the execution of the block; otherwise, the value becomes indeterminate each
time the declaration is reached.

For such an object that does have a variable length array type, its lifetime extends from
the declaration of the object until execution of the program leaves the scope of the
declaration.?”) If the scope is entered recursively, a new instance of the object is created
each time. The initial value of the object is indeterminate.

Forward references. statements (6.8), function calls (6.5.2.2), declarators (6.7.5), array
declarators (6.7.5.2), initialization (6.7.8).

25) The term ““constant address” means that two pointers to the object constructed at possibly different
times will compare equal. The address may be different during two different executions of the same
program.

26) In the case of a volatile object, the last store need not be explicit in the program.

27) Leaving the innermost block containing the declaration, or jumping to a point in that block or an
embedded block prior to the declaration, leaves the scope of the declaration.

32 Language 8§6.2.4

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

6.2.5 Types

The meaning of a value stored in an object or returned by a function is determined by the
type of the expression used to access it. (An identifier declared to be an object is the
simplest such expression; the type is specified in the declaration of the identifier.) Types
are partitioned into object types (types that fully describe objects), function types (types
that describe functions), and incomplete types (types that describe objects but lack
information needed to determine their sizes).

An object declared as type _Bool is large enough to store the values 0 and 1.

An object declared as type char is large enough to store any member of the basic
execution character set. If a member of the basic execution character set is stored in a
char object, its value is guaranteed to be nonnegative. If any other character is stored in
a char object, the resulting value is implementation-defined but shall be within the range
of values that can be represented in that type.

There are five standard signed integer types, designated as si gned char, short
int,int,long int, and long long int. (These and other types may be
designated in several additional ways, as described in 6.7.2.) There may also be
implementation-defined extended signed integer types.?® The standard and extended
signed integer types are collectively called signed integer types.?®

An object declared as type si gned char occupies the same amount of storage as a
“plain” char object. A “plain” i nt object has the natural size suggested by the
architecture of the execution environment (large enough to contain any value in the range
I NT_M Nto | NT_MAX as defined in the header <l i m t s. h>).

For each of the signed integer types, there is a corresponding (but different) unsigned
integer type (designated with the keyword unsi gned) that uses the same amount of
storage (including sign information) and has the same alignment requirements. The type
_Bool and the unsigned integer types that correspond to the standard signed integer
types are the standard unsigned integer types. The unsigned integer types that
correspond to the extended signed integer types are the extended unsigned integer types.
The stsa(l)r;dard and extended unsigned integer types are collectively called unsigned integer
types.

28) Implementation-defined keywords shall have the form of an identifier reserved for any use as
described in 7.1.3.

29) Therefore, any statement in this Standard about signed integer types also applies to the extended
signed integer types.

30) Therefore, any statement in this Standard about unsigned integer types also applies to the extended
unsigned integer types.

86.2.5 Language 33

10

11

12

13

14

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

The standard signed integer types and standard unsigned integer types are collectively
called the standard integer types, the extended signed integer types and extended
unsigned integer types are collectively called the extended integer types.

For any two integer types with the same signedness and different integer conversion rank
(see 6.3.1.1), the range of values of the type with smaller integer conversion rank is a
subrange of the values of the other type.

The range of nonnegative values of a signed integer type is a subrange of the
corresponding unsigned integer type, and the representation of the same value in each
type is the same.®) A computation involving unsigned operands can never overflow,
because a result that cannot be represented by the resulting unsigned integer type is
reduced modulo the number that is one greater than the largest value that can be
represented by the resulting type.

There are three real floating types, designated as fl oat, doubl e, and | ong
doubl e.3? The set of values of the type f | oat is a subset of the set of values of the
type doubl e; the set of values of the type doubl e is a subset of the set of values of the
type | ong doubl e.

There are three complex types, designated as float _ Conpl ex, double
_Conpl ex, and | ong doubl e _Conpl ex.3® The real floating and complex types
are collectively called the floating types.

For each floating type there is a corresponding real type, which is always a real floating
type. For real floating types, it is the same type. For complex types, it is the type given
by deleting the keyword _Conpl ex from the type name.

Each complex type has the same representation and alignment requirements as an array
type containing exactly two elements of the corresponding real type; the first element is
equal to the real part, and the second element to the imaginary part, of the complex
number.

The type char, the signed and unsigned integer types, and the floating types are
collectively called the basic types. Even if the implementation defines two or more basic
types to have the same representation, they are nevertheless different types.3*

31) The same representation and alignment requirements are meant to imply interchangeability as
arguments to functions, return values from functions, and members of unions.

32) See “future language directions™ (6.11.1).
33) A specification for imaginary types is in informative annex G.

34) An implementation may define new keywords that provide alternative ways to designate a basic (or
any other) type; this does not violate the requirement that all basic types be different.
Implementation-defined keywords shall have the form of an identifier reserved for any use as
described in 7.1.3.

34 Language 86.2.5

15

16

17

18

19

20

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

The three types char, si gned char, and unsi gned char are collectively called
the character types. The implementation shall define char to have the same range,
representation, and behavior as either si gned char or unsi gned char .3

An enumeration comprises a set of named integer constant values. Each distinct
enumeration constitutes a different enumerated type.

The type char, the signed and unsigned integer types, and the enumerated types are
collectively called integer types. The integer and real floating types are collectively called
real types.

Integer and floating types are collectively called arithmetic types. Each arithmetic type
belongs to one type domain: the real type domain comprises the real types, the complex
type domain comprises the complex types.

The voi d type comprises an empty set of values; it is an incomplete type that cannot be
completed.

Any number of derived types can be constructed from the object, function, and
incomplete types, as follows:

— An array type describes a contiguously allocated nonempty set of objects with a
particular member object type, called the element type3®) Array types are
characterized by their element type and by the number of elements in the array. An
array type is said to be derived from its element type, and if its element type is T, the
array type is sometimes called “array of T””. The construction of an array type from
an element type is called *“array type derivation™.

— A structure type describes a sequentially allocated nonempty set of member objects
(and, in certain circumstances, an incomplete array), each of which has an optionally
specified name and possibly distinct type.

— A union type describes an overlapping nonempty set of member objects, each of
which has an optionally specified name and possibly distinct type.

— A function type describes a function with specified return type. A function type is
characterized by its return type and the number and types of its parameters. A
function type is said to be derived from its return type, and if its return type is T, the
function type is sometimes called “function returning T”. The construction of a
function type from a return type is called “function type derivation”.

35) CHAR_M N, defined in <l i m t s. h>, will have one of the values 0 or SCHAR_M N, and this can be
used to distinguish the two options. Irrespective of the choice made, char is a separate type from the
other two and is not compatible with either.

36) Since object types do not include incomplete types, an array of incomplete type cannot be constructed.

86.2.5 Language 35

21

22

23

24

25

26

27

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

— A pointer type may be derived from a function type, an object type, or an incomplete
type, called the referenced type. A pointer type describes an object whose value
provides a reference to an entity of the referenced type. A pointer type derived from
the referenced type T is sometimes called “pointer to T”. The construction of a
pointer type from a referenced type is called “pointer type derivation”.

These methods of constructing derived types can be applied recursively.

Arithmetic types and pointer types are collectively called scalar types. Array and
structure types are collectively called aggregate types.®”)

An array type of unknown size is an incomplete type. It is completed, for an identifier of
that type, by specifying the size in a later declaration (with internal or external linkage).
A structure or union type of unknown content (as described in 6.7.2.3) is an incomplete
type. It is completed, for all declarations of that type, by declaring the same structure or
union tag with its defining content later in the same scope.

A type has known constant size if the type is not incomplete and is not a variable length
array type.

Array, function, and pointer types are collectively called derived declarator types. A
declarator type derivation from a type T is the construction of a derived declarator type
from T by the application of an array-type, a function-type, or a pointer-type derivation to
T.

A type is characterized by its type category, which is either the outermost derivation of a
derived type (as noted above in the construction of derived types), or the type itself if the
type consists of no derived types.

Any type so far mentioned is an unqualified type. Each unqualified type has several
qualified versions of its type,®® corresponding to the combinations of one, two, or all
three of the const ,vol atil e,andrestri ct qualifiers. The qualified or unqualified
versions of a type are distinct types that belong to the same type category and have the
same representation and alignment requirements.®® A derived type is not qualified by the
qualifiers (if any) of the type from which it is derived.

A pointer to voi d shall have the same representation and alignment requirements as a
pointer to a character type.2? Similarly, pointers to qualified or unqualified versions of
compatible types shall have the same representation and alignment requirements. All

37) Note that aggregate type does not include union type because an object with union type can only
contain one member at a time.

38) See 6.7.3 regarding qualified array and function types.

39) The same representation and alignment requirements are meant to imply interchangeability as
arguments to functions, return values from functions, and members of unions.

36 Language 8§6.2.5

28

29

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

pointers to structure types shall have the same representation and alignment requirements
as each other. All pointers to union types shall have the same representation and
alignment requirements as each other. Pointers to other types need not have the same
representation or alignment requirements.

EXAMPLE 1 The type designated as “f | oat *” has type “pointer to f | oat ™. Its type category is
pointer, not a floating type. The const-qualified version of this type is designated as “f | oat * const”

whereas the type designated as “const fl oat *” is not a qualified type — its type is “pointer to const-
qualified f | oat ”” and is a pointer to a qualified type.

EXAMPLE 2 The type designated as “struct tag (*[5]) (fl oat) ™ has type “array of pointer to
function returning st r uct t ag”. The array has length five and the function has a single parameter of type
f | oat . Its type category is array.

Forward references. compatible type and composite type (6.2.7), declarations (6.7).
6.2.6 Representations of types
6.2.6.1 General

The representations of all types are unspecified except as stated in this subclause.

Except for bit-fields, objects are composed of contiguous sequences of one or more bytes,
the number, order, and encoding of which are either explicitly specified or
implementation-defined.

Values stored in unsigned bit-fields and objects of type unsi gned char shall be
represented using a pure binary notation.*®

Values stored in non-bit-field objects of any other object type consist of nx CHAR BI T
bits, where n is the size of an object of that type, in bytes. The value may be copied into
an object of type unsi gned char [n] (e.g., by mentpy); the resulting set of bytes is
called the object representation of the value. Values stored in bit-fields consist of m bits,
where m is the size specified for the bit-field. The object representation is the set of m
bits the bit-field comprises in the addressable storage unit holding it. Two values (other
than NaNs) with the same object representation compare equal, but values that compare
equal may have different object representations.

Certain object representations need not represent a value of the object type. If the stored
value of an object has such a representation and is read by an Ivalue expression that does
not have character type, the behavior is undefined. If such a representation is produced
by a side effect that modifies all or any part of the object by an lvalue expression that
does not have character type, the behavior is undefined.*?) Such a representation is called

40) A positional representation for integers that uses the binary digits 0 and 1, in which the values
represented by successive bits are additive, begin with 1, and are multiplied by successive integral
powers of 2, except perhaps the bit with the highest position. (Adapted from the American National
Dictionary for Information Processing Systems.) A byte contains CHAR_BI T bits, and the values of
type unsi gned char range from 0 to 29¥RBIT — 1.

§6.2.6.1 Language 37

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

a trap representation.

When a value is stored in an object of structure or union type, including in a member
object, the bytes of the object representation that correspond to any padding bytes take
unspecified values.*?) The value of a structure or union object is never a trap
representation, even though the value of a member of the structure or union object may be
a trap representation.

When a value is stored in a member of an object of union type, the bytes of the object
representation that do not correspond to that member but do correspond to other members
take unspecified values.

Where an operator is applied to a value that has more than one object representation,
which object representation is used shall not affect the value of the result.*® Where a
value is stored in an object using a type that has more than one object representation for
that value, it is unspecified which representation is used, but a trap representation shall
not be generated.

Forward references: declarations (6.7), expressions (6.5), Ivalues, arrays, and function
designators (6.3.2.1).

6.2.6.2 Integer types

For unsigned integer types other than unsi gned char, the bits of the object
representation shall be divided into two groups: value bits and padding bits (there need
not be any of the latter). If there are N value bits, each bit shall represent a different
power of 2 between 1 and 2N, so that objects of that type shall be capable of
representing values from 0 to 2N —1 using a pure binary representation; this shall be
known as the value representation. The values of any padding bits are unspecified.*%

For signed integer types, the bits of the object representation shall be divided into three
groups: value bits, padding bits, and the sign bit. There need not be any padding bits;

41) Thus, an automatic variable can be initialized to a trap representation without causing undefined
behavior, but the value of the variable cannot be used until a proper value is stored in it.

42) Thus, for example, structure assignment need not copy any padding bits.

43) 1tis possible for objects x and y with the same effective type T to have the same value when they are
accessed as objects of type T, but to have different values in other contexts. In particular, if == is
defined for type T, then x == vy does not imply that mencnp(&, &y, sizeof (T)) ==
Furthermore, X ==y does not necessarily imply that x and y have the same value; other operations
on values of type T may distinguish between them.

44) Some combinations of padding bits might generate trap representations, for example, if one padding
bit is a parity bit. Regardless, no arithmetic operation on valid values can generate a trap
representation other than as part of an exceptional condition such as an overflow, and this cannot occur
with unsigned types. All other combinations of padding bits are alternative object representations of
the value specified by the value bits.

38 Language 86.2.6.2

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

there shall be exactly one sign bit. Each bit that is a value bit shall have the same value as
the same bit in the object representation of the corresponding unsigned type (if there are
M value bits in the signed type and N in the unsigned type, then M < N). If the sign bit
is zero, it shall not affect the resulting value. If the sign bit is one, the value shall be
modified in one of the following ways:

— the corresponding value with sign bit 0 is negated (sign and magnitude);
— the sign bit has the value —(2™) (two’s complement);
— the sign bit has the value =(2N — 1) (ones’ complement).

Which of these applies is implementation-defined, as is whether the value with sign bit 1
and all value bits zero (for the first two), or with sign bit and all value bits 1 (for ones’
complement), is a trap representation or a normal value. In the case of sign and
magnitude and ones’ complement, if this representation is a normal value it is called a
negative zero.

If the implementation supports negative zeros, they shall be generated only by:
— the &, |, ™, ~, <<, and >> operators with arguments that produce such a value;

— the +, -, *, /, and % operators where one argument is a negative zero and the result is
zero;

— compound assignment operators based on the above cases.

It is unspecified whether these cases actually generate a negative zero or a normal zero,
and whether a negative zero becomes a normal zero when stored in an object.

If the implementation does not support negative zeros, the behavior of the &, |, ™, ~, <<,
and >> operators with arguments that would produce such a value is undefined.

The values of any padding bits are unspecified.*® A valid (non-trap) object representation
of a signed integer type where the sign bit is zero is a valid object representation of the
corresponding unsigned type, and shall represent the same value. For any integer type,
the object representation where all the bits are zero shall be a representation of the value
zero in that type.

The precision of an integer type is the number of bits it uses to represent values,
excluding any sign and padding bits. The width of an integer type is the same but
including any sign bit; thus for unsigned integer types the two values are the same, while

45) Some combinations of padding bits might generate trap representations, for example, if one padding
bit is a parity bit. Regardless, no arithmetic operation on valid values can generate a trap
representation other than as part of an exceptional condition such as an overflow. All other
combinations of padding bits are alternative object representations of the value specified by the value
bits.

86.2.6.2 Language 39

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

for signed integer types the width is one greater than the precision.
6.2.7 Compatibletype and compositetype

Two types have compatible type if their types are the same. Additional rules for
determining whether two types are compatible are described in 6.7.2 for type specifiers,
in 6.7.3 for type qualifiers, and in 6.7.5 for declarators.*®) Moreover, two structure,
union, or enumerated types declared in separate translation units are compatible if their
tags and members satisfy the following requirements: If one is declared with a tag, the
other shall be declared with the same tag. If both are complete types, then the following
additional requirements apply: there shall be a one-to-one correspondence between their
members such that each pair of corresponding members are declared with compatible
types, and such that if one member of a corresponding pair is declared with a name, the
other member is declared with the same name. For two structures, corresponding
members shall be declared in the same order. For two structures or unions, corresponding
bit-fields shall have the same widths. For two enumerations, corresponding members
shall have the same values.

All declarations that refer to the same object or function shall have compatible type;
otherwise, the behavior is undefined.

A composite type can be constructed from two types that are compatible; it is a type that
is compatible with both of the two types and satisfies the following conditions:

— If one type is an array of known constant size, the composite type is an array of that
size; otherwise, if one type is a variable length array, the composite type is that type.

— If only one type is a function type with a parameter type list (a function prototype),
the composite type is a function prototype with the parameter type list.

— If both types are function types with parameter type lists, the type of each parameter
in the composite parameter type list is the composite type of the corresponding
parameters.

These rules apply recursively to the types from which the two types are derived.

For an identifier with internal or external linkage declared in a scope in which a prior
declaration of that identifier is visible,”) if the prior declaration specifies internal or
external linkage, the type of the identifier at the later declaration becomes the composite

type.

46) Two types need not be identical to be compatible.

47) As specified in 6.2.1, the later declaration might hide the prior declaration.

40 Language 86.2.7

WG14/N1256 Committee Draft — Septermber 7, 2007

EXAMPLE Given the following two file scope declarations:

int f(int (*)(), double (*)[3]);
int f(int (*)(char *), double (*)[]);

The resulting composite type for the function is:
int f(int (*)(char *), double (*)[3]);

86.2.7 Language

|SO/IEC 9899:TC3

41

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.3 Conversions

Several operators convert operand values from one type to another automatically. This
subclause specifies the result required from such an implicit conversion, as well as those
that result from a cast operation (an explicit conversion). The list in 6.3.1.8 summarizes
the conversions performed by most ordinary operators; it is supplemented as required by
the discussion of each operator in 6.5.

Conversion of an operand value to a compatible type causes no change to the value or the
representation.

Forward references. cast operators (6.5.4).

6.3.1 Arithmetic operands

6.3.1.1 Boolean, characters, and integers

Every integer type has an integer conversion rank defined as follows:

— No two signed integer types shall have the same rank, even if they have the same
representation.

— The rank of a signed integer type shall be greater than the rank of any signed integer
type with less precision.

— Therank of | ong | ong i nt shall be greater than the rank of | ong i nt, which
shall be greater than the rank of i nt , which shall be greater than the rank of shor t
I nt, which shall be greater than the rank of si gned char.

— The rank of any unsigned integer type shall equal the rank of the corresponding
signed integer type, if any.

— The rank of any standard integer type shall be greater than the rank of any extended
integer type with the same width.

— The rank of char shall equal the rank of si gned char and unsi gned char.
— Therank of _Bool shall be less than the rank of all other standard integer types.

— The rank of any enumerated type shall equal the rank of the compatible integer type
(see 6.7.2.2).

— The rank of any extended signed integer type relative to another extended signed
integer type with the same precision is implementation-defined, but still subject to the
other rules for determining the integer conversion rank.

— For all integer types T1, T2, and T3, if T1 has greater rank than T2 and T2 has
greater rank than T3, then T1 has greater rank than T3.

The following may be used in an expression wherever an i nt or unsi gned i nt may
be used:

42 Language §6.3.1.1

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

— An object or expression with an integer type whose integer conversion rank is less
than or equal to the rank of Int and unsigned iInt.

— A bit-field of type _Bool, Int, signed int, orunsigned int.

If an Int can represent all values of the original type, the value is converted to an Int;
otherwise, it is converted to an unsigned int. These are called the integer
promotions.*® All other types are unchanged by the integer promotions.

The integer promotions preserve value including sign. As discussed earlier, whether a
“plain” char is treated as signed is implementation-defined.

Forward references: enumeration specifiers (6.7.2.2), structure and union specifiers
(6.7.2.1).

6.3.1.2 Boolean type

When any scalar value is converted to _Bool, the result is O if the value compares equal
to 0; otherwise, the result is 1.

6.3.1.3 Signed and unsigned integers

When a value with integer type is converted to another integer type other than _Bool, if
the value can be represented by the new type, it is unchanged.

Otherwise, if the new type is unsigned, the value is converted by repeatedly adding or
subtracting one more than the maximum value that can be represented in the new type
until the value is in the range of the new type.*®

Otherwise, the new type is signed and the value cannot be represented in it; either the
result is implementation-defined or an implementation-defined signal is raised.

6.3.1.4 Real floating and integer

When a finite value of real floating type is converted to an integer type other than _Bool,
the fractional part is discarded (i.e., the value is truncated toward zero). If the value of
the integral part cannot be represented by the integer type, the behavior is undefined.>®

When a value of integer type is converted to a real floating type, if the value being
converted can be represented exactly in the new type, it is unchanged. If the value being
converted is in the range of values that can be represented but cannot be represented

48) The integer promotions are applied only: as part of the usual arithmetic conversions, to certain
argument expressions, to the operands of the unary +, —, and ~ operators, and to both operands of the
shift operators, as specified by their respective subclauses.

49) The rules describe arithmetic on the mathematical value, not the value of a given type of expression.

50) The remaindering operation performed when a value of integer type is converted to unsigned type
need not be performed when a value of real floating type is converted to unsigned type. Thus, the
range of portable real floating values is (-1, Utype_MAX+1).

86.3.1.4 Language 43

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

exactly, the result is either the nearest higher or nearest lower representable value, chosen
in an implementation-defined manner. If the value being converted is outside the range of
values that can be represented, the behavior is undefined.

6.3.1.5 Real floating types

When a f | oat is promoted to doubl e or | ong doubl e, or a doubl e is promoted
to | ong doubl e, its value is unchanged (if the source value is represented in the
precision and range of its type).

When a doubl e is demoted to f | oat, a | ong doubl e is demoted to doubl e or
f | oat, or a value being represented in greater precision and range than required by its
semantic type (see 6.3.1.8) is explicitly converted (including to its own type), if the value
being converted can be represented exactly in the new type, it is unchanged. If the value
being converted is in the range of values that can be represented but cannot be
represented exactly, the result is either the nearest higher or nearest lower representable
value, chosen in an implementation-defined manner. If the value being converted is
outside the range of values that can be represented, the behavior is undefined.

6.3.1.6 Complex types

When a value of complex type is converted to another complex type, both the real and
imaginary parts follow the conversion rules for the corresponding real types.

6.3.1.7 Real and complex

When a value of real type is converted to a complex type, the real part of the complex
result value is determined by the rules of conversion to the corresponding real type and
the imaginary part of the complex result value is a positive zero or an unsigned zero.

When a value of complex type is converted to a real type, the imaginary part of the
complex value is discarded and the value of the real part is converted according to the
conversion rules for the corresponding real type.

6.3.1.8 Usual arithmetic conversions

Many operators that expect operands of arithmetic type cause conversions and yield result
types in a similar way. The purpose is to determine a common real type for the operands
and result. For the specified operands, each operand is converted, without change of type
domain, to a type whose corresponding real type is the common real type. Unless
explicitly stated otherwise, the common real type is also the corresponding real type of
the result, whose type domain is the type domain of the operands if they are the same,
and complex otherwise. This pattern is called the usual arithmetic conversions:

First, if the corresponding real type of either operand is | ong doubl e, the other
operand is converted, without change of type domain, to a type whose
corresponding real type is| ong doubl e.

44 Language 86.3.1.8

2

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

Otherwise, if the corresponding real type of either operand is doubl e, the other
operand is converted, without change of type domain, to a type whose
corresponding real type is doubl e.

Otherwise, if the corresponding real type of either operand is f | oat, the other
operand is converted, without change of type domain, to a type whose
corresponding real type is f | oat .5

Otherwise, the integer promotions are performed on both operands. Then the
following rules are applied to the promoted operands:

If both operands have the same type, then no further conversion is needed.

Otherwise, if both operands have signed integer types or both have unsigned
integer types, the operand with the type of lesser integer conversion rank is
converted to the type of the operand with greater rank.

Otherwise, if the operand that has unsigned integer type has rank greater or
equal to the rank of the type of the other operand, then the operand with
signed integer type is converted to the type of the operand with unsigned
integer type.

Otherwise, if the type of the operand with signed integer type can represent
all of the values of the type of the operand with unsigned integer type, then
the operand with unsigned integer type is converted to the type of the
operand with signed integer type.

Otherwise, both operands are converted to the unsigned integer type
corresponding to the type of the operand with signed integer type.

The values of floating operands and of the results of floating expressions may be
represented in greater precision and range than that required by the type; the types are not |
changed thereby.>?

51) For example, addition of a doubl e _Conpl ex and a fl oat entails just the conversion of the
f | oat operand to doubl e (and yields a doubl e _Conpl ex result).

52) The cast and assignment operators are still required to perform their specified conversions as
described in 6.3.1.4 and 6.3.1.5.

§6.3.1.8 Language 45

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.3.2 Other operands

6.3.2.1 Lvalues, arrays, and function designators

An Ivalue is an expression with an object type or an incomplete type other than voi d;>®

if an Ivalue does not designate an object when it is evaluated, the behavior is undefined.
When an object is said to have a particular type, the type is specified by the lvalue used to
designate the object. A modifiable Ivalue is an Ivalue that does not have array type, does
not have an incomplete type, does not have a const-qualified type, and if it is a structure
or union, does not have any member (including, recursively, any member or element of
all contained aggregates or unions) with a const-qualified type.

Except when it is the operand of the si zeof operator, the unary & operator, the ++
operator, the - - operator, or the left operand of the . operator or an assignment operator,
an lvalue that does not have array type is converted to the value stored in the designated
object (and is no longer an lIvalue). If the Ivalue has qualified type, the value has the
unqualified version of the type of the lvalue; otherwise, the value has the type of the
Ivalue. If the lvalue has an incomplete type and does not have array type, the behavior is
undefined.

Except when it is the operand of the si zeof operator or the unary & operator, or is a
string literal used to initialize an array, an expression that has type *“array of type” is
converted to an expression with type “pointer to type” that points to the initial element of
the array object and is not an Ivalue. If the array object has register storage class, the
behavior is undefined.

A function designator is an expression that has function type. Except when it is the
operand of the si zeof operator®® or the unary & operator, a function designator with
type “function returning type” is converted to an expression that has type ‘“pointer to
function returning type”.

Forward references. address and indirection operators (6.5.3.2), assignment operators
(6.5.16), common definitions <st ddef.h> (7.17), initialization (6.7.8), postfix
increment and decrement operators (6.5.2.4), prefix increment and decrement operators
(6.5.3.1), the si zeof operator (6.5.3.4), structure and union members (6.5.2.3).

53) The name “lvalue” comes originally from the assignment expression E1 = E2, in which the left
operand E1 is required to be a (modifiable) Ivalue. It is perhaps better considered as representing an
object “locator value. What is sometimes called “rvalue” is in this International Standard described
as the “value of an expression”.

An obvious example of an lvalue is an identifier of an object. As a further example, if E is a unary
expression that is a pointer to an object, * E is an Ivalue that designates the object to which E points.

54) Because this conversion does not occur, the operand of the si zeof operator remains a function
designator and violates the constraint in 6.5.3.4.

46 Language §6.3.2.1

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

6.3.2.2 voi d

The (nonexistent) value of a void expression (an expression that has type voi d) shall not
be used in any way, and implicit or explicit conversions (except to voi d) shall not be
applied to such an expression. If an expression of any other type is evaluated as a void
expression, its value or designator is discarded. (A void expression is evaluated for its
side effects.)

6.3.2.3 Pointers

A pointer to voi d may be converted to or from a pointer to any incomplete or object
type. A pointer to any incomplete or object type may be converted to a pointer to voi d
and back again; the result shall compare equal to the original pointer.

For any qualifier g, a pointer to a non-g-qualified type may be converted to a pointer to
the g-qualified version of the type; the values stored in the original and converted pointers
shall compare equal.

An integer constant expression with the value 0, or such an expression cast to type
voi d *, is called a null pointer constant.®® If a null pointer constant is converted to a
pointer type, the resulting pointer, called a null pointer, is guaranteed to compare unequal
to a pointer to any object or function.

Conversion of a null pointer to another pointer type yields a null pointer of that type.
Any two null pointers shall compare equal.

An integer may be converted to any pointer type. Except as previously specified, the
result is implementation-defined, might not be correctly aligned, might not point to an
entity of the referenced type, and might be a trap representation.>®)

Any pointer type may be converted to an integer type. Except as previously specified, the
result is implementation-defined. If the result cannot be represented in the integer type,
the behavior is undefined. The result need not be in the range of values of any integer

type.

A pointer to an object or incomplete type may be converted to a pointer to a different
object or incomplete type. If the resulting pointer is not correctly aligned®” for the
pointed-to type, the behavior is undefined. Otherwise, when converted back again, the
result shall compare equal to the original pointer. When a pointer to an object is

55) The macro NULL is defined in <st ddef . h> (and other headers) as a null pointer constant; see 7.17.

56) The mapping functions for converting a pointer to an integer or an integer to a pointer are intended to
be consistent with the addressing structure of the execution environment.

57) In general, the concept “correctly aligned™ is transitive: if a pointer to type A is correctly aligned for a
pointer to type B, which in turn is correctly aligned for a pointer to type C, then a pointer to type A is
correctly aligned for a pointer to type C.

§6.3.2.3 Language 47

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

converted to a pointer to a character type, the result points to the lowest addressed byte of
the object. Successive increments of the result, up to the size of the object, yield pointers
to the remaining bytes of the object.

A pointer to a function of one type may be converted to a pointer to a function of another
type and back again; the result shall compare equal to the original pointer. If a converted
pointer is used to call a function whose type is not compatible with the pointed-to type,
the behavior is undefined.

Forward references. cast operators (6.5.4), equality operators (6.5.9), integer types
capable of holding object pointers (7.18.1.4), simple assignment (6.5.16.1).

48 Language §6.3.2.3

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

6.4 Lexical elements
Syntax

token:
keyword
identifier
constant
string-literal
punctuator

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
punctuator
each non-white-space character that cannot be one of the above

Constraints

Each preprocessing token that is converted to a token shall have the lexical form of a
keyword, an identifier, a constant, a string literal, or a punctuator.

Semantics

A token is the minimal lexical element of the language in translation phases 7 and 8. The
categories of tokens are: keywords, identifiers, constants, string literals, and punctuators.
A preprocessing token is the minimal lexical element of the language in translation
phases 3 through 6. The categories of preprocessing tokens are: header names,
identifiers, preprocessing numbers, character constants, string literals, punctuators, and
single non-white-space characters that do not lexically match the other preprocessing
token categories.®® If a * or a " character matches the last category, the behavior is
undefined. Preprocessing tokens can be separated by white space; this consists of
comments (described later), or white-space characters (space, horizontal tab, new-line,
vertical tab, and form-feed), or both. As described in 6.10, in certain circumstances
during translation phase 4, white space (or the absence thereof) serves as more than
preprocessing token separation. White space may appear within a preprocessing token
only as part of a header name or between the quotation characters in a character constant
or string literal.

58) An additional category, placemarkers, is used internally in translation phase 4 (see 6.10.3.3); it cannot
occur in source files.

86.4 Language 49

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

If the input stream has been parsed into preprocessing tokens up to a given character, the
next preprocessing token is the longest sequence of characters that could constitute a
preprocessing token. There is one exception to this rule: header name preprocessing |
tokens are recognized only within #i ncl ude preprocessing directives and in |
implementation-defined locations within #pragma directives. In such contexts, a |
sequence of characters that could be either a header name or a string literal is recognized
as the former.

EXAMPLE 1 The program fragment 1EX is parsed as a preprocessing number token (one that is not a
valid floating or integer constant token), even though a parse as the pair of preprocessing tokens 1 and Ex
might produce a valid expression (for example, if Ex were a macro defined as +1). Similarly, the program

fragment 1EL1 is parsed as a preprocessing number (one that is a valid floating constant token), whether or
not E is a macro name.

EXAMPLE 2 The program fragment x+++++y is parsed as X ++ ++ + y, which violates a constraint on
increment operators, even though the parse x ++ + ++y might yield a correct expression.

Forward references. character constants (6.4.4.4), comments (6.4.9), expressions (6.5),
floating constants (6.4.4.2), header names (6.4.7), macro replacement (6.10.3), postfix
increment and decrement operators (6.5.2.4), prefix increment and decrement operators
(6.5.3.1), preprocessing directives (6.10), preprocessing numbers (6.4.8), string literals
(6.4.5).

6.4.1 Keywords
Syntax
keyword: one of

aut o enum restrict unsi gned
br eak extern return voi d
case fl oat short vol atile
char for si gned whi |l e
const goto si zeof _Bool
conti nue i f static _Conpl ex
def aul t inline struct _l'magi nary
do i nt sSwi tch
doubl e | ong t ypedef
el se register uni on

Semantics

The above tokens (case sensitive) are reserved (in translation phases 7 and 8) for use as
keywords, and shall not be used otherwise. The keyword _| magi nary is reserved for |
specifying imaginary types.>®

59) One possible specification for imaginary types appears in annex G. |

50 Language 86.4.1

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

6.4.2 ldentifiers
6.4.2.1 General
Syntax
identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit
identifier-nondigit:
nondigit
universal-character-name
other implementation-defined characters

nondigit: one of

. a b ¢c d e f g h i jJ k | m
n o p g r s t u v w X y z
A B CDEVFGHI J KL M
N OP QR ST UV WX Y Z
digit: one of
0 1. 2 3 4 5 6 7 8 9

Semantics

An identifier is a sequence of nondigit characters (including the underscore _, the
lowercase and uppercase Latin letters, and other characters) and digits, which designates
one or more entities as described in 6.2.1. Lowercase and uppercase letters are distinct.
There is no specific limit on the maximum length of an identifier.

Each universal character name in an identifier shall designate a character whose encoding
in ISO/IEC 10646 falls into one of the ranges specified in annex D.5% The initial
character shall not be a universal character name designating a digit. An implementation
may allow multibyte characters that are not part of the basic source character set to
appear in identifiers; which characters and their correspondence to universal character
names is implementation-defined.

When preprocessing tokens are converted to tokens during translation phase 7, if a
preprocessing token could be converted to either a keyword or an identifier, it is converted
to a keyword.

60) On systems in which linkers cannot accept extended characters, an encoding of the universal character
name may be used in forming valid external identifiers. For example, some otherwise unused
character or sequence of characters may be used to encode the \ u in a universal character name.
Extended characters may produce a long external identifier.

86.4.2.1 Language 51

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Implementation limits

As discussed in 5.2.4.1, an implementation may limit the number of significant initial
characters in an identifier; the limit for an external name (an identifier that has external
linkage) may be more restrictive than that for an internal name (a macro name or an
identifier that does not have external linkage). The number of significant characters in an
identifier is implementation-defined.

Any identifiers that differ in a significant character are different identifiers. If two
identifiers differ only in nonsignificant characters, the behavior is undefined.

Forward references: universal character names (6.4.3), macro replacement (6.10.3).
6.4.2.2 Predefined identifiers
Semantics

The identifier __func__ shall be implicitly declared by the translator as if,
immediately following the opening brace of each function definition, the declaration

static const char _ _func_ _[] = "function-name";
appeared, where function-name is the name of the lexically-enclosing function.5?

This name is encoded as if the implicit declaration had been written in the source
character set and then translated into the execution character set as indicated in translation
phase 5.

EXAMPLE Consider the code fragment:

#i ncl ude <stdio. h>
voi d nyfunc(voi d)

{
printf("%\n", _ func__);

[* .. *l
}

Each time the function is called, it will print to the standard output stream:

nmyf unc

Forward references: function definitions (6.9.1).

61) Since the name __func_ _ is reserved for any use by the implementation (7.1.3), if any other
identifier is explicitly declared using the name __f unc__, the behavior is undefined.

52 Language 86.4.2.2

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

6.4.3 Universal character names
Syntax

univer sal-character-name;
\'u hex-quad
\ U hex-quad hex-quad

hex-quad:
hexadecimal-digit hexadecimal-digit
hexadecimal-digit hexadecimal-digit
Constraints

A universal character name shall not specify a character whose short identifier is less than
00AO other than 0024 ($), 0040 (@, or 0060 (‘), nor one in the range D800 through
DFFF inclusive.5?)

Description

Universal character names may be used in identifiers, character constants, and string
literals to designate characters that are not in the basic character set.

Semantics

The universal character name \ Unnnnnnnn designates the character whose eight-digit
short identifier (as specified by 1SO/IEC 10646) is nnnnnnnn.®®) Similarly, the universal
character name \ unnnn designates the character whose four-digit short identifier is nnnn
(and whose eight-digit short identifier is 0000nnnn).

62) The disallowed characters are the characters in the basic character set and the code positions reserved
by ISO/IEC 10646 for control characters, the character DELETE, and the S-zone (reserved for use by
UTF-16).

63) Short identifiers for characters were first specified in ISO/IEC 10646-1/AMD9:1997.

86.4.3 Language 53

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.4.4 Constants
Syntax

constant:
integer-constant
floating-constant
enumeration-constant
character-constant

Constraints

Each constant shall have a type and the value of a constant shall be in the range of |
representable values for its type.

Semantics

Each constant has a type, determined by its form and value, as detailed later.
6.4.4.1 Integer constants

Syntax

integer-constant:
decimal-constant integer-suffixopt
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixopt

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
0
octal-constant octal-digit

hexadecimal-constant:
hexadecimal-prefix hexadecimal-digit
hexadecimal-constant hexadecimal-digit

hexadecimal-prefix: one of
Ox OX

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0O 1 2 3 4 5 6 7

54 Language §6.4.4.1

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix:
unsigned-suffix long-suffixgpt
unsigned-suffix long-long-suffix
long-suffix unsigned-suffixgpt
long-long-suffix unsigned-suffixopt

unsigned-suffix: one of
u U

long-suffix: one of
| L

long-long-suffix: one of
Il LL

Description

An integer constant begins with a digit, but has no period or exponent part. It may have a
prefix that specifies its base and a suffix that specifies its type.

A decimal constant begins with a nonzero digit and consists of a sequence of decimal
digits. An octal constant consists of the prefix O optionally followed by a sequence of the
digits O through 7 only. A hexadecimal constant consists of the prefix Ox or 0X followed
by a sequence of the decimal digits and the letters a (or A) through f (or F) with values
10 through 15 respectively.

Semantics

The value of a decimal constant is computed base 10; that of an octal constant, base 8;
that of a hexadecimal constant, base 16. The lexically first digit is the most significant.

The type of an integer constant is the first of the corresponding list in which its value can
be represented.

§6.4.4.1 Language 55

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Octal or Hexadecimal

Suffix Decimal Constant Constant
none i nt i nt

| ong i nt unsi gned i nt

| ong I ong int | ong int

unsi gned | ong i nt
| ong I ong int
unsi gned | ong [ong int

uor U unsi gned i nt unsi gned i nt
unsi gned | ong i nt unsi gned | ong i nt
unsigned | ong |ong int unsigned | ong | ong int

| or L | ong i nt | ong int

| ong [ong int unsi gned | ong i nt

| ong long int

unsigned | ong |l ong int

Both u or U unsi gned | ong int unsi gned | ong int
and | or L unsi gned | ong [ong int unsi gned | ong | ong int
1 or LL | ong long int | ong |l ong int

unsi gned | ong | ong int

Both u or U unsigned | ong |long int unsi gned | ong | ong int
and I'l or LL

If an integer constant cannot be represented by any type in its list, it may have an
extended integer type, if the extended integer type can represent its value. If all of the
types in the list for the constant are signed, the extended integer type shall be signed. If
all of the types in the list for the constant are unsigned, the extended integer type shall be
unsigned. If the list contains both signed and unsigned types, the extended integer type
may be signed or unsigned. If an integer constant cannot be represented by any type in |
its list and has no extended integer type, then the integer constant has no type.

56 Language 86.4.4.1

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

6.4.4.2 Floating constants
Syntax

floating-constant:
decimal-floating-constant
hexadecimal-floating-constant

decimal-floating-constant:
fractional-constant exponent-partyp; floating-suffixopt
digit-sequence exponent-part floating-suffixqpt

hexadecimal-floating-constant:
hexadecimal-prefix hexadecimal-fractional-constant
binary-exponent-part floating-suffixopt
hexadecimal-prefix hexadecimal-digit-sequence
binary-exponent-part floating-suffixopt

fractional-constant:
digit-sequenceqp; . digit-sequence
digit-sequence .

exponent-part:
e signgpt digit-sequence
E signgp digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit
hexadecimal-fractional-constant:
hexadecimal-digit-sequencegp -
hexadecimal-digit-sequence
hexadecimal-digit-sequence .

binary-exponent-part:
p signgpt digit-sequence
P signgp; digit-sequence
hexadecimal-digit-sequence:

hexadecimal-digit
hexadecimal-digit-sequence hexadecimal-digit

floating-suffix: one of
f I F L

8§6.4.4.2 Language 57

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Description

A floating constant has a significand part that may be followed by an exponent part and a
suffix that specifies its type. The components of the significand part may include a digit
sequence representing the whole-number part, followed by a period (.), followed by a
digit sequence representing the fraction part. The components of the exponent part are an
e, E, p, or P followed by an exponent consisting of an optionally signed digit sequence.
Either the whole-number part or the fraction part has to be present; for decimal floating
constants, either the period or the exponent part has to be present.

Semantics

The significand part is interpreted as a (decimal or hexadecimal) rational number; the
digit sequence in the exponent part is interpreted as a decimal integer. For decimal
floating constants, the exponent indicates the power of 10 by which the significand part is
to be scaled. For hexadecimal floating constants, the exponent indicates the power of 2
by which the significand part is to be scaled. For decimal floating constants, and also for
hexadecimal floating constants when FLT_RADI X is not a power of 2, the result is either
the nearest representable value, or the larger or smaller representable value immediately
adjacent to the nearest representable value, chosen in an implementation-defined manner.
For hexadecimal floating constants when FLT_RADI X is a power of 2, the result is
correctly rounded.

An unsuffixed floating constant has type doubl e. If suffixed by the letter f or F, it has
type f | oat . If suffixed by the letter | or L, it has type | ong doubl e.

Floating constants are converted to internal format as if at translation-time. The
conversion of a floating constant shall not raise an exceptional condition or a floating-
point exception at execution time.

Recommended practice

The implementation should produce a diagnostic message if a hexadecimal constant
cannot be represented exactly in its evaluation format; the implementation should then
proceed with the translation of the program.

The translation-time conversion of floating constants should match the execution-time
conversion of character strings by library functions, such as st rt od, given matching
inputs suitable for both conversions, the same result format, and default execution-time
rounding.5¥

64) The specification for the library functions recommends more accurate conversion than required for
floating constants (see 7.20.1.3).

58 Language 86.4.4.2

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

6.4.4.3 Enumeration constants
Syntax

enumeration-constant:

identifier

Semantics
An identifier declared as an enumeration constant has type int.
Forward references. enumeration specifiers (6.7.2.2).
6.4.4.4 Character constants

Syntax

character-constant:
" c-char-sequence *
L" c-char-sequence

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except
the single-quote ®, backslash \, or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
universal-character-name

simple-escape-sequence: one of
A"\ \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\Xx hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

86.4.4.4 Language

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Description

An integer character constant is a sequence of one or more multibyte characters enclosed
in single-quotes, as in "x". A wide character constant is the same, except prefixed by the
letter L. With a few exceptions detailed later, the elements of the sequence are any
members of the source character set; they are mapped in an implementation-defined
manner to members of the execution character set.

The single-quote *, the double-quote **, the question-mark ?, the backslash \, and
arbitrary integer values are representable according to the following table of escape
sequences:

single quote * *
double quote ** \"
question mark ? \?
backslash \ \\
octal character \octal digits

hexadecimal character ~ \x hexadecimal digits

The double-quote ** and question-mark ? are representable either by themselves or by the
escape sequences \"* and \?, respectively, but the single-quote * and the backslash \
shall be represented, respectively, by the escape sequences \ " and \\.

The octal digits that follow the backslash in an octal escape sequence are taken to be part
of the construction of a single character for an integer character constant or of a single
wide character for a wide character constant. The numerical value of the octal integer so
formed specifies the value of the desired character or wide character.

The hexadecimal digits that follow the backslash and the letter X in a hexadecimal escape
sequence are taken to be part of the construction of a single character for an integer
character constant or of a single wide character for a wide character constant. The
numerical value of the hexadecimal integer so formed specifies the value of the desired
character or wide character.

Each octal or hexadecimal escape sequence is the longest sequence of characters that can
constitute the escape sequence.

In addition, characters not in the basic character set are representable by universal
character names and certain nongraphic characters are representable by escape sequences
consisting of the backslash \ followed by a lowercase letter: \a, \b, \F, \n, \r, \t,
and \v.%%

65) The semantics of these characters were discussed in 5.2.2. If any other character follows a backslash,
the result is not a token and a diagnostic is required. See “future language directions™ (6.11.4).

60 Language 86.4.4.4

10

11

12
13

14

15

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

Constraints

The value of an octal or hexadecimal escape sequence shall be in the range of
representable values for the type unsigned char for an integer character constant, or
the unsigned type corresponding to wchar _t for a wide character constant.

Semantics

An integer character constant has type 1nt. The value of an integer character constant
containing a single character that maps to a single-byte execution character is the
numerical value of the representation of the mapped character interpreted as an integer.
The value of an integer character constant containing more than one character (e.g.,
"ab"), or containing a character or escape sequence that does not map to a single-byte
execution character, is implementation-defined. If an integer character constant contains
a single character or escape sequence, its value is the one that results when an object with
type char whose value is that of the single character or escape sequence is converted to
type int.

A wide character constant has type wchar_t, an integer type defined in the
<stddef.h> header. The value of a wide character constant containing a single
multibyte character that maps to a member of the extended execution character set is the
wide character corresponding to that multibyte character, as defined by the mbtowc
function, with an implementation-defined current locale. The value of a wide character
constant containing more than one multibyte character, or containing a multibyte
character or escape sequence not represented in the extended execution character set, is
implementation-defined.

EXAMPLE 1 The construction *\O" is commonly used to represent the null character.

EXAMPLE 2 Consider implementations that use two’s-complement representation for integers and eight
bits for objects that have type char. In an implementation in which type char has the same range of
values as signed char, the integer character constant *\xFF " has the value —1; if type char has the
same range of values as unsigned char, the character constant "\xFF* has the value +255.

EXAMPLE 3 Even if eight bits are used for objects that have type char, the construction *\x123*"
specifies an integer character constant containing only one character, since a hexadecimal escape sequence
is terminated only by a non-hexadecimal character. To specify an integer character constant containing the
two characters whose values are "\x12" and 3", the construction *\0223" may be used, since an octal
escape sequence is terminated after three octal digits. (The value of this two-character integer character
constant is implementation-defined.)

EXAMPLE 4 Even if 12 or more bits are used for objects that have type wchar_t, the construction
L*\1234" specifies the implementation-defined value that results from the combination of the values
0123 and "4°*.

Forward references. common definitions <stddef.h> (7.17), the mbtowc function
(7.20.7.2).

86.4.4.4 Language 61

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.4.5 String literals
Syntax

string-literal:
" s-char-sequencegn;
L™ s-char-sequenceqpt

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except
the double-quote **, backslash \, or new-line character
escape-sequence
Description

A character string literal is a sequence of zero or more multibyte characters enclosed in
double-quotes, as in ""xyz". A wide string literal is the same, except prefixed by the
letter L.

The same considerations apply to each element of the sequence in a character string
literal or a wide string literal as if it were in an integer character constant or a wide
character constant, except that the single-quote * is representable either by itself or by the
escape sequence \ ", but the double-quote ** shall be represented by the escape sequence
\".

Semantics

In translation phase 6, the multibyte character sequences specified by any sequence of
adjacent character and wide string literal tokens are concatenated into a single multibyte
character sequence. If any of the tokens are wide string literal tokens, the resulting
multibyte character sequence is treated as a wide string literal; otherwise, it is treated as a
character string literal.

In translation phase 7, a byte or code of value zero is appended to each multibyte
character sequence that results from a string literal or literals.5®) The multibyte character
sequence is then used to initialize an array of static storage duration and length just
sufficient to contain the sequence. For character string literals, the array elements have
type char, and are initialized with the individual bytes of the multibyte character
sequence; for wide string literals, the array elements have type wchar_t, and are
initialized with the sequence of wide characters corresponding to the multibyte character

66) A character string literal need not be a string (see 7.1.1), because a null character may be embedded in
it by a \O escape sequence.

62 Language 8§6.4.5

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

sequence, as defined by the mbstowcs function with an implementation-defined current
locale. The value of a string literal containing a multibyte character or escape sequence
not represented in the execution character set is implementation-defined.

It is unspecified whether these arrays are distinct provided their elements have the
appropriate values. If the program attempts to modify such an array, the behavior is
undefined.

EXAMPLE This pair of adjacent character string literals
"\x12" "3"

produces a single character string literal containing the two characters whose values are "\x12* and *3*,
because escape sequences are converted into single members of the execution character set just prior to
adjacent string literal concatenation.

Forward references:. common definitions <stddef.h> (7.17), the mbstowcs
function (7.20.8.1).

6.4.6 Punctuators
Syntax

punctuator: one of

L1 > {43 - -

++ - & + - ~ 1

/ % << > < > <= >= = I= 2~] & ||
? I ..

= *= [= Y= 4= = <<= >>= K= N= I:

, #H #H#

<z > <Wh %> %: %:=%:

Semantics

A punctuator is a symbol that has independent syntactic and semantic significance.
Depending on context, it may specify an operation to be performed (which in turn may
yield a value or a function designator, produce a side effect, or some combination thereof)
in which case it is known as an operator (other forms of operator also exist in some
contexts). An operand is an entity on which an operator acts.

86.4.6 Language 63

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

In all aspects of the language, the six tokens®”)
<: > <% %> %: %:%:
behave, respectively, the same as the six tokens

L 1 { 3} # ##

except for their spelling.®®)

Forward references. expressions (6.5), declarations (6.7), preprocessing directives
(6.10), statements (6.8).

6.4.7 Header names
Syntax

header-name:
< h-char-sequence >
" g-char-sequence '

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except
the new-line character and >

g-char-sequence:
g-char
g-char-sequence g-char

g-char:
any member of the source character set except
the new-line character and **

Semantics

The sequences in both forms of header names are mapped in an implementation-defined
manner to headers or external source file names as specified in 6.10.2.

If the characters *, \, **, 7/, or /* occur in the sequence between the < and > delimiters,
the behavior is undefined. Similarly, if the characters *, \, //, or /* occur in the

67) These tokens are sometimes called “digraphs”.

68) Thus [and <: behave differently when “stringized” (see 6.10.3.2), but can otherwise be freely
interchanged.

64 Language 86.4.7

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

sequence between the delimiters, the behavior is undefined.®® Header name
preprocessing tokens are recognized only within #i ncl ude preprocessing directives and
in implementation-defined locations within #pr agma directives.’®

EXAMPLE The following sequence of characters:

0x3<1/ a. h>1e2
#i ncl ude <1/ a. h>
#def i ne const. nenber @

forms the following sequence of preprocessing tokens (with each individual preprocessing token delimited
by a { on the left and a } on the right).

{Ox3H{<H1H/ HaH. HhH{>H1e2}
{#}i ncl ude} {<1/a.h>}

{#Hdefi ne} {const {. Hmenber H@{$}
Forward references: source file inclusion (6.10.2).

6.4.8 Preprocessing numbers
Syntax

pp-number:

digit
digit

pp-number digit
pp-number identifier-nondigit
pp-number e sign
pp-number E sign
pp-number p sign
pp-number P sign
pp-number .

Description

A preprocessing number begins with a digit optionally preceded by a period (.) and may
be followed by valid identifier characters and the character sequences e+, e-, E+, E-,
p+, p-, P+, or P-.

Preprocessing number tokens lexically include all floating and integer constant tokens.
Semantics

A preprocessing number does not have type or a value; it acquires both after a successful
conversion (as part of translation phase 7) to a floating constant token or an integer
constant token.

69) Thus, sequences of characters that resemble escape sequences cause undefined behavior.

70) For an example of a header name preprocessing token used in a #pr agma directive, see 6.10.9.

86.4.8 Language 65

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.4.9 Comments

Except within a character constant, a string literal, or a comment, the characters / *
introduce a comment. The contents of such a comment are examined only to identify
multibyte characters and to find the characters */ that terminate it.”%

Except within a character constant, a string literal, or a comment, the characters //
introduce a comment that includes all multibyte characters up to, but not including, the
next new-line character. The contents of such a comment are examined only to identify
multibyte characters and to find the terminating new-line character.

EXAMPLE
"allb" /I four-character string literal
#include "//e" /' 1 undefined behavior
[/I comment, not syntax error
f =g/**/]h; /'l equivalenttof = g / h;
/1\
i(); /I part of a two-line comment
I\
I jQ0); /I part of a two-line comment
#defi ne glue(x,y) x##ty
glue(/,!1) k(); /I syntax error, not comment
[*11*1 1 (); /'l equivalenttol () ;
m=n//**/o

+ p; /'l equivalenttom = n + p;

71) Thus,/* .. */ comments do not nest.

66 Language §6.4.9

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

6.5 Expressions

An expression is a sequence of operators and operands that specifies computation of a
value, or that designates an object or a function, or that generates side effects, or that
performs a combination thereof.

Between the previous and next sequence point an object shall have its stored value
modified at most once by the evaluation of an expression.”? Furthermore, the prior value
shall be read only to determine the value to be stored.”®

The grouping of operators and operands is indicated by the syntax.”® Except as specified
later (for the function-call (), &&, | |, ?:, and comma operators), the order of evaluation
of subexpressions and the order in which side effects take place are both unspecified.

Some operators (the unary operator ~, and the binary operators <<, >>, & ", and |,
collectively described as bitwise operators) are required to have operands that have
integer type. These operators yield values that depend on the internal representations of
integers, and have implementation-defined and undefined aspects for signed types.

If an exceptional condition occurs during the evaluation of an expression (that is, if the
result is not mathematically defined or not in the range of representable values for its
type), the behavior is undefined.

The effective type of an object for an access to its stored value is the declared type of the
object, if any.”™ If a value is stored into an object having no declared type through an
Ivalue having a type that is not a character type, then the type of the Ivalue becomes the

72) A floating-point status flag is not an object and can be set more than once within an expression.
73) This paragraph renders undefined statement expressions such as
i = ++i + 1;
afi++] = i;
while allowing
i =

a[i] = i;

74) The syntax specifies the precedence of operators in the evaluation of an expression, which is the same
as the order of the major subclauses of this subclause, highest precedence first. Thus, for example, the
expressions allowed as the operands of the binary + operator (6.5.6) are those expressions defined in
6.5.1 through 6.5.6. The exceptions are cast expressions (6.5.4) as operands of unary operators
(6.5.3), and an operand contained between any of the following pairs of operators: grouping

parentheses () (6.5.1), subscripting brackets [] (6.5.2.1), function-call parentheses () (6.5.2.2), and
the conditional operator ?: (6.5.15).

Within each major subclause, the operators have the same precedence. Left- or right-associativity is
indicated in each subclause by the syntax for the expressions discussed therein.

75) Allocated objects have no declared type.

86.5 Language 67

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

effective type of the object for that access and for subsequent accesses that do not modify
the stored value. If a value is copied into an object having no declared type using
menctpy or nenmove, or is copied as an array of character type, then the effective type
of the modified object for that access and for subsequent accesses that do not modify the
value is the effective type of the object from which the value is copied, if it has one. For
all other accesses to an object having no declared type, the effective type of the object is
simply the type of the lvalue used for the access.

An object shall have its stored value accessed only by an Ivalue expression that has one of

the following types:’®

— atype compatible with the effective type of the object,
— aqualified version of a type compatible with the effective type of the object,

— a type that is the signed or unsigned type corresponding to the effective type of the
object,

— a type that is the signed or unsigned type corresponding to a qualified version of the
effective type of the object,

— an aggregate or union type that includes one of the aforementioned types among its
members (including, recursively, a member of a subaggregate or contained union), or

— acharacter type.

A floating expression may be contracted, that is, evaluated as though it were an atomic
operation, thereby omitting rounding errors implied by the source code and the
expression evaluation method.”” The FP_CONTRACT pragma in <mat h. h> provides a
way to disallow contracted expressions. Otherwise, whether and how expressions are
contracted is implementation-defined.”®

Forward references. the FP_CONTRACT pragma (7.12.2), copying functions (7.21.2).

76) The intent of this list is to specify those circumstances in which an object may or may not be aliased.
77) A contracted expression might also omit the raising of floating-point exceptions.

78) This license is specifically intended to allow implementations to exploit fast machine instructions that
combine multiple C operators. As contractions potentially undermine predictability, and can even
decrease accuracy for containing expressions, their use needs to be well-defined and clearly
documented.

68 Language 86.5

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

6.5.1 Primary expressions
Syntax

primary-expression:
identifier
constant
string-literal
(expression)

Semantics

An identifier is a primary expression, provided it has been declared as designating an
object (in which case it is an lvalue) or a function (in which case it is a function
designator).”®

A constant is a primary expression. Its type depends on its form and value, as detailed in
6.4.4.

A string literal is a primary expression. It is an lvalue with type as detailed in 6.4.5.

A parenthesized expression is a primary expression. Its type and value are identical to
those of the unparenthesized expression. It is an lvalue, a function designator, or a void
expression if the unparenthesized expression is, respectively, an lvalue, a function
designator, or a void expression.

Forward references: declarations (6.7).

6.5.2 Postfix operators
Syntax

postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (argument-expression-listypt)
postfix-expression . identifier
postfix-expression - > identifier
postfix-expression ++
postfix-expression - -
(type-name) { initializer-list }
(type-name) { Iinitializer-list , }

79) Thus, an undeclared identifier is a violation of the syntax.

86.5.2 Language 69

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

argument-expression-list:
assignment-expression
argument-expression-list , assignment-expression

6.5.2.1 Array subscripting
Constraints

One of the expressions shall have type “pointer to object type”, the other expression shall
have integer type, and the result has type “type”.

Semantics

A postfix expression followed by an expression in square brackets [] is a subscripted
designation of an element of an array object. The definition of the subscript operator []
is that E1[E2] is identical to (* ((E1) +(E2))) . Because of the conversion rules that
apply to the binary + operator, if E1 is an array object (equivalently, a pointer to the
initial element of an array object) and E2 is an integer, E1[E2] designates the E2-th
element of E1 (counting from zero).

Successive subscript operators designate an element of a multidimensional array object.
If E is an n-dimensional array (n = 2) with dimensions i x j x ... x K, then E (used as
other than an Ivalue) is converted to a pointer to an (n-1)-dimensional array with
dimensions j x-.-x K. If the unary * operator is applied to this pointer explicitly, or
implicitly as a result of subscripting, the result is the pointed-to (n — 1)-dimensional array,
which itself is converted into a pointer if used as other than an lvalue. It follows from this
that arrays are stored in row-major order (last subscript varies fastest).

EXAMPLE Consider the array object defined by the declaration
int x[3][5];

Here x is a 3 x5 array of i nt's; more precisely, x is an array of three element objects, each of which is an
array of five i nt s. In the expression x[i], which is equivalentto (* ((x) +(i))), x is first converted to
a pointer to the initial array of five i nt's. Theni is adjusted according to the type of x, which conceptually
entails multiplying i by the size of the object to which the pointer points, namely an array of five i nt
objects. The results are added and indirection is applied to yield an array of five i nt's. When used in the
expression X[i][]], that array is in turn converted to a pointer to the first of the i nt's, so x[i][]]
yieldsani nt.

Forward references. additive operators (6.5.6), address and indirection operators
(6.5.3.2), array declarators (6.7.5.2).

70 Language §6.5.2.1

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

6.5.2.2 Function calls
Constraints

The expression that denotes the called function®® shall have type pointer to function
returning voi d or returning an object type other than an array type.

If the expression that denotes the called function has a type that includes a prototype, the
number of arguments shall agree with the number of parameters. Each argument shall
have a type such that its value may be assigned to an object with the unqualified version
of the type of its corresponding parameter.

Semantics

A postfix expression followed by parentheses () containing a possibly empty, comma-
separated list of expressions is a function call. The postfix expression denotes the called
function. The list of expressions specifies the arguments to the function.

An argument may be an expression of any object type. In preparing for the call to a
function, the arguments are evaluated, and each parameter is assigned the value of the
corresponding argument.8%)

If the expression that denotes the called function has type pointer to function returning an
object type, the function call expression has the same type as that object type, and has the
value determined as specified in 6.8.6.4. Otherwise, the function call has type voi d. If
an attempt is made to modify the result of a function call or to access it after the next
sequence point, the behavior is undefined.

If the expression that denotes the called function has a type that does not include a
prototype, the integer promotions are performed on each argument, and arguments that
have type fl oat are promoted to doubl e. These are called the default argument
promotions. If the number of arguments does not equal the number of parameters, the
behavior is undefined. If the function is defined with a type that includes a prototype, and
either the prototype ends with an ellipsis (, .. .) or the types of the arguments after
promotion are not compatible with the types of the parameters, the behavior is undefined.
If the function is defined with a type that does not include a prototype, and the types of
the arguments after promotion are not compatible with those of the parameters after
promotion, the behavior is undefined, except for the following cases:

80) Most often, this is the result of converting an identifier that is a function designator.

81) A function may change the values of its parameters, but these changes cannot affect the values of the
arguments. On the other hand, it is possible to pass a pointer to an object, and the function may
change the value of the object pointed to. A parameter declared to have array or function type is
adjusted to have a pointer type as described in 6.9.1.

§6.5.2.2 Language 71

10

11

12

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

— one promoted type is a signed integer type, the other promoted type is the
corresponding unsigned integer type, and the value is representable in both types;

— both types are pointers to qualified or unqualified versions of a character type or
voi d.

If the expression that denotes the called function has a type that does include a prototype,
the arguments are implicitly converted, as if by assignment, to the types of the
corresponding parameters, taking the type of each parameter to be the unqualified version
of its declared type. The ellipsis notation in a function prototype declarator causes
argument type conversion to stop after the last declared parameter. The default argument
promotions are performed on trailing arguments.

No other conversions are performed implicitly; in particular, the number and types of
arguments are not compared with those of the parameters in a function definition that
does not include a function prototype declarator.

If the function is defined with a type that is not compatible with the type (of the
expression) pointed to by the expression that denotes the called function, the behavior is
undefined.

The order of evaluation of the function designator, the actual arguments, and
subexpressions within the actual arguments is unspecified, but there is a sequence point
before the actual call.

Recursive function calls shall be permitted, both directly and indirectly through any chain
of other functions.
EXAMPLE In the function call

(rpf[f10)1) (f2(), f3() + f4())

the functions f 1, f 2, f 3, and f 4 may be called in any order. All side effects have to be completed before
the function pointed to by pf [f 1()] is called.

Forward references. function declarators (including prototypes) (6.7.5.3), function
definitions (6.9.1), the r et ur n statement (6.8.6.4), simple assignment (6.5.16.1).

6.5.2.3 Structure and union members
Constraints

The first operand of the . operator shall have a qualified or unqualified structure or union
type, and the second operand shall name a member of that type.

The first operand of the - > operator shall have type “pointer to qualified or unqualified
structure” or ““pointer to qualified or unqualified union”, and the second operand shall
name a member of the type pointed to.

72 Language 86.5.2.3

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

Semantics

A postfix expression followed by the . operator and an identifier designates a member of
a structure or union object. The value is that of the named member,8? and is an Ivalue if
the first expression is an lIvalue. If the first expression has qualified type, the result has
the so-qualified version of the type of the designated member.

A postfix expression followed by the - > operator and an identifier designates a member
of a structure or union object. The value is that of the named member of the object to
which the first expression points, and is an Ivalue.83) If the first expression is a pointer to
a qualified type, the result has the so-qualified version of the type of the designated
member.

One special guarantee is made in order to simplify the use of unions: if a union contains
several structures that share a common initial sequence (see below), and if the union
object currently contains one of these structures, it is permitted to inspect the common
initial part of any of them anywhere that a declaration of the complete type of the union is
visible. Two structures share a common initial sequence if corresponding members have
compatible types (and, for bit-fields, the same widths) for a sequence of one or more
initial members.

EXAMPLE 1 If f is a function returning a structure or union, and x is a member of that structure or
union, f () . x is a valid postfix expression but is not an Ivalue.

EXAMPLE 2 In:

struct s { int i; const int ci; };
struct s s;

const struct s cs;

volatile struct s vs;

the various members have the types:

S.i i nt

S. Ci const int

cs. i const int

cs.ci const int

VS, i volatile int

VS. Ci vol atile const int

82) If the member used to access the contents of a union object is not the same as the member last used to
store a value in the object, the appropriate part of the object representation of the value is reinterpreted
as an object representation in the new type as described in 6.2.6 (a process sometimes called "type
punning”). This might be a trap representation.

83) If &E is a valid pointer expression (where & is the “address-of”” operator, which generates a pointer to
its operand), the expression (&E) - >MOS is the same as E. MOS.

86.5.2.3 Language 73

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

EXAMPLE 3 The following is a valid fragment:

uni on {
struct {
i nt al | types;
P
struct {
i nt type;
i nt i nt node;
}oni;
struct {
i nt type;
doubl e doubl enode;
} onf;
Py

u.nf.type = 1;
u. nf . doubl enode = 3. 14;
I*
if (un.alltypes == 1)
i f (sin(u.nf.doubl enode) == 0.0)
I* ..

The following is not a valid fragment (because the union type is not visible within function f):

struct t1 { int m };
struct t2 { int m };
int f(struct t1 *pl, struct t2 *p2)

{
if (pl->m< 0)
p2->m = -p2->m
return pl->m
}
int g()
{
uni on {
struct tl1 si;
struct t2 s2;
}ous
[* .*]
return f(&u.sl, &u.s2);
}

Forward references. address and indirection operators (6.5.3.2), structure and union
specifiers (6.7.2.1).

74 Language 86.5.2.3

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

6.5.2.4 Postfix increment and decrement operators
Constraints

The operand of the postfix increment or decrement operator shall have qualified or
unqualified real or pointer type and shall be a modifiable Ivalue.

Semantics

The result of the postfix ++ operator is the value of the operand. After the result is
obtained, the value of the operand is incremented. (That is, the value 1 of the appropriate
type is added to it.) See the discussions of additive operators and compound assignment
for information on constraints, types, and conversions and the effects of operations on
pointers. The side effect of updating the stored value of the operand shall occur between
the previous and the next sequence point.

The postfix - - operator is analogous to the postfix ++ operator, except that the value of
the operand is decremented (that is, the value 1 of the appropriate type is subtracted from
it).

Forward references: additive operators (6.5.6), compound assignment (6.5.16.2).
6.5.2.5 Compound literals

Constraints

The type name shall specify an object type or an array of unknown size, but not a variable
length array type.

No initializer shall attempt to provide a value for an object not contained within the entire
unnamed object specified by the compound literal.

If the compound literal occurs outside the body of a function, the initializer list shall
consist of constant expressions.

Semantics

A postfix expression that consists of a parenthesized type name followed by a brace-
enclosed list of initializers is a compound literal. It provides an unnamed object whose
value is given by the initializer list.?%

If the type name specifies an array of unknown size, the size is determined by the
initializer list as specified in 6.7.8, and the type of the compound literal is that of the
completed array type. Otherwise (when the type name specifies an object type), the type
of the compound literal is that specified by the type name. In either case, the result is an
Ivalue.

84) Note that this differs from a cast expression. For example, a cast specifies a conversion to scalar types
or voi d only, and the result of a cast expression is not an lvalue.

86.5.2.5 Language 75

10

11

12

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

The value of the compound literal is that of an unnamed object initialized by the
initializer list. If the compound literal occurs outside the body of a function, the object
has static storage duration; otherwise, it has automatic storage duration associated with
the enclosing block.

All the semantic rules and constraints for initializer lists in 6.7.8 are applicable to
compound literals.?®

String literals, and compound literals with const-qualified types, need not designate
distinct objects.®6)
EXAMPLE 1 The file scope definition

int *p = (int []){2, 4};

initializes p to point to the first element of an array of two ints, the first having the value two and the
second, four. The expressions in this compound literal are required to be constant. The unnamed object
has static storage duration.

EXAMPLE 2 In contrast, in

void f(void)

{ int *p;
[*.*]
p = (int [2]){*p};
[*..*]

}

p is assigned the address of the first element of an array of two ints, the first having the value previously
pointed to by p and the second, zero. The expressions in this compound literal need not be constant. The
unnamed object has automatic storage duration.

EXAMPLE 3 Initializers with designations can be combined with compound literals. Structure objects
created using compound literals can be passed to functions without depending on member order:

draw i ne((struct point){.x=1, .y=1},
(struct point){.x=3, .y=4});

Or, if dr awl i ne instead expected pointers to st r uct poi nt:

draw i ne(&(struct point){.x=1, .y=1},
&(struct point){.x=3, .y=4});

EXAMPLE 4 A read-only compound literal can be specified through constructions like:
(const float []){21e0, 1lel, 1e2, 1e3, 1le4, 1leb5, 1le6}

85) For example, subobjects without explicit initializers are initialized to zero.

86) This allows implementations to share storage for string literals and constant compound literals with
the same or overlapping representations.

76 Language 86.5.2.5

13

14

15

16

17

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

EXAMPLE 5 The following three expressions have different meanings:

"Ltp/ fil eXXXXXX!
(char [1){"/tmp/fil eXXXXXX"}
(const char []){"/tnp/fil eXXXXXX"}

The first always has static storage duration and has type array of char , but need not be modifiable; the last
two have automatic storage duration when they occur within the body of a function, and the first of these
two is modifiable.

EXAMPLE 6 Like string literals, const-qualified compound literals can be placed into read-only memory
and can even be shared. For example,

(const char []){"abc"} == "abc"
might yield 1 if the literals’ storage is shared.

EXAMPLE 7 Since compound literals are unnamed, a single compound literal cannot specify a circularly
linked object. For example, there is no way to write a self-referential compound literal that could be used
as the function argument in place of the named object endl ess_zer os below:

struct int_list { int car; struct int_list *cdr; };
struct int_list endless zeros = {0, &endl ess_zeros};
eval (endl ess_zeros);

EXAMPLE 8 Each compound literal creates only a single object in a given scope:
struct s { int i; };

int f (void)
{
struct s *p = 0, *q;
int j =0;
agai n:
q=p p=&(struct s){ j++ });
if (j <2) goto again;
return p == q && g->i == 1;
}

The function f () always returns the value 1.

Note that if an iteration statement were used instead of an explicit got o and a labeled statement, the
lifetime of the unnamed object would be the body of the loop only, and on entry next time around p would
have an indeterminate value, which would result in undefined behavior.

Forward references. type names (6.7.6), initialization (6.7.8).

86.5.2.5 Language 77

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.5.3 Unary operators
Syntax

unary-expression:
postfix-expression
++ unary-expression
—— unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)

unary-operator: one of
& * + - ~ 1

6.5.3.1 Prefix increment and decrement operators
Constraints

The operand of the prefix increment or decrement operator shall have qualified or
unqualified real or pointer type and shall be a modifiable Ivalue.

Semantics

The value of the operand of the prefix ++ operator is incremented. The result is the new
value of the operand after incrementation. The expression ++E is equivalent to (E+=1).
See the discussions of additive operators and compound assignment for information on
constraints, types, side effects, and conversions and the effects of operations on pointers.

The prefix —- operator is analogous to the prefix ++ operator, except that the value of the
operand is decremented.

Forward references: additive operators (6.5.6), compound assignment (6.5.16.2).
6.5.3.2 Address and indirection operators
Constraints

The operand of the unary & operator shall be either a function designator, the result of a
[1 or unary * operator, or an lvalue that designates an object that is not a bit-field and is
not declared with the register storage-class specifier.

The operand of the unary * operator shall have pointer type.
Semantics

The unary & operator yields the address of its operand. If the operand has type *“type”,
the result has type “pointer to type”. If the operand is the result of a unary * operator,
neither that operator nor the & operator is evaluated and the result is as if both were
omitted, except that the constraints on the operators still apply and the result is not an
Ivalue. Similarly, if the operand is the result of a [] operator, neither the & operator nor

78 Language 86.5.3.2

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

the unary * that is implied by the [] is evaluated and the result is as if the & operator
were removed and the [] operator were changed to a + operator. Otherwise, the result is
a pointer to the object or function designated by its operand.

The unary * operator denotes indirection. If the operand points to a function, the result is
a function designator; if it points to an object, the result is an Ivalue designating the
object. If the operand has type “pointer to type”, the result has type *“type”. If an
invalid value has been assigned to the pointer, the behavior of the unary * operator is
undefined.®”)

Forward references. storage-class specifiers (6.7.1), structure and union specifiers
(6.7.2.1).

6.5.3.3 Unary arithmetic operators
Constraints

The operand of the unary + or — operator shall have arithmetic type; of the ~ operator,
integer type; of the I operator, scalar type.

Semantics

The result of the unary + operator is the value of its (promoted) operand. The integer
promotions are performed on the operand, and the result has the promoted type.

The result of the unary - operator is the negative of its (promoted) operand. The integer
promotions are performed on the operand, and the result has the promoted type.

The result of the ~ operator is the bitwise complement of its (promoted) operand (that is,
each bit in the result is set if and only if the corresponding bit in the converted operand is
not set). The integer promotions are performed on the operand, and the result has the
promoted type. If the promoted type is an unsigned type, the expression ~E is equivalent
to the maximum value representable in that type minus E.

The result of the logical negation operator ! is O if the value of its operand compares
unequal to 0, 1 if the value of its operand compares equal to 0. The result has type int.
The expression E is equivalent to (0O==E).

87) Thus, &*E is equivalent to E (even if E is a null pointer), and &(E1[E2]) to ((E1)+(E2)). Itis
always true that if E is a function designator or an lIvalue that is a valid operand of the unary &
operator, *&E is a function designator or an lvalue equal to E. If *P is an Ivalue and T is the name of
an object pointer type, *(T)P is an lvalue that has a type compatible with that to which T points.

Among the invalid values for dereferencing a pointer by the unary * operator are a null pointer, an
address inappropriately aligned for the type of object pointed to, and the address of an object after the
end of its lifetime.

§6.5.3.3 Language 79

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.5.3.4 Thesi zeof operator
Constraints

The si zeof operator shall not be applied to an expression that has function type or an
incomplete type, to the parenthesized name of such a type, or to an expression that
designates a bit-field member.

Semantics

The si zeof operator yields the size (in bytes) of its operand, which may be an
expression or the parenthesized name of a type. The size is determined from the type of
the operand. The result is an integer. If the type of the operand is a variable length array
type, the operand is evaluated; otherwise, the operand is not evaluated and the result is an
integer constant.

When applied to an operand that has type char , unsi gned char, or si gned char,
(or a qualified version thereof) the result is 1. When applied to an operand that has array
type, the result is the total number of bytes in the array.®8) When applied to an operand
that has structure or union type, the result is the total number of bytes in such an object,
including internal and trailing padding.

The value of the result is implementation-defined, and its type (an unsigned integer type)
issi ze_t, defined in <st ddef . h> (and other headers).

EXAMPLE 1 A principal use of the si zeof operator is in communication with routines such as storage
allocators and 1/O systems. A storage-allocation function might accept a size (in bytes) of an object to
allocate and return a pointer to voi d. For example:

extern void *alloc(size_t);
doubl e *dp = all oc(sizeof *dp);

The implementation of the al | oc function should ensure that its return value is aligned suitably for
conversion to a pointer to doubl e.

EXAMPLE 2 Another use of the si zeof operator is to compute the number of elements in an array:
sizeof array / sizeof array[O0]

EXAMPLE 3 In this example, the size of a variable length array is computed and returned from a |
function:

#i ncl ude <stddef. h>

size_t fsize3(int n)

{
char b[n+3]; /'] variable length array
return sizeof b; /| executiontimesi zeof

88) When applied to a parameter declared to have array or function type, the si zeof operator yields the
size of the adjusted (pointer) type (see 6.9.1).

80 Language 86.5.3.4

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

int main()

{ . .
size_t size;
size = fsize3(10); // fsize3returnsl13
return O;

}

Forward references. common definitions <st ddef . h> (7.17), declarations (6.7),
structure and union specifiers (6.7.2.1), type names (6.7.6), array declarators (6.7.5.2).

6.5.4 Cast operators
Syntax
cast-expression:
unary-expression
(type-name) cast-expression
Constraints

Unless the type name specifies a void type, the type name shall specify qualified or
unqualified scalar type and the operand shall have scalar type.

Conversions that involve pointers, other than where permitted by the constraints of
6.5.16.1, shall be specified by means of an explicit cast.

Semantics

Preceding an expression by a parenthesized type name converts the value of the
expression to the named type. This construction is called a cast.?? A cast that specifies
no conversion has no effect on the type or value of an expression.

If the value of the expression is represented with greater precision or range than required
by the type named by the cast (6.3.1.8), then the cast specifies a conversion even if the
type of the expression is the same as the named type.

Forward references. equality operators (6.5.9), function declarators (including
prototypes) (6.7.5.3), simple assignment (6.5.16.1), type names (6.7.6).

89) A cast does not yield an Ivalue. Thus, a cast to a qualified type has the same effect as a cast to the
unqualified version of the type.

86.5.4 Language 81

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.5.5 Multiplicative operators
Syntax

multi plicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression

Constraints

Each of the operands shall have arithmetic type. The operands of the %operator shall
have integer type.

Semantics
The usual arithmetic conversions are performed on the operands.
The result of the binary * operator is the product of the operands.

The result of the / operator is the quotient from the division of the first operand by the
second; the result of the %operator is the remainder. In both operations, if the value of
the second operand is zero, the behavior is undefined.

When integers are divided, the result of the / operator is the algebraic quotient with any
fractional part discarded.’® If the quotient a/b is representable, the expression
(a/b)*b + a%b shall equal a.

6.5.6 Additive operators
Syntax

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression
Constraints
For addition, either both operands shall have arithmetic type, or one operand shall be a

pointer to an object type and the other shall have integer type. (Incrementing is
equivalent to adding 1.)

For subtraction, one of the following shall hold:

— both operands have arithmetic type;

90) This is often called “truncation toward zero”.

82 Language 86.5.6

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

— both operands are pointers to qualified or unqualified versions of compatible object
types; or

— the left operand is a pointer to an object type and the right operand has integer type.
(Decrementing is equivalent to subtracting 1.)
Semantics

If both operands have arithmetic type, the usual arithmetic conversions are performed on
them.

The result of the binary + operator is the sum of the operands.

The result of the binary - operator is the difference resulting from the subtraction of the
second operand from the first.

For the purposes of these operators, a pointer to an object that is not an element of an
array behaves the same as a pointer to the first element of an array of length one with the
type of the object as its element type.

When an expression that has integer type is added to or subtracted from a pointer, the
result has the type of the pointer operand. If the pointer operand points to an element of
an array object, and the array is large enough, the result points to an element offset from
the original element such that the difference of the subscripts of the resulting and original
array elements equals the integer expression. In other words, if the expression P points to
the i-th element of an array object, the expressions (P) +N (equivalently, N+(P)) and
(P) - N (where N has the value n) point to, respectively, the i+n-th and i—n-th elements of
the array object, provided they exist. Moreover, if the expression P points to the last
element of an array object, the expression (P) +1 points one past the last element of the
array object, and if the expression Q points one past the last element of an array object,
the expression (Q) - 1 points to the last element of the array object. If both the pointer
operand and the result point to elements of the same array object, or one past the last
element of the array object, the evaluation shall not produce an overflow; otherwise, the
behavior is undefined. If the result points one past the last element of the array object, it
shall not be used as the operand of a unary * operator that is evaluated.

When two pointers are subtracted, both shall point to elements of the same array object,
or one past the last element of the array object; the result is the difference of the
subscripts of the two array elements. The size of the result is implementation-defined,
and its type (a signed integer type) is pt rdi ff _t defined in the <st ddef . h> header.
If the result is not representable in an object of that type, the behavior is undefined. In
other words, if the expressions P and Qpoint to, respectively, the i-th and j-th elements of
an array object, the expression (P) - (Q has the value i—j provided the value fits in an
object of type pt rdi ff _t. Moreover, if the expression P points either to an element of
an array object or one past the last element of an array object, and the expression Qpoints
to the last element of the same array object, the expression ((Q +1) - (P) has the same

86.5.6 Language 83

10

11

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

value as ((Q-(P))+1 and as - ((P)-((Q +1)), and has the value zero if the
expression P points one past the last element of the array object, even though the
expression (Q) +1 does not point to an element of the array object.®?

EXAMPLE Pointer arithmetic is well defined with pointers to variable length array types.

{
int n =4 m=3;
int a[n][ni;
int (*p)[mM =a; // p == &[0]
p += 1; [l p == &a[1]
(*p)[2] = 99; Il a[1][2] == 99
n=p- a [l n ==

}

If array a in the above example were declared to be an array of known constant size, and pointer p were
declared to be a pointer to an array of the same known constant size (pointing to a), the results would be
the same.

Forward references. array declarators (6.7.5.2), common definitions <st ddef. h>
(7.17).

6.5.7 Bitwise shift operators
Syntax
shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression
Constraints
Each of the operands shall have integer type.
Semantics

The integer promotions are performed on each of the operands. The type of the result is
that of the promoted left operand. If the value of the right operand is negative or is
greater than or equal to the width of the promoted left operand, the behavior is undefined.

91) Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In
this scheme the integer expression added to or subtracted from the converted pointer is first multiplied
by the size of the object originally pointed to, and the resulting pointer is converted back to the
original type. For pointer subtraction, the result of the difference between the character pointers is
similarly divided by the size of the object originally pointed to.

When viewed in this way, an implementation need only provide one extra byte (which may overlap
another object in the program) just after the end of the object in order to satisfy the *““one past the last
element” requirements.

84 Language 86.5.7

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

The result of E1 << E2 is E1 left-shifted E2 bit positions; vacated bits are filled with
zeros. If E1 has an unsigned type, the value of the result is E1 x 252, reduced modulo
one more than the maximum value representable in the result type. If E1 has a signed
type and nonnegative value, and E1 x 252 is representable in the result type, then that is
the resulting value; otherwise, the behavior is undefined.

The result of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned type
or if E1 has a signed type and a nonnegative value, the value of the result is the integral
part of the quotient of E1/2%. If E1 has a signed type and a negative value, the
resulting value is implementation-defined.

6.5.8 Relational operators
Syntax

relational -expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

Constraints
One of the following shall hold:
— both operands have real type;

— both operands are pointers to qualified or unqualified versions of compatible object
types; or

— both operands are pointers to qualified or unqualified versions of compatible
incomplete types.

Semantics

If both of the operands have arithmetic type, the usual arithmetic conversions are
performed.

For the purposes of these operators, a pointer to an object that is not an element of an
array behaves the same as a pointer to the first element of an array of length one with the
type of the object as its element type.

When two pointers are compared, the result depends on the relative locations in the
address space of the objects pointed to. If two pointers to object or incomplete types both
point to the same object, or both point one past the last element of the same array object,
they compare equal. If the objects pointed to are members of the same aggregate object,
pointers to structure members declared later compare greater than pointers to members
declared earlier in the structure, and pointers to array elements with larger subscript

86.5.8 Language 85

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

values compare greater than pointers to elements of the same array with lower subscript
values. All pointers to members of the same union object compare equal. If the
expression P points to an element of an array object and the expression Q points to the
last element of the same array object, the pointer expression Q+1 compares greater than
P. In all other cases, the behavior is undefined.

Each of the operators < (less than), > (greater than), <= (less than or equal to), and >=
(greater than or equal to) shall yield 1 if the specified relation is true and 0 if it is false.®?)
The result has type i nt .

6.5.9 Equality operators
Syntax

equality-expression:
relational -expression

equality-expression == relational-expression
equality-expression ! = relational-expression

Constraints

One of the following shall hold:

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible types;

— one operand is a pointer to an object or incomplete type and the other is a pointer to a
qualified or unqualified version of voi d; or

— one operand is a pointer and the other is a null pointer constant.
Semantics

The == (equal to) and ! = (not equal to) operators are analogous to the relational
operators except for their lower precedence.’® Each of the operators yields 1 if the
specified relation is true and O if it is false. The result has type i nt. For any pair of
operands, exactly one of the relations is true.

If both of the operands have arithmetic type, the usual arithmetic conversions are
performed. Values of complex types are equal if and only if both their real parts are equal
and also their imaginary parts are equal. Any two values of arithmetic types from
different type domains are equal if and only if the results of their conversions to the
(complex) result type determined by the usual arithmetic conversions are equal.

92) The expression a<b<c is not interpreted as in ordinary mathematics. As the syntax indicates, it
means (a<b) <c; in other words, “if a is less than b, compare 1 to c; otherwise, compare 0 to c”’.

93) Because of the precedences, a<b == c<d is 1 whenever a<b and c<d have the same truth-value.

86 Language 86.5.9

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

Otherwise, at least one operand is a pointer. If one operand is a pointer and the other is a
null pointer constant, the null pointer constant is converted to the type of the pointer. If
one operand is a pointer to an object or incomplete type and the other is a pointer to a
qualified or unqualified version of voi d, the former is converted to the type of the latter.

Two pointers compare equal if and only if both are null pointers, both are pointers to the
same object (including a pointer to an object and a subobject at its beginning) or function,
both are pointers to one past the last element of the same array object, or one is a pointer
to one past the end of one array object and the other is a pointer to the start of a different
array otgject that happens to immediately follow the first array object in the address
space.”*

For the purposes of these operators, a pointer to an object that is not an element of an |
array behaves the same as a pointer to the first element of an array of length one with the |
type of the object as its element type.

6.5.10 Bitwise AND operator
Syntax

AND-expression:
equality-expression
AND-expression & equality-expression

Constraints

Each of the operands shall have integer type.

Semantics

The usual arithmetic conversions are performed on the operands.

The result of the binary & operator is the bitwise AND of the operands (that is, each bit in
the result is set if and only if each of the corresponding bits in the converted operands is
set).

94) Two objects may be adjacent in memory because they are adjacent elements of a larger array or
adjacent members of a structure with no padding between them, or because the implementation chose
to place them so, even though they are unrelated. If prior invalid pointer operations (such as accesses
outside array bounds) produced undefined behavior, subsequent comparisons also produce undefined
behavior.

86.5.10 Language 87

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.5.11 Bitwise exclusive OR operator
Syntax

exclusive-OR-expression:
AND-expression
exclusive-OR-expression ™ AND-expression

Constraints

Each of the operands shall have integer type.

Semantics

The usual arithmetic conversions are performed on the operands.

The result of the ~ operator is the bitwise exclusive OR of the operands (that is, each bit
in the result is set if and only if exactly one of the corresponding bits in the converted
operands is set).

6.5.12 Bitwiseinclusive OR operator
Syntax

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

Constraints

Each of the operands shall have integer type.

Semantics

The usual arithmetic conversions are performed on the operands.

The result of the | operator is the bitwise inclusive OR of the operands (that is, each bit in
the result is set if and only if at least one of the corresponding bits in the converted
operands is set).

88 Language 8§6.5.12

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

6.5.13 Logical AND operator
Syntax

logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

Constraints
Each of the operands shall have scalar type.
Semantics

The && operator shall yield 1 if both of its operands compare unequal to 0; otherwise, it
yields 0. The result has typei nt .

Unlike the bitwise binary & operator, the && operator guarantees left-to-right evaluation;
there is a sequence point after the evaluation of the first operand. If the first operand
compares equal to 0, the second operand is not evaluated.

6.5.14 Logical OR operator
Syntax

logical-OR-expression:
logical-AND-expression
logical-OR-expression | | logical-AND-expression

Constraints
Each of the operands shall have scalar type.
Semantics

The | | operator shall yield 1 if either of its operands compare unequal to 0; otherwise, it
yields 0. The result has type i nt .

Unlike the bitwise | operator, the | | operator guarantees left-to-right evaluation; there is
a sequence point after the evaluation of the first operand. If the first operand compares
unequal to 0, the second operand is not evaluated.

86.5.14 Language 89

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.5.15 Conditional operator
Syntax

conditional -expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

Constraints

The first operand shall have scalar type.

One of the following shall hold for the second and third operands:

— both operands have arithmetic type;

— both operands have the same structure or union type;

— both operands have void type;

— both operands are pointers to qualified or unqualified versions of compatible types;
— one operand is a pointer and the other is a null pointer constant; or

— one operand is a pointer to an object or incomplete type and the other is a pointer to a
qualified or unqualified version of voi d.

Semantics

The first operand is evaluated; there is a sequence point after its evaluation. The second
operand is evaluated only if the first compares unequal to O; the third operand is evaluated
only if the first compares equal to O; the result is the value of the second or third operand
(whichever is evaluated), converted to the type described below.?® If an attempt is made
to modify the result of a conditional operator or to access it after the next sequence point,
the behavior is undefined.

If both the second and third operands have arithmetic type, the result type that would be
determined by the usual arithmetic conversions, were they applied to those two operands,
is the type of the result. If both the operands have structure or union type, the result has
that type. If both operands have void type, the result has void type.

If both the second and third operands are pointers or one is a null pointer constant and the
other is a pointer, the result type is a pointer to a type qualified with all the type qualifiers
of the types pointed-to by both operands. Furthermore, if both operands are pointers to
compatible types or to differently qualified versions of compatible types, the result type is
a pointer to an appropriately qualified version of the composite type; if one operand is a
null pointer constant, the result has the type of the other operand; otherwise, one operand
is a pointer to voi d or a qualified version of voi d, in which case the result type is a

95) A conditional expression does not yield an Ivalue.

90 Language 8§6.5.15

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

pointer to an appropriately qualified version of void.

EXAMPLE The common type that results when the second and third operands are pointers is determined
in two independent stages. The appropriate qualifiers, for example, do not depend on whether the two
pointers have compatible types.

Given the declarations

const void *c_vp;

void *vp;

const int *c_ip;

volatile iInt *v_ip;

int *ip;

const char *c_cp;
the third column in the following table is the common type that is the result of a conditional expression in
which the first two columns are the second and third operands (in either order):

c vp c_ip const void *
v_ip O volatile int *

c_ip v_ip const volatile int *
vp c_cp const void *
ip c_ip const int *
vp ip void *
6.5.16 Assignment operators

Syntax

assignment-expression:
conditional -expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
= *= /[J= Y= += _= <<= >>= &= N= I:

Constraints

An assignment operator shall have a modifiable Ivalue as its left operand.
Semantics

An assignment operator stores a value in the object designated by the left operand. An
assignment expression has the value of the left operand after the assignment, but is not an
Ivalue. The type of an assignment expression is the type of the left operand unless the
left operand has qualified type, in which case it is the unqualified version of the type of
the left operand. The side effect of updating the stored value of the left operand shall
occur between the previous and the next sequence point.

The order of evaluation of the operands is unspecified. If an attempt is made to modify
the result of an assignment operator or to access it after the next sequence point, the
behavior is undefined.

86.5.16 Language 91

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.5.16.1 Simple assignment
Constraints
One of the following shall hold:%®)

— the left operand has qualified or unqualified arithmetic type and the right has
arithmetic type;

— the left operand has a qualified or unqualified version of a structure or union type
compatible with the type of the right;

— both operands are pointers to qualified or unqualified versions of compatible types,
and the type pointed to by the left has all the qualifiers of the type pointed to by the
right;

— one operand is a pointer to an object or incomplete type and the other is a pointer to a
qualified or unqualified version of voi d, and the type pointed to by the left has all
the qualifiers of the type pointed to by the right;

— the left operand is a pointer and the right is a null pointer constant; or
— the left operand has type _Bool and the right is a pointer.
Semantics

In simple assignment (=), the value of the right operand is converted to the type of the
assignment expression and replaces the value stored in the object designated by the left
operand.

If the value being stored in an object is read from another object that overlaps in any way
the storage of the first object, then the overlap shall be exact and the two objects shall
have qualified or unqualified versions of a compatible type; otherwise, the behavior is
undefined.

EXAMPLE 1 In the program fragment

int f(void);

char c;

[* ..*

if ((c =1() ==-1)
[* ...*

the i nt value returned by the function may be truncated when stored in the char , and then converted back
to i nt width prior to the comparison. In an implementation in which “plain” char has the same range of
values as unsi gned char (and char is narrower than i nt), the result of the conversion cannot be

96) The asymmetric appearance of these constraints with respect to type qualifiers is due to the conversion
(specified in 6.3.2.1) that changes Ivalues to ““the value of the expression™ and thus removes any type
qualifiers that were applied to the type category of the expression (for example, it removes const but
notvol ati | e fromthetypei nt volatile * const).

92 Language §6.5.16.1

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

negative, so the operands of the comparison can never compare equal. Therefore, for full portability, the
variable ¢ should be declared as int.

EXAMPLE 2 In the fragment:

char c;
int i;
long I;

1 = (c =1);

the value of i is converted to the type of the assignment expression ¢ = 1, that is, char type. The value
of the expression enclosed in parentheses is then converted to the type of the outer assignment expression,
that is, long int type.

EXAMPLE 3 Consider the fragment:

const char **cpp;
char *p;
const char ¢ = "A";

cpp = &p; // constraint violation
*cpp = &C; // valid
*p = 0; // valid

The first assignment is unsafe because it would allow the following valid code to attempt to change the
value of the const object c.

6.5.16.2 Compound assignment
Constraints

For the operators += and —= only, either the left operand shall be a pointer to an object
type and the right shall have integer type, or the left operand shall have qualified or
unqualified arithmetic type and the right shall have arithmetic type.

For the other operators, each operand shall have arithmetic type consistent with those
allowed by the corresponding binary operator.

Semantics

A compound assignment of the form E1 op= E2 differs from the simple assignment
expression E1 = E1 op (E2) only in that the Ivalue E1 is evaluated only once.

86.5.16.2 Language 93

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.5.17 Comma oper ator

Syntax
expression:
assignment-expression
expression , assignment-expression
Semantics

The left operand of a comma operator is evaluated as a void expression; there is a
sequence point after its evaluation. Then the right operand is evaluated; the result has its
type and value.’”) If an attempt is made to modify the result of a comma operator or to
access it after the next sequence point, the behavior is undefined.

EXAMPLE As indicated by the syntax, the comma operator (as described in this subclause) cannot
appear in contexts where a comma is used to separate items in a list (such as arguments to functions or lists
of initializers). On the other hand, it can be used within a parenthesized expression or within the second
expression of a conditional operator in such contexts. In the function call

f(a, (t=3, t+2), c)

the function has three arguments, the second of which has the value 5.

Forward references: initialization (6.7.8).

97) A comma operator does not yield an lvalue.

94 Language 86.5.17

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

6.6 Constant expressions
Syntax

constant-expression:
conditional-expression

Description

A constant expression can be evaluated during translation rather than runtime, and
accordingly may be used in any place that a constant may be.

Constraints

Constant expressions shall not contain assignment, increment, decrement, function-call,
or comma operators, except when they are contained within a subexpression that is not
evaluated.%)

Each constant expression shall evaluate to a constant that is in the range of representable
values for its type.

Semantics

An expression that evaluates to a constant is required in several contexts. If a floating
expression is evaluated in the translation environment, the arithmetic precision and range
shall be at least as great as if the expression were being evaluated in the execution
environment.

An integer constant expression®® shall have integer type and shall only have operands

that are integer constants, enumeration constants, character constants, si zeof
expressions whose results are integer constants, and floating constants that are the
immediate operands of casts. Cast operators in an integer constant expression shall only
convert arithmetic types to integer types, except as part of an operand to the si zeof
operator.

More latitude is permitted for constant expressions in initializers. Such a constant
expression shall be, or evaluate to, one of the following:

— an arithmetic constant expression,

— anull pointer constant,

98) The operand of a si zeof operator is usually not evaluated (6.5.3.4).

99) An integer constant expression is used to specify the size of a bit-field member of a structure, the
value of an enumeration constant, the size of an array, or the value of a case constant. Further
constraints that apply to the integer constant expressions used in conditional-inclusion preprocessing
directives are discussed in 6.10.1.

86.6 Language 95

10
11

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

— an address constant, or
— an address constant for an object type plus or minus an integer constant expression.

An arithmetic constant expression shall have arithmetic type and shall only have
operands that are integer constants, floating constants, enumeration constants, character
constants, and si zeof expressions. Cast operators in an arithmetic constant expression
shall only convert arithmetic types to arithmetic types, except as part of an operand to a
si zeof operator whose result is an integer constant.

An address constant is a null pointer, a pointer to an lvalue designating an object of static
storage duration, or a pointer to a function designator; it shall be created explicitly using
the unary & operator or an integer constant cast to pointer type, or implicitly by the use of
an expression of array or function type. The array-subscript [] and member-access .
and - > operators, the address & and indirection * unary operators, and pointer casts may
be used in the creation of an address constant, but the value of an object shall not be
accessed by use of these operators.

An implementation may accept other forms of constant expressions.

The semantic rules for the evaluation of a constant expression are the same as for
nonconstant expressions.%%

Forward references. array declarators (6.7.5.2), initialization (6.7.8).

100) Thus, in the following initialization,
static int i =2]| 1/ O

the expression is a valid integer constant expression with value one.

96 Language 86.6

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

6.7 Declarations
Syntax

declaration:
declaration-specifiers init-declarator-listpt ;

declaration-specifiers:
storage-class-specifier declaration-specifiersqp
type-specifier declaration-specifiersop
type-qualifier declaration-specifiersypt
function-specifier declaration-specifiersgpt

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator
declarator = initializer

Constraints

A declaration shall declare at least a declarator (other than the parameters of a function or
the members of a structure or union), a tag, or the members of an enumeration.

If an identifier has no linkage, there shall be no more than one declaration of the identifier
(in a declarator or type specifier) with the same scope and in the same name space, except
for tags as specified in 6.7.2.3.

All declarations in the same scope that refer to the same object or function shall specify
compatible types.

Semantics

A declaration specifies the interpretation and attributes of a set of identifiers. A definition
of an identifier is a declaration for that identifier that:

— for an object, causes storage to be reserved for that object;

— for a function, includes the function body;%%

— for an enumeration constant or typedef name, is the (only) declaration of the
identifier.

The declaration specifiers consist of a sequence of specifiers that indicate the linkage,
storage duration, and part of the type of the entities that the declarators denote. The init-
declarator-list is a comma-separated sequence of declarators, each of which may have

101) Function definitions have a different syntax, described in 6.9.1.

86.7 Language 97

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

additional type information, or an initializer, or both. The declarators contain the
identifiers (if any) being declared.

If an identifier for an object is declared with no linkage, the type for the object shall be
complete by the end of its declarator, or by the end of its init-declarator if it has an
initializer; in the case of function parameters (including in prototypes), it is the adjusted
type (see 6.7.5.3) that is required to be complete.

Forward references: declarators (6.7.5), enumeration specifiers (6.7.2.2), initialization
(6.7.8).

6.7.1 Storage-class specifiers
Syntax

storage-class-specifier:
t ypedef
extern
static
auto
regi ster

Constraints

At most, one storage-class specifier may be given in the declaration specifiers in a
declaration.'%?)

Semantics

The t ypedef specifier is called a ““storage-class specifier” for syntactic convenience
only; it is discussed in 6.7.7. The meanings of the various linkages and storage durations
were discussed in 6.2.2 and 6.2.4.

A declaration of an identifier for an object with storage-class specifier r egi st er
suggests that access to the object be as fast as possible. The extent to which such
suggestions are effective is implementation-defined.1%®)

The declaration of an identifier for a function that has block scope shall have no explicit
storage-class specifier other than ext er n.

102) See “future language directions” (6.11.5).

103) The implementation may treat any r egi st er declaration simply as an aut o declaration. However,
whether or not addressable storage is actually used, the address of any part of an object declared with
storage-class specifier r egi st er cannot be computed, either explicitly (by use of the unary &
operator as discussed in 6.5.3.2) or implicitly (by converting an array name to a pointer as discussed in
6.3.2.1). Thus, the only operator that can be applied to an array declared with storage-class specifier
regi ster issi zeof.

98 Language 86.7.1

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

If an aggregate or union object is declared with a storage-class specifier other than
t ypedef , the properties resulting from the storage-class specifier, except with respect to
linkage, also apply to the members of the object, and so on recursively for any aggregate
or union member objects.

Forward references: type definitions (6.7.7).

6.7.2 Type specifiers
Syntax

type-specifier:
voi d
char
short
I nt
| ong
fl oat
doubl e
si gned
unsi gned
_Bool
_Conpl ex
struct-or-union-specifier
enum-specifier
typedef-name

Constraints

At least one type specifier shall be given in the declaration specifiers in each declaration,
and in the specifier-qualifier list in each struct declaration and type name. Each list of
type specifiers shall be one of the following sets (delimited by commas, when there is
more than one set on a line); the type specifiers may occur in any order, possibly
intermixed with the other declaration specifiers.

— void

— char

— signed char

— unsi gned char

— short,signed short,short int,orsigned short int
— unsi gned short,orunsi gned short int

— i nt,signed,orsigned int

86.7.2 Language 99

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

— unsi gned, orunsi gned i nt
— long,signed | ong,long int,orsigned |ong int
— unsi gned | ong, orunsi gned | ong int

— long long,signed Iong I ong,long long int,or
signed long |l ong int

— unsi gned | ong | ong,orunsi gned | ong |long int
— f 1 oat

— doubl e

— |l ong doubl e

— _Bool

— float _Conpl ex

— doubl e _Conpl ex

— |l ong doubl e _Conpl ex
— struct or union specifier

— enum specifier

— typedef name

The type specifier _Conpl ex shall not be used if the implementation does not provide
complex types.04)

Semantics

Specifiers for structures, unions, and enumerations are discussed in 6.7.2.1 through
6.7.2.3. Declarations of typedef names are discussed in 6.7.7. The characteristics of the
other types are discussed in 6.2.5.

Each of the comma-separated sets designates the same type, except that for bit-fields, it is
implementation-defined whether the specifier i nt designates the same type as si gned
i nt or the same type as unsi gned i nt.

Forward references. enumeration specifiers (6.7.2.2), structure and union specifiers
(6.7.2.1), tags (6.7.2.3), type definitions (6.7.7).

104) Freestanding implementations are not required to provide complex types.

100 Language 86.7.2

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

6.7.2.1 Structure and union specifiers
Syntax

struct-or-union-specifier:
struct-or-union identifiergn; { struct-declaration-list }
struct-or-union identifier

struct-or-union:
struct
uni on

struct-declaration-list:
struct-declaration
struct-declaration-list struct-declaration

struct-declaration:
specifier-qualifier-list struct-declarator-list ;

specifier-qualifier-list:
type-specifier specifier-qualifier-listop
type-qualifier specifier-qualifier-listop

struct-declarator-list:
struct-declarator
struct-declarator-list , struct-declarator

struct-declarator:
declarator
declaratorgp; @ constant-expression

Constraints

A structure or union shall not contain a member with incomplete or function type (hence,
a structure shall not contain an instance of itself, but may contain a pointer to an instance
of itself), except that the last member of a structure with more than one named member
may have incomplete array type; such a structure (and any union containing, possibly
recursively, a member that is such a structure) shall not be a member of a structure or an
element of an array.

The expression that specifies the width of a bit-field shall be an integer constant
expression with a nonnegative value that does not exceed the width of an object of the
type that would be specified were the colon and expression omitted. If the value is zero,
the declaration shall have no declarator.

A bit-field shall have a type that is a qualified or unqualified version of _Bool , si gned
i nt,unsi gned i nt, orsome other implementation-defined type.

86.7.2.1 Language 101

10

11

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Semantics

As discussed in 6.2.5, a structure is a type consisting of a sequence of members, whose
storage is allocated in an ordered sequence, and a union is a type consisting of a sequence
of members whose storage overlap.

Structure and union specifiers have the same form. The keywords st ruct and uni on
indicate that the type being specified is, respectively, a structure type or a union type.

The presence of a struct-declaration-list in a struct-or-union-specifier declares a new type,
within a translation unit. The struct-declaration-list is a sequence of declarations for the
members of the structure or union. If the struct-declaration-list contains no named
members, the behavior is undefined. The type is incomplete until after the } that
terminates the list.

A member of a structure or union may have any object type other than a variably
modified type.1®® In addition, a member may be declared to consist of a specified
number of bits (including a sign bit, if any). Such a member is called a bit-field;'%) its
width is preceded by a colon.

A bit-field is interpreted as a signed or unsigned integer type consisting of the specified
number of bits.1%”) If the value 0 or 1 is stored into a nonzero-width bit-field of type
_Bool , the value of the bit-field shall compare equal to the value stored.

An implementation may allocate any addressable storage unit large enough to hold a bit-
field. If enough space remains, a bit-field that immediately follows another bit-field in a
structure shall be packed into adjacent bits of the same unit. If insufficient space remains,
whether a bit-field that does not fit is put into the next unit or overlaps adjacent units is
implementation-defined. The order of allocation of bit-fields within a unit (high-order to
low-order or low-order to high-order) is implementation-defined. The alignment of the
addressable storage unit is unspecified.

A bit-field declaration with no declarator, but only a colon and a width, indicates an
unnamed bit-field.1®®) As a special case, a bit-field structure member with a width of 0
indicates that no further bit-field is to be packed into the unit in which the previous bit-
field, if any, was placed.

105) A structure or union can not contain a member with a variably modified type because member names
are not ordinary identifiers as defined in 6.2.3.

106) The unary & (address-of) operator cannot be applied to a bit-field object; thus, there are no pointers to
or arrays of bit-field objects.

107) As specified in 6.7.2 above, if the actual type specifier used is i nt or a typedef-name defined asi nt ,
then it is implementation-defined whether the bit-field is signed or unsigned.

108) An unnamed bit-field structure member is useful for padding to conform to externally imposed
layouts.

102 Language 86.7.2.1

12

13

14

15
16

17

18

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

Each non-bit-field member of a structure or union object is aligned in an implementation-
defined manner appropriate to its type.

Within a structure object, the non-bit-field members and the units in which bit-fields
reside have addresses that increase in the order in which they are declared. A pointer to a
structure object, suitably converted, points to its initial member (or if that member is a
bit-field, then to the unit in which it resides), and vice versa. There may be unnamed
padding within a structure object, but not at its beginning.

The size of a union is sufficient to contain the largest of its members. The value of at
most one of the members can be stored in a union object at any time. A pointer to a
union object, suitably converted, points to each of its members (or if a member is a bit-
field, then to the unit in which it resides), and vice versa.

There may be unnamed padding at the end of a structure or union.

As a special case, the last element of a structure with more than one named member may
have an incomplete array type; this is called a flexible array member. In most situations,
the flexible array member is ignored. In particular, the size of the structure is as if the
flexible array member were omitted except that it may have more trailing padding than
the omission would imply. However, when a . (or - >) operator has a left operand that is
(a pointer to) a structure with a flexible array member and the right operand names that
member, it behaves as if that member were replaced with the longest array (with the same
element type) that would not make the structure larger than the object being accessed; the
offset of the array shall remain that of the flexible array member, even if this would differ
from that of the replacement array. If this array would have no elements, it behaves as if
it had one element but the behavior is undefined if any attempt is made to access that
element or to generate a pointer one past it.

EXAMPLE After the declaration:
struct s { int n; double d[]; };
the structure st ruct s has a flexible array member d. A typical way to use this is:

int m=/* somevalue */;
struct s *p = nmalloc(sizeof (struct s) + sizeof (double [mM));

and assuming that the call to mal | oc succeeds, the object pointed to by p behaves, for most purposes, as if
p had been declared as:

struct { int n; double d[nl; } *p;

(there are circumstances in which this equivalence is broken; in particular, the offsets of member d might
not be the same).

Following the above declaration:

86.7.2.1 Language 103

19

20

21

22

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

struct s tl ={ 0 }; /1 valid |
struct s t2 ={ 1, { 4.2 }}; // invalid \
tl.n = 4; /'l valid |
t1.d[0] = 4.2; /1 might be undefined behavior |

|

The initialization of t 2 is invalid (and violates a constraint) because st ruct s is treated as if it did not
contain member d. The assignmenttot 1. d[0] is probably undefined behavior, but it is possible that

sizeof (struct s) >= offsetof(struct s, d) + sizeof (double) |

in which case the assignment would be legitimate. Nevertheless, it cannot appear in strictly conforming |
code. |

After the further declaration: |
struct ss { int n; }; \
the expressions: \
si zeof (struct s) >= sizeof (struct ss) |
sizeof (struct s) >= offsetof(struct s, d) |
are always equal to 1. \
If si zeof (doubl e) is 8, then after the following code is executed:

struct s *sl;
struct s *s2;
sl = mall oc(sizeof (struct s) + 64);
s2 = mal |l oc(sizeof (struct s) + 46);

and assuming that the calls to mal | oc succeed, the objects pointed to by s1 and s2 behave, for most |
purposes, as if the identifiers had been declared as:

struct { int n; double d[8]; } *si;
struct { int n; double d[5]; } *s2;

Following the further successful assignments:

sl
s2

mal | oc(si zeof (struct s) + 10);
mal | oc(si zeof (struct s) + 6);

they then behave as if the declarations were:
struct { int n; double d[1]; } *sl1, *s2;

and:
doubl e *dp;
dp = &(s1->d[0]); // valid
*dp = 42; /1 valid
dp = &(s2->d[0]); // valid
*dp = 42; /| undefined behavior

The assignment:
*sl = *s2;

only copies the member n; if any of the array elements are within the first si zeof (struct s) bytes |
of the structure, they might be copied or simply overwritten with indeterminate values.

Forward references. tags (6.7.2.3).

104 Language 86.7.2.1

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

6.7.2.2 Enumeration specifiers
Syntax

enum-specifier:
enum identifierope { enumerator-list }
enum identifierop; { enumerator-list , }
enum identifier

enumerator-list:
enumerator
enumerator-list , enumerator

enumerator:
enumeration-constant
enumeration-constant = constant-expression

Constraints

The expression that defines the value of an enumeration constant shall be an integer
constant expression that has a value representable asani nt .

Semantics

The identifiers in an enumerator list are declared as constants that have type i nt and
may appear wherever such are permitted.’®® An enumerator with = defines its
enumeration constant as the value of the constant expression. If the first enumerator has
no =, the value of its enumeration constant is 0. Each subsequent enumerator with no =
defines its enumeration constant as the value of the constant expression obtained by
adding 1 to the value of the previous enumeration constant. (The use of enumerators with
= may produce enumeration constants with values that duplicate other values in the same
enumeration.) The enumerators of an enumeration are also known as its members.

Each enumerated type shall be compatible with char, a signed integer type, or an
unsigned integer type. The choice of type is implementation-defined,*? but shall be
capable of representing the values of all the members of the enumeration. The
enumerated type is incomplete until after the } that terminates the list of enumerator
declarations.

109) Thus, the identifiers of enumeration constants declared in the same scope shall all be distinct from
each other and from other identifiers declared in ordinary declarators.

110) An implementation may delay the choice of which integer type until all enumeration constants have
been seen.

86.7.2.2 Language 105

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

EXAMPLE The following fragment:

enum hue { chartreuse, burgundy, claret=20, w nedark };
enum hue col, *cp;

col = claret;

cp = &col;

if (*cp !'= burgundy)
[* ..*

makes hue the tag of an enumeration, and then declares col as an object that has that type and cp as a
pointer to an object that has that type. The enumerated values are in the set {0, 1, 20, 21}.

Forward references. tags (6.7.2.3).

6.7.2.3 Tags

Constraints

A specific type shall have its content defined at most once.

Where two declarations that use the same tag declare the same type, they shall both use |
the same choice of st ruct , uni on, or enum |

A type specifier of the form |
enum identifier

without an enumerator list shall only appear after the type it specifies is complete.

Semantics

All declarations of structure, union, or enumerated types that have the same scope and
use the same tag declare the same type. The type is incomplete'? until the closing brace
of the list defining the content, and complete thereafter.

Two declarations of structure, union, or enumerated types which are in different scopes or
use different tags declare distinct types. Each declaration of a structure, union, or
enumerated type which does not include a tag declares a distinct type.

A type specifier of the form

struct-or-union identifiergp; { struct-declaration-list }
or

enum identifier { enumerator-list }
or

enum identifier { enumerator-list , }

declares a structure, union, or enumerated type. The list defines the structure content,

111) An incomplete type may only by used when the size of an object of that type is not needed. It is not
needed, for example, when a typedef name is declared to be a specifier for a structure or union, or
when a pointer to or a function returning a structure or union is being declared. (See incomplete types
in 6.2.5.) The specification has to be complete before such a function is called or defined.

106 Language 86.7.2.3

10

11

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

union content, or enumeration content. If an identifier is provided,'? the type specifier
also declares the identifier to be the tag of that type.

A declaration of the form

struct-or-union identifier ;

specifies a structure or union type and declares the identifier as a tag of that type.'%)

If a type specifier of the form
struct-or-union identifier

occurs other than as part of one of the above forms, and no other declaration of the
identifier as a tag is visible, then it declares an incomplete structure or union type, and
declares the identifier as the tag of that type.!'®

If a type specifier of the form

struct-or-union identifier
or
enum identifier

occurs other than as part of one of the above forms, and a declaration of the identifier as a
tag is visible, then it specifies the same type as that other declaration, and does not
redeclare the tag.

EXAMPLE 1 This mechanism allows declaration of a self-referential structure.

struct tnode {
int count;
struct tnode *left, *right;

b
specifies a structure that contains an integer and two pointers to objects of the same type. Once this
declaration has been given, the declaration

struct tnode s, *sp;

declares s to be an object of the given type and sp to be a pointer to an object of the given type. With
these declarations, the expression sp- >l ef t refers to the left st ruct t node pointer of the object to
which sp points; the expression s. ri ght - >count designates the count member of the right st r uct
t node pointed to from s.

The following alternative formulation uses the t ypedef mechanism:

112) If there is no identifier, the type can, within the translation unit, only be referred to by the declaration
of which it is a part. Of course, when the declaration is of a typedef name, subsequent declarations
can make use of that typedef name to declare objects having the specified structure, union, or
enumerated type.

113) A similar construction with enumdoes not exist.

86.7.2.3 Language 107

12

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

typedef struct tnode TNODE;
struct tnode {

i nt count;

TNCDE *l eft, *right;
b
TNODE s, *sp;
EXAMPLE 2 To illustrate the use of prior declaration of a tag to specify a pair of mutually referential
structures, the declarations

struct s1 { struct s2 *s2p; /* .. */ }; /] D1
struct s2 { struct sl *sip; /* .. */ }; [l D2

specify a pair of structures that contain pointers to each other. Note, however, that if s2 were already
declared as a tag in an enclosing scope, the declaration D1 would refer to it, not to the tag s2 declared in
D2. To eliminate this context sensitivity, the declaration

struct s2;

may be inserted ahead of D1. This declares a new tag s2 in the inner scope; the declaration D2 then
completes the specification of the new type.

Forward references: declarators (6.7.5), array declarators (6.7.5.2), type definitions
(6.7.7).

6.7.3 Type qualifiers

Syntax
type-qualifier:
const
restrict
vol atil e

Constraints

Types other than pointer types derived from object or incomplete types shall not be
restrict-qualified.

Semantics

The properties associated with qualified types are meaningful only for expressions that
are Ivalues.''%

If the same qualifier appears more than once in the same specifier-qualifier-list, either
directly or via one or more t ypedef s, the behavior is the same as if it appeared only
once.

114) The implementation may place a const object that is not vol ati |l e in a read-only region of
storage. Moreover, the implementation need not allocate storage for such an object if its address is
never used.

108 Language 86.7.3

10

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

If an attempt is made to modify an object defined with a const-qualified type through use
of an lvalue with non-const-qualified type, the behavior is undefined. If an attempt is
made to refer to an object defined with a volatile-qualified type through use of an lvalue
with non-volatile-qualified type, the behavior is undefined.*'®

An object that has volatile-qualified type may be modified in ways unknown to the
implementation or have other unknown side effects. Therefore any expression referring
to such an object shall be evaluated strictly according to the rules of the abstract machine,
as described in 5.1.2.3. Furthermore, at every sequence point the value last stored in the
object shall agree with that prescribed by the abstract machine, except as modified by the
unknown factors mentioned previously.!*6) What constitutes an access to an object that
has volatile-qualified type is implementation-defined.

An object that is accessed through a restrict-qualified pointer has a special association
with that pointer. This association, defined in 6.7.3.1 below, requires that all accesses to
that object use, directly or indirectly, the value of that particular pointer.)*”) The intended
use of the restrict qualifier (like the regi st er storage class) is to promote
optimization, and deleting all instances of the qualifier from all preprocessing translation
units composing a conforming program does not change its meaning (i.e., observable
behavior).

If the specification of an array type includes any type qualifiers, the element type is so-
qualified, not the array type. If the specification of a function type includes any type
qualifiers, the behavior is undefined.®)

For two qualified types to be compatible, both shall have the identically qualified version
of a compatible type; the order of type qualifiers within a list of specifiers or qualifiers
does not affect the specified type.

EXAMPLE 1 An object declared
extern const volatile int real _time_clock;

may be modifiable by hardware, but cannot be assigned to, incremented, or decremented.

115) This applies to those objects that behave as if they were defined with qualified types, even if they are
never actually defined as objects in the program (such as an object at a memory-mapped input/output
address).

116) A vol ati | e declaration may be used to describe an object corresponding to a memory-mapped
input/output port or an object accessed by an asynchronously interrupting function. Actions on
objects so declared shall not be *“optimized out” by an implementation or reordered except as
permitted by the rules for evaluating expressions.

117) For example, a statement that assigns a value returned by mal | oc to a single pointer establishes this
association between the allocated object and the pointer.

118) Both of these can occur through the use of t ypedef s.

86.7.3 Language 109

11

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

EXAMPLE 2 The following declarations and expressions illustrate the behavior when type qualifiers
modify an aggregate type:

const struct s { int mem } cs ={ 1};

struct s ncs; // theobject ncs is modifiable

typedef int A 2][3];

const Aa = {{4, 5 6}, {7, 8, 9}}; // arrayofarrayof const int
int *pi;

const int *pci;

ncs = cs; /1 valid
CS = ncs; /' violates modifiable Ivalue constraint for =
pi = &ncs.nmem // valid

pi &cs. mem // violates type constraints for =
pci = &cs.mem // valid
pi a[0] ; /1 invalid: a[0] hastype “const int *”

6.7.3.1 Formal definition of restri ct

Let D be a declaration of an ordinary identifier that provides a means of designating an
object P as a restrict-qualified pointer to type T.

If D appears inside a block and does not have storage class ext er n, let B denote the
block. If D appears in the list of parameter declarations of a function definition, let B
denote the associated block. Otherwise, let B denote the block of mai n (or the block of
whatever function is called at program startup in a freestanding environment).

In what follows, a pointer expression E is said to be based on object P if (at some
sequence point in the execution of B prior to the evaluation of E) modifying P to point to
a copy of the array object into which it formerly pointed would change the value of E.}%
Note that “based” is defined only for expressions with pointer types.

During each execution of B, let L be any Ivalue that has &L based on P. If L is used to
access the value of the object X that it designates, and X is also modified (by any means),
then the following requirements apply: T shall not be const-qualified. Every other lvalue
used to access the value of X shall also have its address based on P. Every access that
modifies X shall be considered also to modify P, for the purposes of this subclause. If P
is assigned the value of a pointer expression E that is based on another restricted pointer
object P2, associated with block B2, then either the execution of B2 shall begin before
the execution of B, or the execution of B2 shall end prior to the assignment. If these
requirements are not met, then the behavior is undefined.

Here an execution of B means that portion of the execution of the program that would
correspond to the lifetime of an object with scalar type and automatic storage duration

119) In other words, E depends on the value of P itself rather than on the value of an object referenced
indirectly through P. For example, if identifier p has type (i nt **restri ct), then the pointer
expressions p and p+1 are based on the restricted pointer object designated by p, but the pointer
expressions * p and p[1] are not.

110 Language 86.7.3.1

10

11

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

associated with B.

A translator is free to ignore any or all aliasing implications of uses of r estri ct .
EXAMPLE 1 The file scope declarations

int * restrict a;
int * restrict b;
extern int c[];

assert that if an object is accessed using one of a, b, or ¢, and that object is modified anywhere in the
program, then it is never accessed using either of the other two.

EXAMPLE 2 The function parameter declarations in the following example

void f(int n, int * restrict p, int * restrict Q)
{
while (n-- > 0)
*p++ = FQgt++

}

assert that, during each execution of the function, if an object is accessed through one of the pointer
parameters, then it is not also accessed through the other.

The benefit of the rest ri ct qualifiers is that they enable a translator to make an effective dependence
analysis of function f without examining any of the calls of f in the program. The cost is that the
programmer has to examine all of those calls to ensure that none give undefined behavior. For example, the
second call of f in g has undefined behavior because each of d[1] through d[49] is accessed through
both p and qg.

void g(void)
{

extern int d[100];

f(50, d + 50, d); // valid

f(50, d + 1, d); // undefined behavior
}

EXAMPLE 3 The function parameter declarations

void h(int n, int * restrict p, int * restrict g, int * restrict r)
{ . .
int i;
for (i =0; i <n; i++)
pli] =ali] + r[i];
}
illustrate how an unmodified object can be aliased through two restricted pointers. In particular, if a and b
are disjoint arrays, a call of the form h(100, a, b, b) has defined behavior, because array b is not
modified within function h.

EXAMPLE 4 The rule limiting assignments between restricted pointers does not distinguish between a
function call and an equivalent nested block. With one exception, only “outer-to-inner” assignments
between restricted pointers declared in nested blocks have defined behavior.

86.7.3.1 Language 111

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

{
int * restrict pl;
int * restrict ql;
pl = gl; // undefined behavior
{
int * restrict p2 = pl1; // valid
int * restrict q2 = q1; // valid
pl = g2; /1 undefined behavior
p2 = g2; /1 undefined behavior
}
}

12 The one exception allows the value of a restricted pointer to be carried out of the block in which it (or, more
precisely, the ordinary identifier used to designate it) is declared when that block finishes execution. For
example, this permits new_vect or toreturnavect or.

typedef struct { int n; float * restrict v; } vector;
vector new vector(int n)

{
vector t;
t.n = n;
t.v = malloc(n * sizeof (float));
return t;
}
6.7.4 Function specifiers
Syntax
1 function-specifier:
inline

Constraints
2 Function specifiers shall be used only in the declaration of an identifier for a function.

3 Aninline definition of a function with external linkage shall not contain a definition of a
modifiable object with static storage duration, and shall not contain a reference to an
identifier with internal linkage.

4 In ahosted environment, the i nl i ne function specifier shall not appear in a declaration
of mai n.

Semantics

5 A function declared with an i nl i ne function specifier is an inline function. The
function specifier may appear more than once; the behavior is the same as if it appeared
only once. Making a function an inline function suggests that calls to the function be as
fast as possible.®® The extent to which such suggestions are effective is
implementation-defined. 2%

6 Any function with internal linkage can be an inline function. For a function with external
linkage, the following restrictions apply: If a function is declared with an i nli ne

112 Language 86.7.4

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

function specifier, then it shall also be defined in the same translation unit. If all of the
file scope declarations for a function in a translation unit include the i nl i ne function
specifier without ext ern, then the definition in that translation unit is an inline
definition. An inline definition does not provide an external definition for the function,
and does not forbid an external definition in another translation unit. An inline definition
provides an alternative to an external definition, which a translator may use to implement
any call to the function in the same translation unit. It is unspecified whether a call to the
function uses the inline definition or the external definition.??

EXAMPLE The declaration of an inline function with external linkage can result in either an external

definition, or a definition available for use only within the translation unit. A file scope declaration with
ext er n creates an external definition. The following example shows an entire translation unit.

i nl i ne doubl e fahr(double t)

{
return (9.0 * t) / 5.0 + 32.0;
}
i nl i ne double cel s(double t)
{
return (5.0 * (t - 32.0)) / 9.0;
}
ext ern doubl e fahr(double); /'] creates an external definition
doubl e convert(int is_fahr, double tenp)
{
/ * Atranslator may perform inline substitutions */
return is _fahr ? cels(tenp) : fahr(tenp);
}

Note that the definition of f ahr is an external definition because f ahr is also declared with ext er n, but
the definition of cel s is an inline definition. Because cel s has external linkage and is referenced, an
external definition has to appear in another translation unit (see 6.9); the inline definition and the external
definition are distinct and either may be used for the call.

Forward references. function definitions (6.9.1).

120) By using, for example, an alternative to the usual function call mechanism, such as “inline
substitution”. Inline substitution is not textual substitution, nor does it create a new function.
Therefore, for example, the expansion of a macro used within the body of the function uses the
definition it had at the point the function body appears, and not where the function is called; and
identifiers refer to the declarations in scope where the body occurs. Likewise, the function has a
single address, regardless of the number of inline definitions that occur in addition to the external
definition.

121) For example, an implementation might never perform inline substitution, or might only perform inline
substitutions to calls in the scope of ani nl i ne declaration.

122) Since an inline definition is distinct from the corresponding external definition and from any other
corresponding inline definitions in other translation units, all corresponding objects with static storage
duration are also distinct in each of the definitions.

86.7.4 Language 113

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.7.5 Declarators
Syntax

declarator:
pointergy; direct-declarator

direct-declarator:
identifier
(declarator)
direct-declarator [type-qualifier-listyp; assignment-expressiongp; |
direct-declarator [st ati c type-qualifier-listop; assignment-expression |
direct-declarator [type-qualifier-list st ati ¢ assignment-expression]
direct-declarator [type-qualifier-listopt *]
direct-declarator (parameter-type-list)
direct-declarator (identifier-listop;)

pointer:
* type-qualifier-listopy
* type-qualifier-listop; pointer

type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

parameter-type-list:
parameter-list
parameter-list |,

parameter-list:
parameter-declaration
parameter-list , parameter-declaration

parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declaratorgpt

identifier-list:
identifier
identifier-list , identifier
Semantics

Each declarator declares one identifier, and asserts that when an operand of the same
form as the declarator appears in an expression, it designates a function or object with the
scope, storage duration, and type indicated by the declaration specifiers.

A full declarator is a declarator that is not part of another declarator. The end of a full
declarator is a sequence point. If, in the nested sequence of declarators in a full |

114 Language 86.7.5

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

declarator, there is a declarator specifying a variable length array type, the type specified
by the full declarator is said to be variably modified. Furthermore, any type derived by
declarator type derivation from a variably modified type is itself variably modified.

In the following subclauses, consider a declaration
T D1

where T contains the declaration specifiers that specify a type T (such as i nt) and D1 is
a declarator that contains an identifier ident. The type specified for the identifier ident in
the various forms of declarator is described inductively using this notation.

If, in the declaration “T D1”, D1 has the form
identifier

then the type specified for identis T.

If, in the declaration “T D1”*, D1 has the form
(D)

then ident has the type specified by the declaration “T D”. Thus, a declarator in
parentheses is identical to the unparenthesized declarator, but the binding of complicated
declarators may be altered by parentheses.

Implementation limits

As discussed in 5.2.4.1, an implementation may limit the number of pointer, array, and
function declarators that modify an arithmetic, structure, union, or incomplete type, either
directly or via one or more t ypedef s.

Forward references. array declarators (6.7.5.2), type definitions (6.7.7).
6.7.5.1 Pointer declarators
Semantics
If, in the declaration “T D1, D1 has the form
* type-qualifier-listop D

and the type specified for ident in the declaration “T D’ is “derived-declarator-type-list
T, then the type specified for ident is “derived-declarator-type-list type-qualifier-list
pointer to T”’. For each type qualifier in the list, ident is a so-qualified pointer.

For two pointer types to be compatible, both shall be identically qualified and both shall
be pointers to compatible types.

EXAMPLE The following pair of declarations demonstrates the difference between a ““variable pointer
to a constant value” and a *“constant pointer to a variable value™.

86.7.5.1 Language 115

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

const int *ptr_to_constant;
int *const constant_ptr;

The contents of any object pointed to by ptr _t o_const ant shall not be modified through that pointer,
but ptr _to_const ant itself may be changed to point to another object. Similarly, the contents of the
i nt pointed to by const ant _pt r may be modified, but const ant _pt r itself shall always point to the
same location.

The declaration of the constant pointer const ant _pt r may be clarified by including a definition for the
type “pointertoi nt .

typedef int *int_ptr;
const int_ptr constant_ptr;

declares const ant _pt r as an object that has type “const-qualified pointer to i nt .
6.7.5.2 Array declarators
Constraints

In addition to optional type qualifiers and the keyword st ati ¢, the [and] may delimit
an expression or * . If they delimit an expression (which specifies the size of an array), the
expression shall have an integer type. If the expression is a constant expression, it shall
have a value greater than zero. The element type shall not be an incomplete or function
type. The optional type qualifiers and the keyword st ati ¢ shall appear only in a
declaration of a function parameter with an array type, and then only in the outermost
array type derivation.

An ordinary identifier (as defined in 6.2.3) that has a variably modified type shall have
either block scope and no linkage or function prototype scope. If an identifier is declared
to be an object with static storage duration, it shall not have a variable length array type.

Semantics
If, in the declaration “T D1, D1 has one of the forms:

D[type-qualifier-listyp; assignment-expressiongpt |

D[static type-qualifier-listyy; assignment-expression]
D[type-qualifier-list st ati c assignment-expression]
D[type-qualifier-listop; *]

and the type specified for ident in the declaration “T D” is “derived-declarator-type-list
T”, then the type specified for ident is “derived-declarator-type-list array of T.1%3)
(See 6.7.5.3 for the meaning of the optional type qualifiers and the keyword st ati c.)

If the size is not present, the array type is an incomplete type. If the size is * instead of
being an expression, the array type is a variable length array type of unspecified size,
which can only be used in declarations with function prototype scope;*?*) such arrays are
nonetheless complete types. If the size is an integer constant expression and the element

123) When several “array of” specifications are adjacent, a multidimensional array is declared.

116 Language 86.7.5.2

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

type has a known constant size, the array type is not a variable length array type;
otherwise, the array type is a variable length array type.

If the size is an expression that is not an integer constant expression: if it occurs in a
declaration at function prototype scope, it is treated as if it were replaced by * ; otherwise,
each time it is evaluated it shall have a value greater than zero. The size of each instance
of a variable length array type does not change during its lifetime. Where a size
expression is part of the operand of a si zeof operator and changing the value of the
size expression would not affect the result of the operator, it is unspecified whether or not
the size expression is evaluated.

For two array types to be compatible, both shall have compatible element types, and if
both size specifiers are present, and are integer constant expressions, then both size
specifiers shall have the same constant value. If the two array types are used in a context
which requires them to be compatible, it is undefined behavior if the two size specifiers
evaluate to unequal values.

EXAMPLE 1

float fa[1l], *afp[17];
declares an array of f | oat numbers and an array of pointers to f | oat numbers.
EXAMPLE 2 Note the distinction between the declarations

extern int *x;
externint y[];

The first declares x to be a pointer to i nt ; the second declares y to be an array of i nt of unspecified size
(an incomplete type), the storage for which is defined elsewhere.

EXAMPLE 3 The following declarations demonstrate the compatibility rules for variably modified types.

extern int n;
extern int m
voi d fconpat (voi d)
{
int a[n][6][n;
int (*p)[4][n+1];
int c[n][n][6][n];
int (*r)[n][n][n+1];
p = a; /I invalid: not compatible because 4 ! = 6
r = c; /| compatible, but defined behavior only if
/[l n ==6andm == n+l

124) Thus, * can be used only in function declarations that are not definitions (see 6.7.5.3).

8§6.7.5.2 Language 117

10

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

EXAMPLE 4 All declarations of variably modified (VM) types have to be at either block scope or
function prototype scope. Array objects declared with the st ati c or ext er n storage-class specifier
cannot have a variable length array (VLA) type. However, an object declared with the st at i c storage-
class specifier can have a VM type (that is, a pointer to a VLA type). Finally, all identifiers declared with a
VM type have to be ordinary identifiers and cannot, therefore, be members of structures or unions.

extern int n;

int Al n]; /1 invalid: file scope VLA
extern int (*p2)[n]; /1 invalid: file scope VM
int B[100]; /1 valid: file scope but not VM
void fvla(int m int m[nmM); /1 valid: VLA with prototype scope
void fvla(int m int m[nm) /1 valid: adjusted to auto pointer to VLA
{
typedef int VLA m[n; /1 valid: block scope typedef VLA
struct tag {
int (*y)[n]; /1 invalid: y not ordinary identifier
int z[n]; /1 invalid: z not ordinary identifier
i
int D[mM; /1 valid: auto VLA
static int E[mM; /1 invalid: static block scope VLA
externint F[m; /1 invalid: F has linkage and is VLA
int (*s)[nm; /1 valid: auto pointer to VLA
externint (*r)[nj; /1 invalid: r has linkage and points to VLA
static int (*q)[m = &B; /1 valid: g is a static block pointer to VLA
}

Forward references. function declarators (6.7.5.3), function definitions (6.9.1),
initialization (6.7.8).

6.7.5.3 Function declarators (including prototypes)
Constraints

A function declarator shall not specify a return type that is a function type or an array
type.
The only storage-class specifier that shall occur in a parameter declaration is r egi st er .

An identifier list in a function declarator that is not part of a definition of that function
shall be empty.

After adjustment, the parameters in a parameter type list in a function declarator that is
part of a definition of that function shall not have incomplete type.

Semantics
If, in the declaration “T D1”’, D1 has the form

D(parameter-type-list)
or
D(identifier-listopt)

118 Language 86.7.5.3

10

11

12

13

14

15

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

and the type specified for ident in the declaration “T D” is “derived-declarator-type-list
T, then the type specified for ident is *“derived-declarator-type-list function returning
T”.

A parameter type list specifies the types of, and may declare identifiers for, the
parameters of the function.

A declaration of a parameter as “array of type” shall be adjusted to *“qualified pointer to
type”, where the type qualifiers (if any) are those specified within the [and] of the
array type derivation. If the keyword st ati c also appears within the [and | of the
array type derivation, then for each call to the function, the value of the corresponding
actual argument shall provide access to the first element of an array with at least as many
elements as specified by the size expression.

A declaration of a parameter as *““function returning type” shall be adjusted to “pointer to
function returning type”, as in 6.3.2.1.

If the list terminates with an ellipsis (, . . .), no information about the number or types
of the parameters after the comma is supplied.1?

The special case of an unnamed parameter of type voi d as the only item in the list
specifies that the function has no parameters.

If, in a parameter declaration, an identifier can be treated either as a typedef name or as a
parameter name, it shall be taken as a typedef name.

If the function declarator is not part of a definition of that function, parameters may have
incomplete type and may use the [*] notation in their sequences of declarator specifiers
to specify variable length array types.

The storage-class specifier in the declaration specifiers for a parameter declaration, if
present, is ignored unless the declared parameter is one of the members of the parameter
type list for a function definition.

An identifier list declares only the identifiers of the parameters of the function. An empty
list in a function declarator that is part of a definition of that function specifies that the
function has no parameters. The empty list in a function declarator that is not part of a
definition of that function specifies that no information about the number or types of the
parameters is supplied.?®)

For two function types to be compatible, both shall specify compatible return types.t?”)

125) The macros defined in the <st dar g. h> header (7.15) may be used to access arguments that
correspond to the ellipsis.

126) See “future language directions” (6.11.6).

127) If both function types are “old style, parameter types are not compared.

86.7.5.3 Language 119

16

17

18

19

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Moreover, the parameter type lists, if both are present, shall agree in the number of
parameters and in use of the ellipsis terminator; corresponding parameters shall have
compatible types. If one type has a parameter type list and the other type is specified by a
function declarator that is not part of a function definition and that contains an empty
identifier list, the parameter list shall not have an ellipsis terminator and the type of each
parameter shall be compatible with the type that results from the application of the
default argument promotions. If one type has a parameter type list and the other type is
specified by a function definition that contains a (possibly empty) identifier list, both shall
agree in the number of parameters, and the type of each prototype parameter shall be
compatible with the type that results from the application of the default argument
promotions to the type of the corresponding identifier. (In the determination of type
compatibility and of a composite type, each parameter declared with function or array
type is taken as having the adjusted type and each parameter declared with qualified type
is taken as having the unqualified version of its declared type.)

EXAMPLE 1 The declaration

int f(void), *fip(), (*pfi)();

declares a function f with no parameters returning an i nt , a function f i p with no parameter specification
returning a pointer to an i nt, and a pointer pf i to a function with no parameter specification returning an
i nt. It is especially useful to compare the last two. The binding of *fi p() is *(fi p()), so that the
declaration suggests, and the same construction in an expression requires, the calling of a function fi p,
and then using indirection through the pointer result to yield an i nt . In the declarator (*pfi) (), the
extra parentheses are necessary to indicate that indirection through a pointer to a function yields a function
designator, which is then used to call the function; it returnsani nt .

If the declaration occurs outside of any function, the identifiers have file scope and external linkage. If the
declaration occurs inside a function, the identifiers of the functions f and f i p have block scope and either
internal or external linkage (depending on what file scope declarations for these identifiers are visible), and
the identifier of the pointer pf i has block scope and no linkage.

EXAMPLE 2 The declaration
int (*apfi[3])(int *x, int *y);

declares an array apfi of three pointers to functions returning i nt. Each of these functions has two
parameters that are pointers to i nt . The identifiers x and y are declared for descriptive purposes only and
go out of scope at the end of the declaration of apf i .

EXAMPLE 3 The declaration
int (*fpfi(int (*)(long), int))(int, ...);

declares a function f pf i that returns a pointer to a function returning an i nt . The function f pf i has two
parameters: a pointer to a function returning an i nt (with one parameter of type | ong i nt),andani nt.
The pointer returned by f pfi points to a function that has one i nt parameter and accepts zero or more
additional arguments of any type.

120 Language 86.7.5.3

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

20 EXAMPLE4 The following prototype has a variably modified parameter.

voi d addscalar(int n, int m
doubl e a[n] [n*m+300], double x);

int main()

{
doubl e b[4][308];
addscal ar (4, 2, b, 2.17);
return O;

}

voi d addscalar(int n, int m
doubl e a[n] [n*m+300], doubl e x)

{
for (int i =0; i <n; i++4)
for (int j =0, k = n*m300; j < k; j++)
/'l aisapointer toa VLA with n* m+300 elements
} a[i][j] +=x;

21 EXAMPLES5 The following are all compatible function prototype declarators.

doubl e maxi mum(int n, int m double a[n][n]);
doubl e maxi mum(int n, int m double a[*][*]);
doubl e maxi mum(int n, int m double a[][*]);
doubl e maxi mum(int n, int m double a[][n]);

as are:

void f(double (* restrict a)[5]);

void f(double a[restrict][5]);

void f(double a[restrict 3][5]);

void f(double a[restrict static 3][5]);

(Note that the last declaration also specifies that the argument corresponding to a in any call to f must be a
non-null pointer to the first of at least three arrays of 5 doubles, which the others do not.)

Forward references: function definitions (6.9.1), type names (6.7.6).

86.7.5.3 Language 121

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.7.6 Typenames
Syntax

type-name:
specifier-qualifier-list abstract-declaratorqp

abstract-declarator:
pointer
pointergp; direct-abstract-declarator

direct-abstract-declarator:

(abstract-declarator)

direct-abstract-declaratorqy: [type-qualifier-listop
assignment-expressiongpt |

direct-abstract-declaratorgy: [static type-qualifier-listop
assignment-expression]

direct-abstract-declaratorqy: [type-qualifier-list stati c
assignment-expression]

direct-abstract-declaratorgy [*]

direct-abstract-declaratorgp; (parameter-type-listopt)

Semantics
In several contexts, it is necessary to specify a type. This is accomplished using a type

name, which is syntactically a declaration for a function or an object of that type that
omits the identifier.1?®)

EXAMPLE The constructions

€)] i nt

(b) int *

(c) int *[3]

(d) int (*)[3]

() int (*)[*]

] int *()

(9) int (*)(void)

(h) int (*const [])(unsigned int, ...)

name respectively the types (a) i nt, (b) pointer to i nt, (c) array of three pointers to i nt , (d) pointer to an
array of three i nt's, (e) pointer to a variable length array of an unspecified number of i nt s, (f) function
with no parameter specification returning a pointer to i nt, (g) pointer to function with no parameters
returning an i nt, and (h) array of an unspecified number of constant pointers to functions, each with one
parameter that has type unsi gned i nt and an unspecified number of other parameters, returning an
int.

128) As indicated by the syntax, empty parentheses in a type name are interpreted as ““function with no
parameter specification”, rather than redundant parentheses around the omitted identifier.

122 Language 86.7.6

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

6.7.7 Type definitions
Syntax

typedef-name:
identifier
Constraints
If a typedef name specifies a variably modified type then it shall have block scope.
Semantics

In a declaration whose storage-class specifier is t ypedef, each declarator defines an
identifier to be a typedef name that denotes the type specified for the identifier in the way
described in 6.7.5. Any array size expressions associated with variable length array
declarators are evaluated each time the declaration of the typedef name is reached in the
order of execution. A typedef declaration does not introduce a new type, only a
synonym for the type so specified. That is, in the following declarations:

typedef T type_ident;
type_i dent D

type_i dent is defined as a typedef name with the type specified by the declaration
specifiers in T (known as T), and the identifier in D has the type “derived-declarator-
type-list T”” where the derived-declarator-type-list is specified by the declarators of D. A
typedef name shares the same name space as other identifiers declared in ordinary
declarators.

EXAMPLE 1 After

typedef int MLES, KLICKSP();
typedef struct { double hi, lo; } range;

the constructions

M LES di st ance;

extern KLICKSP *netricp;
range x;

range z, *zp;

are all valid declarations. The type of di st ance isi nt, that of met ri cp is “pointer to function with no
parameter specification returning i nt ”’, and that of x and z is the specified structure; zp is a pointer to
such a structure. The object di st ance has a type compatible with any other i nt object.

EXAMPLE 2 After the declarations

typedef struct s1 { int x; } tl1, *tpl;
typedef struct s2 { int x; } t2, *tp2;

type t 1 and the type pointed to by t p1 are compatible. Type t 1 is also compatible with type st r uct
s1, but not compatible with the types st r uct s2,t 2, the type pointed to by t p2, ori nt .

86.7.7 Language 123

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

EXAMPLE 3 The following obscure constructions

typedef signed int t;
typedef int plain;
struct tag {
unsi gned t: 4;
const t:5;
plain r:5;
b
declare a typedef name t with type si gned i nt, a typedef name pl ai n with type i nt, and a structure
with three bit-field members, one named t that contains values in the range [0, 15], an unnamed const-
qualified bit-field which (if it could be accessed) would contain values in either the range [-15, +15] or
[-16, +15], and one named r that contains values in one of the ranges [0, 31], [-15, +15], or [-16, +15].
(The choice of range is implementation-defined.) The first two bit-field declarations differ in that
unsi gned is a type specifier (which forces t to be the name of a structure member), while const is a
type qualifier (which modifies t which is still visible as a typedef name). If these declarations are followed
in an inner scope by

tf(t (t));
long t;

then a function f is declared with type “function returning si gned i nt with one unnamed parameter
with type pointer to function returning si gned i nt with one unnamed parameter with type si gned
i nt ”’, and an identifier t with typel ong i nt.

EXAMPLE 4 On the other hand, typedef names can be used to improve code readability. All three of the
following declarations of the si gnal function specify exactly the same type, the first without making use
of any typedef names.

typedef void fv(int), (*pfv)(int);

void (*signal (int, void (*)(int)))(int);

fv *signal (int, fv *);

pfv signal (int, pfv);
EXAMPLE 5 If a typedef name denotes a variable length array type, the length of the array is fixed at the
time the typedef name is defined, not each time it is used:

voi d copyt(int n)

{
typedef int B[n]; /1 Bisnints, n evaluated now
n += 1;
B a; /1 aisnints nwithout+= 1
int b[n]; /1 aandb aredifferent sizes
for (int i =1; i <n; i++4)

a[i-1] = b[i];
}

124 Language 86.7.7

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

6.7.8 Initialization

Syntax
initializer:
assignment-expression
{ initializer-list }
{ initializer-list , }
initializer-list:
designationgp initializer
initializer-list , designationgp initializer
designation:

designator-list =

designator-list:
designator
designator-list designator

designator:
[constant-expression |
identifier
Constraints

No initializer shall attempt to provide a value for an object not contained within the entity
being initialized.

The type of the entity to be initialized shall be an array of unknown size or an object type
that is not a variable length array type.

All the expressions in an initializer for an object that has static storage duration shall be
constant expressions or string literals.

If the declaration of an identifier has block scope, and the identifier has external or
internal linkage, the declaration shall have no initializer for the identifier.

If a designator has the form
[constant-expression]

then the current object (defined below) shall have array type and the expression shall be
an integer constant expression. If the array is of unknown size, any nonnegative value is
valid.

If a designator has the form
. identifier

then the current object (defined below) shall have structure or union type and the
identifier shall be the name of a member of that type.

86.7.8 Language 125

10

11

12

13

14

15

16

17

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Semantics
An initializer specifies the initial value stored in an object.

Except where explicitly stated otherwise, for the purposes of this subclause unnamed
members of objects of structure and union type do not participate in initialization.
Unnamed members of structure objects have indeterminate value even after initialization.

If an object that has automatic storage duration is not initialized explicitly, its value is
indeterminate. If an object that has static storage duration is not initialized explicitly,
then:

— if it has pointer type, it is initialized to a null pointer;
— if it has arithmetic type, it is initialized to (positive or unsigned) zero;
— if itis an aggregate, every member is initialized (recursively) according to these rules;

— if it is a union, the first named member is initialized (recursively) according to these
rules.

The initializer for a scalar shall be a single expression, optionally enclosed in braces. The
initial value of the object is that of the expression (after conversion); the same type
constraints and conversions as for simple assignment apply, taking the type of the scalar
to be the unqualified version of its declared type.

The rest of this subclause deals with initializers for objects that have aggregate or union
type.

The initializer for a structure or union object that has automatic storage duration shall be
either an initializer list as described below, or a single expression that has compatible
structure or union type. In the latter case, the initial value of the object, including
unnamed members, is that of the expression.

An array of character type may be initialized by a character string literal, optionally
enclosed in braces. Successive characters of the character string literal (including the
terminating null character if there is room or if the array is of unknown size) initialize the
elements of the array.

An array with element type compatible with wchar _t may be initialized by a wide
string literal, optionally enclosed in braces. Successive wide characters of the wide string
literal (including the terminating null wide character if there is room or if the array is of
unknown size) initialize the elements of the array.

Otherwise, the initializer for an object that has aggregate or union type shall be a brace-
enclosed list of initializers for the elements or named members.

Each brace-enclosed initializer list has an associated current object. When no
designations are present, subobjects of the current object are initialized in order according
to the type of the current object: array elements in increasing subscript order, structure

126 Language 86.7.8

18

19

20

21

22

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

members in declaration order, and the first named member of a union.!?®) In contrast, a
designation causes the following initializer to begin initialization of the subobject
described by the designator. Initialization then continues forward in order, beginning
with the next subobject after that described by the designator.*3%

Each designator list begins its description with the current object associated with the
closest surrounding brace pair. Each item in the designator list (in order) specifies a
particular member of its current object and changes the current object for the next
designator (if any) to be that member.®") The current object that results at the end of the
designator list is the subobject to be initialized by the following initializer.

The initialization shall occur in initializer list order, each initializer provided for a
particular subobject overriding any previously listed initializer for the same subobject; %2
all subobjects that are not initialized explicitly shall be initialized implicitly the same as
objects that have static storage duration.

If the aggregate or union contains elements or members that are aggregates or unions,
these rules apply recursively to the subaggregates or contained unions. If the initializer of
a subaggregate or contained union begins with a left brace, the initializers enclosed by
that brace and its matching right brace initialize the elements or members of the
subaggregate or the contained union. Otherwise, only enough initializers from the list are
taken to account for the elements or members of the subaggregate or the first member of
the contained union; any remaining initializers are left to initialize the next element or
member of the aggregate of which the current subaggregate or contained union is a part.

If there are fewer initializers in a brace-enclosed list than there are elements or members
of an aggregate, or fewer characters in a string literal used to initialize an array of known
size than there are elements in the array, the remainder of the aggregate shall be
initialized implicitly the same as objects that have static storage duration.

If an array of unknown size is initialized, its size is determined by the largest indexed
element with an explicit initializer. At the end of its initializer list, the array no longer
has incomplete type.

129) If the initializer list for a subaggregate or contained union does not begin with a left brace, its
subobjects are initialized as usual, but the subaggregate or contained union does not become the
current object: current objects are associated only with brace-enclosed initializer lists.

130) After a union member is initialized, the next object is not the next member of the union; instead, it is
the next subobject of an object containing the union.

131) Thus, a designator can only specify a strict subobject of the aggregate or union that is associated with
the surrounding brace pair. Note, too, that each separate designator list is independent.

132) Any initializer for the subobject which is overridden and so not used to initialize that subobject might
not be evaluated at all.

86.7.8 Language 127

23

24

25

26

27

28

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

The order in which any side effects occur among the initialization list expressions is
unspecified.t3%)

EXAMPLE 1 Provided that <conpl ex. h> has been #i ncl uded, the declarations

int i = 3.5;
double conplex ¢ =5 + 3 * |;

define and initialize i with the value 3 and ¢ with the value 5.0 +i3. 0.
EXAMPLE 2 The declaration
int x[] ={ 1, 3, 5};

defines and initializes x as a one-dimensional array object that has three elements, as no size was specified
and there are three initializers.

EXAMPLE 3 The declaration

int y[4][3] = {
{1, 3 5},
{2 4, 61},
{3 5 7},
H

is a definition with a fully bracketed initialization: 1, 3, and 5 initialize the first row of y (the array object
y[0]), namely y[O] [O], y[O] [1], and y[O] [2] . Likewise the next two lines initialize y[1] and
y[2] . The initializer ends early, so y[3] is initialized with zeros. Precisely the same effect could have
been achieved by

int y[4][3] = {
1, 3, 5 2, 4, 6, 3, 5 7
s

The initializer for y[0] does not begin with a left brace, so three items from the list are used. Likewise the
next three are taken successively for y[1] and y[2] .

EXAMPLE 4 The declaration

int z[4][3] ={
) {1}, {2} {3}, {4}

initializes the first column of z as specified and initializes the rest with zeros.
EXAMPLE 5 The declaration
struct { int a[3], b; } W] ={ {1}, 2}

is a definition with an inconsistently bracketed initialization. It defines an array with two element
structures: W 0] . a[0] is1landw 1] . a[0] is 2; all the other elements are zero.

133) In particular, the evaluation order need not be the same as the order of subobject initialization.

128 Language §6.7.8

29

30

31

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

EXAMPLE 6 The declaration
short q[4][3]1[2] = {
{1}
}

{ 2, :
{ 4 5 6}

g1 w -

b

contains an incompletely but consistently bracketed initialization. It defines a three-dimensional array
object: q[0][0][O0] is 1, g[1][O][O] is 2, q[1]1[O][1] is 3, and 4, 5, and 6 initialize
a[2][0][0],q[2][0][1],andq[2][1][O], respectively; all the rest are zero. The initializer for
g[0] [O] does not begin with a left brace, so up to six items from the current list may be used. There is
only one, so the values for the remaining five elements are initialized with zero. Likewise, the initializers
for g[11 [0] and q[2] [O] do not begin with a left brace, so each uses up to six items, initializing their
respective two-dimensional subaggregates. If there had been more than six items in any of the lists, a
diagnostic message would have been issued. The same initialization result could have been achieved by:

short q[4][3]1[2] = {
1, 0, 0, 0, 0, O,
2, 3, 0, 0, 0, O,
4, 5 6
}
or by:
short q[4][3]1[2] = {
{
{ 11},
},
{
{ 2, 3},
},
{
{41 5}1
{ 61,
}

H
in a fully bracketed form.

Note that the fully bracketed and minimally bracketed forms of initialization are, in general, less likely to
cause confusion.

EXAMPLE 7 One form of initialization that completes array types involves typedef names. Given the
declaration

typedef int Al]; // OK-declaredwith block scope
the declaration

Aa={1 21}, b={3, 4, 51},
is identical to

int a[] ={ 1, 2}, b[] ={ 3, 4, 5};

due to the rules for incomplete types.

86.7.8 Language 129

32

33

34

35

36

37

38

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

EXAMPLE 8 The declaration
char s[] = "abc™, t[3] = "abc";

defines “plain” char array objects s and t whose elements are initialized with character string literals.
This declaration is identical to

char s[] { "a", "b", "c", "\0" 1},
tl = { "a", "b*, "¢ ¥;
The contents of the arrays are modifiable. On the other hand, the declaration

char *p = "abc";

defines p with type “pointer to char” and initializes it to point to an object with type “array of char”
with length 4 whose elements are initialized with a character string literal. 1f an attempt is made to use p to
modify the contents of the array, the behavior is undefined.

EXAMPLE 9 Arrays can be initialized to correspond to the elements of an enumeration by using
designators:

enum { member_one, member_two };
const char *nm[] =
[member_two]
[member_one]

"member two',
"member one',

1=

}:
EXAMPLE 10 Structure members can be initialized to nonzero values without depending on their order:
div_t answer = { .quot = 2, .rem = -1 };

EXAMPLE 11 Designators can be used to provide explicit initialization when unadorned initializer lists
might be misunderstood:

struct { int a[3], b; } w[] =
{ [0]-a = {1}, [1].a[0] = 2 };

EXAMPLE 12 Space can be “allocated” from both ends of an array by using a single designator:

int a[MAX] = {
1, 3, 5, 7, 9, [MAX-5] =8, 6, 4, 2, 0
}:
In the above, if MAX is greater than ten, there will be some zero-valued elements in the middle; if it is less
than ten, some of the values provided by the first five initializers will be overridden by the second five.

EXAMPLE 13 Any member of a union can be initialized:
union { /* .. */ } u = { .any_member = 42 };

Forward references. common definitions <stddef.h> (7.17).

130 Language 86.7.8

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

6.8 Statements and blocks
Syntax

statement:
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement

Semantics

A statement specifies an action to be performed. Except as indicated, statements are
executed in sequence.

A block allows a set of declarations and statements to be grouped into one syntactic unit.
The initializers of objects that have automatic storage duration, and the variable length
array declarators of ordinary identifiers with block scope, are evaluated and the values are
stored in the objects (including storing an indeterminate value in objects without an
initializer) each time the declaration is reached in the order of execution, as if it were a
statement, and within each declaration in the order that declarators appear.

A full expression is an expression that is not part of another expression or of a declarator.
Each of the following is a full expression: an initializer; the expression in an expression
statement; the controlling expression of a selection statement (i f or swi t ch); the
controlling expression of a whi | e or do statement; each of the (optional) expressions of
a f or statement; the (optional) expression in a r et ur n statement. The end of a full
expression is a sequence point.

Forward references. expression and null statements (6.8.3), selection statements
(6.8.4), iteration statements (6.8.5), the r et ur n statement (6.8.6.4).

6.8.1 Labeled statements
Syntax

labeled-statement:
identifier : statement
case constant-expression : statement
default : statement

Constraints

A case or default label shall appear only in a swi tch statement. Further
constraints on such labels are discussed under the swi t ch statement.

§6.8.1 Language 131

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Label names shall be unique within a function.
Semantics

Any statement may be preceded by a prefix that declares an identifier as a label name.
Labels in themselves do not alter the flow of control, which continues unimpeded across
them.

Forward references. the got o statement (6.8.6.1), the swi t ch statement (6.8.4.2).
6.8.2 Compound statement
Syntax

compound-statement:

block-item-list:
block-item
block-item-list block-item

block-item:
declaration
statement
Semantics

A compound statement is a block.

6.8.3 Expression and null statements

Syntax
expression-statement:
EXPressiongp ;
Semantics

The expression in an expression statement is evaluated as a void expression for its side
effects.134

A null statement (consisting of just a semicolon) performs no operations.

EXAMPLE 1 If a function call is evaluated as an expression statement for its side effects only, the
discarding of its value may be made explicit by converting the expression to a void expression by means of
a cast:

int p(int);
[*
(void)p(0);

134) Such as assignments, and function calls which have side effects.

132 Language 86.8.3

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

EXAMPLE 2 In the program fragment

char *s;
/* .. */
while (*s++ I= "\0")

a null statement is used to supply an empty loop body to the iteration statement.

EXAMPLE 3 A null statement may also be used to carry a label just before the closing } of a compound
statement.

while (loopl) {

/> ... */
while (loop2) {
/> ... */

if (want_out)
goto end_loopl;

/* ... */
by
/* ... */
end_loopl: ;

by
Forward references. iteration statements (6.8.5).
6.8.4 Selection statements
Syntax

sel ection-statement:
iT (expression) statement
iT (expression) statement else statement
switch (expression) statement

Semantics

A selection statement selects among a set of statements depending on the value of a
controlling expression.

A selection statement is a block whose scope is a strict subset of the scope of its
enclosing block. Each associated substatement is also a block whose scope is a strict
subset of the scope of the selection statement.

6.8.4.1 The 1T statement

Constraints

The controlling expression of an 1 ¥ statement shall have scalar type.
Semantics

In both forms, the first substatement is executed if the expression compares unequal to O.
In the el se form, the second substatement is executed if the expression compares equal

§6.8.4.1 Language 133

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

to 0. If the first substatement is reached via a label, the second substatement is not
executed.

An el se is associated with the lexically nearest preceding i f that is allowed by the
syntax.

6.8.4.2 Thesw t ch statement
Constraints
The controlling expression of a swi t ch statement shall have integer type.

If a swi t ch statement has an associated case or def aul t label within the scope of an
identifier with a variably modified type, the entire swi t ch statement shall be within the
scope of that identifier.1%°)

The expression of each case label shall be an integer constant expression and no two of
the case constant expressions in the same swi t ch statement shall have the same value
after conversion. There may be at most one def aul t label in a swi t ch statement.
(Any enclosed swi t ch statement may have a defaul t label or case constant
expressions with values that duplicate case constant expressions in the enclosing
SW t ch statement.)

Semantics

A sw t ch statement causes control to jump to, into, or past the statement that is the
switch body, depending on the value of a controlling expression, and on the presence of a
def aul t label and the values of any case labels on or in the switch body. A case or
def aul t label is accessible only within the closest enclosing swi t ch statement.

The integer promotions are performed on the controlling expression. The constant
expression in each case label is converted to the promoted type of the controlling
expression. If a converted value matches that of the promoted controlling expression,
control jumps to the statement following the matched case label. Otherwise, if there is
adef aul t label, control jumps to the labeled statement. If no converted case constant
expression matches and there is no def aul t label, no part of the switch body is
executed.

Implementation limits

As discussed in 5.2.4.1, the implementation may limit the number of case values in a
SWi t ch statement.

135) That is, the declaration either precedes the swi t ch statement, or it follows the last case or
def aul t label associated with the swi t ch that is in the block containing the declaration.

134 Language §6.8.4.2

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

7 EXAMPLE In the artificial program fragment

switch (expr)

{
int i =4
f(i);
case O:
i = 17;
/ * fallsthrough into def aul t code */
defaul t:
printf("%l\n", i);
}

the object whose identifier is i exists with automatic storage duration (within the block) but is never
initialized, and thus if the controlling expression has a nonzero value, the call to the pri nt f function will
access an indeterminate value. Similarly, the call to the function f cannot be reached.

6.8.5 Iteration statements

Syntax
1 iteration-statement:
whi |l e (expression) statement
do statement while (expression) ;
for (expressiongp ; EXPressiongn ; expressiongy) Statement
for (declaration expressiongy ; expressiongy) Statement
Constraints

2 The controlling expression of an iteration statement shall have scalar type.

3 The declaration part of a f or statement shall only declare identifiers for objects having
storage class aut o orr egi st er.

Semantics

4 An iteration statement causes a statement called the loop body to be executed repeatedly
until the controlling expression compares equal to 0. The repetition occurs regardless of |
whether the loop body is entered from the iteration statement or by a jump.12)

5 An iteration statement is a block whose scope is a strict subset of the scope of its
enclosing block. The loop body is also a block whose scope is a strict subset of the scope
of the iteration statement.

136) Code jumped over is not executed. In particular, the controlling expression of a f or or whil e
statement is not evaluated before entering the loop body, nor is clause-1 of a f or statement.

86.8.5 Language 135

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.8.5.1 Thewhi | e statement

The evaluation of the controlling expression takes place before each execution of the loop
body.

6.8.5.2 Thedo statement

The evaluation of the controlling expression takes place after each execution of the loop
body.

6.8.5.3 Thef or statement
The statement
for (clause-1 ; expression-2 ; expression-3) statement

behaves as follows: The expression expression-2 is the controlling expression that is
evaluated before each execution of the loop body. The expression expression-3 is
evaluated as a void expression after each execution of the loop body. If clause-1 is a
declaration, the scope of any identifiers it declares is the remainder of the declaration and
the entire loop, including the other two expressions; it is reached in the order of execution
before the first evaluation of the controlling expression. If clause-1 is an expression, it is
evaluated as a void expression before the first evaluation of the controlling expression.*3”)

Both clause-1 and expression-3 can be omitted. An omitted expression-2 is replaced by a
nonzero constant.

6.8.6 Jump statements

Syntax

jump-statement:
got o identifier ;
conti nue ;
break ;
return expressiongpt ;

Semantics

A jump statement causes an unconditional jump to another place.

137) Thus, clause-1 specifies initialization for the loop, possibly declaring one or more variables for use in
the loop; the controlling expression, expression-2, specifies an evaluation made before each iteration,
such that execution of the loop continues until the expression compares equal to 0; and expression-3
specifies an operation (such as incrementing) that is performed after each iteration.

136 Language §6.8.6

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

6.8.6.1 Thegot o statement
Constraints

The identifier in a got o statement shall name a label located somewhere in the enclosing
function. A got o statement shall not jJump from outside the scope of an identifier having
a variably modified type to inside the scope of that identifier.

Semantics
A got o statement causes an unconditional jump to the statement prefixed by the named
label in the enclosing function.

EXAMPLE 1 It is sometimes convenient to jump into the middle of a complicated set of statements. The
following outline presents one possible approach to a problem based on these three assumptions:

1. The general initialization code accesses objects only visible to the current function.
2. The general initialization code is too large to warrant duplication.

3. The code to determine the next operation is at the head of the loop. (To allow it to be reached by
cont i nue statements, for example.)

I*

goto first_time;

for (;:) {
/'] determine next operation
I*

i f (needtoreinitialize) {
/1 reinitialize-only code
I*
first tine:
/1 general initialization code

1* o*l

conti nue;
}
/1 handle other operations
1* %l

§6.8.6.1 Language 137

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

4 EXAMPLE 2 A got o statement is not allowed to jump past any declarations of objects with variably
modified types. A jump within the scope, however, is permitted.

goto | ab3; /1 invalid: going INTO scope of VLA.
{
doubl e a[n];
a[j] = 4. 4;
| ab3:
a[j] = 3.3
goto | ab4; /1 valid: going WITHIN scope of VLA.
a[j] = 5.5;
| ab4:
a[j] = 6.6;
goto | ab4; /1 invalid: going INTO scope of VLA.

6.8.6.2 Thecont i nue statement
Constraints

1 Aconti nue statement shall appear only in or as a loop body.
Semantics

2 A continue statement causes a jump to the loop-continuation portion of the smallest
enclosing iteration statement; that is, to the end of the loop body. More precisely, in each
of the statements

while (/* .. */) { do { for (/* .. *) {
[* ... */ [* ... * [* ... *
conti nue; conti nue; conti nue;
[* ... */ [* ... * [* ... *

contin: ; contin: ; contin: ;

} } while (/* ... */); }

unless the cont i nue statement shown is in an enclosed iteration statement (in which

case it is interpreted within that statement), it is equivalent to got o cont i n; .13®)
6.8.6.3 Thebr eak statement
Constraints

1 A break statement shall appear only in or as a switch body or loop body.
Semantics

2 A break statement terminates execution of the smallest enclosing swi t ch or iteration
statement.

138) Following the cont i n: label is a null statement.

138 Language 8§6.8.6.3

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

6.8.6.4 Ther et ur n statement
Constraints

A r et ur n statement with an expression shall not appear in a function whose return type
IS voi d. A return statement without an expression shall only appear in a function
whose return type is voi d.

Semantics

A 1 et ur n statement terminates execution of the current function and returns control to
its caller. A function may have any number of r et ur n statements.

If a return statement with an expression is executed, the value of the expression is
returned to the caller as the value of the function call expression. If the expression has a
type different from the return type of the function in which it appears, the value is
converted as if by assignment to an object having the return type of the function.*3%
EXAMPLE In:

struct s { double i; } f(void);

uni on {
struct {
int f1;
struct s f2;
} ul;
struct {
struct s f3;
int f4;
} ouz;
bogs
struct s f(void)
{
return g.ul.f2;
}
[* *

g.u2.f3 = f();

there is no undefined behavior, although there would be if the assignment were done directly (without using
a function call to fetch the value).

139) The r et ur n statement is not an assignment. The overlap restriction of subclause 6.5.16.1 does not
apply to the case of function return. The representation of floating-point values may have wider range |
or precision and is determined by FLT_EVAL_METHOD. A cast may be used to remove this extra |
range and precision.

§6.8.6.4 Language 139

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.9 External definitions
Syntax

translation-unit:
external-declaration
translation-unit external-declaration

external-declaration:
function-definition
declaration

Constraints

The storage-class specifiers aut o and r egi st er shall not appear in the declaration
specifiers in an external declaration.

There shall be no more than one external definition for each identifier declared with
internal linkage in a translation unit. Moreover, if an identifier declared with internal
linkage is used in an expression (other than as a part of the operand of a si zeof
operator whose result is an integer constant), there shall be exactly one external definition
for the identifier in the translation unit.

Semantics

As discussed in 5.1.1.1, the unit of program text after preprocessing is a translation unit,
which consists of a sequence of external declarations. These are described as “external”
because they appear outside any function (and hence have file scope). As discussed in
6.7, a declaration that also causes storage to be reserved for an object or a function named
by the identifier is a definition.

An external definition is an external declaration that is also a definition of a function
(other than an inline definition) or an object. If an identifier declared with external
linkage is used in an expression (other than as part of the operand of a si zeof operator
whose result is an integer constant), somewhere in the entire program there shall be
exactly)one external definition for the identifier; otherwise, there shall be no more than
one.140

140) Thus, if an identifier declared with external linkage is not used in an expression, there need be no
external definition for it.

140 Language 86.9

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

6.9.1 Function definitions
Syntax

function-definition:
declaration-specifiers declarator declaration-listyp; compound-statement

declaration-list:
declaration
declaration-list declaration

Constraints

The identifier declared in a function definition (which is the name of the function) shall
have a function type, as specified by the declarator portion of the function definition.4%

The return type of a function shall be voi d or an object type other than array type.

The storage-class specifier, if any, in the declaration specifiers shall be either ext er n or
static.

If the declarator includes a parameter type list, the declaration of each parameter shall
include an identifier, except for the special case of a parameter list consisting of a single
parameter of type voi d, in which case there shall not be an identifier. No declaration list
shall follow.

If the declarator includes an identifier list, each declaration in the declaration list shall
have at least one declarator, those declarators shall declare only identifiers from the
identifier list, and every identifier in the identifier list shall be declared. An identifier
declared as a typedef name shall not be redeclared as a parameter. The declarations in the
declaration list shall contain no storage-class specifier other than r egi st er and no
initializations.

141) The intent is that the type category in a function definition cannot be inherited from a typedef:

typedef int F(void); /1 type F is “function with no parameters
/1 returning i nt ”

Ff, g; /1 f and g both have type compatible with F

Ff{/* .. *} /1 WRONG: syntax/constraint error

Fg() {/* .. *} /1 WRONG: declares that g returns a function

int f(void) { /* .. * } /1 RIGHT: f has type compatible with F

int g() { /* .. * } /1 RIGHT: g has type compatible with F

F *e(void) { /* .. */ } /'] e returns a pointer to a function

F *((e))(void) { /* .. *} /1 same: parentheses irrelevant

int (*fp)(void); /1 f p points to a function that has type F

F *Fp; /'l Fp points to a function that has type F

§6.9.1 Language 141

10

11

12

13

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Semantics

The declarator in a function definition specifies the name of the function being defined
and the identifiers of its parameters. If the declarator includes a parameter type list, the
list also specifies the types of all the parameters; such a declarator also serves as a
function prototype for later calls to the same function in the same translation unit. If the
declarator includes an identifier list,%*?) the types of the parameters shall be declared in a
following declaration list. In either case, the type of each parameter is adjusted as
described in 6.7.5.3 for a parameter type list; the resulting type shall be an object type.

If a function that accepts a variable number of arguments is defined without a parameter
type list that ends with the ellipsis notation, the behavior is undefined.

Each parameter has automatic storage duration. Its identifier is an Ivalue, which is in
effect declared at the head of the compound statement that constitutes the function body
(and therefore cannot be redeclared in the function body except in an enclosed block).
The layout of the storage for parameters is unspecified.

On entry to the function, the size expressions of each variably modified parameter are
evaluated and the value of each argument expression is converted to the type of the
corresponding parameter as if by assignment. (Array expressions and function
designators as arguments were converted to pointers before the call.)

After all parameters have been assigned, the compound statement that constitutes the
body of the function definition is executed.

If the } that terminates a function is reached, and the value of the function call is used by
the caller, the behavior is undefined.
EXAMPLE 1 In the following:

extern int max(int a, int b)

{
}

ext er n is the storage-class specifier and i nt is the type specifier; max(i nt a, int b) is the
function declarator; and

returna >b ? a: b;

{ returna>b ?a: b; }

is the function body. The following similar definition uses the identifier-list form for the parameter
declarations:

142) See “future language directions™ (6.11.7).

142 Language §6.9.1

14

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

extern int max(a, b)
int a, b;

{
}

Here i nt a, b; is the declaration list for the parameters. The difference between these two definitions is
that the first form acts as a prototype declaration that forces conversion of the arguments of subsequent calls
to the function, whereas the second form does not.

returna >b ? a: b;

EXAMPLE 2 To pass one function to another, one might say

int f(void);
I* ..
a(f);

Then the definition of g might read

void g(int (*funcp)(void))
{

I* ..*

(*funcp)(); /* or funcp(); .. */
}

or, equivalently,

voi d g(int func(void))

{
[* .. %]
func(); /* or (*func)(); .. */
}
6.9.2 External object definitions
Semantics

If the declaration of an identifier for an object has file scope and an initializer, the
declaration is an external definition for the identifier.

A declaration of an identifier for an object that has file scope without an initializer, and
without a storage-class specifier or with the storage-class specifier st at i ¢, constitutes a
tentative definition. If a translation unit contains one or more tentative definitions for an
identifier, and the translation unit contains no external definition for that identifier, then
the behavior is exactly as if the translation unit contains a file scope declaration of that
identifier, with the composite type as of the end of the translation unit, with an initializer
equal to 0.

If the declaration of an identifier for an object is a tentative definition and has internal
linkage, the declared type shall not be an incomplete type.

8§6.9.2 Language 143

ISO/IEC 9899:TC3

4 EXAMPLE 1

5 EXAMPLE 2

int il =1;
static int
extern int
int id4;
static int
int i1
int i?2;
int i3;
int id4;
int ib;

extern int
extern int
extern int
extern int
extern int

i nt

i2 =

i3

i 5;

i1;
i2;
i 3;
i4;
i 5;

Committee Draft — Septermber 7, 2007

11
11
11
11
11

11
11
11
11
11

11
11
11
11
11

definition, external linkage
definition, internal linkage
definition, external linkage
tentative definition, external linkage
tentative definition, internal linkage

valid tentative definition, refers to previous
6.2.2 renders undefined, linkage disagreement
valid tentative definition, refers to previous
valid tentative definition, refers to previous
6.2.2 renders undefined, linkage disagreement

refers to previous, whose linkage is external
refers to previous, whose linkage is internal
refers to previous, whose linkage is external
refers to previous, whose linkage is external
refers to previous, whose linkage is internal

If at the end of the translation unit containing

i[1;

WG14/N1256

the array i still has incomplete type, the implicit initializer causes it to have one element, which is set to
Zero on program startup.

144

Language

86.9.2

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

6.10 Preprocessing directives
Syntax

preprocessing-file:
groupopt

group:
group-part
group group-part

group-part:
if-section
control-line
text-line
non-directive

if-section:
if-group elif-groupsgpt else-groupgp endif-line

if-group:
#if constant-expression new-line groupgpt
ifdef identifier new-line groupgpt
ifndef identifier new-line groupgpt

elif-groups:
elif-group
elif-groups elif-group
elif-group:
#oelif constant-expression new-line groupgpt
else-group:
el se new-line groupgpt
endif-line:
endi f new-line

§6.10 Language 145

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

control-line:
i ncl ude pp-tokens new-line
defi ne identifier replacement-list new-line
define identifier Iparen identifier-listop:)
replacement-list new-line

define identifier Iparen ...) replacement-list new-line

define identifier Iparen identifier-list , ...)
replacement-list new-line

undef identifier new-line

line pp-tokens new-line

error pp-tokensgpt new-line

pragma pp-tokensgn: new-line

new-line

text-line:
pp-tokensgp: new-line

non-directive:
pp-tokens new-line

Iparen:
a (character not immediately preceded by white-space

replacement-list:
pp-tokensgpt

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

Description

A preprocessing directive consists of a sequence of preprocessing tokens that satisfies the
following constraints: The first token in the sequence is a # preprocessing token that (at
the start of translation phase 4) is either the first character in the source file (optionally
after white space containing no new-line characters) or that follows white space
containing at least one new-line character. The last token in the sequence is the first new-
line character that follows the first token in the sequence.r*® A new-line character ends
the preprocessing directive even if it occurs within what would otherwise be an

143) Thus, preprocessing directives are commonly called “lines”. These *“lines” have no other syntactic
significance, as all white space is equivalent except in certain situations during preprocessing (see the
character string literal creation operator in 6.10.3.2, for example).

146 Language §6.10

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

invocation of a function-like macro.

A text line shall not begin with a # preprocessing token. A non-directive shall not begin
with any of the directive names appearing in the syntax.

When in a group that is skipped (6.10.1), the directive syntax is relaxed to allow any
sequence of preprocessing tokens to occur between the directive name and the following
new-line character.

Constraints

The only white-space characters that shall appear between preprocessing tokens within a
preprocessing directive (from just after the introducing # preprocessing token through
just before the terminating new-line character) are space and horizontal-tab (including
spaces that have replaced comments or possibly other white-space characters in
translation phase 3).

Semantics

The implementation can process and skip sections of source files conditionally, include
other source files, and replace macros. These capabilities are called preprocessing,
because conceptually they occur before translation of the resulting translation unit.

The preprocessing tokens within a preprocessing directive are not subject to macro
expansion unless otherwise stated.
EXAMPLE In:

#defi ne EMPTY
EMPTY # include <file. h>

the sequence of preprocessing tokens on the second line is not a preprocessing directive, because it does not
begin with a # at the start of translation phase 4, even though it will do so after the macro EMPTY has been
replaced.

6.10.1 Conditional inclusion
Constraints

The expression that controls conditional inclusion shall be an integer constant expression
except that: it shall not contain a cast; identifiers (including those lexically identical to
keywords) are interpreted as described below;*¥ and it may contain unary operator
expressions of the form

144) Because the controlling constant expression is evaluated during translation phase 4, all identifiers
either are or are not macro names — there simply are no keywords, enumeration constants, etc.

§6.10.1 Language 147

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

def i ned identifier
or
defi ned (identifier)

which evaluate to 1 if the identifier is currently defined as a macro name (that is, if it is
predefined or if it has been the subject of a #def i ne preprocessing directive without an
intervening #undef directive with the same subject identifier), O if it is not.

Each preprocessing token that remains (in the list of preprocessing tokens that will
become the controlling expression) after all macro replacements have occurred shall be in
the lexical form of a token (6.4).

Semantics
Preprocessing directives of the forms

#if constant-expression new-line groupgpt
el if constant-expression new-line groupgp

check whether the controlling constant expression evaluates to nonzero.

Prior to evaluation, macro invocations in the list of preprocessing tokens that will become
the controlling constant expression are replaced (except for those macro names modified
by the defi ned unary operator), just as in normal text. If the token defi ned is
generated as a result of this replacement process or use of the def i ned unary operator
does not match one of the two specified forms prior to macro replacement, the behavior is
undefined. After all replacements due to macro expansion and the defi ned unary
operator have been performed, all remaining identifiers (including those lexically
identical to keywords) are replaced with the pp-number O, and then each preprocessing
token is converted into a token. The resulting tokens compose the controlling constant
expression which is evaluated according to the rules of 6.6. For the purposes of this
token conversion and evaluation, all signed integer types and all unsigned integer types
act as if they have the same representation as, respectively, the types i nt max_t and
ui nt max_t defined in the header <stdi nt.h>.1% This includes interpreting
character constants, which may involve converting escape sequences into execution
character set members. Whether the numeric value for these character constants matches
the value obtained when an identical character constant occurs in an expression (other
than within a #i f or #el i f directive) is implementation-defined.2*® Also, whether a
single-character character constant may have a negative value is implementation-defined.

Preprocessing directives of the forms

145) Thus, on an implementation where | NT_MAX is Ox7FFF and Ul NT_MAX is OxFFFF, the constant
0x8000 is signed and positive within a #i f expression even though it would be unsigned in
translation phase 7.

148 Language 86.10.1

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

1fdef identifier new-line groupgpt
ifndef identifier new-line groupgpt

check whether the identifier is or is not currently defined as a macro name. Their
conditions are equivalent to #1f defined identifier and #1T 'defined identifier
respectively.

Each directive’s condition is checked in order. If it evaluates to false (zero), the group
that it controls is skipped: directives are processed only through the name that determines
the directive in order to keep track of the level of nested conditionals; the rest of the
directives’ preprocessing tokens are ignored, as are the other preprocessing tokens in the
group. Only the first group whose control condition evaluates to true (nonzero) is
processed. If none of the conditions evaluates to true, and there is a #e lse directive, the
group controlled by the #else is processed; lacking a #else directive, all the groups
until the #endi ¥ are skipped.1*”)

Forward references: macro replacement (6.10.3), source file inclusion (6.10.2), largest
integer types (7.18.1.5).

6.10.2 Source file inclusion
Constraints

A #include directive shall identify a header or source file that can be processed by the
implementation.

Semantics
A preprocessing directive of the form
1nclude <h-char-sequence> new-line

searches a sequence of implementation-defined places for a header identified uniquely by
the specified sequence between the < and > delimiters, and causes the replacement of that
directive by the entire contents of the header. How the places are specified or the header
identified is implementation-defined.

A preprocessing directive of the form

146) Thus, the constant expression in the following #1 T directive and 1T statement is not guaranteed to
evaluate to the same value in these two contexts.

#i1f "z° - "a" == 25
if ("z° - "a" == 25)
147) As indicated by the syntax, a preprocessing token shall not follow a #else or #endif directive

before the terminating new-line character. However, comments may appear anywhere in a source file,
including within a preprocessing directive.

§6.10.2 Language 149

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

include "g-char-sequence’ new-line

causes the replacement of that directive by the entire contents of the source file identified
by the specified sequence between the " delimiters. The named source file is searched
for in an implementation-defined manner. If this search is not supported, or if the search
fails, the directive is reprocessed as if it read

incl ude <h-char-sequence> new-line

with the identical contained sequence (including > characters, if any) from the original
directive.

A preprocessing directive of the form
i ncl ude pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing
tokens after i ncl ude in the directive are processed just as in normal text. (Each
identifier currently defined as a macro name is replaced by its replacement list of
preprocessing tokens.) The directive resulting after all replacements shall match one of
the two previous forms.2*® The method by which a sequence of preprocessing tokens
between a < and a > preprocessing token pair or a pair of " characters is combined into a
single header name preprocessing token is implementation-defined.

The implementation shall provide unique mappings for sequences consisting of one or
more nondigits or digits (6.4.2.1) followed by a period (.) and a single nondigit. The
first character shall not be a digit. The implementation may ignore distinctions of
alphabetical case and restrict the mapping to eight significant characters before the
period.

A #i ncl ude preprocessing directive may appear in a source file that has been read
because of a #i ncl ude directive in another file, up to an implementation-defined
nesting limit (see 5.2.4.1).

EXAMPLE 1 The most common uses of #i ncl ude preprocessing directives are as in the following:

#i ncl ude <stdi o. h>
#i ncl ude "nyprog. h"

EXAMPLE 2 This illustrates macro-replaced #i ncl ude directives:

148) Note that adjacent string literals are not concatenated into a single string literal (see the translation
phases in 5.1.1.2); thus, an expansion that results in two string literals is an invalid directive.

150 Language §6.10.2

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

#if VERSI ON ==
#define INCFILE "versl.h"
#elif VERSION == 2
#define INCFILE "vers2.h" /1 andsoon
#el se
#define INCFILE "versN. h"
#endi f
#i ncl ude | NCFI LE

Forward references. macro replacement (6.10.3).

6.10.3 Macro replacement
Constraints

Two replacement lists are identical if and only if the preprocessing tokens in both have
the same number, ordering, spelling, and white-space separation, where all white-space
separations are considered identical.

An identifier currently defined as an object-like macro shall not be redefined by another
#def i ne preprocessing directive unless the second definition is an object-like macro
definition and the two replacement lists are identical. Likewise, an identifier currently
defined as a function-like macro shall not be redefined by another #defi ne
preprocessing directive unless the second definition is a function-like macro definition
that has the same number and spelling of parameters, and the two replacement lists are
identical.

There shall be white-space between the identifier and the replacement list in the definition
of an object-like macro.

If the identifier-list in the macro definition does not end with an ellipsis, the number of
arguments (including those arguments consisting of no preprocessing tokens) in an
invocation of a function-like macro shall equal the number of parameters in the macro
definition. Otherwise, there shall be more arguments in the invocation than there are
parameters in the macro definition (excluding the ...). There shall exist a)
preprocessing token that terminates the invocation.

The identifier _ VA ARGS_ _ shall occur only in the replacement-list of a function-like
macro that uses the ellipsis notation in the parameters.

A parameter identifier in a function-like macro shall be uniquely declared within its
scope.

Semantics

The identifier immediately following the def i ne is called the macro name. There is one
name space for macro names. Any white-space characters preceding or following the
replacement list of preprocessing tokens are not considered part of the replacement list
for either form of macro.

§6.10.3 Language 151

10

11

12

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

If a # preprocessing token, followed by an identifier, occurs lexically at the point at which
a preprocessing directive could begin, the identifier is not subject to macro replacement.

A preprocessing directive of the form

defi ne identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro name*®)

to be replaced by the replacement list of preprocessing tokens that constitute the
remainder of the directive. The replacement list is then rescanned for more macro names
as specified below.

A preprocessing directive of the form

define identifier Iparen identifier-listyp;) replacement-list new-line
defi ne identifier Iparen ...) replacement-list new-line
defi ne identifier Iparen identifier-list , ...) replacement-list new-line

defines a function-like macro with parameters, whose use is similar syntactically to a
function call. The parameters are specified by the optional list of identifiers, whose scope
extends from their declaration in the identifier list until the new-line character that
terminates the #defi ne preprocessing directive. Each subsequent instance of the
function-like macro name followed by a (as the next preprocessing token introduces the
sequence of preprocessing tokens that is replaced by the replacement list in the definition
(an invocation of the macro). The replaced sequence of preprocessing tokens is
terminated by the matching) preprocessing token, skipping intervening matched pairs of
left and right parenthesis preprocessing tokens. Within the sequence of preprocessing
tokens making up an invocation of a function-like macro, new-line is considered a normal
white-space character.

The sequence of preprocessing tokens bounded by the outside-most matching parentheses
forms the list of arguments for the function-like macro. The individual arguments within
the list are separated by comma preprocessing tokens, but comma preprocessing tokens
between matching inner parentheses do not separate arguments. If there are sequences of
preprocessing tokens within the list of arguments that would otherwise act as
preprocessing directives, % the behavior is undefined.

If there isa . .. in the identifier-list in the macro definition, then the trailing arguments,
including any separating comma preprocessing tokens, are merged to form a single item:
the variable arguments. The number of arguments so combined is such that, following

149) Since, by macro-replacement time, all character constants and string literals are preprocessing tokens,
not sequences possibly containing identifier-like subsequences (see 5.1.1.2, translation phases), they
are never scanned for macro names or parameters.

150) Despite the name, a non-directive is a preprocessing directive.

152 Language §6.10.3

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

merger, the number of arguments is one more than the number of parameters in the macro
definition (excluding the . . .).

6.10.3.1 Argument substitution

After the arguments for the invocation of a function-like macro have been identified,
argument substitution takes place. A parameter in the replacement list, unless preceded
by a # or ## preprocessing token or followed by a ## preprocessing token (see below), is
replaced by the corresponding argument after all macros contained therein have been
expanded. Before being substituted, each argument’s preprocessing tokens are
completely macro replaced as if they formed the rest of the preprocessing file; no other
preprocessing tokens are available.

An identifier _ VA ARGS _ that occurs in the replacement list shall be treated as if it
were a parameter, and the variable arguments shall form the preprocessing tokens used to
replace it.

6.10.3.2 The# operator
Constraints

Each # preprocessing token in the replacement list for a function-like macro shall be
followed by a parameter as the next preprocessing token in the replacement list.

Semantics

If, in the replacement list, a parameter is immediately preceded by a # preprocessing
token, both are replaced by a single character string literal preprocessing token that
contains the spelling of the preprocessing token sequence for the corresponding
argument. Each occurrence of white space between the argument’s preprocessing tokens
becomes a single space character in the character string literal. White space before the
first preprocessing token and after the last preprocessing token composing the argument
is deleted. Otherwise, the original spelling of each preprocessing token in the argument
Is retained in the character string literal, except for special handling for producing the
spelling of string literals and character constants: a \ character is inserted before each "
and \ character of a character constant or string literal (including the delimiting "
characters), except that it is implementation-defined whether a \ character is inserted
before the \ character beginning a universal character name. If the replacement that
results is not a valid character string literal, the behavior is undefined. The character
string literal corresponding to an empty argument is " " . The order of evaluation of # and
operators is unspecified.

§6.10.3.2 Language 153

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.10.3.3 The ## operator
Constraints

A ## preprocessing token shall not occur at the beginning or at the end of a replacement
list for either form of macro definition.

Semantics

If, in the replacement list of a function-like macro, a parameter is immediately preceded
or followed by a ## preprocessing token, the parameter is replaced by the corresponding
argument’s preprocessing token sequence; however, if an argument consists of no
preprocess)ing tokens, the parameter is replaced by a placemarker preprocessing token
instead.'®!

For both object-like and function-like macro invocations, before the replacement list is
reexamined for more macro names to replace, each instance of a ## preprocessing token
in the replacement list (not from an argument) is deleted and the preceding preprocessing
token is concatenated with the following preprocessing token. Placemarker
preprocessing tokens are handled specially: concatenation of two placemarkers results in
a single placemarker preprocessing token, and concatenation of a placemarker with a
non-placemarker preprocessing token results in the non-placemarker preprocessing token.
If the result is not a valid preprocessing token, the behavior is undefined. The resulting
token is available for further macro replacement. The order of evaluation of ## operators
is unspecified.

EXAMPLE In the following fragment:

#define hash_hash # ## #

#define nkstr(a) # a

#defi ne i n_between(a) nkstr(a)

#define join(c, d) in_between(c hash_hash d)

char p[] = join(x, y); // equivalentto
/'l char p[] = "x ## y";

The expansion produces, at various stages:
join(x, y)
i n_between(x hash_hash y)
i n_between(x ## vy)
nkstr(x ## y)
"X ## y"

In other words, expanding hash_hash produces a new token, consisting of two adjacent sharp signs, but
this new token is not the ## operator.

151) Placemarker preprocessing tokens do not appear in the syntax because they are temporary entities that
exist only within translation phase 4.

154 Language 86.10.3.3

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

6.10.3.4 Rescanning and further replacement

After all parameters in the replacement list have been substituted and # and ##
processing has taken place, all placemarker preprocessing tokens are removed. Then, the
resulting preprocessing token sequence is rescanned, along with all subsequent
preprocessing tokens of the source file, for more macro names to replace.

If the name of the macro being replaced is found during this scan of the replacement list
(not including the rest of the source file’s preprocessing tokens), it is not replaced.
Furthermore, if any nested replacements encounter the name of the macro being replaced,
it is not replaced. These nonreplaced macro name preprocessing tokens are no longer
available for further replacement even if they are later (re)examined in contexts in which
that macro name preprocessing token would otherwise have been replaced.

The resulting completely macro-replaced preprocessing token sequence is not processed
as a preprocessing directive even if it resembles one, but all pragma unary operator
expressions within it are then processed as specified in 6.10.9 below.

6.10.3.5 Scope of macro definitions

A macro definition lasts (independent of block structure) until a corresponding #undef
directive is encountered or (if none is encountered) until the end of the preprocessing
translation unit. Macro definitions have no significance after translation phase 4.

A preprocessing directive of the form
undef identifier new-line
causes the specified identifier no longer to be defined as a macro name. It is ignored if
the specified identifier is not currently defined as a macro name.
EXAMPLE 1 The simplest use of this facility is to define a “manifest constant™, as in
#def i ne TABSI ZE 100
int tabl e[TABSI ZE] ;

EXAMPLE 2 The following defines a function-like macro whose value is the maximum of its arguments.
It has the advantages of working for any compatible types of the arguments and of generating in-line code
without the overhead of function calling. It has the disadvantages of evaluating one or the other of its
arguments a second time (including side effects) and generating more code than a function if invoked
several times. It also cannot have its address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a) : (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.

§6.10.3.5 Language 155

5

ISO/IEC 9899:TC3

EXAMPLE 3 To illustrate the rules for redefinition and reexamination, the sequence

results in

#define
#define
#undef

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

f(y+l) + £(F(2)) % t(t(9)(0) + BH(1);

X 3

f(a f(x > (@)
X

X 2

g T

z z[O]

h a(~
m(a) a(w)

W 0,1
t(a) a

PO int
qx) x
r(x,y) x ##y
str(x) # X

g(x+(3,4)-w) | h5) &m
" m(m);

PO 101 = { a(D), r(2,3), r4,), r(,5), r(,) };
char c[2][6] = { str(hello), strQ };

Committee Draft — Septermber 7, 2007

WG14/N1256

2> (yt1)) + £2 * (F2 * (z[OD))) % £(2 * (0)) + t(1);
(2 * (2+(3,4)-0,1)) | f(2 * (-~ 5)) & (2 * (0,1))"m(0,1);

int i[]

char c[21[6] = { “hello™", ™"

={1, 23, 4, 5,

};
};

EXAMPLE 4 To illustrate the rules for creating character string literals and concatenating tokens, the
sequence

results in

156

#define
#define
#define

#define
#define
#define
#define
#define

debug(1,

str(s) # s
xstr(s) str(s)

debug(s, t) printf('x" # s "
X ## s, X ## t)

INCFILE(n) vers ## n

glue(a, b) a ## b
xglue(a, b) glue(a

HIGHLOW "hello
LOW LowW ',
2);

. b)

world"”

fputs(str(strncmp(*'abc\0d", "abc",
== 0) str(: @0\n), s);
#include xstr(INCFILE(2).h)
glue(HIGH, LOW);
xglue(HIGH, LOW)

Language

%d, xX™ # t "

"\4%) // thisgoesaway

%s', \

86.10.3.5

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

printf(llxll Illll Il: %d’ Xll Il2ll Il: %Sll’ Xl’ X2);
fputs(
"strncmp(\"abc\\0d\", \"abc\", "\\4") == 0" ": @\n",
s);
#include "vers2.h" (after macro replacement, before file access)
"hello";

"hello™ ', world"
or, after concatenation of the character string literals,
printf(""x1= %d, x2= %s", x1, x2);

fputs(
"strncmp(\""abc\\0d\"", \"abc\", "\\4") == 0: @\n",
s):
#include "vers2.h" (after macro replacement, before file access)
"hello";

"hello, world"
Space around the # and ## tokens in the macro definition is optional.
EXAMPLE 5 To illustrate the rules for placemarker preprocessing tokens, the sequence

#define t(X,y,z) X ## y ## z
int jI1 = { t(1,2,3), t(,4,5), t(6,,7), t(8,9,),
t(10,,), t(,11,), t(,.12), t(,,) };

results in

int j[1 = { 123, 45, 67, 89,
10, 11, 12, 3};

EXAMPLE 6 To demonstrate the redefinition rules, the following sequence is valid.

#define OBJ_LIKE (1-1)
#define OBJ_LIKE /* white space */ (1-1) /* other */
#define FUNC_LIKE(a) (a)
#define FUNC_LIKE(a)(/* note the white space */ \
a /* other stuff on this line
*/)

But the following redefinitions are invalid:

#define OBJ_LIKE ((®)) /7 different token sequence
#define OBJ_LIKE (1 - 1) /7 different white space
#define FUNC_LIKE(b) (a) // different parameter usage
#define FUNC_LIKE(b) (b) // different parameter spelling

EXAMPLE 7 Finally, to show the variable argument list macro facilities:

#define debug(...) fprintf(stderr, _ VA ARGS)

#define showlist(...) puts(#__VA ARGS)

#define report(test, ...) ((test)?puts(#test):\
printf(__VA ARGS_))

debug("'Flag™);

debug('X = %d\n", X);

showlist(The first, second, and third items.);

report(x>y, "X is %d but y is %d", x, y);

86.10.3.5 Language 157

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

results in

fprintf(stderr, "Flag");

fprintf(stderr, "X =9%\n", x);

puts("The first, second, and third items.");
((x>y) ?put s("x>y"):

printf("x is %l but vy is %", x, y));
6.10.4 Linecontrol
Constraints
The string literal of a #l i ne directive, if present, shall be a character string literal.
Semantics

The line number of the current source line is one greater than the number of new-line
characters read or introduced in translation phase 1 (5.1.1.2) while processing the source
file to the current token.

A preprocessing directive of the form
|i ne digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins
with a source line that has a line number as specified by the digit sequence (interpreted as
a decimal integer). The digit sequence shall not specify zero, nor a number greater than
2147483647.

A preprocessing directive of the form
|ine digit-sequence " s-char-sequenceqyyt” new-line
sets the presumed line number similarly and changes the presumed name of the source
file to be the contents of the character string literal.
A preprocessing directive of the form
|i ne pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing
tokens after | i ne on the directive are processed just as in normal text (each identifier
currently defined as a macro name is replaced by its replacement list of preprocessing
tokens). The directive resulting after all replacements shall match one of the two
previous forms and is then processed as appropriate.

158 Language §6.10.4

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

6.10.5 Error directive

Semantics

A preprocessing directive of the form
error pp-tokensype new-line

causes the implementation to produce a diagnostic message that includes the specified
sequence of preprocessing tokens.

6.10.6 Pragmadirective

Semantics

A preprocessing directive of the form
pragma pp-tokensyy: new-line

where the preprocessing token STDC does not immediately follow pragma in the
directive (prior to any macro replacement)'®? causes the implementation to behave in an
implementation-defined manner. The behavior might cause translation to fail or cause the
translator or the resulting program to behave in a non-conforming manner. Any such
pr agma that is not recognized by the implementation is ignored.

If the preprocessing token STDC does immediately follow pr agna in the directive (prior
to any macro replacement), then no macro replacement is performed on the directive, and
the directive shall have one of the following forms'®®) whose meanings are described
elsewhere:

#pragma STDC FP_CONTRACT on-off-switch
#pragnma STDC FENV_ACCESS on-off-switch
#pragma STDC CX_ LI M TED _RANGE on-off-switch

on-off-switch: one of
ON OFF DEFAULT

Forward references. the FP_CONTRACT pragma (7.12.2), the FENV_ACCESS pragma
(7.6.1), the CX_LI M TED_RANGE pragma (7.3.4).

152) An implementation is not required to perform macro replacement in pragmas, but it is permitted
except for in standard pragmas (where STDC immediately follows pr agma). If the result of macro
replacement in a non-standard pragma has the same form as a standard pragma, the behavior is still
implementation-defined; an implementation is permitted to behave as if it were the standard pragma,
but is not required to.

153) See “future language directions” (6.11.8).

§6.10.6 Language 159

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

6.10.7 Null directive

Semantics

A preprocessing directive of the form
new-line

has no effect.

6.10.8 Predefined macro names

154)

The following macro names=" shall be defined by the implementation:

__DATE__ The date of translation of the preprocessing translation unit: a character
string literal of the form "Mmm dd yyyy", where the names of the
months are the same as those generated by the asct i ne function, and the
first character of dd is a space character if the value is less than 10. If the
date of translation is not available, an implementation-defined valid date
shall be supplied.

__FILE__ The presumed name of the current source file (a character string literal).?>®

_ _LINE__ The presumed line number (within the current source file) of the current
source line (an integer constant).15%)

STDC The integer constant 1, intended to indicate a conforming implementation.

__STDC HOSTED __ The integer constant 1 if the implementation is a hosted
implementation or the integer constant O if it is not.

__STDC _MB_M GHT_NEQ WC _ The integer constant 1, intended to indicate that, in
the encoding for wchar _t , a member of the basic character set need not
have a code value equal to its value when used as the lone character in an
integer character constant.

__STDC_VERSI ON__ The integer constant 199901L.1%6)

__TIME__ The time of translation of the preprocessing translation unit: a character
string literal of the form " hh: nm ss" as in the time generated by the
asctime function. If the time of translation is not available, an
implementation-defined valid time shall be supplied.

154) See “future language directions” (6.11.9).
155) The presumed source file name and line number can be changed by the #I i ne directive.

156) This macro was not specified in ISO/IEC 9899:1990 and was specified as 199409L in
ISO/IEC 9899/AMD1:1995. The intention is that this will remain an integer constant of type | ong
i nt that is increased with each revision of this International Standard.

160 Language §6.10.8

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

The following macro names are conditionally defined by the implementation:

__STDC | EC 559 The integer constant 1, intended to indicate conformance to the
specifications in annex F (IEC 60559 floating-point arithmetic).

__STDC | EC 559 COWPLEX_ _ The integer constant 1, intended to indicate
adherence to the specifications in informative annex G (IEC 60559
compatible complex arithmetic).

__STDC | SO 10646__ An integer constant of the form yyyynmi (for example,
199712L). If this symbol is defined, then every character in the Unicode
required set, when stored in an object of type wchar _t, has the same
value as the short identifier of that character. The Unicode required set
consists of all the characters that are defined by ISO/IEC 10646, along with
all amendments and technical corrigenda, as of the specified year and
month.

The values of the predefined macros (except for . FILE _and _ LI NE_) remain
constant throughout the translation unit.

None of these macro names, nor the identifier defi ned, shall be the subject of a
#defi ne or a #undef preprocessing directive. Any other predefined macro names
shall begin with a leading underscore followed by an uppercase letter or a second
underscore.

The implementation shall not predefine the macro _ _cpl uspl us, nor shall it define it
in any standard header.

Forward references: the asct i me function (7.23.3.1), standard headers (7.1.2).
6.10.9 Pragma operator
Semantics
A unary operator expression of the form:
_Pragma (string-literal)

is processed as follows: The string literal is destringized by deleting the L prefix, if
present, deleting the leading and trailing double-quotes, replacing each escape sequence
\ " by a double-quote, and replacing each escape sequence \ \ by a single backslash. The
resulting sequence of characters is processed through translation phase 3 to produce
preprocessing tokens that are executed as if they were the pp-tokens in a pragma
directive. The original four preprocessing tokens in the unary operator expression are
removed.

EXAMPLE A directive of the form:
#pragma listing on "..\listing.dir"
can also be expressed as:

86.10.9 Language 161

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

_Pragma ("listing on \". . \\listing.dir\"")

The latter form is processed in the same way whether it appears literally as shown, or results from macro
replacement, as in:

#define LI STING x) PRAGVA(listing on #x)
#defi ne PRAGVA(X) _Pragma(#x)

LISTING (..\listing.dir)

162 Language §6.10.9

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

6.11 Future language directions
6.11.1 Floating types

Future standardization may include additional floating-point types, including those with
greater range, precision, or both than | ong doubl e.

6.11.2 Linkages of identifiers

Declaring an identifier with internal linkage at file scope without the st at i ¢ storage-
class specifier is an obsolescent feature.

6.11.3 External names

Restriction of the significance of an external name to fewer than 255 characters
(considering each universal character name or extended source character as a single
character) is an obsolescent feature that is a concession to existing implementations.

6.11.4 Character escape sequences

Lowercase letters as escape sequences are reserved for future standardization. Other
characters may be used in extensions.

6.11.5 Storage-class specifiers

The placement of a storage-class specifier other than at the beginning of the declaration
specifiers in a declaration is an obsolescent feature.

6.11.6 Function declarators

The use of function declarators with empty parentheses (not prototype-format parameter
type declarators) is an obsolescent feature.

6.11.7 Function definitions

The use of function definitions with separate parameter identifier and declaration lists
(not prototype-format parameter type and identifier declarators) is an obsolescent feature.

6.11.8 Pragma directives
Pragmas whose first preprocessing token is STDC are reserved for future standardization.
6.11.9 Predefined macro names

Macro names beginning with __ STDC _ are reserved for future standardization.

§6.11.9 Language 163

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

7. Library

7.1 Introduction
7.1.1 Definitions of terms

A string is a contiguous sequence of characters terminated by and including the first null
character. The term multibyte string is sometimes used instead to emphasize special
processing given to multibyte characters contained in the string or to avoid confusion
with a wide string. A pointer to a string is a pointer to its initial (lowest addressed)
character. The length of a string is the number of bytes preceding the null character and
the value of a string is the sequence of the values of the contained characters, in order.

The decimal-point character is the character used by functions that convert floating-point
numbers to or from character sequences to denote the beginning of the fractional part of
such character sequences.’®”) It is represented in the text and examples by a period, but
may be changed by the set | ocal e function.

A null wide character is a wide character with code value zero.

A wide string is a contiguous sequence of wide characters terminated by and including
the first null wide character. A pointer to a wide string is a pointer to its initial (lowest
addressed) wide character. The length of a wide string is the number of wide characters
preceding the null wide character and the value of a wide string is the sequence of code
values of the contained wide characters, in order.

A shift sequence is a contiguous sequence of bytes within a multibyte string that
(potentially) causes a change in shift state (see 5.2.1.2). A shift sequence shall not have a
corresponding wide character; it is instead taken to be an adjunct to an adjacent multibyte
character.'%%)

Forward references: character handling (7.4), the set | ocal e function (7.11.1.1).

157) The functions that make use of the decimal-point character are the numeric conversion functions
(7.20.1, 7.24.4.1) and the formatted input/output functions (7.19.6, 7.24.2).

158) For state-dependent encodings, the values for MB_CUR_MAX and MB_LEN_ MAX shall thus be large
enough to count all the bytes in any complete multibyte character plus at least one adjacent shift
sequence of maximum length. Whether these counts provide for more than one shift sequence is the
implementation’s choice.

164 Library §7.1.1

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

7.1.2 Standard headers

Each library function is declared, with a type that includes a prototype, in a header,
whose contents are made available by the #i ncl ude preprocessing directive. The
header declares a set of related functions, plus any necessary types and additional macros
needed to facilitate their use. Declarations of types described in this clause shall not
include type qualifiers, unless explicitly stated otherwise.

159)

The standard headers are

<assert. h> <inttypes.h> <signal.h> <stdlib. h>
<conpl ex. h> <i s0646. h> <stdarg. h> <string. h>
<ctype. h> <limts.h> <stdbool . h> <tgmath. h>
<errno. h> <l ocal e. h> <st ddef. h> <tinme.h>

<fenv. h> <mat h. h> <stdint. h> <wchar . h>
<fl oat. h> <setj np. h> <stdi o. h> <wct ype. h>

If a file with the same name as one of the above < and > delimited sequences, not
provided as part of the implementation, is placed in any of the standard places that are
searched for included source files, the behavior is undefined.

Standard headers may be included in any order; each may be included more than once in
a given scope, with no effect different from being included only once, except that the
effect of including <assert. h> depends on the definition of NDEBUG (see 7.2). If
used, a header shall be included outside of any external declaration or definition, and it
shall first be included before the first reference to any of the functions or objects it
declares, or to any of the types or macros it defines. However, if an identifier is declared
or defined in more than one header, the second and subsequent associated headers may be
included after the initial reference to the identifier. The program shall not have any
macros with names lexically identical to keywords currently defined prior to the
inclusion.

Any definition of an object-like macro described in this clause shall expand to code that is
fully protected by parentheses where necessary, so that it groups in an arbitrary
expression as if it were a single identifier.

Any declaration of a library function shall have external linkage.
A summary of the contents of the standard headers is given in annex B.

Forward references. diagnostics (7.2).

159) A header is not necessarily a source file, nor are the < and > delimited sequences in header names
necessarily valid source file names.

§7.1.2 Library 165

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

7.1.3 Reserved identifiers

Each header declares or defines all identifiers listed in its associated subclause, and
optionally declares or defines identifiers listed in its associated future library directions
subclause and identifiers which are always reserved either for any use or for use as file
scope identifiers.

— All identifiers that begin with an underscore and either an uppercase letter or another
underscore are always reserved for any use.

— All identifiers that begin with an underscore are always reserved for use as identifiers
with file scope in both the ordinary and tag name spaces.

— Each macro name in any of the following subclauses (including the future library
directions) is reserved for use as specified if any of its associated headers is included,;
unless explicitly stated otherwise (see 7.1.4).

— All identifiers with external linkage in any of the following subclauses (including the
future library directions) are always reserved for use as identifiers with external
linkage. 6%

— Each identifier with file scope listed in any of the following subclauses (including the
future library directions) is reserved for use as a macro name and as an identifier with
file scope in the same name space if any of its associated headers is included.

No other identifiers are reserved. If the program declares or defines an identifier in a
context in which it is reserved (other than as allowed by 7.1.4), or defines a reserved
identifier as a macro name, the behavior is undefined.

If the program removes (with #undef) any macro definition of an identifier in the first
group listed above, the behavior is undefined.

7.1.4 Use of library functions

Each of the following statements applies unless explicitly stated otherwise in the detailed
descriptions that follow: If an argument to a function has an invalid value (such as a value
outside the domain of the function, or a pointer outside the address space of the program,
or a null pointer, or a pointer to non-modifiable storage when the corresponding
parameter is not const-qualified) or a type (after promotion) not expected by a function
with variable number of arguments, the behavior is undefined. If a function argument is
described as being an array, the pointer actually passed to the function shall have a value
such that all address computations and accesses to objects (that would be valid if the
pointer did point to the first element of such an array) are in fact valid. Any function
declared in a header may be additionally implemented as a function-like macro defined in

160) The list of reserved identifiers with external linkage includes errno, mat h_errhandl i ng,
setj np,and va_end.

166 Library 8§7.1.4

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

the header, so if a library function is declared explicitly when its header is included, one
of the techniques shown below can be used to ensure the declaration is not affected by
such a macro. Any macro definition of a function can be suppressed locally by enclosing
the name of the function in parentheses, because the name is then not followed by the left
parenthesis that indicates expansion of a macro function name. For the same syntactic
reason, it is permitted to take the address of a library function even if it is also defined as
a macro.’®) The use of #undef to remove any macro definition will also ensure that an
actual function is referred to. Any invocation of a library function that is implemented as
a macro shall expand to code that evaluates each of its arguments exactly once, fully
protected by parentheses where necessary, so it is generally safe to use arbitrary
expressions as arguments.'®?) Likewise, those function-like macros described in the
following subclauses may be invoked in an expression anywhere a function with a
compatible return type could be called.®® All object-like macros listed as expanding to
integer constant expressions shall additionally be suitable for use in #i f preprocessing
directives.

Provided that a library function can be declared without reference to any type defined in a
header, it is also permissible to declare the function and use it without including its
associated header.

There is a sequence point immediately before a library function returns.

The functions in the standard library are not guaranteed to be reentrant and may modify
objects with static storage duration.6%)

161) This means that an implementation shall provide an actual function for each library function, even if it
also provides a macro for that function.

162) Such macros might not contain the sequence points that the corresponding function calls do.

163) Because external identifiers and some macro names beginning with an underscore are reserved,
implementations may provide special semantics for such names. For example, the identifier
_BUI LTI N_abs could be used to indicate generation of in-line code for the abs function. Thus, the
appropriate header could specify

#def i ne abs(x) _BU LTI N abs(x)
for a compiler whose code generator will accept it.

In this manner, a user desiring to guarantee that a given library function such as abs will be a genuine
function may write

#undef abs

whether the implementation’s header provides a macro implementation of abs or a built-in
implementation. The prototype for the function, which precedes and is hidden by any macro
definition, is thereby revealed also.

164) Thus, a signal handler cannot, in general, call standard library functions.

§7.14 Library 167

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

EXAMPLE The function at oi may be used in any of several ways:
— by use of its associated header (possibly generating a macro expansion)

#i ncl ude <stdlib. h>
const char *str;

[* ..*

i = atoi(str);

— by use of its associated header (assuredly generating a true function reference)

#i ncl ude <stdlib. h>
#undef ato
const char *str;
[* ...*
i = atoi(str);
or
#i ncl ude <stdlib. h>
const char *str;
[* ..*
i = (atoi)(str);

— by explicit declaration

extern int atoi(const char *);
const char *str;

[* *

i = atoi(str);

168 Library §7.1.4

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

7.2 Diagnostics<assert. h>
The header <assert . h> defines the assert macro and refers to another macro,
NDEBUG

which is not defined by <assert. h>. If NDEBUG is defined as a macro name at the
point in the source file where <assert . h> is included, the assert macro is defined
simply as

#defi ne assert(ignore) ((void)O0)

The assert macro is redefined according to the current state of NDEBUG each time that
<assert . h>isincluded.

The assert macro shall be implemented as a macro, not as an actual function. If the
macro definition is suppressed in order to access an actual function, the behavior is
undefined.

7.2.1 Program diagnostics
7.2.1.1 Theassert macro
Synopsis

#i ncl ude <assert. h>
voi d assert (scalar expression);

Description

The assert macro puts diagnostic tests into programs; it expands to a void expression.
When it is executed, if expr essi on (which shall have a scalar type) is false (that is,
compares equal to 0), the asser t macro writes information about the particular call that
failed (including the text of the argument, the name of the source file, the source line
number, and the name of the enclosing function — the latter are respectively the values of
the preprocessing macros _ FILE _ and _ _LINE_ _ and of the identifier
__func_) on the standard error stream in an implementation-defined format.1%® It
then calls the abor t function.

Returns
The assert macro returns no value.

Forward references. the abort function (7.20.4.1).

165) The message written might be of the form:

Assertion fail ed: expression, function abc, file xyz, |ine nnn

§7.2.1.1 Library 169

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

7.3 Complex arithmetic <conpl ex. h>
7.3.1 Introduction

The header <conpl ex. h> defines macros and declares functions that support complex
arithmetic.26®) Each synopsis specifies a family of functions consisting of a principal
function with one or more doubl e conpl ex parameters and a doubl e conpl ex or
doubl e return value; and other functions with the same name but with f and | suffixes
which are corresponding functions with f1 oat and | ong doubl e parameters and
return values.

The macro
conpl ex

expands to _Conpl ex; the macro
Conpl ex|I

expands to a constant expression of type const fl oat _Conpl ex, with the value of
the imaginary unit.*67)

The macros

i magi nary
and

Imagi nary|

are defined if and only if the implementation supports imaginary types;'®®) if defined,
they expand to I magi nary and a constant expression of type const f|l oat
_I magi nar y with the value of the imaginary unit.

The macro
|

expands to either _Imaginary | or Conplex |. If _Imaginary | is not
defined, I shall expand to _Conpl ex_1 .

Notwithstanding the provisions of 7.1.3, a program may undefine and perhaps then
redefine the macros conpl ex, i magi nary, and | .

Forward references. IEC 60559-compatible complex arithmetic (annex G).

166) See “future library directions” (7.26.1).

167) The imaginary unit is a number i such that i> = —1.

168) A specification for imaginary types is in informative annex G.

170 Library §7.3.1

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

7.3.2 Conventions

Values are interpreted as radians, not degrees. An implementation may set er r no but is
not required to.

7.3.3 Branch cuts

Some of the functions below have branch cuts, across which the function is
discontinuous. For implementations with a signed zero (including all IEC 60559
implementations) that follow the specifications of annex G, the sign of zero distinguishes
one side of a cut from another so the function is continuous (except for format
limitations) as the cut is approached from either side. For example, for the square root
function, which has a branch cut along the negative real axis, the top of the cut, with
Imaginary part +0, maps to the positive imaginary axis, and the bottom of the cut, with
imaginary part —0, maps to the negative imaginary axis.

Implementations that do not support a signed zero (see annex F) cannot distinguish the
sides of branch cuts. These implementations shall map a cut so the function is continuous
as the cut is approached coming around the finite endpoint of the cut in a counter
clockwise direction. (Branch cuts for the functions specified here have just one finite
endpoint.) For example, for the square root function, coming counter clockwise around
the finite endpoint of the cut along the negative real axis approaches the cut from above,
so the cut maps to the positive imaginary axis.

7.3.4 TheCX LI M TED RANGE pragma

Synopsis

#i ncl ude <conpl ex. h>
#pragma STDC CX_LI M TED_RANGE on-off-switch

Description

The usual mathematical formulas for complex multiply, divide, and absolute value are
problematic because of their treatment of infinities and because of undue overflow and
underflow. The CX LIM TED RANGE pragma can be wused to inform the
implementation that (where the state is “on”) the usual mathematical formulas are
acceptable.'®® The pragma can occur either outside external declarations or preceding all
explicit declarations and statements inside a compound statement. When outside external

169) The purpose of the pragma is to allow the implementation to use the formulas:
(X +iy) x (U+iv) = (xu =) +i(yu + xv)
(x+iy) [(u+iv) = [(xu+ y) +i(yu = xv))/(u* + V)
|x+iy| = VRFY?

where the programmer can determine they are safe.

§7.34 Library 171

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

declarations, the pragma takes effect from its occurrence until another
CX_LI M TED_RANGE pragma is encountered, or until the end of the translation unit.
When inside a compound statement, the pragma takes effect from its occurrence until
another CX_LI M TED_RANGE pragma is encountered (including within a nested
compound statement), or until the end of the compound statement; at the end of a
compound statement the state for the pragma is restored to its condition just before the
compound statement. If this pragma is used in any other context, the behavior is
undefined. The default state for the pragma is *““off ™.

7.3.5 Trigonometric functions
7.3.5.1 Thecacos functions
Synopsis
#i ncl ude <conpl ex. h>
doubl e conpl ex cacos(doubl e conpl ex z);

fl oat conpl ex cacosf(float conplex z);
| ong doubl e conpl ex cacosl (I ong doubl e conpl ex z);

Description

The cacos functions compute the complex arc cosine of z, with branch cuts outside the
interval [-1, +1] along the real axis.
Returns

The cacos functions return the complex arc cosine value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [0, z] along the
real axis.

7.3.5.2 Thecasi n functions
Synopsis
#i ncl ude <conpl ex. h>
doubl e conpl ex casi n(doubl e conpl ex z);

fl oat conpl ex casinf(float conplex z);
| ong doubl e conpl ex casinl (I ong doubl e conpl ex z);

Description

The casi n functions compute the complex arc sine of z, with branch cuts outside the
interval [-1, +1] along the real axis.

Returns

The casi n functions return the complex arc sine value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [-z/2, +7/2]
along the real axis.

172 Library §7.3.5.2

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

7.3.5.3 Thecat an functions
Synopsis

#i ncl ude <conpl ex. h>

doubl e conpl ex catan(doubl e conplex z);

fl oat conplex catanf(float conplex z);

| ong doubl e conpl ex catanl (1 ong doubl e conpl ex z);

Description

The cat an functions compute the complex arc tangent of z, with branch cuts outside the
interval [-i, +i] along the imaginary axis.

Returns

The cat an functions return the complex arc tangent value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [-7z/2,+7/2]
along the real axis.

7.3.5.4 Theccos functions
Synopsis
#i ncl ude <conpl ex. h>
doubl e conpl ex ccos(doubl e conplex z);

fl oat conplex ccosf(float conplex z);
| ong doubl e conpl ex ccosl (1 ong doubl e conplex z);

Description
The ccos functions compute the complex cosine of z.
Returns
The ccos functions return the complex cosine value.
7.3.5.5 Thecsi n functions
Synopsis
#i ncl ude <conpl ex. h>
doubl e conpl ex csi n(doubl e conplex z);

fl oat conplex csinf(float conplex z);
| ong doubl e conpl ex csinl (I ong double conplex z);

Description
The csi n functions compute the complex sine of z.
Returns

The csi n functions return the complex sine value.

§7.3.5.5 Library 173

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

7.3.5.6 Thect an functions
Synopsis
#i ncl ude <conpl ex. h>
doubl e conpl ex ctan(doubl e conplex z);

fl oat conplex ctanf(float conplex z);
| ong doubl e conpl ex ctanl (I ong doubl e conplex z);

Description
The ct an functions compute the complex tangent of z.
Returns
The ct an functions return the complex tangent value.
7.3.6 Hyperbolic functions
7.3.6.1 Thecacosh functions
Synopsis
#i ncl ude <conpl ex. h>
doubl e conpl ex cacosh(doubl e conpl ex z);

fl oat conpl ex cacoshf (fl oat conplex z);
| ong doubl e conpl ex cacoshl (1 ong doubl e conplex z);

Description

The cacosh functions compute the complex arc hyperbolic cosine of z, with a branch
cut at values less than 1 along the real axis.

Returns

The cacosh functions return the complex arc hyperbolic cosine value, in the range of a
half-strip of non-negative values along the real axis and in the interval [-iz, +iz] along
the imaginary axis.

7.3.6.2 Thecasi nh functions
Synopsis
#i ncl ude <conpl ex. h>
doubl e conpl ex casi nh(doubl e conpl ex z);
fl oat conpl ex casinhf(float conplex z);
| ong doubl e conpl ex casinhl (1 ong doubl e conplex z);

Description

The casi nh functions compute the complex arc hyperbolic sine of z, with branch cuts
outside the interval [—i, +i] along the imaginary axis.

174 Library §7.3.6.2

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

Returns

The casi nh functions return the complex arc hyperbolic sine value, in the range of a
strip mathematically unbounded along the real axis and in the interval [-iz/2,+iz/2]
along the imaginary axis.

7.3.6.3 Thecat anh functions
Synopsis
#i ncl ude <conpl ex. h>
doubl e conpl ex catanh(doubl e conplex z);

fl oat conplex catanhf(float conplex z);
| ong doubl e conpl ex catanhl (1 ong doubl e conpl ex z);

Description

The cat anh functions compute the complex arc hyperbolic tangent of z, with branch
cuts outside the interval [-1, +1] along the real axis.

Returns

The cat anh functions return the complex arc hyperbolic tangent value, in the range of a
strip mathematically unbounded along the real axis and in the interval [-iz/2,+iz/2]
along the imaginary axis.

7.3.6.4 Theccosh functions
Synopsis

#i ncl ude <conpl ex. h>

doubl e conpl ex ccosh(doubl e conpl ex z);

fl oat conpl ex ccoshf(float conplex z);

| ong doubl e conpl ex ccoshl (1 ong doubl e conpl ex z);

Description
The ccosh functions compute the complex hyperbolic cosine of z.
Returns
The ccosh functions return the complex hyperbolic cosine value.
7.3.6.5 Thecsi nh functions
Synopsis

#i ncl ude <conpl ex. h>

doubl e conpl ex csi nh(doubl e conpl ex z);

float conplex csinhf(float conmplex z);
| ong doubl e conpl ex csinhl (1 ong doubl e conpl ex z);

§7.3.6.5 Library 175

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Description
The csi nh functions compute the complex hyperbolic sine of z.
Returns
The csi nh functions return the complex hyperbolic sine value.
7.3.6.6 Thect anh functions
Synopsis

#i ncl ude <conpl ex. h>

doubl e conpl ex ctanh(doubl e conpl ex z);

float conplex ctanhf(float conplex z);
| ong doubl e conpl ex ctanhl (1 ong doubl e conpl ex z);

Description

The ct anh functions compute the complex hyperbolic tangent of z.
Returns

The ct anh functions return the complex hyperbolic tangent value.
7.3.7 Exponential and logarithmic functions

7.3.7.1 Thecexp functions

Synopsis

#i ncl ude <conpl ex. h>

doubl e conpl ex cexp(doubl e conplex z);

fl oat conplex cexpf(float conplex z);

| ong doubl e conpl ex cexpl (I ong doubl e conplex z);

Description
The cexp functions compute the complex base-e exponential of z.
Returns
The cexp functions return the complex base-e exponential value.
7.3.7.2 Thecl og functions
Synopsis

#i ncl ude <conpl ex. h>

doubl e conpl ex cl og(doubl e conplex z);

fl oat conplex clogf(float conplex z);
| ong doubl e conpl ex cl ogl (I ong doubl e conplex 2z);

176 Library §7.3.7.2

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

Description

The cl og functions compute the complex natural (base-e) logarithm of z, with a branch
cut along the negative real axis.

Returns

The cl og functions return the complex natural logarithm value, in the range of a strip
mathematically unbounded along the real axis and in the interval [-iz, +iz] along the
imaginary axis.

7.3.8 Power and absolute-value functions

7.3.8.1 Thecabs functions

Synopsis

#i ncl ude <conpl ex. h>

doubl e cabs(doubl e conpl ex z);

fl oat cabsf(float conplex z);

| ong doubl e cabsl (I ong doubl e conpl ex z);

Description

The cabs functions compute the complex absolute value (also called norm, modulus, or
magnitude) of z.

Returns

The cabs functions return the complex absolute value.
7.3.8.2 Thecpowfunctions

Synopsis

#i ncl ude <conpl ex. h>
doubl e conpl ex cpow doubl e conpl ex x, double conplex y);
fl oat conplex cpowf (float conplex x, float conplex y);
| ong doubl e conpl ex cpow (I ong doubl e conpl ex x,
| ong doubl e conpl ex y);

Description

The cpow functions compute the complex power function x¥, with a branch cut for the
first parameter along the negative real axis.

Returns

The cpow functions return the complex power function value.

§7.3.8.2 Library 177

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

7.3.8.3 Thecsqgrt functions
Synopsis
#i ncl ude <conpl ex. h>
doubl e conpl ex csqrt(doubl e conplex z);

float conplex csqrtf(float conplex z);
| ong doubl e conpl ex csqrtl (1l ong double conpl ex z);

Description

The csqgrt functions compute the complex square root of z, with a branch cut along the
negative real axis.

Returns

The csqrt functions return the complex square root value, in the range of the right half-
plane (including the imaginary axis).

7.3.9 Manipulation functions
7.3.9.1 Thecar g functions
Synopsis
#i ncl ude <conpl ex. h>
doubl e carg(doubl e compl ex z);

float cargf(float conplex z);
| ong doubl e cargl (1 ong doubl e conpl ex z);

Description

The car g functions compute the argument (also called phase angle) of z, with a branch
cut along the negative real axis.

Returns
The car g functions return the value of the argument in the interval [-7, +7].
7.3.9.2 Theci mag functions
Synopsis
#i ncl ude <conpl ex. h>
doubl e ci mag(doubl e conpl ex z);

float cinmagf (float conplex z);
| ong doubl e ci magl (1 ong doubl e conplex z);

178 Library §7.3.9.2

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

Description
The ci mag functions compute the imaginary part of z.1’%
Returns
The ci mag functions return the imaginary part value (as a real).
7.3.9.3 Theconj functions
Synopsis

#i ncl ude <conpl ex. h>

doubl e conpl ex conj (doubl e conplex z);

fl oat conplex conjf(float conplex z);
| ong doubl e conpl ex conjl (I ong doubl e conplex 2z);

Description

The conj functions compute the complex conjugate of z, by reversing the sign of its
Imaginary part.

Returns
The conj functions return the complex conjugate value.
7.3.9.4 Thecpr oj functions
Synopsis
#i ncl ude <conpl ex. h>
doubl e conpl ex cproj (doubl e conpl ex z);

fl oat conplex cprojf(float conplex z);
| ong doubl e conpl ex cprojl (long double conplex z);

Description

The cpr oj functions compute a projection of z onto the Riemann sphere: z projects to
z except that all complex infinities (even those with one infinite part and one NaN part)
project to positive infinity on the real axis. If z has an infinite part, then cproj (z) is
equivalent to

INFINITY + | * copysign(0.0, cimg(z))
Returns

The cpr oj functions return the value of the projection onto the Riemann sphere.

170) For a variable z of complex type,z == creal (z) + cimag(z)*I.

§7.3.9.4 Library 179

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

7.3.9.5 Thecr eal functions

Synopsis

#i ncl ude <conpl ex. h>

doubl e creal (doubl e conplex z);

float creal f(float conplex z);

| ong doubl e creall (I ong doubl e complex z);
Description
The cr eal functions compute the real part of z.1V)
Returns

The cr eal functions return the real part value.

171) For a variable z of complex type,z == creal (z) + cimag(z)*I.

180 Library §7.3.9.5

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

7.4 Character handling <ct ype. h>

The header <ct ype. h> declares several functions useful for classifying and mapping
characters.!’® In all cases the argument is an i nt, the value of which shall be
representable as an unsi gned char or shall equal the value of the macro ECF. If the
argument has any other value, the behavior is undefined.

The behavior of these functions is affected by the current locale. Those functions that
have locale-specific aspects only when not in the " C" locale are noted below.

The term printing character refers to a member of a locale-specific set of characters, each
of which occupies one printing position on a display device; the term control character
refers to a member of a locale-specific set of characters that are not printing
characters.1”® All letters and digits are printing characters.

Forward references: EOF (7.19.1), localization (7.11).
7.4.1 Character classification functions

The functions in this subclause return nonzero (true) if and only if the value of the
argument ¢ conforms to that in the description of the function.

7.4.1.1 Thei sal numfunction
Synopsis

#i ncl ude <ctype. h>
int isalnun(int c);

Description

The i sal numfunction tests for any character for which i sal pha ori sdi gi t is true.
7.4.1.2 Thei sal pha function

Synopsis

#i ncl ude <ctype. h>
int isalpha(int c¢);

Description

The i sal pha function tests for any character for which i supper ori sl ower is true,
or any character that is one of a locale-specific set of alphabetic characters for which

172) See “future library directions” (7.26.2).

173) In an implementation that uses the seven-bit US ASCII character set, the printing characters are those
whose values lie from 0x20 (space) through OX7E (tilde); the control characters are those whose
values lie from 0 (NUL) through Ox1F (US), and the character Ox7F (DEL).

§7.4.1.2 Library 181

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

none of iscntrl, isdigit, ispunct, or isspace is true.l’® In the "'C" locale,
1salpha returns true only for the characters for which 1supper or islower is true.

7.4.1.3 The isblank function
Synopsis

#include <ctype.h>
int isblank(int c);

Description

The 1sblank function tests for any character that is a standard blank character or is one
of a locale-specific set of characters for which isspace is true and that is used to
separate words within a line of text. The standard blank characters are the following:
space (* *), and horizontal tab (*\t"). In the "'C"* locale, isblank returns true only
for the standard blank characters.

7.4.1.4 Theiscntrl function
Synopsis

#include <ctype.h>
int iscntri{int c¢);

Description
The iscntrl function tests for any control character.
7.4.1.5 The isdigit function
Synopsis
#include <ctype.h>
int isdigit(int c);
Description
The isdigit function tests for any decimal-digit character (as defined in 5.2.1).
7.4.1.6 The isgraph function
Synopsis

#include <ctype.h>
int isgraph(int c);

174) The functions islower and isupper test true or false separately for each of these additional
characters; all four combinations are possible.

182 Library §7.4.1.6

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

Description

The 1sgraph function tests for any printing character except space (*).
7.4.1.7 The islower function

Synopsis

#include <ctype.h>
int islower(int c);

Description

The 1slower function tests for any character that is a lowercase letter or is one of a
locale-specific set of characters for which none of iscntrl, isdigit, ispunct, or
isspace is true. In the ""'C" locale, islower returns true only for the lowercase
letters (as defined in 5.2.1).

7.4.1.8 The isprint function
Synopsis

#include <ctype.h>
int isprint(int c);

Description

The 1sprint function tests for any printing character including space (*).
7.4.1.9 The ispunct function

Synopsis

#include <ctype.h>
int ispunct(int c¢);

Description

The 1spunct function tests for any printing character that is one of a locale-specific set
of punctuation characters for which neither 1sspace nor 1salnum is true. In the "*'C"
locale, Ispunct returns true for every printing character for which neither isspace
nor isalnum is true.

7.4.1.10 The isspace function
Synopsis

#include <ctype.h>
int isspace(int c);

Description

The 1sspace function tests for any character that is a standard white-space character or
is one of a locale-specific set of characters for which 1salnum is false. The standard

§7.4.1.10 Library 183

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

white-space characters are the following: space (* =), form feed (*\f"), new-line
("\n"), carriage return (*\r"), horizontal tab (*\t"), and vertical tab (*\v=). In the
""C"" locale, isspace returns true only for the standard white-space characters.

7.4.1.11 The 1supper function
Synopsis

#include <ctype.h>
int isupper(int c);

Description

The 1supper function tests for any character that is an uppercase letter or is one of a
locale-specific set of characters for which none of iscntrl, 1sdigit, 1spunct, or
isspace is true. In the ""C" locale, isupper returns true only for the uppercase
letters (as defined in 5.2.1).

7.4.1.12 The isxdigit function
Synopsis

#include <ctype.h>
int isxdigit(int c);

Description

The Isxdigit function tests for any hexadecimal-digit character (as defined in 6.4.4.1). |
7.4.2 Character case mapping functions

7.4.2.1 Thetolower function

Synopsis

#include <ctype.h>
int tolower(int c);

Description
The tolower function converts an uppercase letter to a corresponding lowercase letter.
Returns

If the argument is a character for which isupper is true and there are one or more
corresponding characters, as specified by the current locale, for which islower is true,
the tolower function returns one of the corresponding characters (always the same one
for any given locale); otherwise, the argument is returned unchanged.

184 Library §7.4.2.1

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

7.4.2.2 Thet oupper function
Synopsis

#i ncl ude <ctype. h>
int toupper(int c);

Description
The t oupper function converts a lowercase letter to a corresponding uppercase letter.
Returns

If the argument is a character for which i sl ower is true and there are one or more
corresponding characters, as specified by the current locale, for which i supper is true,
the t oupper function returns one of the corresponding characters (always the same one
for any given locale); otherwise, the argument is returned unchanged.

§7.4.2.2 Library 185

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

75 Errors<errno. h>

The header <errno. h> defines several macros, all relating to the reporting of error
conditions.

The macros are

EDOM
El LSEQ
ERANGE

which expand to integer constant expressions with type i nt , distinct positive values, and
which are suitable for use in #i f preprocessing directives; and

errno

which expands to a modifiable Ivalue'™ that has type i nt , the value of which is set to a
positive error number by several library functions. It is unspecified whether er rno is a
macro or an identifier declared with external linkage. If a macro definition is suppressed
in order to access an actual object, or a program defines an identifier with the name
er r no, the behavior is undefined.

The value of errno is zero at program startup, but is never set to zero by any library
function.® The value of errno may be set to nonzero by a library function call
whether or not there is an error, provided the use of er r no is not documented in the
description of the function in this International Standard.

Additional macro definitions, beginning with E and a digit or E and an uppercase
letter,>”") may also be specified by the implementation.

175) The macro err no need not be the identifier of an object. It might expand to a modifiable Ivalue
resulting from a function call (for example, *errno()).

176) Thus, a program that uses er r no for error checking should set it to zero before a library function call,
then inspect it before a subsequent library function call. Of course, a library function can save the
value of er r no on entry and then set it to zero, as long as the original value is restored if err no’s
value is still zero just before the return.

177) See “future library directions” (7.26.3).

186 Library 8§7.5

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

7.6 Floating-point environment <f env. h>

The header <f env. h> declares two types and several macros and functions to provide
access to the floating-point environment. The floating-point environment refers
collectively to any floating-point status flags and control modes supported by the
implementation.1’® A floating-point status flag is a system variable whose value is set
(but never cleared) when a floating-point exception is raised, which occurs as a side effect
of exceptional floating-point arithmetic to provide auxiliary information.!’® A floating-
point control mode is a system variable whose value may be set by the user to affect the
subsequent behavior of floating-point arithmetic.

Certain programming conventions support the intended model of use for the floating-
point environment; 8%

— a function call does not alter its caller’s floating-point control modes, clear its caller’s
floating-point status flags, nor depend on the state of its caller’s floating-point status
flags unless the function is so documented;

— a function call is assumed to require default floating-point control modes, unless its
documentation promises otherwise;

— a function call is assumed to have the potential for raising floating-point exceptions,
unless its documentation promises otherwise.

The type

fenv_t
represents the entire floating-point environment.
The type

fexcept _t

represents the floating-point status flags collectively, including any status the
implementation associates with the flags.

178) This header is designed to support the floating-point exception status flags and directed-rounding
control modes required by IEC 60559, and other similar floating-point state information. Also it is
designed to facilitate code portability among all systems.

179) A floating-point status flag is not an object and can be set more than once within an expression.

180) With these conventions, a programmer can safely assume default floating-point control modes (or be
unaware of them). The responsibilities associated with accessing the floating-point environment fall
on the programmer or program that does so explicitly.

8§7.6 Library 187

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Each of the macros
FE_ DI VBYZERO

FE_| NEXACT
FE_| NVALI D
FE_OVERFLOW

FE_UNDERFLOW

is defined if and only if the implementation supports the floating-point exception by
means of the functions in 7.6.2.38Y Additional implementation-defined floating-point
exceptions, with macro definitions beginning with FE_ and an uppercase letter, may also
be specified by the implementation. The defined macros expand to integer constant
expressions with values such that bitwise ORs of all combinations of the macros result in
distin%tz)values, and furthermore, bitwise ANDs of all combinations of the macros result in
zero.!

The macro
FE_ALL_EXCEPT

is simply the bitwise OR of all floating-point exception macros defined by the
implementation. If no such macros are defined, FE_ALL_EXCEPT shall be defined as O.

Each of the macros

FE_DOWNWARD
FE_TONEAREST
FE_TOWARDZERO
FE_UPWARD

is defined if and only if the implementation supports getting and setting the represented
rounding direction by means of the fegetround and fesetround functions.
Additional implementation-defined rounding directions, with macro definitions beginning
with FE_ and an uppercase letter, may also be specified by the implementation. The
defined macros expand to integer constant expressions whose values are distinct
nonnegative values. 8%

The macro

181) The implementation supports an exception if there are circumstances where a call to at least one of the
functions in 7.6.2, using the macro as the appropriate argument, will succeed. It is not necessary for
all the functions to succeed all the time.

182) The macros should be distinct powers of two.

183) Even though the rounding direction macros may expand to constants corresponding to the values of
FLT_ROUNDS, they are not required to do so.

188 Library 8§7.6

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

FE_DFL_ENV

represents the default floating-point environment — the one installed at program startup
— and has type “pointer to const-qualified f env_t . It can be used as an argument to
<f env. h> functions that manage the floating-point environment.

Additional implementation-defined environments, with macro definitions beginning with
FE_ and an uppercase letter, and having type “pointer to const-qualified f env_t ’, may
also be specified by the implementation.

7.6.1 The FENV_ACCESS pragma
Synopsis

#i ncl ude <fenv. h>
#pragma STDC FENV_ACCESS on-off-switch

Description

The FENV_ACCESS pragma provides a means to inform the implementation when a
program might access the floating-point environment to test floating-point status flags or
run under non-default floating-point control modes.’®” The pragma shall occur either
outside external declarations or preceding all explicit declarations and statements inside a
compound statement. When outside external declarations, the pragma takes effect from
its occurrence until another FENV_ACCESS pragma is encountered, or until the end of
the translation unit. When inside a compound statement, the pragma takes effect from its
occurrence until another FENV_ACCESS pragma is encountered (including within a
nested compound statement), or until the end of the compound statement; at the end of a
compound statement the state for the pragma is restored to its condition just before the
compound statement. If this pragma is used in any other context, the behavior is
undefined. If part of a program tests floating-point status flags, sets floating-point control
modes, or runs under non-default mode settings, but was translated with the state for the
FENV_ACCESS pragma “off”, the behavior is undefined. The default state (“on” or
“off””) for the pragma is implementation-defined. (When execution passes from a part of
the program translated with FENV_ACCESS *“off” to a part translated with
FENV_ACCESS “on”, the state of the floating-point status flags is unspecified and the
floating-point control modes have their default settings.)

184) The purpose of the FENV_ACCESS pragma is to allow certain optimizations that could subvert flag
tests and mode changes (e.g., global common subexpression elimination, code motion, and constant
folding). In general, if the state of FENV_ACCESS is “off”, the translator can assume that default
modes are in effect and the flags are not tested.

§7.6.1 Library 189

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

EXAMPLE

#i ncl ude <fenv. h>
voi d f(doubl e x)

{
#pragma STDC FENV_ACCESS ON
voi d g(doubl e);
voi d h(doubl e);
I* .
g(x + 1);
h(x + 1);
I* .
}

If the function g might depend on status flags set as a side effect of the first x + 1, or if the second
x + 1 might depend on control modes set as a side effect of the call to function g, then the program shall
contain an appropriately placed invocation of #pr agma STDC FENV_ACCESS ON.'89)

7.6.2 Floating-point exceptions

The following functions provide access to the floating-point status flags.8®) The i nt
input argument for the functions represents a subset of floating-point exceptions, and can
be zero or the bitwise OR of one or more floating-point exception macros, for example
FE_OVERFLOW | FE_I NEXACT. For other argument values the behavior of these
functions is undefined.

7.6.2.1 Thef ecl ear except function
Synopsis

#i ncl ude <fenv. h>
i nt fecl earexcept(int excepts);

Description

The f ecl ear except function attempts to clear the supported floating-point exceptions
represented by its argument.

Returns

The f ecl ear except function returns zero if the except s argument is zero or if all
the specified exceptions were successfully cleared. Otherwise, it returns a nonzero value.

185) The side effects impose a temporal ordering that requires two evaluations of x + 1. On the other
hand, without the #pr agma STDC FENV_ACCESS ON pragma, and assuming the default state is
“off”, just one evaluation of x + 1 would suffice.

186) The functions f et est except, ferai seexcept, and fecl earexcept support the basic
abstraction of flags that are either set or clear. An implementation may endow floating-point status
flags with more information — for example, the address of the code which first raised the floating-
point exception; the functions f eget exceptfl ag and f eset except f| ag deal with the full
content of flags.

190 Library 8§7.6.2.1

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

7.6.2.2 Thef eget except f | ag function
Synopsis
#i ncl ude <fenv. h>

i nt fegetexceptflag(fexcept t *flagp,
int excepts);

Description

The fegetexceptflag function attempts to store an implementation-defined |
representation of the states of the floating-point status flags indicated by the argument
except s in the object pointed to by the argument f | agp. |

Returns |

The f eget except f | ag function returns zero if the representation was successfully |
stored. Otherwise, it returns a nonzero value.

7.6.2.3 Thef er ai seexcept function

Synopsis
#i ncl ude <fenv. h>
int ferai seexcept(int excepts);

Description

The f er ai seexcept function attempts to raise the supported floating-point exceptions |
represented by its argument.8”) The order in which these floating-point exceptions are
raised is unspecified, except as stated in F.7.6. Whether the f er ai seexcept function
additionally raises the ““inexact” floating-point exception whenever it raises the
“overflow” or “underflow’ floating-point exception is implementation-defined. |

Returns |

The f er ai seexcept function returns zero if the except s argument is zero or if all |
the specified exceptions were successfully raised. Otherwise, it returns a nonzero value.

187) The effect is intended to be similar to that of floating-point exceptions raised by arithmetic operations.
Hence, enabled traps for floating-point exceptions raised by this function are taken. The specification
in F.7.6 is in the same spirit.

§7.6.2.3 Library 191

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

7.6.2.4 Thef eset except f | ag function
Synopsis
#i ncl ude <fenv. h>

I nt fesetexceptflag(const fexcept_t *flagp,
i nt excepts);
Description
The fesetexceptflag function attempts to set the floating-point status flags
indicated by the argument except s to the states stored in the object pointed to by
flagp. The value of *flagp shall have been set by a previous call to
f eget except f | ag whose second argument represented at least those floating-point

exceptions represented by the argument except s. This function does not raise floating-
point exceptions, but only sets the state of the flags.

Returns

The f eset except f | ag function returns zero if the except s argument is zero or if
all the specified flags were successfully set to the appropriate state. Otherwise, it returns
a nonzero value.

7.6.25 Thef et est except function

Synopsis

#i ncl ude <fenv. h>

int fetestexcept(int excepts);
Description

The f et est except function determines which of a specified subset of the floating-
point exception flags are currently set. The except s argument specifies the floating-
point status flags to be queried.8®)

Returns

The f et est except function returns the value of the bitwise OR of the floating-point
exception macros corresponding to the currently set floating-point exceptions included in
excepts.

EXAMPLE Call f if “invalid” is set, then g if “overflow” is set:

188) This mechanism allows testing several floating-point exceptions with just one function call.

192 Library §7.6.2.5

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

#i ncl ude <fenv. h>
[* ... */
{
#pragma STDC FENV_ACCESS ON

int set_excepts;
fecl earexcept (FE_I NVALI D | FE_OVERFLOW ;
/' maybe raise exceptions
set _excepts = fetestexcept(FE_I NVALID | FE_OVERFLOW ;
if (set_excepts & FE_INVALID) f();
if (set_excepts & FE_OVERFLOW g();
I* .
}

7.6.3 Rounding

The f eget round and f eset r ound functions provide control of rounding direction
modes.

7.6.3.1 Thef eget r ound function
Synopsis

#i ncl ude <fenv. h>
i nt fegetround(void);

Description
The f eget r ound function gets the current rounding direction.
Returns

The fegetround function returns the value of the rounding direction macro
representing the current rounding direction or a negative value if there is no such
rounding direction macro or the current rounding direction is not determinable.

7.6.3.2 Thef eset r ound function
Synopsis

#i ncl ude <fenv. h>
int fesetround(int round);

Description

The fesetround function establishes the rounding direction represented by its
argument r ound. If the argument is not equal to the value of a rounding direction macro,
the rounding direction is not changed.

Returns

The f eset r ound function returns zero if and only if the requested rounding direction |
was established.

§7.6.3.2 Library 193

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

4 EXAMPLE Save, set, and restore the rounding direction. Report an error and abort if setting the
rounding direction fails.

#i ncl ude <fenv. h>
#i ncl ude <assert. h>

void f(int round_dir)

{
#pragma STDC FENV_ACCESS ON

i nt save_round;
i nt setround_ok;
save_round = fegetround();
setround_ok = fesetround(round_dir);
assert(setround_ok == 0);
I* .
fesetround(save_round);
I* .
}

7.6.4 Environment

1 The functions in this section manage the floating-point environment — status flags and
control modes — as one entity.

7.6.4.1 Thef eget env function
Synopsis

1 #i ncl ude <fenv. h>
int fegetenv(fenv_t *envp); |

Description

2 The f eget env function attempts to store the current floating-point environment in the
object pointed to by envp.

|
|
Returns |
|

3 The fegetenv function returns zero if the environment was successfully stored.
Otherwise, it returns a nonzero value.

7.6.4.2 Thef ehol dexcept function
Synopsis

1 #i ncl ude <fenv. h>
i nt fehol dexcept(fenv_t *envp);

Description

2 The fehol dexcept function saves the current floating-point environment in the object
pointed to by envp, clears the floating-point status flags, and then installs a non-stop
(continue on floating-point exceptions) mode, if available, for all floating-point
exceptions.189

194 Library 8§7.6.4.2

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

Returns

The fehol dexcept function returns zero if and only if non-stop floating-point
exception handling was successfully installed.

7.6.4.3 Thef eset env function
Synopsis

#i ncl ude <fenv. h>
int fesetenv(const fenv_t *envp);

Description

The f eset env function attempts to establish the floating-point environment represented |
by the object pointed to by envp. The argument envp shall point to an object set by a
call to f eget env or f ehol dexcept, or equal a floating-point environment macro.

Note that feset env merely installs the state of the floating-point status flags
represented through its argument, and does not raise these floating-point exceptions. |

Returns |

The f eset env function returns zero if the environment was successfully established. |
Otherwise, it returns a nonzero value.

7.6.4.4 Thef eupdat eenv function
Synopsis

#i ncl ude <fenv. h>
i nt feupdateenv(const fenv_t *envp);

Description

The feupdat eenv function attempts to save the currently raised floating-point |
exceptions in its automatic storage, install the floating-point environment represented by |
the object pointed to by envp, and then raise the saved floating-point exceptions. The |
argument envp shall point to an object set by a call to f ehol dexcept or f eget env,

or equal a floating-point environment macro. |

Returns |

The f eupdat eenv function returns zero if all the actions were successfully carried out. |
Otherwise, it returns a nonzero value.

189) IEC 60559 systems have a default non-stop mode, and typically at least one other mode for trap
handling or aborting; if the system provides only the non-stop mode then installing it is trivial. For
such systems, the f ehol dexcept function can be used in conjunction with the f eupdat eenv
function to write routines that hide spurious floating-point exceptions from their callers.

8§7.6.4.4 Library 195

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

4 EXAMPLE Hide spurious underflow floating-point exceptions:

#i ncl ude <fenv. h>
doubl e f(doubl e x)
{
#pragma STDC FENV_ACCESS ON
doubl e resul t;
fenv_t save_env;
i f (fehol dexcept (&save_env))
return /* indication of an environmental problem */;
/1 compute result
i f (/* testspurious underflow */)
i f (fecl earexcept (FE_UNDERFLOW)
return /* indication of an environmental problem */;
i f (feupdateenv(&save_env))
return /* indication of an environmental problem */;
return result;

196 Library §7.6.4.4

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

7.7 Characteristics of floating types <f | oat . h>

The header <f| oat.h> defines several macros that expand to various limits and
parameters of the standard floating-point types.

The macros, their meanings, and the constraints (or restrictions) on their values are listed
in5.2.4.2.2.

8§7.7 Library 197

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

7.8 Format conversion of integer types <i nt t ypes. h>

The header <i nttypes. h> includes the header <st di nt. h> and extends it with
additional facilities provided by hosted implementations.

It declares functions for manipulating greatest-width integers and converting numeric
character strings to greatest-width integers, and it declares the type

i maxdi v_t

which is a structure type that is the type of the value returned by the i maxdi v function.
For each type declared in <st di nt . h>, it defines corresponding macros for conversion
specifiers for use with the formatted input/output functions.*%)

Forward references: integer types <stdi nt.h> (7.18), formatted input/output
functions (7.19.6), formatted wide character input/output functions (7.24.2).

7.8.1 Macros for format specifiers

Each of the following object-like macros!®) expands to a character string literal
containing a conversion specifier, possibly modified by a length modifier, suitable for use
within the format argument of a formatted input/output function when converting the
corresponding integer type. These macro names have the general form of PRI (character
string literals for the f printf and f wpri ntf family) or SCN (character string literals
for the fscanf and fwscanf family),'%) followed by the conversion specifier,
followed by a name corresponding to a similar type name in 7.18.1. In these names, N
represents the width of the type as described in 7.18.1. For example, PRI dFAST32 can
be used in a format string to print the value of an integer of typei nt _fast32_t.

The f pri nt f macros for signed integers are:

PRI dN PRI dLEASTN PRI dFASTN PRI dVAX PRI dPTR
PRI i N PRI i LEASTN PRI i FASTN PRI i MAX PRI i PTR

190) See “future library directions” (7.26.4).

191) C++ implementations should define these macros only when __ STDC FORMAT_MACRCS is defined
before <i nt t ypes. h> is included.

192) Separate macros are given for use with f pri nt f and f scanf functions because, in the general case,
different format specifiers may be required for f pri ntf and f scanf, even when the type is the
same.

198 Library §7.8.1

WG14/N1256

The f pri nt f macros for unsigned integers are:

PRI oN PRI oLEASTN PRI oFASTN

PRI uN PRI uLEASTN PRI uFASTN

PRI xN PRI xLEASTN PRI xFASTN

PRI XN PRI XLEASTN PRI XFASTN
The f scanf macros for signed integers are:

SCNdN SCNdLEASTN SCNdFASTN

SCNi N SCNi LEASTN SCNi FASTN
The f scanf macros for unsigned integers are:

SCNoN SCNoLEASTN SCNoFASTN

SCNuN SCNULEASTN SCNUFASTN

SCNxN SCNXLEASTN SCNXFASTN

Committee Draft — Septermber 7, 2007

PRI oMAX
PRI uMAX
PRI x MAX
PRI XMAX

SCNdMAX
SCNi MAX

SCNoVAX
SCNuMAX
SCNx MAX

|SO/IEC 9899:TC3

PRI oPTR
PRI uPTR
PRI xPTR
PRI XPTR

SCNdPTR
SCNi PTR

SCNoPTR
SCNuPTR
SCNxPTR

For each type that the implementation provides in <st di nt. h>, the corresponding
fprintf macros shall be defined and the corresponding f scanf macros shall be
defined unless the implementation does not have a suitable f scanf length modifier for

the type.
EXAMPLE

#i ncl ude <inttypes. h>
#i ncl ude <wchar. h>
int mai n(void)

/'l thistype always exists

{
uintmax_t i = U NTMAX MAX;
wprintf(L"The | argest integer value is %920"
PRI xMAX "\ n", i);
return O;
}

7.8.2 Functionsfor greatest-width integer types

7.8.2.1 Thei maxabs function

Synopsis
#i ncl ude <inttypes. h>
intmax_t i maxabs(intmax_t j);

Description

The i maxabs function computes the absolute value of an integer j . If the result cannot

be represented, the behavior is undefined.%®

193) The absolute value of the most negative number cannot be represented in two’s complement.

§7.8.2.1 Library

199

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Returns
The i maxabs function returns the absolute value.

7.8.2.2 Thei maxdi v function
Synopsis

#i ncl ude <inttypes. h>

I maxdi v_t i1maxdi v(intmax_t nuner, intmax_t denom;
Description

The i maxdi v function computes nuner / denomand nuner % denomin a single
operation.

Returns

The i maxdi v function returns a structure of type i maxdi v_t comprising both the
quotient and the remainder. The structure shall contain (in either order) the members
quot (the quotient) and r em (the remainder), each of which has type i nt max_t . If
either part of the result cannot be represented, the behavior is undefined.

7.8.2.3 Thestrt oi max and st rt ourmax functions
Synopsis
#i ncl ude <inttypes. h>
intmax_t strtoi max(const char * restrict nptr,
char ** restrict endptr, int base);

uintmax_t strtoumax(const char * restrict nptr,
char ** restrict endptr, int base);

Description

The strt oi max and st rt ounmax functions are equivalent to the strt ol ,strtol |,
strtoul, and strtoul | functions, except that the initial portion of the string is
converted toi nt max_t and ui nt max_t representation, respectively.

Returns

The st rt oi max and st rt ourmax functions return the converted value, if any. If no
conversion could be performed, zero is returned. If the correct value is outside the range
of representable values, | NTMAX_MAX, | NTMAX_M N, or Ul NTMAX_MAX is returned
(according to the return type and sign of the value, if any), and the value of the macro
ERANCE is stored in er r no.

Forward references; the strtol, strtoll, strtoul, and strtoul | functions
(7.20.1.4).

200 Library §7.8.2.3

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

7.8.2.4 Thewcst oi max and west oumax functions
Synopsis
#i ncl ude <stddef. h> /| for wchar _t
#i ncl ude <inttypes. h>
i nt max_t wcstoi max(const wchar _t * restrict nptr,
wchar _t ** restrict endptr, int base);

ui nt max_t wcst oumax(const wchar _t * restrict nptr,
wchar _t ** restrict endptr, int base);

Description
The west oi max and west ounmax functions are equivalent to the west ol , west ol |

west oul , and west oul | functions except that the initial portion of the wide string is
converted to i nt max_t and ui nt max_t representation, respectively.

Returns

The west oi max function returns the converted value, if any. If no conversion could be
performed, zero is returned. If the correct value is outside the range of representable
values, | NTMAX_MAX, | NTMAX_M N, or Ul NTMAX_MAX is returned (according to the
return type and sign of the value, if any), and the value of the macro ERANGE is stored in
errno.

Forward references; the west ol , west ol |, west oul , and west oul | functions
(7.24.4.1.2).

§7.8.2.4 Library 201

ISO/IEC 9899:TC3

Committee Draft — Septermber 7, 2007

7.9 Alternative spellings<iso646.h>

WG14/N1256

The header <is0646 . h> defines the following eleven macros (on the left) that expand
to the corresponding tokens (on the right):

202

and
and_eq
bitand
bitor
compl
not
not_eq
or
or_eq
Xor
Xor_eq

&&
&=

Library

§7.9

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

7.10 Sizesof integer types<limts. h>

The header <l i mi ts. h> defines several macros that expand to various limits and
parameters of the standard integer types.

The macros, their meanings, and the constraints (or restrictions) on their values are listed
in5.2.4.2.1.

§7.10 Library 203

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

7.11 Localization <l ocal e. h>
The header <l ocal e. h> declares two functions, one type, and defines several macros.
The type is

struct | conv

which contains members related to the formatting of numeric values. The structure shall
contain at least the following members, in any order. The semantics of the members and
their normal ranges are explained in 7.11.2.1. Inthe " C" locale, the members shall have
the values specified in the comments.

char *deci mal _poi nt; [

char *thousands_sep; /"

char *groupi ng; /"

char *non_deci mal _poi nt; /"

char *non_t housands_sep; Il

char *non_groupi ng; /"

char *positive_sign; /1

char *negative_sign; /"

char *currency_synbol; [

char frac_digits; /'l CHAR_ MAX
char p_cs_precedes; /'l CHAR MAX
char n_cs_precedes; /'l CHAR MAX
char p_sep_by space; /'l CHAR MAX
char n_sep_by_ space; /1 CHAR MAX
char p_sign_posn; /'l CHAR MAX
char n_sign_posn; /1 CHAR MAX
char *int_curr_synbol; /"

char int_frac _digits; /1 CHAR MAX
char int_p _cs_precedes; /'l CHAR MAX
char int_n_cs_precedes; /1 CHAR MAX

[
i
[

char int_p_sep_by space; /'l CHAR MAX
[
[
[

char int_n_sep_by space; /1 CHAR MAX
char int_p_sign_posn; /1 CHAR MAX
char int_n_sign_posn; /1 CHAR MAX

204 Library §7.11

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

The macros defined are NULL (described in 7.17); and

LC ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMVERI C
LC_TI ME

which expand to integer constant expressions with distinct values, suitable for use as the
first argument to the set | ocal e function.’® Additional macro definitions, beginning
with the characters LC_ and an uppercase letter,'%) may also be specified by the
implementation.

7.11.1 Localecontrol
7.11.1.1 Theset | ocal e function

Synopsis
#i ncl ude <l ocal e. h>
char *setlocal e(int category, const char *locale);

Description

The set | ocal e function selects the appropriate portion of the program’s locale as
specified by the cat egory and | ocal e arguments. The set | ocal e function may be
used to change or query the program’s entire current locale or portions thereof. The value
LC ALL for cat egory names the program’s entire locale; the other values for
cat egory name only a portion of the program’s locale. LC COLLATE affects the
behavior of the st rcol | and st r xf r mfunctions. LC_CTYPE affects the behavior of
the character handling functions!®® and the multibyte and wide character functions.
LC_MONETARY affects the monetary formatting information returned by the
| ocal econv function. LC _NUVMERI C affects the decimal-point character for the
formatted input/output functions and the string conversion functions, as well as the
nonmonetary formatting information returned by the | ocal econv function. LC_TI ME
affects the behavior of the st r f t i me and wesf t i me functions.

A value of " C' for | ocal e specifies the minimal environment for C translation; a value
of "" for |ocal e specifies the locale-specific native environment. Other
implementation-defined strings may be passed as the second argument to set | ocal e.

194) 1SO/IEC 9945-2 specifies locale and charmap formats that may be used to specify locales for C.

195) See “future library directions” (7.26.5).

196) The only functions in 7.4 whose behavior is not affected by the current locale are i sdi gi t and
isxdigit.

§7.11.1.1 Library 205

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

At program startup, the equivalent of
setl ocal e(LC ALL, "C");
is executed.

The implementation shall behave as if no library function calls the set | ocal e function.
Returns

If a pointer to a string is given for | ocal e and the selection can be honored, the
set | ocal e function returns a pointer to the string associated with the specified
cat egory for the new locale. If the selection cannot be honored, the set| ocal e
function returns a null pointer and the program’s locale is not changed.

A null pointer for | ocal e causes the set | ocal e function to return a pointer to the
string associated with the cat egory for the program’s current locale; the program’s
locale is not changed.®”)

The pointer to string returned by the set | ocal e function is such that a subsequent call
with that string value and its associated category will restore that part of the program’s
locale. The string pointed to shall not be modified by the program, but may be
overwritten by a subsequent call to the set | ocal e function.

Forward references. formatted input/output functions (7.19.6), multibyte/wide
character conversion functions (7.20.7), multibyte/wide string conversion functions
(7.20.8), numeric conversion functions (7.20.1), the strcol | function (7.21.4.3), the
strftime function (7.23.3.5), the st r xf r mfunction (7.21.4.5).

7.11.2 Numeric formatting convention inquiry
7.11.2.1 Thel ocal econv function
Synopsis

#i ncl ude <l ocal e. h>
struct | conv *local econv(void);

Description

The | ocal econv function sets the components of an object with type st ruct | conv
with values appropriate for the formatting of numeric quantities (monetary and otherwise)
according to the rules of the current locale.

The members of the structure with type char * are pointers to strings, any of which
(except deci mal _poi nt) can pointto " ", to indicate that the value is not available in
the current locale or is of zero length. Apart from gr oupi ng and non_gr oupi ng, the

197) The implementation shall arrange to encode in a string the various categories due to a heterogeneous
locale when cat egor y has the value LC_ALL.

206 Library §7.11.2.1

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

strings shall start and end in the initial shift state. The members with type char are
nonnegative numbers, any of which can be CHAR_MAX to indicate that the value is not
available in the current locale. The members include the following:

char *deci mal _poi nt
The decimal-point character used to format nonmonetary quantities.

char *thousands_sep
The character used to separate groups of digits before the decimal-point
character in formatted nonmonetary quantities.

char *groupi ng
A string whose elements indicate the size of each group of digits in
formatted nonmonetary quantities.

char *non_deci mal _poi nt
The decimal-point used to format monetary quantities.

char *non_t housands_sep
The separator for groups of digits before the decimal-point in formatted
monetary quantities.

char *non_groupi ng
A string whose elements indicate the size of each group of digits in
formatted monetary quantities.

char *positive_sign
The string used to indicate a nonnegative-valued formatted monetary
quantity.

char *negative_sign
The string used to indicate a negative-valued formatted monetary quantity.

char *currency_synbol
The local currency symbol applicable to the current locale.

char frac digits
The number of fractional digits (those after the decimal-point) to be
displayed in a locally formatted monetary quantity.

char p_cs_precedes
Set to 1 or O if the currency_synbol respectively precedes or
succeeds the value for a nonnegative locally formatted monetary quantity.

char n_cs_precedes
Set to 1 or O if the currency_synbol respectively precedes or
succeeds the value for a negative locally formatted monetary quantity.

§7.11.2.1 Library 207

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

char

char

char

char

char

char

char

char

char

208

p_sep_by space

Set to a value indicating the separation of the currency_synbol , the
sign string, and the value for a nonnegative locally formatted monetary
quantity.

n_sep_by space

Set to a value indicating the separation of the curr ency_synbol , the
sign string, and the value for a negative locally formatted monetary
quantity.

p_sign_posn

Set to a value indicating the positioning of the posi ti ve_si gn for a
nonnegative locally formatted monetary quantity.

n_si gn_posn

Set to a value indicating the positioning of the negati ve_si gn for a
negative locally formatted monetary quantity.

*int_curr_synbol

The international currency symbol applicable to the current locale. The
first three characters contain the alphabetic international currency symbol
in accordance with those specified in 1SO 4217. The fourth character
(immediately preceding the null character) is the character used to separate
the international currency symbol from the monetary quantity.

int frac digits

The number of fractional digits (those after the decimal-point) to be
displayed in an internationally formatted monetary quantity.

i nt_p_cs_precedes

Set to 1 or O if the int_curr_synbol respectively precedes or
succeeds the value for a nonnegative internationally formatted monetary
quantity.

int_n_cs_precedes

Set to 1 or O if the int_curr_synbol respectively precedes or
succeeds the value for a negative internationally formatted monetary
quantity.

i nt_p_sep_by space

Set to a value indicating the separation of the i nt _curr _synbol , the
sign string, and the value for a nonnegative internationally formatted
monetary guantity.

Library §7.11.2.1

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

char int_n_sep by space
Set to a value indicating the separation of the i nt _curr_synbol , the |
sign string, and the value for a negative internationally formatted monetary
quantity.

char int_p_sign_posn
Set to a value indicating the positioning of the posi ti ve_si gn for a
nonnegative internationally formatted monetary quantity.

char int_n_sign_posn
Set to a value indicating the positioning of the negati ve_si gn for a
negative internationally formatted monetary quantity.

The elements of groupi ng and non_gr oupi ng are interpreted according to the
following:

CHAR MAX No further grouping is to be performed.

0 The previous element is to be repeatedly used for the remainder of the
digits.
other The integer value is the number of digits that compose the current group.

The next element is examined to determine the size of the next group of
digits before the current group.

The values of p_sep by space, n_sep_by space, int _p_sep_by space,
andi nt _n_sep_by_ space are interpreted according to the following:

0 No space separates the currency symbol and value.

1 If the currency symbol and sign string are adjacent, a space separates them from the
value; otherwise, a space separates the currency symbol from the value.

2 If the currency symbol and sign string are adjacent, a space separates them;
otherwise, a space separates the sign string from the value.

For i nt _p_sep_by_space and i nt _n_sep_by_space, the fourth character of |

i nt_curr_synbol isused instead of a space.

The wvalues of p_sign_posn, n_sign_posn, int_p_sign_posn, and
i nt _n_si gn_posn are interpreted according to the following:

0 Parentheses surround the quantity and currency symbol.

1 The sign string precedes the quantity and currency symbol.
2 The sign string succeeds the quantity and currency symbol.
3 The sign string immediately precedes the currency symbol.
4

The sign string immediately succeeds the currency symbol.

§7.11.2.1 Library 209

10

ISO/IEC 9899:TC3

Committee Draft — Septermber 7, 2007

WG14/N1256

The implementation shall behave as if no library function calls the localeconv

function.
Returns

The localeconv function returns a pointer to the filled-in object. The structure
pointed to by the return value shall not be modified by the program, but may be
overwritten by a subsequent call to the localeconv function. In addition, calls to the
setlocale function with categories LC_ALL, LC_MONETARY, or LC_NUMERIC may
overwrite the contents of the structure.

EXAMPLE 1 The following table illustrates rules which may well be used by four countries to format |
monetary quantities.

Local format International format
Country Positive Negative Positive Negative
Countryl 1.234,56 mk -1.234,56 mk FIM 1.234,56 FIM -1.234,56
Country?2 L.1.234 -L.1.234 ITL 1.234 -1TL 1.234
Country3 f 1.234,56 f -1.234,56 NLG 1.234,56 NLG -1.234,56
Country4 SFrs.1,234.56 SFrs.1,234_.56C CHF 1,234.56 CHF 1,234.56C

For these four countries, the respective values for the monetary members of the structure returned by
localeconv could be:

Countryl

Country2

Country3

Country4

mon_decimal_point
mon_thousands_sep
mon_grouping
positive_sign
negative_sign
currency_symbol
frac_digits
p_cs_precedes
n_cs_precedes
p_sep_by space
n_sep_by space
p_sign_posn
n_sign_posn
int_curr_symbol
int_frac _digits
int_p_cs _precedes
int_n_cs_precedes
int_p_sep by space
int_n_sep by space
int_p_sign_posn
int_n_sign_posn

210

u\3u

nmkn

PRRRPROON

"FIM ™

AR NRPRRPEPN

n\3n

tPPOOPFRRFO

T ™

RPRRRRRO

Library

u\3u

"\u0192"

ARNRRREN

"NLG ™'

ARNRRRN

NFPOOFREN

"CHF ™

NRPRRERRRN

§7.11.2.1

11

WG14/N1256

Committee Draft — Septermber 7, 2007

|SO/IEC 9899:TC3

EXAMPLE 2 The following table illustrates how the cs_precedes, sep_by_space, and sign_posn members

affect the formatted value.

p_sep_by_ space

p_cs_precedes p_si gn_posn 0 1 2
0 0 (1.25%) (1.25 %) (1.25%)
1 +1. 25% +1.25 $ + 1.25%
2 1. 25%+ 1.25 $+ 1.25% +
3 1. 25+$ 1.25 +$% 1.25+ $
4 1. 25%+ 1.25 $+ 1.25% +
1 0 ($1. 25) ($ 1.25) ($1. 25)
1 +$1. 25 +$ 1.25 + $1.25
2 $1. 25+ $ 1.25+ $1.25 +
3 +$1. 25 +$ 1.25 + $1.25
4 $+1. 25 $+ 1.25 $ +1.25

§7.11.2.1

Library

211

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

7.12 Mathematics<nmat h. h>

The header <mat h. h> declares two types and many mathematical functions and defines
several macros. Most synopses specify a family of functions consisting of a principal
function with one or more doubl e parameters, a doubl e return value, or both; and
other functions with the same name but with f and | suffixes, which are corresponding
functions with f1 oat and | ong doubl e parameters, return values, or both.1%)
Integer arithmetic functions and conversion functions are discussed later.

The types

float t
doubl e_t

are floating types at least as wide as f| oat and doubl e, respectively, and such that
doubl e _t is at least as wide as float t. If FLT_EVAL_METHOD equals O,
float _t and double_ t are float and double, respectively; if
FLT_EVAL_METHQOD equals 1, they are both doubl e; if FLT_EVAL_METHQOD equals
2, they are both | ong doubl e; and for other values of FLT _EVAL_NMETHOD, they are
otherwise implementation-defined.1%?)

The macro
HUGE_VAL

expands to a positive doubl e constant expression, not necessarily representable as a
f 1 oat . The macros

HUGE_VALF
HUGE_VALL

are respectively f | oat and | ong doubl e analogs of HUGE_VAL .20
The macro
I NFINITY

expands to a constant expression of type fl oat representing positive or unsigned
infinity, if available; else to a positive constant of type fl oat that overflows at

198) Particularly on systems with wide expression evaluation, a <mat h. h> function might pass arguments
and return values in wider format than the synopsis prototype indicates.

199) The types f | oat _t and doubl e_t are intended to be the implementation’s most efficient types at
least as wide as f | oat and doubl e, respectively. For FLT_EVAL_METHQOD equal 0, 1, or 2, the
type f | oat _t is the narrowest type used by the implementation to evaluate floating expressions.

200) HUGE_VAL, HUGE_VALF, and HUGE_VALL can be positive infinities in an implementation that
supports infinities.

212 Library §7.12

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

translation time.2%0)

The macro
NAN

is defined if and only if the implementation supports quiet NaNs for the f | oat type. It
expands to a constant expression of type f | oat representing a quiet NaN.

The number classification macros |

FP_I NFI NI TE
FP_NAN
FP_NORMAL
FP_SUBNORMAL
FP_ZERO

represent the mutually exclusive kinds of floating-point values. They expand to integer |
constant expressions with distinct values. Additional implementation-defined floating-
point classifications, with macro definitions beginning with FP_ and an uppercase letter,
may also be specified by the implementation.

The macro
FP_FAST_FNA

is optionally defined. If defined, it indicates that the f ma function generally executes
about as fast as, or faster than, a multiply and an add of doubl e operands.2%) The
macros

FP_FAST_FNAF
FP_FAST_FNAL

are, respectively, f 1 oat and | ong doubl e analogs of FP_FAST_FMA. If defined, |
these macros expand to the integer constant 1.

The macros
FP_| LOGBO
FP_| LOGBNAN

expand to integer constant expressions whose values are returned by i | ogb(x) if x is
zero or NaN, respectively. The value of FP_I LOGBO shall be either | NT_M N or
- | NT_MAX. The value of FP_I LOGBNAN shall be either | NT_MAX or | NT_M N.

201) In this case, using | NFI NI TY will violate the constraint in 6.4.4 and thus require a diagnostic.

202) Typically, the FP_FAST_FMA macro is defined if and only if the f ma function is implemented
directly with a hardware multiply-add instruction. Software implementations are expected to be
substantially slower.

§7.12 Library 213

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

The macros

MATH _ERRNO
MATH _ERREXCEPT

expand to the integer constants 1 and 2, respectively; the macro
mat h_errhandl i ng

expands to an expression that has type int and the value MATH_ERRNO,
MATH_ERREXCEPT, or the bitwise OR of both. The value of mat h_err handl i ng is
constant for the duration of the program. It is unspecified whether
mat h_errhandl i ng is a macro or an identifier with external linkage. If a macro
definition is suppressed or a program defines an identifier with the name
mat h_errhandl i ng, the behavior is undefined. If the expression
mat h_errhandling & MATH _ERREXCEPT can be nonzero, the implementation
shall define the macros FE DI VBYZERO, FE | NVALI D, and FE_OVERFLOW in
<fenv. h>.

7.12.1 Treatment of error conditions

The behavior of each of the functions in <mat h. h> is specified for all representable
values of its input arguments, except where stated otherwise. Each function shall execute
as if it were a single operation without generating any externally visible exceptional
conditions.

For all functions, a domain error occurs if an input argument is outside the domain over
which the mathematical function is defined. The description of each function lists any
required domain errors; an implementation may define additional domain errors, provided
that such errors are consistent with the mathematical definition of the function.?® On a
domain error, the function returns an implementation-defined value; if the integer
expression mat h_errhandl i ng & MATH_ERRNOIs nonzero, the integer expression
er r no acquires the value EDOM if the integer expression mat h_errhandling &
MATH_ERREXCEPT is nonzero, the “invalid” floating-point exception is raised.

Similarly, a range error occurs if the mathematical result of the function cannot be
represented in an object of the specified type, due to extreme magnitude.

A floating result overflows if the magnitude of the mathematical result is finite but so
large that the mathematical result cannot be represented without extraordinary roundoff
error in an object of the specified type. If a floating result overflows and default rounding
Is in effect, or if the mathematical result is an exact infinity from finite arguments (for
example | og(0. 0)), then the function returns the value of the macro HUGE VAL,

203) In an implementation that supports infinities, this allows an infinity as an argument to be a domain
error if the mathematical domain of the function does not include the infinity.

214 Library §7.12.1

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

HUGE_VALF, or HUGE_VALL according to the return type, with the same sign as the
correct value of the function; if the integer expression math_errhandling &
MATH_ERRNO is nonzero, the integer expression er r no acquires the value ERANGCE; if
the integer expression mat h_errhandl i ng & MATH_ERREXCEPT is nonzero, the
“divide-by-zero” floating-point exception is raised if the mathematical result is an exact
infinity and the “overflow” floating-point exception is raised otherwise.

The result underflows if the magnitude of the mathematical result is so small that the
mathematical result cannot be represented, without extraordinary roundoff error, in an
object of the specified type.?®” If the result underflows, the function returns an
implementation-defined value whose magnitude is no greater than the smallest
normalized positive number in the specified type; if the integer expression
mat h_errhandling & MATH ERRNO is nonzero, whether errno acquires the
value ERANCE is implementation-defined; if the integer expression
mat h_errhandl i ng & MATH_ERREXCEPT is nonzero, whether the “underflow”
floating-point exception is raised is implementation-defined.

7.12.2 The FP_CONTRACT pragma
Synopsis

#i ncl ude <mat h. h>
#pragnma STDC FP_CONTRACT on-off-switch

Description

The FP_CONTRACT pragma can be used to allow (if the state is “on””) or disallow (if the
state is “off’”) the implementation to contract expressions (6.5). Each pragma can occur
either outside external declarations or preceding all explicit declarations and statements
inside a compound statement. When outside external declarations, the pragma takes
effect from its occurrence until another FP_CONTRACT pragma is encountered, or until
the end of the translation unit. When inside a compound statement, the pragma takes
effect from its occurrence until another FP_CONTRACT pragma is encountered
(including within a nested compound statement), or until the end of the compound
statement; at the end of a compound statement the state for the pragma is restored to its
condition just before the compound statement. If this pragma is used in any other
context, the behavior is undefined. The default state (““on” or “off”) for the pragma is
implementation-defined.

204) The term underflow here is intended to encompass both “gradual underflow™ as in IEC 60559 and
also “flush-to-zero™ underflow.

§7.12.2 Library 215

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

7.12.3 Classification macros

In the synopses in this subclause, real-floating indicates that the argument shall be an
expression of real floating type.

7.12.3.1 Thef pcl assi fy macro
Synopsis
#i ncl ude <mat h. h>
i nt fpcl assify(real-floating x);
Description
The fpcl assify macro classifies its argument value as NaN, infinite, normal,
subnormal, zero, or into another implementation-defined category. First, an argument

represented in a format wider than its semantic type is converted to its semantic type.
Then classification is based on the type of the argument.?%®)

Returns

The fpclassify macro returns the value of the number classification macro
appropriate to the value of its argument.

EXAMPLE Thef pcl assi f y macro might be implemented in terms of ordinary functions as

#define fpclassify(x) \
((sizeof (x) == sizeof (float)) ? _ fpclassifyf(x) : \
(sizeof (x) == sizeof (double)) ? _ fpclassifyd(x) : \
_ _fpclassifyl(x))

7.12.3.2 Thei sfi ni t e macro
Synopsis

#i ncl ude <mat h. h>

i nt isfinite(real-floating x) ;
Description
The i sfinite macro determines whether its argument has a finite value (zero,
subnormal, or normal, and not infinite or NaN). First, an argument represented in a

format wider than its semantic type is converted to its semantic type. Then determination
is based on the type of the argument.

205) Since an expression can be evaluated with more range and precision than its type has, it is important to
know the type that classification is based on. For example, a normal | ong doubl e value might
become subnormal when converted to doubl e, and zero when converted to f | oat .

216 Library §7.12.3.2

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

Returns

The i sfi ni t e macro returns a nonzero value if and only if its argument has a finite
value.

7.12.3.3 Thei si nf macro
Synopsis

#i ncl ude <mat h. h>
i nt isinf(real-floating x);

Description

The i si nf macro determines whether its argument value is an infinity (positive or
negative). First, an argument represented in a format wider than its semantic type is
converted to its semantic type. Then determination is based on the type of the argument.

Returns

The i si nf macro returns a nonzero value if and only if its argument has an infinite
value.

7.12.3.4 Thei snan macro
Synopsis

#i ncl ude <mat h. h>
i nt i snan(real-floating x) ;

Description

The i snan macro determines whether its argument value is a NaN. First, an argument
represented in a format wider than its semantic type is converted to its semantic type.
Then determination is based on the type of the argument.2®)

Returns

The i snan macro returns a nonzero value if and only if its argument has a NaN value.
7.12.3.5 Thei snor mal macro

Synopsis

#i ncl ude <mat h. h>
I nt isnormal (real-floating X) ;

206) For the i snan macro, the type for determination does not matter unless the implementation supports
NaNs in the evaluation type but not in the semantic type.

§7.12.3.5 Library 217

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Description

The i snor mal macro determines whether its argument value is normal (neither zero,
subnormal, infinite, nor NaN). First, an argument represented in a format wider than its
semantic type is converted to its semantic type. Then determination is based on the type
of the argument.

Returns

The i snor mal macro returns a nonzero value if and only if its argument has a normal
value.

7.12.3.6 Thesi gnbi t macro
Synopsis

#i ncl ude <mat h. h>

i nt signbit (real-floating x) ;
Description
The si gnbi t macro determines whether the sign of its argument value is negative.2%”)
Returns

The si gnbi t macro returns a nonzero value if and only if the sign of its argument value
IS negative.

7.12.4 Trigonometric functions
7.12.4.1 Theacos functions
Synopsis
#i ncl ude <mat h. h>
doubl e acos(doubl e x);

fl oat acosf(float x);
| ong doubl e acosl (1 ong doubl e x);

Description

The acos functions compute the principal value of the arc cosine of x. A domain error
occurs for arguments not in the interval [-1, +1].

Returns

The acos functions return arccos x in the interval [0, z] radians.

207) The si gnbi t macro reports the sign of all values, including infinities, zeros, and NaNs. If zero is
unsigned, it is treated as positive.

218 Library §7.12.4.1

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

7.12.4.2 Theasi n functions

Synopsis
#i ncl ude <mat h. h>
doubl e asi n(doubl e x);
float asinf(float Xx);
| ong doubl e asinl (1 ong double x);

Description

The asi n functions compute the principal value of the arc sine of x. A domain error
occurs for arguments not in the interval [-1, +1].

Returns
The asi n functions return arcsin x in the interval [-z/2, +z/2] radians.
7.12.4.3 Theat an functions
Synopsis
#i ncl ude <mat h. h>
doubl e atan(doubl e x);

float atanf(float Xx);
| ong doubl e atanl (|1 ong doubl e Xx);

Description
The at an functions compute the principal value of the arc tangent of x.
Returns
The at an functions return arctan x in the interval [-z/2, +z/2] radians.
7.12.4.4 Theat an2 functions
Synopsis

#i ncl ude <mat h. h>

doubl e atan2(doubl e y, double Xx);

float atan2f(float y, float x);
| ong doubl e atan2l (1 ong double y, |ong double x);

Description

The at an2 functions compute the value of the arc tangent of y/x, using the signs of both
arguments to determine the quadrant of the return value. A domain error may occur if
both arguments are zero.

Returns

The at an2 functions return arctan y/x in the interval [z, +x] radians.

§7.12.4.4 Library 219

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

7.12.45 Thecos functions

Synopsis
#i ncl ude <mat h. h>
doubl e cos(doubl e x);

float cosf(float x);
| ong doubl e cosl (I ong doubl e Xx);

Description
The cos functions compute the cosine of x (measured in radians).
Returns
The cos functions return cos x.
7.12.4.6 Thesi n functions
Synopsis
#i ncl ude <mat h. h>
doubl e sin(double x);

float sinf(float x);
| ong doubl e sinl(long double x);

Description
The si n functions compute the sine of x (measured in radians).
Returns
The si n functions return sin x.
7.12.4.7 Thet an functions
Synopsis
#i ncl ude <mat h. h>
doubl e tan(doubl e x);

float tanf(float x);
| ong doubl e tanl (I ong doubl e x);

Description
The t an functions return the tangent of X (measured in radians).
Returns

The t an functions return tan x.

220 Library 8§7.12.4.7

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

7.12.5 Hyperbolic functions
7.12.5.1 Theacosh functions
Synopsis
#i ncl ude <mat h. h>
doubl e acosh(doubl e x);

fl oat acoshf(float x);
| ong doubl e acoshl (1 ong doubl e x);

Description

The acosh functions compute the (nonnegative) arc hyperbolic cosine of x. A domain
error occurs for arguments less than 1.

Returns
The acosh functions return arcosh x in the interval [0, +o0].
7.12.5.2 Theasi nh functions
Synopsis
#i ncl ude <mat h. h>
doubl e asi nh(doubl e x);

float asinhf(float x);
| ong doubl e asi nhl (1 ong doubl e x);

Description
The asi nh functions compute the arc hyperbolic sine of x.
Returns
The asi nh functions return arsinh x.
7.12.5.3 Theat anh functions
Synopsis
#i ncl ude <mat h. h>
doubl e atanh(doubl e x);

float atanhf(float x);
| ong doubl e atanhl (1 ong doubl e Xx);

Description

The at anh functions compute the arc hyperbolic tangent of x. A domain error occurs
for arguments not in the interval [-1,+1]. A range error may occur if the argument
equals =1 or +1.

§7.12.5.3 Library 221

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Returns
The at anh functions return artanh x.
7.12.5.4 Thecosh functions
Synopsis
#i ncl ude <mat h. h>
doubl e cosh(doubl e x);

fl oat coshf(float Xx);
| ong doubl e coshl (I ong doubl e x);

Description

The cosh functions compute the hyperbolic cosine of x. A range error occurs if the
magnitude of x is too large.

Returns
The cosh functions return cosh x.
7.12.5.5 Thesi nh functions
Synopsis
#i ncl ude <mat h. h>
doubl e si nh(doubl e x);

float sinhf(float Xx);
| ong doubl e sinhl (long double Xx);

Description

The si nh functions compute the hyperbolic sine of x. A range error occurs if the
magnitude of x is too large.

Returns
The si nh functions return sinh x.
7.12.5.6 Thet anh functions
Synopsis
#i ncl ude <nmat h. h>
doubl e tanh(doubl e x);

float tanhf(float Xx);
| ong doubl e tanhl (1 ong doubl e Xx);

Description

The t anh functions compute the hyperbolic tangent of x.

222 Library §7.12.5.6

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

Returns
The t anh functions return tanh x.
7.12.6 Exponential and logarithmic functions
7.12.6.1 Theexp functions
Synopsis
#i ncl ude <mat h. h>
doubl e exp(doubl e x);

float expf(float x);
| ong doubl e expl (I ong doubl e x);

Description

The exp functions compute the base-e exponential of x. A range error occurs if the
magnitude of x is too large.

Returns
The exp functions return €*.
7.12.6.2 Theexp2 functions
Synopsis
#i ncl ude <mat h. h>
doubl e exp2(doubl e x);

float exp2f(float x);
| ong doubl e exp2l (1 ong doubl e x);

Description

The exp2 functions compute the base-2 exponential of x. A range error occurs if the
magnitude of x is too large.

Returns
The exp2 functions return 2*.
7.12.6.3 The expmil functions
Synopsis
#i ncl ude <mat h. h>
doubl e expnl(doubl e x);

float expmlf(float x);
| ong doubl e expmil (| ong doubl e x);

§7.12.6.3 Library 223

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Description

The expnil functions compute the base-e exponential of the argument, minus 1. A range
error occurs if x is too large.2%®)

Returns

The expmil functions return € - 1.

7.12.6.4 Thef r exp functions

Synopsis
#i ncl ude <mat h. h>
doubl e frexp(doubl e value, int *exp);
float frexpf(float value, int *exp);
| ong doubl e frexpl (I ong doubl e val ue, int *exp);

Description

The f r exp functions break a floating-point number into a normalized fraction and an
integral power of 2. They store the integer in the i nt object pointed to by exp.

Returns

If val ue is not a floating-point number, the results are unspecified. Otherwise, the
f r exp functions return the value x, such that x has a magnitude in the interval [1/2, 1) or
zero, and val ue equals x x 2°¢*P. If val ue is zero, both parts of the result are zero.

7.12.6.5 Thei | ogb functions

Synopsis
#i ncl ude <mat h. h>
int ilogb(double x);
int ilogbf(float x);
int ilogbl(long double x);

Description

The i | ogb functions extract the exponent of x as a signed i nt value. If x is zero they
compute the value FP_I LOGBO; if x is infinite they compute the value | NT_MAX; if X is

a NaN they compute the value FP_I LOGBNAN; otherwise, they are equivalent to calling
the corresponding | ogb function and casting the returned value to type i nt. A domain |
error or range error may occur if X is zero, infinite, or NaN. If the correct value is outside |
the range of the return type, the numeric result is unspecified.

208) For small magnitude x, expml(x) is expected to be more accurate than exp(x) - 1.

224 Library §7.12.6.5

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

Returns
The i | ogb functions return the exponent of x as a signed i nt value.
Forward references. the | ogb functions (7.12.6.11).
7.12.6.6 Thel dexp functions
Synopsis
#i ncl ude <nmat h. h>
doubl e | dexp(double x, int exp);

float |dexpf(float x, int exp);
| ong doubl e | dexpl (1 ong double x, int exp);

Description

The | dexp functions multiply a floating-point number by an integral power of 2. A
range error may occur.

Returns
The | dexp functions return x x 25%P,
7.12.6.7 Thel og functions
Synopsis
#i ncl ude <mat h. h>
doubl e | og(doubl e x);

float |ogf(float x);
| ong doubl e | ogl (I ong doubl e x);

Description

The | og functions compute the base-e (natural) logarithm of x. A domain error occurs if
the argument is negative. A range error may occur if the argument is zero.

Returns
The | og functions return log, X.
7.12.6.8 Thel 0g10 functions
Synopsis
#i ncl ude <mat h. h>
doubl e | 0g10(doubl e x);
float |0gl0f (float x);
| ong doubl e 1 0gl10Il (1 ong doubl e x);

§7.12.6.8 Library 225

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Description

The 1 0g10 functions compute the base-10 (common) logarithm of x. A domain error
occurs if the argument is negative. A range error may occur if the argument is zero.

Returns
The | 0g10 functions return log,, X.
7.12.6.9 Thel oglp functions
Synopsis
#i ncl ude <mat h. h>
doubl e | oglp(doubl e x);

float |oglpf(float x);
| ong doubl e |1 oglpl (I ong double x);

Description

The | oglp functions compute the base-e (natural) logarithm of 1 plus the argument.?%%
A domain error occurs if the argument is less than —1. A range error may occur if the
argument equals —1.

Returns
The | oglp functions return log,(1 + x).
7.12.6.10 Thel og2 functions
Synopsis
#i ncl ude <mat h. h>
doubl e | og2(doubl e x);

float |og2f(float x);
| ong doubl e | og2l (I ong doubl e x);

Description

The | og2 functions compute the base-2 logarithm of x. A domain error occurs if the
argument is less than zero. A range error may occur if the argument is zero.

Returns

The | 0og2 functions return log, X.

209) For small magnitude x, | og1p(x) is expected to be more accurate thanl og(1 + x).

226 Library §7.12.6.10

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

7.12.6.11 Thel ogb functions
Synopsis
#i ncl ude <mat h. h>
doubl e | ogb(doubl e x);

float |ogbf(float Xx);
| ong doubl e I ogbl (1 ong doubl e x);

Description

The | ogb functions extract the exponent of x, as a signed integer value in floating-point
format. If x is subnormal it is treated as though it were normalized; thus, for positive
finite x,

1<x xFLT_RADI X' °9°®) < FLT RADI X

A domain error or range error may occur if the argument is zero.
Returns
The | ogb functions return the signed exponent of x.
7.12.6.12 Thenodf functions
Synopsis

#i ncl ude <mat h. h>

doubl e nodf (doubl e val ue, double *iptr);

float nodff(float value, float *iptr);
| ong doubl e nmodfl (1 ong doubl e val ue, [ong double *iptr);

Description

The nmodf functions break the argument val ue into integral and fractional parts, each of
which has the same type and sign as the argument. They store the integral part (in
floating-point format) in the object pointed to by i ptr.

Returns

The nodf functions return the signed fractional part of val ue.

§7.12.6.12 Library 227

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

7.12.6.13 Thescal bn and scal bl n functions
Synopsis
#i ncl ude <mat h. h>
doubl e scal bn(double x, int n);
fl oat scal bnf(float x, int n);
| ong doubl e scal bnl (1 ong double x, int n);
doubl e scal bl n(double x, long int n);

float scal bl nf(float x, long int n);
| ong doubl e scal bl nl (1 ong double x, long int n);

Description

The scal bn and scal bl n functions compute x x FLT_RADI X" efficiently, not
normally by computing FLT_RADI X" explicitly. A range error may occur.

Returns
The scal bn and scal bl n functions return x x FLT _RADI X",
7.12.7 Power and absolute-value functions
7.12.7.1 Thecbrt functions
Synopsis
#i ncl ude <mat h. h>
doubl e cbrt (doubl e x);

float cbrtf(float x);
| ong doubl e cbrtl (long double x);

Description
The cbr t functions compute the real cube root of x.
Returns
The cbrt functions return x*2.
7.12.7.2 Thef abs functions
Synopsis
#i ncl ude <mat h. h>
doubl e fabs(doubl e x);

float fabsf(float Xx);
| ong doubl e fabsl (I ong double x);

Description

The f abs functions compute the absolute value of a floating-point number x.

228 Library 8§7.12.7.2

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

Returns
The f abs functions return | x |.
7.12.7.3 Thehypot functions
Synopsis
#i ncl ude <mat h. h>
doubl e hypot (doubl e x, double y);

fl oat hypotf(float x, float y);
| ong doubl e hypotl (1 ong double x, |ong double y);

Description

The hypot functions compute the square root of the sum of the squares of x and vy,
without undue overflow or underflow. A range error may occur.

Returns

The hypot functions return v/x2 +y2.
7.12.7.4 The powfunctions

Synopsis
#i ncl ude <mat h. h>
doubl e pow(doubl e x, double y);
fl oat powf (float x, float y);
| ong doubl e pow (I ong double x, |ong double y);

Description

The pow functions compute x raised to the power y. A domain error occurs if X is finite
and negative and y is finite and not an integer value. A range error may occur. A domain |
error may occur if X is zero and y is zero. A domain error or range error may occur if x |
is zero and y is less than zero.

Returns
The pow functions return x”.
7.12.75 Thesqgrt functions
Synopsis
#i ncl ude <mat h. h>
doubl e sqrt(doubl e x);

float sqgrtf(float x);
| ong doubl e sqgrtl (long doubl e x);

§7.12.7.5 Library 229

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Description

The sqrt functions compute the nonnegative square root of x. A domain error occurs if
the argument is less than zero.

Returns
The sqrt functions return yx.
7.12.8 Error and gamma functions
7.12.8.1 Theerf functions
Synopsis
#i ncl ude <mat h. h>
doubl e erf(double x);

float erff(float x);
| ong doubl e erfl (I ong double Xx);

Description
The er f functions compute the error function of x.
Returns

. 2 X
The er f functions return erf x = —J' et dt.
vz Jo

7.12.8.2 Theer f ¢ functions

Synopsis
#i ncl ude <mat h. h>
doubl e erfc(double x);

float erfcf(float Xx);
| ong double erfcl (long double x);

Description

The er f ¢ functions compute the complementary error function of x. A range error
occurs if x is too large.

Returns

. 2
The er f ¢ functionsreturnerfcx =1 —-erf x = — J'oo et dt.
V7 Ix

230 Library §7.12.8.2

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

7.12.8.3 Thel gama functions
Synopsis
#i ncl ude <mat h. h>
doubl e | ganma(doubl e Xx);

float | gammaf (fl oat Xx);
| ong doubl e | gammal (|1 ong doubl e x);

Description

The | ganmma functions compute the natural logarithm of the absolute value of gamma of
X. A range error occurs if x is too large. A range error may occur if X is a negative
integer or zero.

Returns
The | gamma functions return log, | I (X) |.
7.12.8.4 Thet ganma functions
Synopsis

#i ncl ude <mat h. h>

doubl e t gamma(doubl e Xx);

fl oat tgammaf(float Xx);
| ong doubl e tgammal (I ong doubl e x);

Description

The t ganma functions compute the gamma function of x. A domain error or range error |
may occur if X is a negative integer or zero. A range error may occur if the magnitude of |
X is too large or too small.

Returns
The t ganma functions return I"(x).
7.12.9 Nearest integer functions
7.12.9.1 Thecei | functions
Synopsis
#i ncl ude <mat h. h>
doubl e ceil (doubl e x);

float ceil f(float Xx);
| ong double ceill (long double x);

Description

The cei | functions compute the smallest integer value not less than x.

§7.12.9.1 Library 231

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Returns
The cei | functions return xj expressed as a floating-point number.
7.12.9.2 Thef | oor functions
Synopsis
#i ncl ude <mat h. h>
doubl e fl oor (doubl e x);

float floorf(float x);
| ong double floorl(long double x);

Description
The f | oor functions compute the largest integer value not greater than x.
Returns
The f | oor functions return x [expressed as a floating-point number.
7.12.9.3 Thenear byi nt functions
Synopsis

#i ncl ude <mat h. h>

doubl e near byi nt (doubl e x);

fl oat nearbyintf(float x);
| ong doubl e nearbyintl (1l ong double x);

Description

The near byi nt functions round their argument to an integer value in floating-point
format, using the current rounding direction and without raising the *““inexact™ floating-
point exception.

Returns
The near byi nt functions return the rounded integer value.
7.12.9.4 Theri nt functions

Synopsis
#i ncl ude <mat h. h>
doubl e rint(doubl e x);
float rintf(float Xx);
| ong double rintl (long double x);

Description

The ri nt functions differ from the near byi nt functions (7.12.9.3) only in that the
rint functions may raise the “inexact” floating-point exception if the result differs in
value from the argument.

232 Library §7.12.9.4

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

Returns

The ri nt functions return the rounded integer value.
71295 Thelrint and | | ri nt functions
Synopsis

#i ncl ude <mat h. h>

long int |Irint(double x);

long int Irintf(float Xx);

long int Irintl(long double x);

long long int |lrint(double x);

long long int Ilrintf(float x);

long long int Ilrintl(long double Xx);

Description

The lrint and | I ri nt functions round their argument to the nearest integer value,
rounding according to the current rounding direction. If the rounded value is outside the
range of the return type, the numeric result is unspecified and a domain error or range |
error may occur. O

Returns
Thelrint and!l | ri nt functions return the rounded integer value.
7.12.9.6 Ther ound functions
Synopsis
#i ncl ude <mat h. h>
doubl e round(doubl e x);
float roundf(float x);
| ong doubl e roundl (1 ong doubl e x);

Description

The r ound functions round their argument to the nearest integer value in floating-point
format, rounding halfway cases away from zero, regardless of the current rounding
direction.

Returns

The r ound functions return the rounded integer value.

§7.12.9.6 Library 233

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

7.12.9.7 Thel round and | | r ound functions
Synopsis

#i ncl ude <mat h. h>

l ong int |round(double x);

long int |roundf(float Xx);

l ong int |roundl (I ong double Xx);

long long int |lround(double x);

long long int |lroundf(float Xx);

long long int |lroundl (long double x);

Description

The | round and I | r ound functions round their argument to the nearest integer value,
rounding halfway cases away from zero, regardless of the current rounding direction. If
the rounded value is outside the range of the return type, the numeric result is unspecified |
and a domain error or range error may occur

Returns
Thel round and | | r ound functions return the rounded integer value.
7.12.9.8 Thet r unc functions
Synopsis
#i ncl ude <mat h. h>
doubl e trunc(doubl e x);

float truncf(float x);
| ong doubl e truncl (1 ong doubl e x);

Description

The trunc functions round their argument to the integer value, in floating format,
nearest to but no larger in magnitude than the argument.

Returns

The t r unc functions return the truncated integer value.

234 Library §7.12.9.8

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

7.12.10 Remainder functions

7.12.10.1 Thef nod functions
Synopsis
#i ncl ude <mat h. h>
doubl e frod(doubl e x, double y);

float frnodf(float x, float y);
| ong doubl e fnodl (I ong doubl e x, |ong double y);

Description
The f nod functions compute the floating-point remainder of x/y.
Returns

The f nod functions return the value x — ny, for some integer n such that, if y is nonzero,
the result has the same sign as x and magnitude less than the magnitude of y. If y is zero,
whether a domain error occurs or the f nod functions return zero is implementation-
defined.

7.12.10.2 Ther enmai nder functions
Synopsis
#i ncl ude <mat h. h>
doubl e remai nder (doubl e x, double y);

fl oat remainderf(float x, float y);

| ong doubl e remai nderl (1 ong doubl e x, |ong double y);
Description
The r enmi nder functions compute the remainder x REM y required by IEC 60559.210)
Returns

The r emai nder functions return x REM y. Ify is zero, whether a domain error occurs
or the functions return zero is implementation defined.

210) “When y # 0, the remainder r = x REM vy is defined regardless of the rounding mode by the
mathematical relation r = x — ny, where n is the integer nearest the exact value of x/y; whenever
|n—x/y|=1/2, then n is even. Thus, the remainder is always exact. If r =0, its sign shall be that of
X.” This definition is applicable for all implementations.

§7.12.10.2 Library 235

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

7.12.10.3 Ther enmguo functions
Synopsis

#i ncl ude <mat h. h>

doubl e remguo(doubl e x, double y, int *quo);

float renguof(float x, float y, int *quo);

| ong doubl e renmguol (| ong doubl e x, [ong double vy,

i nt *quo);

Description
The r emquo functions compute the same remainder as the r emai nder functions. In
the object pointed to by quo they store a value whose sign is the sign of x/y and whose

magnitude is congruent modulo 2" to the magnitude of the integral quotient of x/y, where
n is an implementation-defined integer greater than or equal to 3.

Returns

The remguo functions return x REM y. If y is zero, the value stored in the object |
pointed to by quo is unspecified and whether a domain error occurs or the functions |
return zero is implementation defined.

7.12.11 Manipulation functions
7.12.11.1 Thecopysi gn functions
Synopsis
#i ncl ude <nmat h. h>
doubl e copysi gn(doubl e x, double y);

fl oat copysignf(float x, float y);
| ong doubl e copysi gnl (I ong double x, |ong double y);

Description

The copysi gn functions produce a value with the magnitude of x and the sign of y.
They produce a NaN (with the sign of y) if x is a NaN. On implementations that
represent a signed zero but do not treat negative zero consistently in arithmetic
operations, the copysi gn functions regard the sign of zero as positive.

Returns

The copysi gn functions return a value with the magnitude of x and the sign of y.

236 Library §7.12.11.1

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

7.12.11.2 Thenan functions
Synopsis
#i ncl ude <mat h. h>
doubl e nan(const char *tagp);

fl oat nanf(const char *tagp);
| ong doubl e nanl (const char *tagp);

Description

The call nan("n-char-sequence”) is equivalent to strtod(" NAN(n-char-
sequence) ", (char**) NULL); the call nan("") is equivalent to
strtod("NAN()", (char**) NULL). If tagp does not point to an n-char
sequence or an empty string, the call is equivalent to strtod(" NAN', (char**)
NULL) . Calls to nanf and nanl are equivalent to the corresponding calls to st rt of
andstrtold.

Returns

The nan functions return a quiet NaN, if available, with content indicated through t agp.
If the implementation does not support quiet NaNs, the functions return zero.

Forward references: thestrtod,strtof,andstrt ol dfunctions (7.20.1.3).
7.12.11.3 Thenext af t er functions

Synopsis
#i ncl ude <mat h. h>
doubl e next after(double x, double y);
float nextafterf(float x, float y);
| ong doubl e nextafterl (long double x, |ong double y);

Description

The next af t er functions determine the next representable value, in the type of the
function, after x in the direction of y, where x and y are first converted to the type of the
function.?’) The next af t er functions returny if x equals y. A range error may occur
if the magnitude of x is the largest finite value representable in the type and the result is
infinite or not representable in the type.

Returns

The next af t er functions return the next representable value in the specified format
after x in the direction of y.

211) The argument values are converted to the type of the function, even by a macro implementation of the
function.

§7.12.11.3 Library 237

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

7.12.11.4 Thenextt owar d functions
Synopsis
#i ncl ude <mat h. h>
doubl e nexttoward(double x, |ong double y);

fl oat nexttowardf(float x, |ong double y);
| ong doubl e nexttowardl (I ong double x, |ong double y);

Description

The next t owar d functions are equivalent to the next af t er functions except that the
second parameter has type | ong doubl e and the functions return y converted to the
type of the function if x equals y.?*?

7.12.12 Maximum, minimum, and positive difference functions
7.12.12.1 Thef di mfunctions
Synopsis

#i ncl ude <mat h. h>

doubl e fdi m(doubl e x, double y);

float fdinf(float x, float y);
| ong doubl e fdim (long double x, |ong double y);

Description
The f di mfunctions determine the positive difference between their arguments:
Ek -y ifx>y
g0 ifxsy
A range error may occur.
Returns
The f di mfunctions return the positive difference value.
7.12.12.2 Thef max functions
Synopsis
#i ncl ude <mat h. h>
doubl e fmax(doubl e x, double y);

float frmaxf(float x, float y);
| ong doubl e fmaxl (1 ong doubl e x, |ong double vy);

212) The result of the next t owar d functions is determined in the type of the function, without loss of
range or precision in a floating second argument.

238 Library §7.12.12.2

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

Description
The f max functions determine the maximum numeric value of their arguments.?3)
Returns

The f max functions return the maximum numeric value of their arguments.

7.12.12.3 Thef m n functions
Synopsis
#i ncl ude <mat h. h>
doubl e fm n(doubl e x, double y);

float fmnf(float x, float y);
| ong doubl e fmnl(long double x, |ong double y);

Description

The f mi n functions determine the minimum numeric value of their arguments.?*4
Returns

The f m n functions return the minimum numeric value of their arguments.
7.12.13 Floating multiply-add

7.12.13.1 Thef ma functions

Synopsis

#i ncl ude <nmat h. h>

doubl e fma(doubl e x, double y, double z);

float frmaf (float x, float y, float z);

| ong double fmal (I ong double x, |ong double vy,
| ong doubl e z);

Description

The f ma functions compute (x xy) + z, rounded as one ternary operation: they compute
the value (as if) to infinite precision and round once to the result format, according to the |
current rounding mode. A range error may occur.

Returns

The f ma functions return (x xy) + z, rounded as one ternary operation.

213) NaN arguments are treated as missing data: if one argument is a NaN and the other numeric, then the
f max functions choose the numeric value. See F.9.9.2.

214) The f mi n functions are analogous to the f max functions in their treatment of NaNs.

§7.12.13.1 Library 239

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

7.12.14 Comparison macros

The relational and equality operators support the usual mathematical relationships
between numeric values. For any ordered pair of numeric values exactly one of the
relationships — less, greater, and equal — is true. Relational operators may raise the
“invalid” floating-point exception when argument values are NaNs. For a NaN and a
numeric value, or for two NaNs, just the unordered relationship is true.?*® The following
subclauses provide macros that are quiet (non floating-point exception raising) versions
of the relational operators, and other comparison macros that facilitate writing efficient
code that accounts for NaNs without suffering the *““invalid” floating-point exception. In
the synopses in this subclause, real-floating indicates that the argument shall be an
expression of real floating type.

7.12.14.1 Thei sgr eat er macro
Synopsis

#i ncl ude <mat h. h>
I nt isgreater (real-floating x, real-floating y);

Description

The i sgr eat er macro determines whether its first argument is greater than its second
argument. The value of i sgreat er (x, V) isalwaysequalto(x) > (y);however,
unlike (x) > (y),isgreater(x, y) does not raise the “invalid” floating-point
exception when x and y are unordered.

Returns

The i sgr eat er macro returns the value of (x) > (y).
7.12.14.2 Thei sgr eat er equal macro

Synopsis

#i ncl ude <mat h. h>
I nt isgreaterequal (real-floating x, real-floating y);

Description

The i sgr eat er equal macro determines whether its first argument is greater than or
equal to its second argument. The value of i sgr eat er equal (x, Yy) isalways equal
to (x) >= (y); however, unlike (x) >= (y), isgreaterequal (x, y) does
not raise the “invalid” floating-point exception when x and y are unordered.

215) IEC 60559 requires that the built-in relational operators raise the *““invalid™ floating-point exception if
the operands compare unordered, as an error indicator for programs written without consideration of
NaNs; the result in these cases is false.

240 Library §7.12.14.2

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

Returns

The i sgr eat er equal macro returns the value of (x) >= (vy).
7.12.14.3 Thei sl ess macro

Synopsis

#i ncl ude <mat h. h>
i nt isl ess(real-floating x, real-floating y);

Description

The i sl ess macro determines whether its first argument is less than its second
argument. The value of i sl ess(x, y) is always equal to (x) < (y); however,
unlike (x) < (y), isless(x, y) does not raise the “invalid” floating-point
exception when x and y are unordered.

Returns

Thei sl ess macro returns the value of (x) < (y).
7.12.14.4 Thei sl essequal macro

Synopsis

#i ncl ude <mat h. h>
I nt isl essequal (real-floating x, real-floating y);

Description

The i sl essequal macro determines whether its first argument is less than or equal to
its second argument. The value of islessequal (x, y) is always equal to
(x) <= (y); however, unlike (x) <= (y),islessequal (x, y) does not raise
the “invalid” floating-point exception when x and y are unordered.

Returns

Thei sl essequal macro returns the value of (x) <= (y).
7.12.14.5 Thei sl essgr eat er macro

Synopsis

#i ncl ude <mat h. h>
I nt islessgreat er (real-floating x, real-floating y) ;

Description

The i sl essgreat er macro determines whether its first argument is less than or
greater than its second argument. The i sl essgreater(x, Yy) macro is similar to
(x) < (y) ||l (x) > (y); however, i sl essgreater(x, y) does not raise
the “invalid” floating-point exception when x and y are unordered (nor does it evaluate x
and y twice).

§7.12.14.5 Library 241

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Returns

Thei sl essgr eat er macro returns the value of (x) < (y) || (x) > (y).
7.12.14.6 Thei sunor der ed macro

Synopsis

#i ncl ude <mat h. h>
I nt i sunorder ed(real-floating x, real-floating y);

Description
The i sunor der ed macro determines whether its arguments are unordered.
Returns

The i sunor der ed macro returns 1 if its arguments are unordered and 0 otherwise.

242 Library §7.12.14.6

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

7.13 Nonlocal jJumps<set | np. h>

The header <set j np. h> defines the macro set j np, and declares one function and
one type, for bypassing the normal function call and return discipline.?®)

The type declared is

j mp_buf

which is an array type suitable for holding the information needed to restore a calling
environment. The environment of a call to the set j np macro consists of information
sufficient for a call to the | ongj np function to return execution to the correct block and
invocation of that block, were it called recursively. It does not include the state of the
floating-point status flags, of open files, or of any other component of the abstract
machine.

It is unspecified whether setj np is a macro or an identifier declared with external
linkage. If a macro definition is suppressed in order to access an actual function, or a
program defines an external identifier with the name set j np, the behavior is undefined.

7.13.1 Save calling environment
7.13.1.1 Thesetj np macro
Synopsis

#i ncl ude <setj np. h>
i nt setjnp(jnp_buf env);

Description

The set j np macro saves its calling environment in its j np_buf argument for later use
by the | ongj np function.

Returns

If the return is from a direct invocation, the set j np macro returns the value zero. If the
return is from a call to the | ongj np function, the set j np macro returns a nonzero
value.

Environmental limits
An invocation of the set j np macro shall appear only in one of the following contexts:
— the entire controlling expression of a selection or iteration statement;

— one operand of a relational or equality operator with the other operand an integer
constant expression, with the resulting expression being the entire controlling

216) These functions are useful for dealing with unusual conditions encountered in a low-level function of
a program.

§7.13.1.1 Library 243

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

expression of a selection or iteration statement;

— the operand of a unary ! operator with the resulting expression being the entire
controlling expression of a selection or iteration statement; or

— the entire expression of an expression statement (possibly cast to voi d).
If the invocation appears in any other context, the behavior is undefined.
7.13.2 Restore calling environment

7.13.2.1 Thel ongj np function

Synopsis

#i ncl ude <setj np. h>
voi d | ongj mp(j mp_buf env, int val);

Description

The | ongj np function restores the environment saved by the most recent invocation of
the setj np macro in the same invocation of the program with the corresponding
j mp_buf argument. If there has been no such invocation, or if the function containing
the invocation of the set j np macro has terminated execution®”) in the interim, or if the
invocation of the setj np macro was within the scope of an identifier with variably
modified type and execution has left that scope in the interim, the behavior is undefined.

All accessible objects have values, and all other components of the abstract machine®®)

have state, as of the time the | ongj np function was called, except that the values of
objects of automatic storage duration that are local to the function containing the
invocation of the corresponding set j np macro that do not have volatile-qualified type
and have been changed between the setj np invocation and | ongj np call are
indeterminate.

Returns

After | ongj np is completed, program execution continues as if the corresponding
invocation of the setj np macro had just returned the value specified by val . The
| ongj np function cannot cause the set j np macro to return the value 0; if val is 0,
the set j np macro returns the value 1.

EXAMPLE The | ongj np function that returns control back to the point of the setj np invocation
might cause memory associated with a variable length array object to be squandered.

217) For example, by executing a r et ur n statement or because another | ongj np call has caused a
transfer to a set j np invocation in a function earlier in the set of nested calls.

218) This includes, but is not limited to, the floating-point status flags and the state of open files.

244 Library 8§7.13.2.1

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

#i ncl ude <setj np. h>
j mp_buf buf;

void g(int n);

void h(int n);

int n = 6;
void f(void)
{
int x[n]; /1 valid: f isnot terminated
setj np(buf);
a(n);
}
void g(int n)
{
int a[n]; /1 a may remain allocated
h(n);
}
void h(int n)
{
int b[n]; /1 b may remain allocated
I ongj mp(buf, 2); /1 might cause memory loss
}

§7.13.2.1 Library 245

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

7.14 Signal handling <si gnal . h>

The header <si gnal . h> declares a type and two functions and defines several macros,
for handling various signals (conditions that may be reported during program execution).

The type defined is
sig _atom c_t

which is the (possibly volatile-qualified) integer type of an object that can be accessed as
an atomic entity, even in the presence of asynchronous interrupts.

The macros defined are

SI G DFL
SI G_ERR
SIGIGN

which expand to constant expressions with distinct values that have type compatible with
the second argument to, and the return value of, the si gnal function, and whose values
compare unequal to the address of any declarable function; and the following, which
expand to positive integer constant expressions with type i nt and distinct values that are
the signal numbers, each corresponding to the specified condition:

SI GABRT abnormal termination, such as is initiated by the abor t function

SI GFPE an erroneous arithmetic operation, such as zero divide or an operation
resulting in overflow

SI A LL detection of an invalid function image, such as an invalid instruction
SI G NT receipt of an interactive attention signal

SI GSEGV an invalid access to storage

SI GTERM a termination request sent to the program

An implementation need not generate any of these signals, except as a result of explicit
calls to the r ai se function. Additional signals and pointers to undeclarable functions,
with macro definitions beginning, respectively, with the letters SI G and an uppercase
letter or with SI G_ and an uppercase letter,’*®) may also be specified by the
implementation. The complete set of signals, their semantics, and their default handling
is implementation-defined; all signal numbers shall be positive.

219) See “future library directions™ (7.26.9). The names of the signal numbers reflect the following terms
(respectively): abort, floating-point exception, illegal instruction, interrupt, segmentation violation,
and termination.

246 Library §7.14

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

7.14.1 Specify signal handling
7.14.1.1 Thesi gnal function
Synopsis

#i ncl ude <signal . h>
void (*signal (int sig, void (*func)(int)))(int);

Description

The si gnal function chooses one of three ways in which receipt of the signal number
si g is to be subsequently handled. If the value of f unc is SI G_DFL, default handling
for that signal will occur. If the value of f unc is SI G_I G\, the signal will be ignored.
Otherwise, f unc shall point to a function to be called when that signal occurs. An
invocation of such a function because of a signal, or (recursively) of any further functions
called by that invocation (other than functions in the standard library), is called a signal
handler.

When a signal occurs and f unc points to a function, it is implementation-defined
whether the equivalent of signal (sig, SIGDFL); is executed or the
implementation prevents some implementation-defined set of signals (at least including
si g) from occurring until the current signal handling has completed; in the case of
SI G LL, the implementation may alternatively define that no action is taken. Then the
equivalent of (*func) (si g); is executed. If and when the function returns, if the
value of si g is SI GFPE, SI G LL, SI GSEGV, or any other implementation-defined
value corresponding to a computational exception, the behavior is undefined; otherwise
the program will resume execution at the point it was interrupted.

If the signal occurs as the result of calling the abort or r ai se function, the signal
handler shall not call the r ai se function.

If the signal occurs other than as the result of calling the abor t or r ai se function, the
behavior is undefined if the signal handler refers to any object with static storage duration
other than by assigning a value to an object declared asvol ati |l esig atom c_t,or
the signal handler calls any function in the standard library other than the abort
function, the _Exi t function, or the si gnal function with the first argument equal to
the signal number corresponding to the signal that caused the invocation of the handler.
Furthermore, if such a call to the si gnal function results in a SI G_ERR return, the
value of er r no is indeterminate.???)

At program startup, the equivalent of
signal (sig, SIGIGN);

220) If any signal is generated by an asynchronous signal handler, the behavior is undefined.

§7.14.1.1 Library 247

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

may be executed for some signals selected in an implementation-defined manner; the
equivalent of

signal (sig, SIGDFL);
is executed for all other signals defined by the implementation.
The implementation shall behave as if no library function calls the si gnal function.
Returns

If the request can be honored, the si gnal function returns the value of f unc for the
most recent successful call to si gnal for the specified signal si g. Otherwise, a value of
SI G_ERRIis returned and a positive value is stored in er r no.

Forward references: the abort function (7.20.4.1), the exi t function (7.20.4.3), the
_Exi t function (7.20.4.4).

7.14.2 Send signal
7.14.2.1 Ther ai se function
Synopsis

#i ncl ude <signal . h>
int raise(int sig);

Description

The r ai se function carries out the actions described in 7.14.1.1 for the signal si g. If a
signal handler is called, the r ai se function shall not return until after the signal handler
does.

Returns

The r ai se function returns zero if successful, nonzero if unsuccessful.

248 Library §7.14.2.1

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

7.15 Variablearguments<st dar g. h>

The header <st dar g. h> declares a type and defines four macros, for advancing
through a list of arguments whose number and types are not known to the called function
when it is translated.

A function may be called with a variable number of arguments of varying types. As
described in 6.9.1, its parameter list contains one or more parameters. The rightmost
parameter plays a special role in the access mechanism, and will be designated parmN in
this description.

The type declared is
va_|i st

which is an object type suitable for holding information needed by the macros
va_start, va_arg, va_end, and va_copy. If access to the varying arguments is
desired, the called function shall declare an object (generally referred to as ap in this
subclause) having type va_l i st. The object ap may be passed as an argument to
another function; if that function invokes the va_ar g macro with parameter ap, the
value of ap in the calling function is indeterminate and shall be passed to the va_end
macro prior to any further reference to ap.??!)

7.15.1 Variable argument list access macros

The va_st art and va_ar g macros described in this subclause shall be implemented
as macros, not functions. It is unspecified whether va_copy and va_end are macros or
identifiers declared with external linkage. If a macro definition is suppressed in order to
access an actual function, or a program defines an external identifier with the same name,
the behavior is undefined. Each invocation of the va_start and va_copy macros
shall be matched by a corresponding invocation of the va_end macro in the same
function.

7.15.1.1 Theva_ar g macro
Synopsis

#i ncl ude <stdarg. h>
type va_arg(va_l i st ap, type);

Description

The va_ar g macro expands to an expression that has the specified type and the value of
the next argument in the call. The parameter ap shall have been initialized by the
va_start or va_copy macro (without an intervening invocation of the va_end

221) It is permitted to create a pointer to a va_| i st and pass that pointer to another function, in which
case the original function may make further use of the original list after the other function returns.

§7.15.1.1 Library 249

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

macro for the same ap). Each invocation of the va_ar g macro modifies ap so that the
values of successive arguments are returned in turn. The parameter type shall be a type
name specified such that the type of a pointer to an object that has the specified type can
be obtained simply by postfixing a * to type. If there is no actual next argument, or if
type is not compatible with the type of the actual next argument (as promoted according
to the default argument promotions), the behavior is undefined, except for the following
cases:

— one type is a signed integer type, the other type is the corresponding unsigned integer
type, and the value is representable in both types;

— one type is pointer to void and the other is a pointer to a character type.
Returns

The first invocation of the va_ar g macro after that of the va_st art macro returns the
value of the argument after that specified by parmN. Successive invocations return the
values of the remaining arguments in succession.

7.15.1.2 Theva_copy macro
Synopsis

#i ncl ude <stdarg. h>
void va_copy(va_ list dest, va list src);

Description

The va_copy macro initializes dest as a copy of sr c, as if the va_st art macro had
been applied to dest followed by the same sequence of uses of the va_ar g macro as
had previously been used to reach the present state of sr c. Neither the va_copy nor
va_start macro shall be invoked to reinitialize dest without an intervening
invocation of the va_end macro for the same dest .

Returns

The va_copy macro returns no value.
7.15.1.3 Theva_end macro
Synopsis

#i ncl ude <stdarg. h>
void va_end(va_list ap);

Description

The va_end macro facilitates a normal return from the function whose variable
argument list was referred to by the expansion of the va_st art macro, or the function
containing the expansion of the va_copy macro, that initialized the va_1| i st ap. The
va_end macro may modify ap so that it is no longer usable (without being reinitialized

250 Library §7.15.1.3

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

by the va_start or va_copy macro). If there is no corresponding invocation of the
va_start or va_copy macro, or if the va_end macro is not invoked before the
return, the behavior is undefined.

Returns

The va_end macro returns no value.
7.15.1.4 Theva_start macro
Synopsis

#i ncl ude <stdarg. h>
void va_start(va_list ap, parmN);

Description
The va_st art macro shall be invoked before any access to the unnamed arguments.

The va_st art macro initializes ap for subsequent use by the va_ar g and va_end
macros. Neither the va_st art nor va_copy macro shall be invoked to reinitialize ap
without an intervening invocation of the va_end macro for the same ap.

The parameter parmN is the identifier of the rightmost parameter in the variable
parameter list in the function definition (the one just before the , . ..). If the parameter
parmN is declared with the r egi st er storage class, with a function or array type, or
with a type that is not compatible with the type that results after application of the default
argument promotions, the behavior is undefined.

Returns

The va_st art macro returns no value.

EXAMPLE 1 The function f 1 gathers into an array a list of arguments that are pointers to strings (but not
more than MAXARGS arguments), then passes the array as a single argument to function f 2. The number of
pointers is specified by the first argument to f 1.

#i ncl ude <stdarg. h>
#defi ne MAXARGS 31

void f1(int n_ptrs, ...)
{

va_list ap;
char *array[MAXARGS] ;
int ptr_no = 0;

87.15.14 Library 251

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

if (n_ptrs > MAXARGS)
n_ptrs = MAXARGS;
va_start(ap, n_ptrs);
while (ptr_no < n_ptrs)
array[ptr_no++] = va_arg(ap, char *);
va_end(ap);
f2(n_ptrs, array);
}

Each call to f 1 is required to have visible the definition of the function or a declaration such as
void f1(int, ...);

EXAMPLE 2 The function f 3 is similar, but saves the status of the variable argument list after the
indicated number of arguments; after f 2 has been called once with the whole list, the trailing part of the list
is gathered again and passed to function f 4.

#i ncl ude <stdarg. h>
#defi ne MAXARGS 31

void f3(int n_ptrs, int f4_after, ...)
{
va_|list ap, ap_save;
char *array[MAXARGS] ;
int ptr_no = 0;
if (n_ptrs > MAXARGS)
n_ptrs = MAXARGS
va_start(ap, f4 _after);
while (ptr_no < n_ptrs) {
array[ptr_no++] = va_arg(ap, char *);
if (ptr_no == f4_after)
va_copy(ap_save, ap);

va_end(ap);
f2(n_ptrs, array);

/' Now process the saved copy.

n_ptrs -= f4_after;
ptr_no = 0;
while (ptr_no < n_ptrs)
array[ptr_no++] = va_arg(ap_save, char *);
va_end(ap_save);
f4(n_ptrs, array);

252 Library §7.15.1.4

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

7.16 Boolean type and values<st dbool . h>
The header <st dbool . h> defines four macros.
The macro
bool
expands to _Bool .

The remaining three macros are suitable for use in #i f preprocessing directives. They
are

true
which expands to the integer constant 1,
fal se
which expands to the integer constant 0, and
__bool true false_are defined
which expands to the integer constant 1.

Notwithstanding the provisions of 7.1.3, a program may undefine and perhaps then
redefine the macros bool , t r ue, and f al se.???

222) See “future library directions™ (7.26.7).

8§7.16 Library 253

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

7.17 Common definitions <st ddef . h>

The following types and macros are defined in the standard header <st ddef . h>. Some
are also defined in other headers, as noted in their respective subclauses.

The types are
ptrdiff _t

which is the signed integer type of the result of subtracting two pointers;
size_t

which is the unsigned integer type of the result of the si zeof operator; and
wchar _t

which is an integer type whose range of values can represent distinct codes for all
members of the largest extended character set specified among the supported locales; the |
null character shall have the code value zero. Each member of the basic character set |
shall have a code value equal to its value when used as the lone character in an integer |
character constant if an implementation does not define |
__STDC_MB_M GHT_NEQ WC .

The macros are
NUL L

which expands to an implementation-defined null pointer constant; and
of f set of (type, member-designator)

which expands to an integer constant expression that has type si ze_t, the value of
which is the offset in bytes, to the structure member (designated by member-designator),
from the beginning of its structure (designated by type). The type and member designator
shall be such that given

static type t;

then the expression &(t . member-designator) evaluates to an address constant. (If the
specified member is a bit-field, the behavior is undefined.) |

Recommended practice |

The types used for si ze_t and pt rdi f f _t should not have an integer conversion rank |
greater than that of si gned | ong int unless the implementation supports objects |
large enough to make this necessary.

Forward references: localization (7.11).

254 Library 8§7.17

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

7.18 Integer types<st di nt. h>

The header <st di nt . h> declares sets of integer types having specified widths, and
defines corresponding sets of macros.??® It also defines macros that specify limits of
integer types corresponding to types defined in other standard headers.

Types are defined in the following categories:

— integer types having certain exact widths;

— integer types having at least certain specified widths;

— fastest integer types having at least certain specified widths;
— integer types wide enough to hold pointers to objects;

— integer types having greatest width.

(Some of these types may denote the same type.)

Corresponding macros specify limits of the declared types and construct suitable
constants.

For each type described herein that the implementation provides,??¥ <st di nt . h> shall
declare that typedef name and define the associated macros. Conversely, for each type
described herein that the implementation does not provide, <st di nt. h> shall not
declare that typedef name nor shall it define the associated macros. An implementation
shall provide those types described as ““required’, but need not provide any of the others
(described as ““optional”).

7.18.1 Integer types

When typedef names differing only in the absence or presence of the initial u are defined,
they shall denote corresponding signed and unsigned types as described in 6.2.5; an
implementation providing one of these corresponding types shall also provide the other.

In the following descriptions, the symbol N represents an unsigned decimal integer with
no leading zeros (e.g., 8 or 24, but not 04 or 048).

223) See “future library directions” (7.26.8).

224) Some of these types may denote implementation-defined extended integer types.

§7.18.1 Library 255

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

7.18.1.1 Exact-width integer types

The typedef name i nt N_t designates a signed integer type with width N, no padding
bits, and a two’s complement representation. Thus, i nt 8 t denotes a signed integer
type with a width of exactly 8 bits.

The typedef name ui nt N_t designates an unsigned integer type with width N. Thus,
ui nt 24_t denotes an unsigned integer type with a width of exactly 24 bits.

These types are optional. However, if an implementation provides integer types with
widths of 8, 16, 32, or 64 bits, no padding bits, and (for the signed types) that have a |
two’s complement representation, it shall define the corresponding typedef names.

7.18.1.2 Minimum-width integer types

The typedef name i nt _| east N_t designates a signed integer type with a width of at
least N, such that no signed integer type with lesser size has at least the specified width.
Thus, i nt _| east 32_t denotes a signed integer type with a width of at least 32 bits.

The typedef name ui nt _| east N_t designates an unsigned integer type with a width
of at least N, such that no unsigned integer type with lesser size has at least the specified
width. Thus, ui nt _| east 16_t denotes an unsigned integer type with a width of at
least 16 bits.

The following types are required:

int |east8 t uint | east8_t

int_leastl16_t uint | east16_t
int_|east32 t uint | east32 t
int_|east64_t uint | east 64 _t

All other types of this form are optional.
7.18.1.3 Fastest minimum-width integer types

Each of the following types designates an integer type that is usually fastest??® to operate
with among all integer types that have at least the specified width.

The typedef name i nt _f ast N_t designates the fastest signed integer type with a width
of at least N. The typedef name ui nt _f ast N_t designates the fastest unsigned integer
type with a width of at least N.

225) The designated type is not guaranteed to be fastest for all purposes; if the implementation has no clear
grounds for choosing one type over another, it will simply pick some integer type satisfying the
signedness and width requirements.

256 Library §7.18.1.3

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

The following types are required:

int_fast8_t uint_fast8_t

int fastl16 t uint fastl16 t
int_fast32_t uint_fast32_t
int fast64 t uint _fast64_t

All other types of this form are optional.
7.18.1.4 Integer types capable of holding object pointers

The following type designates a signed integer type with the property that any valid
pointer to voi d can be converted to this type, then converted back to pointer to voi d,
and the result will compare equal to the original pointer:

intptr _t

The following type designates an unsigned integer type with the property that any valid
pointer to voi d can be converted to this type, then converted back to pointer to voi d,
and the result will compare equal to the original pointer:

uintptr _t
These types are optional.
7.18.1.5 Greatest-width integer types

The following type designates a signed integer type capable of representing any value of
any signed integer type:

i nt max_t

The following type designates an unsigned integer type capable of representing any value
of any unsigned integer type:

ui nt max_t
These types are required.
7.18.2 Limits of specified-width integer types

The following object-like macros?2®) specify the minimum and maximum limits of the
types declared in <st di nt . h>. Each macro name corresponds to a similar type name in
7.18.1.

Each instance of any defined macro shall be replaced by a constant expression suitable
for use in #i f preprocessing directives, and this expression shall have the same type as
would an expression that is an object of the corresponding type converted according to

226) C++ implementations should define these macros only when __STDC LI M T_MACRCS is defined
before <st di nt . h> is included.

§7.18.2 Library 257

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

the integer promotions. Its implementation-defined value shall be equal to or greater in
magnitude (absolute value) than the corresponding value given below, with the same sign,
except where stated to be exactly the given value.

7.18.2.1 Limits of exact-width integer types
1 — minimum values of exact-width signed integer types

| NTN_M N exactly —(2N™1)
— maximum values of exact-width signed integer types

| NTN_MVAX exactly 2Nt -1
— maximum values of exact-width unsigned integer types

Ul NTN_ MAX exactly 2N -1
7.18.2.2 Limitsof minimum-width integer types

1 — minimum values of minimum-width signed integer types
| NT_LEASTN_M N -2N1-1)
— maximum values of minimum-width signed integer types
| NT_LEASTN_NMAX 2N 1 -1
— maximum values of minimum-width unsigned integer types
Ul NT_LEASTN_MAX 2N -1
7.18.2.3 Limitsof fastest minimum-width integer types
1 — minimum values of fastest minimum-width signed integer types
| NT_FASTN._ M N -(2N1-1)
— maximum values of fastest minimum-width signed integer types
| NT_FASTN_MAX 2N 1 -1
— maximum values of fastest minimum-width unsigned integer types
Ul NT_FASTN_MAX 2N -1
7.18.2.4 Limitsof integer types capable of holding object pointers
1 — minimum value of pointer-holding signed integer type
| NTPTR_M N -2 -1)
— maximum value of pointer-holding signed integer type
| NTPTR_MAX 2 -1

258 Library §7.18.2.4

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

— maximum value of pointer-holding unsigned integer type
UINTPTR_MAX 216 -1

7.18.2.5 Limitsof greatest-width integer types

— minimum value of greatest-width signed integer type
INTMAX_MIN -(2%-1)

— maximum value of greatest-width signed integer type
INTMAX_MAX 2% -1

— maximum value of greatest-width unsigned integer type
UINTMAX_MAX 2% -1

7.18.3 Limitsof other integer types

The following object-like macros®?”) specify the minimum and maximum limits of
integer types corresponding to types defined in other standard headers.

Each instance of these macros shall be replaced by a constant expression suitable for use
in #1 T preprocessing directives, and this expression shall have the same type as would an
expression that is an object of the corresponding type converted according to the integer
promotions. Its implementation-defined value shall be equal to or greater in magnitude
(absolute value) than the corresponding value given below, with the same sign. An
implementation shall define only the macros corresponding to those typedef names it
actually provides.??®)

— limits of ptrdiff_t

PTRDIFF_MIN -65535

PTRDIFF_MAX +65535
— limits of sig_atomic_t

SIG_ATOMIC_MIN see below

SI1G_ATOMIC_MAX see below
— limitof size_t

S1ZE_MAX 65535

— limits of wchar_t

227) C++ implementations should define these macros only when __ STDC_LIMIT_MACROS is defined
before <stdint.h> is included.

228) A freestanding implementation need not provide all of these types.

§7.18.3 Library 259

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

WCHAR M N see below

WCHAR VAX see below
— limits of wi nt _t

WNT_MN see below

W NT_MAX see below

If sig _atomc_t (see 7.14) is defined as a signed integer type, the value of
SI G_ATOM C_M N shall be no greater than =127 and the value of SI G ATOM C_MAX
shall be no less than 127; otherwise, si g_at om c_t is defined as an unsigned integer
type, and the value of SIG ATOMC MN shall be 0 and the value of
SI G_ATOM C_MAX shall be no less than 255.

If wehar _t (see 7.17) is defined as a signed integer type, the value of WCHAR_M N
shall be no greater than —127 and the value of WCHAR _MAX shall be no less than 127;
otherwise, wchar _t is defined as an unsigned integer type, and the value of
WCHAR_M N shall be 0 and the value of WCHAR _MAX shall be no less than 255.22°)

If wi nt _t (see 7.24) is defined as a signed integer type, the value of W NT_M N shall
be no greater than —32767 and the value of W NT_MAX shall be no less than 32767;
otherwise, W nt _t is defined as an unsigned integer type, and the value of W NT_M N
shall be 0 and the value of W NT_MAX shall be no less than 65535.

7.18.4 Macrosfor integer constants

The following function-like macros?®® expand to integer constants suitable for
initializing objects that have integer types corresponding to types defined in
<st di nt. h>. Each macro name corresponds to a similar type name in 7.18.1.2 or
7.18.1.5.

The argument in any instance of these macros shall be an unsuffixed integer constant (as
defined in 6.4.4.1) with a value that does not exceed the limits for the corresponding type.

Each invocation of one of these macros shall expand to an integer constant expression
suitable for use in #i f preprocessing directives. The type of the expression shall have
the same type as would an expression of the corresponding type converted according to
the integer promotions. The value of the expression shall be that of the argument.

229) The values WCHAR M Nand WCHAR_MAX do not necessarily correspond to members of the extended
character set.

230) C++ implementations should define these macros only when _ STDC CONSTANT_MACRCS is
defined before <st di nt . h> is included.

260 Library §7.18.4

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

7.18.4.1 Macrosfor minimum-width integer constants

The macro | NTN_C(value) shall expand to an integer constant expression
corresponding to the type i nt _| east N_t. The macro Ul NTN_C(value) shall expand
to an integer constant expression corresponding to the type uint | east N _t. For
example, if ui nt _| east 64 _t is a name for the type unsi gned | ong | ong int,
then Ul NT64_C(0x123) might expand to the integer constant Ox123ULL.

7.18.4.2 Macrosfor greatest-width integer constants

The following macro expands to an integer constant expression having the value specified
by its argument and the type i nt max_t :

I NTMAX_C(value)

The following macro expands to an integer constant expression having the value specified
by its argument and the type ui nt max_t:

Ul NTMAX_C(value)

§7.18.4.2 Library 261

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

7.19 Input/output <st di o. h>
7.19.1 Introduction

The header <st di 0. h> declares three types, several macros, and many functions for
performing input and output.

The types declared are si ze_t (described in 7.17);
FI LE

which is an object type capable of recording all the information needed to control a
stream, including its file position indicator, a pointer to its associated buffer (if any), an
error indicator that records whether a read/write error has occurred, and an end-of-file
indicator that records whether the end of the file has been reached; and

f pos_t
which is an object type other than an array type capable of recording all the information
needed to specify uniquely every position within a file.
The macros are NULL (described in 7.17);

| OFBF
1 OLBF
1 ONBF

which expand to integer constant expressions with distinct values, suitable for use as the
third argument to the set vbuf function;

BUFSI Z

which expands to an integer constant expression that is the size of the buffer used by the
set buf function;

EOF

which expands to an integer constant expression, with type i nt and a negative value, that
is returned by several functions to indicate end-of-file, that is, no more input from a
stream;

FOPEN_MAX

which expands to an integer constant expression that is the minimum number of files that
the implementation guarantees can be open simultaneously;

FI LENAVE_MAX

which expands to an integer constant expression that is the size needed for an array of
char large enough to hold the longest file name string that the implementation

262 Library §7.19.1

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

guarantees can be opened;?3%

L_t npnam

which expands to an integer constant expression that is the size needed for an array of
char large enough to hold a temporary file name string generated by the t npnam
function;

SEEK_CUR
SEEK_END
SEEK_SET

which expand to integer constant expressions with distinct values, suitable for use as the
third argument to the f seek function;

TMP_MAX

which expands to an integer constant expression that is the maximum number of unique
file names that can be generated by the t npnamfunction;

stderr
stdin
st dout

which are expressions of type “pointer to FI LE” that point to the FI LE objects
associated, respectively, with the standard error, input, and output streams.

The header <wchar . h> declares a number of functions useful for wide character input
and output. The wide character input/output functions described in that subclause
provide operations analogous to most of those described here, except that the
fundamental units internal to the program are wide characters. The external
representation (in the file) is a sequence of “generalized” multibyte characters, as
described further in 7.19.3.

The input/output functions are given the following collective terms:

— The wide character input functions — those functions described in 7.24 that perform
input into wide characters and wide strings: f get we, f get ws, get we, get wehar,
fwscanf,wscanf,vfwscanf, and vwscanf .

— The wide character output functions — those functions described in 7.24 that perform
output from wide characters and wide strings: f putwc, fputws, putwc,
putwchar, fwprintf, worintf,viwprintf,andvwprintf.

231) If the implementation imposes no practical limit on the length of file name strings, the value of
FI LENAME_NMAX should instead be the recommended size of an array intended to hold a file name
string. Of course, file name string contents are subject to other system-specific constraints; therefore
all possible strings of length FI LENAME_MAX cannot be expected to be opened successfully.

§7.19.1 Library 263

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

— The wide character input/output functions — the union of the unget wc function, the
wide character input functions, and the wide character output functions.

— The byte input/output functions — those functions described in this subclause that
perform input/output: fgetc, fgets, fprintf, fputc, fputs, fread,
fscanf, fwrite, getc, getchar, gets, printf, putc, putchar, puts,
scanf,ungetc,vfprintf,vfscanf,vprintf,andvscanf.

Forward references. files (7.19.3), the f seek function (7.19.9.2), streams (7.19.2), the
t npnamfunction (7.19.4.4), <wchar . h> (7.24).

7.19.2 Streams

Input and output, whether to or from physical devices such as terminals and tape drives,
or whether to or from files supported on structured storage devices, are mapped into
logical data streams, whose properties are more uniform than their various inputs and
outputs. Two forms of mapping are supported, for text streams and for binary
streams.?%?)

A text stream is an ordered sequence of characters composed into lines, each line
consisting of zero or more characters plus a terminating new-line character. Whether the
last line requires a terminating new-line character is implementation-defined. Characters
may have to be added, altered, or deleted on input and output to conform to differing
conventions for representing text in the host environment. Thus, there need not be a one-
to-one correspondence between the characters in a stream and those in the external
representation. Data read in from a text stream will necessarily compare equal to the data
that were earlier written out to that stream only if: the data consist only of printing
characters and the control characters horizontal tab and new-line; no new-line character is
immediately preceded by space characters; and the last character is a new-line character.
Whether space characters that are written out immediately before a new-line character
appear when read in is implementation-defined.

A binary stream is an ordered sequence of characters that can transparently record
internal data. Data read in from a binary stream shall compare equal to the data that were
earlier written out to that stream, under the same implementation. Such a stream may,
however, have an implementation-defined number of null characters appended to the end
of the stream.

Each stream has an orientation. After a stream is associated with an external file, but
before any operations are performed on it, the stream is without orientation. Once a wide
character input/output function has been applied to a stream without orientation, the

232) An implementation need not distinguish between text streams and binary streams. In such an
implementation, there need be no new-line characters in a text stream nor any limit to the length of a
line.

264 Library §7.19.2

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

stream becomes a wide-oriented stream. Similarly, once a byte input/output function has
been applied to a stream without orientation, the stream becomes a byte-oriented stream.
Only a call to the f r eopen function or the f wi de function can otherwise alter the
orientation of a stream. (A successful call to f r eopen removes any orientation.)?3%)

Byte input/output functions shall not be applied to a wide-oriented stream and wide
character input/output functions shall not be applied to a byte-oriented stream. The
remaining stream operations do not affect, and are not affected by, a stream’s orientation,
except for the following additional restrictions:

— Binary wide-oriented streams have the file-positioning restrictions ascribed to both
text and binary streams.

— For wide-oriented streams, after a successful call to a file-positioning function that
leaves the file position indicator prior to the end-of-file, a wide character output
function can overwrite a partial multibyte character; any file contents beyond the
byte(s) written are henceforth indeterminate.

Each wide-oriented stream has an associated nbst at e _t object that stores the current
parse state of the stream. A successful call to f get pos stores a representation of the
value of this nbst at e _t object as part of the value of the f pos_t object. A later
successful call to f set pos using the same stored f pos_t value restores the value of
the associated nbst at e _t object as well as the position within the controlled stream.

Environmental limits

An implementation shall support text files with lines containing at least 254 characters,
including the terminating new-line character. The value of the macro BUFSI Z shall be at
least 256.

Forward references. the f r eopen function (7.19.5.4), the f wi de function (7.24.3.5),
nbstate t (7.25.1), the fgetpos function (7.19.9.1), the fset pos function
(7.19.9.3).

233) The three predefined streams st di n, st dout , and st der r are unoriented at program startup.

§7.19.2 Library 265

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

7.19.3 Files

A stream is associated with an external file (which may be a physical device) by opening
a file, which may involve creating a new file. Creating an existing file causes its former
contents to be discarded, if necessary. If a file can support positioning requests (such as a
disk file, as opposed to a terminal), then a file position indicator associated with the
stream is positioned at the start (character number zero) of the file, unless the file is
opened with append mode in which case it is implementation-defined whether the file
position indicator is initially positioned at the beginning or the end of the file. The file
position indicator is maintained by subsequent reads, writes, and positioning requests, to
facilitate an orderly progression through the file.

Binary files are not truncated, except as defined in 7.19.5.3. Whether a write on a text
stream causes the associated file to be truncated beyond that point is implementation-
defined.

When a stream is unbuffered, characters are intended to appear from the source or at the
destination as soon as possible. Otherwise characters may be accumulated and
transmitted to or from the host environment as a block. When a stream is fully buffered,
characters are intended to be transmitted to or from the host environment as a block when
a buffer is filled. When a stream is line buffered, characters are intended to be
transmitted to or from the host environment as a block when a new-line character is
encountered. Furthermore, characters are intended to be transmitted as a block to the host
environment when a buffer is filled, when input is requested on an unbuffered stream, or
when input is requested on a line buffered stream that requires the transmission of
characters from the host environment. Support for these characteristics is
implementation-defined, and may be affected via the set buf and set vbuf functions.

A file may be disassociated from a controlling stream by closing the file. Output streams
are flushed (any unwritten buffer contents are transmitted to the host environment) before
the stream is disassociated from the file. The value of a pointer to a FI LE object is
indeterminate after the associated file is closed (including the standard text streams).
Whether a file of zero length (on which no characters have been written by an output
stream) actually exists is implementation-defined.

The file may be subsequently reopened, by the same or another program execution, and
its contents reclaimed or modified (if it can be repositioned at its start). If the mai n
function returns to its original caller, or if the exi t function is called, all open files are
closed (hence all output streams are flushed) before program termination. Other paths to
program termination, such as calling the abort function, need not close all files

properly.

The address of the FI LE object used to control a stream may be significant; a copy of a
FI LE object need not serve in place of the original.

266 Library §7.19.3

10

11

12

13

14

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

At program startup, three text streams are predefined and need not be opened explicitly
— standard input (for reading conventional input), standard output (for writing
conventional output), and standard error (for writing diagnostic output). As initially
opened, the standard error stream is not fully buffered; the standard input and standard
output streams are fully buffered if and only if the stream can be determined not to refer
to an interactive device.

Functions that open additional (nontemporary) files require a file name, which is a string.
The rules for composing valid file names are implementation-defined. Whether the same
file can be simultaneously open multiple times is also implementation-defined.

Although both text and binary wide-oriented streams are conceptually sequences of wide
characters, the external file associated with a wide-oriented stream is a sequence of
multibyte characters, generalized as follows:

— Multibyte encodings within files may contain embedded null bytes (unlike multibyte
encodings valid for use internal to the program).

— A file need not begin nor end in the initial shift state.23%

Moreover, the encodings used for multibyte characters may differ among files. Both the
nature and choice of such encodings are implementation-defined.

The wide character input functions read multibyte characters from the stream and convert
them to wide characters as if they were read by successive calls to the f get we function.
Each conversion occurs as if by a call to the nmbr t owc function, with the conversion state
described by the stream’s own nbstate_t object. The byte input functions read
characters from the stream as if by successive calls to the f get ¢ function.

The wide character output functions convert wide characters to multibyte characters and
write them to the stream as if they were written by successive calls to the f put wc
function. Each conversion occurs as if by a call to the wert onb function, with the
conversion state described by the stream’s own nbst at e_t object. The byte output
functions write characters to the stream as if by successive calls to the f put ¢ function.

In some cases, some of the byte input/output functions also perform conversions between
multibyte characters and wide characters. These conversions also occur as if by calls to
the mbr t owc and wer t onb functions.

An encoding error occurs if the character sequence presented to the underlying
nmbr t owc function does not form a valid (generalized) multibyte character, or if the code
value passed to the underlying wer t onb does not correspond to a valid (generalized)

234) Setting the file position indicator to end-of-file, as with f seek(file, 0, SEEK END), has
undefined behavior for a binary stream (because of possible trailing null characters) or for any stream
with state-dependent encoding that does not assuredly end in the initial shift state.

§7.19.3 Library 267

15

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

multibyte character. The wide character input/output functions and the byte input/output
functions store the value of the macro EI LSEQin er r no if and only if an encoding error
occurs.

Environmental limits

The value of FOPEN_MAX shall be at least eight, including the three standard text
streams.

Forward references: the exit function (7.20.4.3), the f get ¢ function (7.19.7.1), the
f open function (7.19.5.3), the fputc function (7.19.7.3), the set buf function
(7.19.5.5), the setvbuf function (7.19.5.6), the f getwc function (7.24.3.1), the
f put wc function (7.24.3.3), conversion state (7.24.6), the nbrtowc function
(7.24.6.3.2), the wer t onb function (7.24.6.3.3).

7.19.4 Operations on files
7.19.4.1 Ther enpve function
Synopsis

#i ncl ude <stdio. h>
I nt renove(const char *fil enane);

Description

The r enove function causes the file whose name is the string pointed to by f i | enane
to be no longer accessible by that name. A subsequent attempt to open that file using that
name will fail, unless it is created anew. If the file is open, the behavior of the r enove
function is implementation-defined.

Returns
The r enove function returns zero if the operation succeeds, nonzero if it fails.
7.19.4.2 The r enane function
Synopsis

#i ncl ude <stdio. h>

I nt rename(const char *old, const char *new);
Description

The r enane function causes the file whose name is the string pointed to by ol d to be
henceforth known by the name given by the string pointed to by new. The file named
ol d is no longer accessible by that name. If a file named by the string pointed to by new
exists prior to the call to the r enan®e function, the behavior is implementation-defined.

268 Library §7.19.4.2

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

Returns
The r enane function returns zero if the operation succeeds, nonzero if it fails,2%) in
which case if the file existed previously it is still known by its original name.
7.19.4.3 Thet npfi | e function
Synopsis
#i ncl ude <stdi o. h>
FILE *tnpfil e(void);

Description

The t npf i | e function creates a temporary binary file that is different from any other
existing file and that will automatically be removed when it is closed or at program
termination. If the program terminates abnormally, whether an open temporary file is
removed is implementation-defined. The file is opened for update with " wb+" mode.

Recommended practice

It should be possible to open at least TMP_MAX temporary files during the lifetime of the |
program (this limit may be shared with t npnam) and there should be no limit on the
number simultaneously open other than this limit and any limit on the number of open
files (FOPEN_MAX).

Returns

The t npf i | e function returns a pointer to the stream of the file that it created. If the file
cannot be created, the t npf i | e function returns a null pointer.

Forward references: the f open function (7.19.5.3).
7.19.4.4 Thet npnamfunction
Synopsis

#i ncl ude <stdio. h>
char *tnpnan{char *s);

Description

The t npnamfunction generates a string that is a valid file name and that is not the same
as the name of an existing file.®®) The function is potentially capable of generating

235) Among the reasons the implementation may cause the r enane function to fail are that the file is open
or that it is necessary to copy its contents to effectuate its renaming.

236) Files created using strings generated by the t npnam function are temporary only in the sense that
their names should not collide with those generated by conventional naming rules for the
implementation. It is still necessary to use the r emove function to remove such files when their use
is ended, and before program termination.

§7.19.4.4 Library 269

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

TMP_MAX different strings, but any or all of them may already be in use by existing files
and thus not be suitable return values.

The t npnamfunction generates a different string each time it is called.
The implementation shall behave as if no library function calls the t npnamfunction.
Returns

If no suitable string can be generated, the t npnam function returns a null pointer.
Otherwise, if the argument is a null pointer, the t mpnamfunction leaves its result in an
internal static object and returns a pointer to that object (subsequent calls to the t npnam
function may modify the same object). If the argument is not a null pointer, it is assumed
to point to an array of at least L_t npnamchar s; the t npnamfunction writes its result
in that array and returns the argument as its value.

Environmental limits

The value of the macro TMP_MAX shall be at least 25.
7.19.5 File access functions

7.19.5.1 Thef cl ose function

Synopsis

#i ncl ude <stdi o. h>
int fclose(FILE *strean);

Description

A successful call to the f cl ose function causes the stream pointed to by st r eamto be
flushed and the associated file to be closed. Any unwritten buffered data for the stream
are delivered to the host environment to be written to the file; any unread buffered data
are discarded. Whether or not the call succeeds, the stream is disassociated from the file
and any buffer set by the set buf or set vbuf function is disassociated from the stream
(and deallocated if it was automatically allocated).

Returns

The f cl ose function returns zero if the stream was successfully closed, or ECF if any
errors were detected.

7.19.5.2 Thef f | ush function
Synopsis

#i ncl ude <stdi o. h>
int fflush(FILE *strean);

270 Library §7.19.5.2

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

Description

If st ream points to an output stream or an update stream in which the most recent
operation was not input, the f f I ush function causes any unwritten data for that stream
to be delivered to the host environment to be written to the file; otherwise, the behavior is
undefined.

If st reamis a null pointer, the f f | ush function performs this flushing action on all
streams for which the behavior is defined above.

Returns

The f f | ush function sets the error indicator for the stream and returns EOF if a write
error occurs, otherwise it returns zero.

Forward references: the f open function (7.19.5.3).
7.19.5.3 Thef open function
Synopsis

#i ncl ude <stdi o. h>

FILE *fopen(const char * restrict filenane,
const char * restrict node);

Description

The f open function opens the file whose name is the string pointed to by f i | enarne,
and associates a stream with it.

The argument nmode points to a string. If the string is one of the following, the file is

open in the indicated mode. Otherwise, the behavior is undefined.?3")

r open text file for reading

w truncate to zero length or create text file for writing

a append; open or create text file for writing at end-of-file

rb open binary file for reading

wb truncate to zero length or create binary file for writing

ab append; open or create binary file for writing at end-of-file

r+ open text file for update (reading and writing)

WH truncate to zero length or create text file for update

at append; open or create text file for update, writing at end-of-file

237) If the string begins with one of the above sequences, the implementation might choose to ignore the
remaining characters, or it might use them to select different kinds of a file (some of which might not
conform to the properties in 7.19.2).

§7.19.5.3 Library 271

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

r+b or rb+ open binary file for update (reading and writing)
w+b or wb+ truncate to zero length or create binary file for update
a+b or ab+ append; open or create binary file for update, writing at end-of-file

Opening a file with read mode (" r = as the first character in the mode argument) fails if
the file does not exist or cannot be read.

Opening a file with append mode ("a" as the first character in the mode argument)
causes all subsequent writes to the file to be forced to the then current end-of-file,
regardless of intervening calls to the fseek function. In some implementations, opening
a binary file with append mode ("b*" as the second or third character in the above list of
mode argument values) may initially position the file position indicator for the stream
beyond the last data written, because of null character padding.

When a file is opened with update mode (*+* as the second or third character in the
above list of mode argument values), both input and output may be performed on the
associated stream. However, output shall not be directly followed by input without an
intervening call to the FFlush function or to a file positioning function (fseek,
fsetpos, or rewind), and input shall not be directly followed by output without an
intervening call to a file positioning function, unless the input operation encounters end-
of-file. Opening (or creating) a text file with update mode may instead open (or create) a
binary stream in some implementations.

When opened, a stream is fully buffered if and only if it can be determined not to refer to
an interactive device. The error and end-of-file indicators for the stream are cleared.

Returns

The Fopen function returns a pointer to the object controlling the stream. If the open
operation fails, fopen returns a null pointer.

Forward references: file positioning functions (7.19.9).
7.19.5.4 The freopen function
Synopsis
#include <stdio.h>
FILE *freopen(const char * restrict filename,
const char * restrict mode,
FILE * restrict stream);

Description

The Freopen function opens the file whose name is the string pointed to by Fi lename
and associates the stream pointed to by stream with it. The mode argument is used just

272 Library §7.19.5.4

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

as in the f open function.2%®)

If fil enane is a null pointer, the f r eopen function attempts to change the mode of
the stream to that specified by node, as if the name of the file currently associated with
the stream had been used. It is implementation-defined which changes of mode are
permitted (if any), and under what circumstances.

The f r eopen function first attempts to close any file that is associated with the specified
stream. Failure to close the file is ignored. The error and end-of-file indicators for the
stream are cleared.

Returns

The freopen function returns a null pointer if the open operation fails. Otherwise,
f r eopen returns the value of st r eam

7.19.5.5 Theset buf function
Synopsis
#i ncl ude <stdi o. h>

voi d setbuf (FILE * restrict stream
char * restrict buf);

Description

Except that it returns no value, the set buf function is equivalent to the set vbuf
function invoked with the values _| OFBF for node and BUFSI Z for si ze, or (if buf
is a null pointer), with the value _| ONBF for node.

Returns
The set buf function returns no value.
Forward references: the set vbuf function (7.19.5.6).
7.19.5.6 Theset vbuf function
Synopsis
#i ncl ude <stdi o. h>
I nt setvbuf (FILE * restrict stream

char * restrict buf,
I nt node, size_t size);

238) The primary use of the f r eopen function is to change the file associated with a standard text stream
(stderr,stdin,orstdout), as those identifiers need not be modifiable Ivalues to which the value
returned by the f open function may be assigned.

§7.19.5.6 Library 273

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Description

The set vbuf function may be used only after the stream pointed to by st r eamhas
been associated with an open file and before any other operation (other than an
unsuccessful call to set vbuf) is performed on the stream. The argument node
determines how st r eamwill be buffered, as follows: | OFBF causes input/output to be
fully buffered; | OLBF causes input/output to be line buffered; | ONBF causes
input/output to be unbuffered. If buf is not a null pointer, the array it points to may be
used instead of a buffer allocated by the set vbuf function?®® and the argument si ze
specifies the size of the array; otherwise, si ze may determine the size of a buffer
allocated by the set vbuf function. The contents of the array at any time are
indeterminate.

Returns

The set vbuf function returns zero on success, or nonzero if an invalid value is given
for node or if the request cannot be honored.

7.19.6 Formatted input/output functions

The formatted input/output functions shall behave as if there is a sequence point after the
actions associated with each specifier.249)

7.19.6.1 Thef pri ntf function
Synopsis
#i ncl ude <stdi o. h>

int fprintf(FILE * restrict stream
const char * restrict format, ...);

Description

The f pri nt f function writes output to the stream pointed to by st r eam under control
of the string pointed to by f ormat that specifies how subsequent arguments are
converted for output. If there are insufficient arguments for the format, the behavior is
undefined. If the format is exhausted while arguments remain, the excess arguments are
evaluated (as always) but are otherwise ignored. The f pri ntf function returns when
the end of the format string is encountered.

The format shall be a multibyte character sequence, beginning and ending in its initial
shift state. The format is composed of zero or more directives: ordinary multibyte
characters (not %9, which are copied unchanged to the output stream; and conversion

239) The buffer has to have a lifetime at least as great as the open stream, so the stream should be closed
before a buffer that has automatic storage duration is deallocated upon block exit.

240) The f pri nt f functions perform writes to memory for the %n specifier.

274 Library §7.19.6.1

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

specifications, each of which results in fetching zero or more subsequent arguments,
converting them, if applicable, according to the corresponding conversion specifier, and
then writing the result to the output stream.

Each conversion specification is introduced by the character % After the % the following
appear in sequence:

— Zero or more flags (in any order) that modify the meaning of the conversion
specification.

— An optional minimum field width. If the converted value has fewer characters than the
field width, it is padded with spaces (by default) on the left (or right, if the left
adjustment flag, described later, has been given) to the field width. The field width
takes the form of an asterisk * (described later) or a nonnegative decimal integer.24?)

— An optional precision that gives the minimum number of digits to appear for the d, i ,
0, U, X, and X conversions, the number of digits to appear after the decimal-point
character for a, A, e, E, f, and F conversions, the maximum number of significant
digits for the g and G conversions, or the maximum number of bytes to be written for
s conversions. The precision takes the form of a period (.) followed either by an
asterisk * (described later) or by an optional decimal integer; if only the period is
specified, the precision is taken as zero. If a precision appears with any other
conversion specifier, the behavior is undefined.

— An optional length modifier that specifies the size of the argument.
— A conversion specifier character that specifies the type of conversion to be applied.

As noted above, a field width, or precision, or both, may be indicated by an asterisk. In
this case, an i nt argument supplies the field width or precision. The arguments
specifying field width, or precision, or both, shall appear (in that order) before the
argument (if any) to be converted. A negative field width argument is taken as a - flag
followed by a positive field width. A negative precision argument is taken as if the
precision were omitted.

The flag characters and their meanings are:

- The result of the conversion is left-justified within the field. (It is right-justified if
this flag is not specified.)

+ The result of a signed conversion always begins with a plus or minus sign. (It
begins with a sign only when a negative value is converted if this flag is not

241) Note that O is taken as a flag, not as the beginning of a field width.

§7.19.6.1 Library 275

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

space

specified.)?4)

If the first character of a signed conversion is not a sign, or if a signed conversion
results in no characters, a space is prefixed to the result. If the space and + flags
both appear, the space flag is ignored.

The result is converted to an ““alternative form”. For o conversion, it increases
the precision, if and only if necessary, to force the first digit of the result to be a
zero (if the value and precision are both 0, a single 0 is printed). For x (or X)
conversion, a nonzero result has Ox (or 0X) prefixed to it. Fora, A e, E f,F, g,
and G conversions, the result of converting a floating-point number always
contains a decimal-point character, even if no digits follow it. (Normally, a
decimal-point character appears in the result of these conversions only if a digit
follows it.) For g and G conversions, trailing zeros are not removed from the
result. For other conversions, the behavior is undefined.

Ford, i, o, u, x, X a, A e, E f,F, g, and G conversions, leading zeros
(following any indication of sign or base) are used to pad to the field width rather
than performing space padding, except when converting an infinity or NaN. If the
0 and - flags both appear, the O flag is ignored. For d, i, o, u, x, and X
conversions, if a precision is specified, the O flag is ignored. For other
conversions, the behavior is undefined.

The length modifiers and their meanings are:

hh

| (ell)

Specifies that a following d, i , 0, u, X, or X conversion specifier applies to a
si gned char or unsi gned char argument (the argument will have
been promoted according to the integer promotions, but its value shall be
converted to si gned char orunsi gned char before printing); or that
a following n conversion specifier applies to a pointer to a si gned char
argument.

Specifies that a following d, i , 0, u, X, or X conversion specifier applies to a
short int or unsigned short int argument (the argument will
have been promoted according to the integer promotions, but its value shall
be converted to short i nt orunsi gned short i nt before printing);
or that a following n conversion specifier applies to a pointer to a short
i nt argument.

Specifies that a following d, i , 0, u, X, or X conversion specifier applies to a
long int or unsigned |ong int argument; that a following n
conversion specifier applies to a pointer to a | ong i nt argument; that a

242) The results of all floating conversions of a negative zero, and of negative values that round to zero,
include a minus sign.

276

Library §7.19.6.1

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

11 (ell-ell)

following ¢ conversion specifier applies to a wint_t argument; that a
following s conversion specifier applies to a pointer to a wchar_t
argument; or has no effect on a following a, A, e, E, F, F, g, or G conversion
specifier.

Specifies that a following d, i, 0, u, X, or X conversion specifier applies to a
long long intorunsigned long long int argument; or that a
following n conversion specifier applies to a pointer to a long long int
argument.

Specifies that a following d, i, 0, u, X, or X conversion specifier applies to
an intmax_t or uintmax_t argument; or that a following n conversion
specifier applies to a pointer to an intmax_t argument.

Specifies that a following d, 1, 0, u, X, or X conversion specifier applies to a
size_t or the corresponding signed integer type argument; or that a
following n conversion specifier applies to a pointer to a signed integer type
corresponding to size_t argument.

Specifies that a following d, 1, 0, u, X, or X conversion specifier applies to a
ptrdiff_t or the corresponding unsigned integer type argument; or that a
following n conversion specifier applies to a pointer to a ptrdiff_t
argument.

Specifies that a following a, A, e, E, ¥, F, g, or G conversion specifier
applies toa long double argument.

If a length modifier appears with any conversion specifier other than as specified above,
the behavior is undefined.

The conversion specifiers and their meanings are:

d,1

o,u,x,X

§7.19.6.1

The 1nt argument is converted to signed decimal in the style [-]dddd. The
precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it is expanded with
leading zeros. The default precision is 1. The result of converting a zero
value with a precision of zero is no characters.

The unsigned int argument is converted to unsigned octal (0), unsigned
decimal (u), or unsigned hexadecimal notation (x or X) in the style dddd; the
letters abcdeT are used for x conversion and the letters ABCDEF for X
conversion. The precision specifies the minimum number of digits to appear;
if the value being converted can be represented in fewer digits, it is expanded
with leading zeros. The default precision is 1. The result of converting a
zero value with a precision of zero is no characters.

Library 277

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

T.F

e,E

g,G

A double argument representing a floating-point number is converted to
decimal notation in the style [-]ddd.ddd, where the number of digits after
the decimal-point character is equal to the precision specification. If the
precision is missing, it is taken as 6; if the precision is zero and the # flag is
not specified, no decimal-point character appears. If a decimal-point
character appears, at least one digit appears before it. The value is rounded to
the appropriate number of digits.

A double argument representing an infinity is converted in one of the styles
[-]inF or [-]infinity — which style is implementation-defined. A
double argument representing a NaN is converted in one of the styles
[-]nan or [-]nan(n-char-sequence) — which style, and the meaning of
any n-char-sequence, is implementation-defined. The F conversion specifier
produces INF, INFINITY, or NAN instead of inf, infinity, or nan,
respectively.>*®)

A double argument representing a floating-point number is converted in the
style [-]d.dddexdd, where there is one digit (which is nonzero if the
argument is nonzero) before the decimal-point character and the number of
digits after it is equal to the precision; if the precision is missing, it is taken as
6; if the precision is zero and the # flag is not specified, no decimal-point
character appears. The value is rounded to the appropriate number of digits.
The E conversion specifier produces a number with E instead of e
introducing the exponent. The exponent always contains at least two digits,
and only as many more digits as necessary to represent the exponent. If the
value is zero, the exponent is zero.

A double argument representing an infinity or NaN is converted in the style
of an ¥ or F conversion specifier.

A double argument representing a floating-point number is converted in
style ¥ or e (or in style F or E in the case of a G conversion specifier),
depending on the value converted and the precision. Let P equal the
precision if nonzero, 6 if the precision is omitted, or 1 if the precision is zero.
Then, if a conversion with style E would have an exponent of X:

— if P> X = -4, the conversion is with style ¥ (or F) and precision
P-(X+1).

— otherwise, the conversion is with style e (or E) and precision P — 1.

Finally, unless the # flag is used, any trailing zeros are removed from the

243) When applied to infinite and NaN values, the -, +, and space flag characters have their usual meaning;
the # and O flag characters have no effect.

278

Library §7.19.6.1

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

aA

fractional portion of the result and the decimal-point character is removed if
there is no fractional portion remaining.

A double argument representing an infinity or NaN is converted in the style
of an ¥ or F conversion specifier.

A double argument representing a floating-point number is converted in the
style [-]Oxh._hhhhp+d, where there is one hexadecimal digit (which is
nonzero if the argument is a normalized floating-point number and is
otherwise unspecified) before the decimal-point character®*) and the number
of hexadecimal digits after it is equal to the precision; if the precision is
missing and FLT_RADIX is a power of 2, then the precision is sufficient for
an exact representation of the value; if the precision is missing and
FLT_RADIX is not a power of 2, then the precision is sufficient to
distinguish?*® values of type double, except that trailing zeros may be
omitted; if the precision is zero and the # flag is not specified, no decimal-
point character appears. The letters abcdeT are used for a conversion and
the letters ABCDEF for A conversion. The A conversion specifier produces a
number with X and P instead of x and p. The exponent always contains at
least one digit, and only as many more digits as necessary to represent the
decimal exponent of 2. If the value is zero, the exponent is zero.

A double argument representing an infinity or NaN is converted in the style
of an F or F conversion specifier.

If no I length modifier is present, the Int argument is converted to an
unsigned char, and the resulting character is written.

If an 1 length modifier is present, the wint_t argument is converted as if by
an I's conversion specification with no precision and an argument that points
to the initial element of a two-element array of wchar_t, the first element
containing the wint_t argument to the Ic conversion specification and the
second a null wide character.

If no I length modifier is present, the argument shall be a pointer to the initial
element of an array of character type.?*®) Characters from the array are

244) Binary implementations can choose the hexadecimal digit to the left of the decimal-point character so
that subsequent digits align to nibble (4-bit) boundaries.

245) The precision p is sufficient to distinguish values of the source type if 16°1 > b" where b is

FLT_RADIX and n is the number of base-b digits in the significand of the source type. A smaller p
might suffice depending on the implementation’s scheme for determining the digit to the left of the

decimal-point character.

246) No special provisions are made for multibyte characters.

§7.19.6.1

Library 279

10

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

%

written up to (but not including) the terminating null character. If the
precision is specified, no more than that many bytes are written. If the
precision is not specified or is greater than the size of the array, the array shall
contain a null character.

If an | length modifier is present, the argument shall be a pointer to the initial
element of an array of wchar _t type. Wide characters from the array are
converted to multibyte characters (each as if by a call to the wert onb
function, with the conversion state described by an nbstate_t object
initialized to zero before the first wide character is converted) up to and
including a terminating null wide character. The resulting multibyte
characters are written up to (but not including) the terminating null character
(byte). If no precision is specified, the array shall contain a null wide
character. If a precision is specified, no more than that many bytes are
written (including shift sequences, if any), and the array shall contain a null
wide character if, to equal the multibyte character sequence length given by
the precision, the function would need to access a wide character one past the
end of the array. In no case is a partial multibyte character written.?4”)

The argument shall be a pointer to voi d. The value of the pointer is
converted to a sequence of printing characters, in an implementation-defined
manner.

The argument shall be a pointer to signed integer into which is written the
number of characters written to the output stream so far by this call to
f printf.Noargument is converted, but one is consumed. If the conversion
specification includes any flags, a field width, or a precision, the behavior is
undefined.

A % character is written. No argument is converted. The complete
conversion specification shall be 986

If a conversion specification is invalid, the behavior is undefined.?*®) If any argument is
not the correct type for the corresponding conversion specification, the behavior is

undefined.

In no case does a nonexistent or small field width cause truncation of a field; if the result
of a conversion is wider than the field width, the field is expanded to contain the
conversion result.

247) Redundant shift sequences may result if multibyte characters have a state-dependent encoding.
248) See “future library directions™ (7.26.9).

280

Library §7.19.6.1

11

12

13

14

15

16

17

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

For a and A conversions, if FLT_RADI X is a power of 2, the value is correctly rounded
to a hexadecimal floating number with the given precision.

Recommended practice

For a and A conversions, if FLT_RADI X is not a power of 2 and the result is not exactly
representable in the given precision, the result should be one of the two adjacent numbers
in hexadecimal floating style with the given precision, with the extra stipulation that the
error should have a correct sign for the current rounding direction.

Fore, E f, F, g, and Gconversions, if the number of significant decimal digits is at most
DECI MAL_DI G then the result should be correctly rounded.?*® If the number of
significant decimal digits is more than DECI MAL_DI G but the source value is exactly
representable with DECI MAL_DI G digits, then the result should be an exact
representation with trailing zeros. Otherwise, the source value is bounded by two
adjacent decimal strings L < U, both having DECI MAL DI Gsignificant digits; the value
of the resultant decimal string D should satisfy L < D < U, with the extra stipulation that
the error should have a correct sign for the current rounding direction.

Returns

The f pri nt f function returns the number of characters transmitted, or a negative value
if an output or encoding error occurred.

Environmental limits

The number of characters that can be produced by any single conversion shall be at least
4095.

EXAMPLE 1 To print a date and time in the form “Sunday, July 3, 10:02” followed by = to five decimal
places:

#i ncl ude <math. h>

#i ncl ude <stdio. h>

I* ..

char *weekday, *nonth; /'] pointersto strings

i nt day, hour, nin;

fprintf(stdout, "%, % %, % 2d: % 2d\n",
weekday, nonth, day, hour, min);

fprintf(stdout, "pi = %5f\n", 4 * atan(1.0));

EXAMPLE 2 In this example, multibyte characters do not have a state-dependent encoding, and the
members of the extended character set that consist of more than one byte each consist of exactly two bytes,
the first of which is denoted here by a 0 and the second by an uppercase letter.

249) For binary-to-decimal conversion, the result format’s values are the numbers representable with the
given format specifier. The number of significant digits is determined by the format specifier, and in
the case of fixed-point conversion by the source value as well.

§7.19.6.1 Library 281

18

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Given the following wide string with length seven,
static wchar_t wstr[] = L"oXaYabcoZzow ;
the seven calls

fprintf(stdout, "|1234567890123|\n");

fprintf(stdout, "|%3ls|\n", wstr);

fprintf(stdout, "|%13.9ls|\n", wstr);

fprintf(stdout, "|%3.10ls|\n", wstr);

fprintf(stdout, "|9%l3.11ls|\n", wstr);

fprintf(stdout, "|9%l3.15ls|\n", &wstr[2]);

fprintf(stdout, "|%3lc|\n", (wint_t) wstr[5]);
will print the following seven lines:

| 1234567890123

| oXaYabcozow

| oXaoYabcoz |

| oXaYabcoZ|

| oXaYabcozow

| abcozZowW

I oZ|

Forward references. conversion state (7.24.6), the wer t onb function (7.24.6.3.3).

7.19.6.2 Thef scanf function
Synopsis
#i ncl ude <stdi o. h>

int fscanf(FILE * restrict stream
const char * restrict format, ...);

Description

The f scanf function reads input from the stream pointed to by st r eam under control
of the string pointed to by f or mat that specifies the admissible input sequences and how
they are to be converted for assignment, using subsequent arguments as pointers to the
objects to receive the converted input. If there are insufficient arguments for the format,
the behavior is undefined. If the format is exhausted while arguments remain, the excess
arguments are evaluated (as always) but are otherwise ignored.

The format shall be a multibyte character sequence, beginning and ending in its initial
shift state. The format is composed of zero or more directives: one or more white-space
characters, an ordinary multibyte character (neither %nor a white-space character), or a
conversion specification. Each conversion specification is introduced by the character %
After the % the following appear in sequence:

— An optional assignment-suppressing character * .

— An optional decimal integer greater than zero that specifies the maximum field width
(in characters).

282 Library §7.19.6.2

10

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

— An optional length modifier that specifies the size of the receiving object.
— A conversion specifier character that specifies the type of conversion to be applied.

The f scanf function executes each directive of the format in turn. If a directive fails, as
detailed below, the function returns. Failures are described as input failures (due to the
occurrence of an encoding error or the unavailability of input characters), or matching
failures (due to inappropriate input).

A directive composed of white-space character(s) is executed by reading input up to the
first non-white-space character (which remains unread), or until no more characters can
be read.

A directive that is an ordinary multibyte character is executed by reading the next
characters of the stream. If any of those characters differ from the ones composing the
directive, the directive fails and the differing and subsequent characters remain unread.
Similarly, if end-of-file, an encoding error, or a read error prevents a character from being
read, the directive fails.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each specifier. A conversion specification is executed in the
following steps:

Input white-space characters (as specified by the i sspace function) are skipped, unless
the specification includes a [, ¢, or n specifier.?%%)

An input item is read from the stream, unless the specification includes an n specifier. An
input item is defined as the longest sequence of input characters which does not exceed
any specified field width and which is, or is a prefix of, a matching input sequence.?V)
The first character, if any, after the input item remains unread. If the length of the input
item is zero, the execution of the directive fails; this condition is a matching failure unless
end-of-file, an encoding error, or a read error prevented input from the stream, in which
case it is an input failure.

Except in the case of a %specifier, the input item (or, in the case of a % directive, the
count of input characters) is converted to a type appropriate to the conversion specifier. If
the input item is not a matching sequence, the execution of the directive fails: this
condition is a matching failure. Unless assignment suppression was indicated by a *, the
result of the conversion is placed in the object pointed to by the first argument following
the f or mat argument that has not already received a conversion result. If this object
does not have an appropriate type, or if the result of the conversion cannot be represented

250) These white-space characters are not counted against a specified field width.

251) f scanf pushes back at most one input character onto the input stream. Therefore, some sequences
that are acceptable to st rt od, st rt ol , etc., are unacceptable to f scanf .

§7.19.6.2 Library 283

11

12

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

in the object, the behavior is undefined.

The length modifiers and their meanings are:

hh Specifies that a following d, i , 0, u, X, X, or n conversion specifier applies
to an argument with type pointer to si gned char orunsi gned char.

h Specifies that a following d, i , 0, u, X, X, or n conversion specifier applies
to an argument with type pointer to short i nt or unsi gned short
int.

I (ell) Specifies that a following d, i, 0, u, x, X, or n conversion specifier applies

to an argument with type pointer to | ong int or unsi gned | ong
i nt; that a following a, A, e, E, f, F, g, or Gconversion specifier applies to
an argument with type pointer to doubl e; or that a following c, s, or [
conversion specifier applies to an argument with type pointer to wchar _t .

I 1 (ell-ell) Specifies that a following d, i, 0, u, X, X, or n conversion specifier applies
to an argument with type pointer to | ong | ong int or unsi gned
long long int.

] Specifies that a following d, i , 0, u, X, X, or n conversion specifier applies
to an argument with type pointer to i nt max_t orui nt max_t.

z Specifies that a following d, i , 0, u, X, X, or n conversion specifier applies
to an argument with type pointer to si ze_t or the corresponding signed
integer type.

t Specifies that a following d, i , 0, u, X, X, or n conversion specifier applies

to an argument with type pointer to ptrdi ff_t or the corresponding
unsigned integer type.

L Specifies that a following a, A, e, E, f, F, g, or G conversion specifier
applies to an argument with type pointer to | ong doubl e.

If a length modifier appears with any conversion specifier other than as specified above,
the behavior is undefined.

The conversion specifiers and their meanings are:

d Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of the st rt ol function with the value 10
for the base argument. The corresponding argument shall be a pointer to
signed integer.

i Matches an optionally signed integer, whose format is the same as expected
for the subject sequence of the strt ol function with the value O for the
base argument. The corresponding argument shall be a pointer to signed
integer.

284 Library §7.19.6.2

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

a,e f,g

Matches an optionally signed octal integer, whose format is the same as
expected for the subject sequence of the st rt oul function with the value 8
for the base argument. The corresponding argument shall be a pointer to
unsigned integer.

Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of the st rt oul function with the value 10
for the base argument. The corresponding argument shall be a pointer to
unsigned integer.

Matches an optionally signed hexadecimal integer, whose format is the same
as expected for the subject sequence of the st rt oul function with the value
16 for the base argument. The corresponding argument shall be a pointer to
unsigned integer.

Matches an optionally signed floating-point number, infinity, or NaN, whose
format is the same as expected for the subject sequence of the strt od
function. The corresponding argument shall be a pointer to floating.

Matches a sequence of characters of exactly the number specified by the field
width (1 if no field width is present in the directive).??)

If no | length modifier is present, the corresponding argument shall be a
pointer to the initial element of a character array large enough to accept the
sequence. No null character is added.

If an | length modifier is present, the input shall be a sequence of multibyte
characters that begins in the initial shift state. Each multibyte character in the
sequence is converted to a wide character as if by a call to the nbrt owc
function, with the conversion state described by an nbstate_t object
initialized to zero before the first multibyte character is converted. The
corresponding argument shall be a pointer to the initial element of an array of
wchar _t large enough to accept the resulting sequence of wide characters.
No null wide character is added.

Matches a sequence of non-white-space characters.?%?

If no | length modifier is present, the corresponding argument shall be a
pointer to the initial element of a character array large enough to accept the
sequence and a terminating null character, which will be added automatically.

If an | length modifier is present, the input shall be a sequence of multibyte

252) No special provisions are made for multibyte characters in the matching rules used by the c, s, and [
conversion specifiers — the extent of the input field is determined on a byte-by-byte basis. The
resulting field is nevertheless a sequence of multibyte characters that begins in the initial shift state.

§7.19.6.2

Library 285

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

286

characters that begins in the initial shift state. Each multibyte character is
converted to a wide character as if by a call to the mbrtowc function, with
the conversion state described by an mbstate_t object initialized to zero
before the first multibyte character is converted. The corresponding argument
shall be a pointer to the initial element of an array of wchar_t large enough
to accept the sequence and the terminating null wide character, which will be
added automatically.

Matches a nonempty sequence of characters from a set of expected characters
(the scanset).?%?)

If no I length modifier is present, the corresponding argument shall be a
pointer to the initial element of a character array large enough to accept the
sequence and a terminating null character, which will be added automatically.

If an 1 length modifier is present, the input shall be a sequence of multibyte
characters that begins in the initial shift state. Each multibyte character is
converted to a wide character as if by a call to the mbrtowc function, with
the conversion state described by an mbstate_t object initialized to zero
before the first multibyte character is converted. The corresponding argument
shall be a pointer to the initial element of an array of wchar_t large enough
to accept the sequence and the terminating null wide character, which will be
added automatically.

The conversion specifier includes all subsequent characters in the format
string, up to and including the matching right bracket (]). The characters
between the brackets (the scanlist) compose the scanset, unless the character
after the left bracket is a circumflex (), in which case the scanset contains all
characters that do not appear in the scanlist between the circumflex and the
right bracket. If the conversion specifier begins with [] or ["], the right
bracket character is in the scanlist and the next following right bracket
character is the matching right bracket that ends the specification; otherwise
the first following right bracket character is the one that ends the
specification. If a — character is in the scanlist and is not the first, nor the
second where the first character is a /, nor the last character, the behavior is
implementation-defined.

Matches an implementation-defined set of sequences, which should be the
same as the set of sequences that may be produced by the %p conversion of
the Fprintf function. The corresponding argument shall be a pointer to a
pointer to void. The input item is converted to a pointer value in an
implementation-defined manner. If the input item is a value converted earlier
during the same program execution, the pointer that results shall compare
equal to that value; otherwise the behavior of the %p conversion is undefined.

Library §7.19.6.2

13
14

15

16

17

18

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

n No input is consumed. The corresponding argument shall be a pointer to
signed integer into which is to be written the number of characters read from
the input stream so far by this call to the f scanf function. Execution of a
% directive does not increment the assignment count returned at the
completion of execution of the f scanf function. No argument is converted,
but one is consumed. If the conversion specification includes an assignment-
suppressing character or a field width, the behavior is undefined.

% Matches a single % character; no conversion or assignment occurs. The
complete conversion specification shall be %86

If a conversion specification is invalid, the behavior is undefined.>®)

The conversion specifiers A, E, F, G and X are also valid and behave the same as,
respectively, a, e, f , g, and x.

Trailing white space (including new-line characters) is left unread unless matched by a
directive. The success of literal matches and suppressed assignments is not directly
determinable other than via the % directive.

Returns

The f scanf function returns the value of the macro EOF if an input failure occurs
before any conversion. Otherwise, the function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an early
matching failure.

EXAMPLE 1 The call:

#i ncl ude <stdio. h>

I* .

int n, i; float x; char name[50];

n = fscanf(stdin, "%% %", & , &, nane);
with the input line:

25 54. 32E-1 t honpson

will assign to n the value 3, to i the value 25, to x the value 5.432, and to name the sequence
t honpson\ 0.

EXAMPLE 2 The call:

#i ncl ude <stdi o. h>

[* ..*

int i; float x; char nane[50];

fscanf(stdin, "%Rd% %d % 0123456789]", & , &, nane);
with input:

253) See “future library directions™ (7.26.9).

87.19.6.2 Library 287

19

20

21

22

23

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

56789 0123 56a72

will assign to i1 the value 56 and to x the value 789.0, will skip 0123, and will assign to name the
sequence 56\0. The next character read from the input stream will be a.

EXAMPLE 3 To accept repeatedly from stdin a quantity, a unit of measure, and an item name:

#include <stdio.h>

/* . */
int count; float quant; char units[21], item[21];
do {

count = fscanf(stdin, "%f%20s of %20s', &quant, units, item);
fscanf(stdin,"%*[™\n]"");
} while (Ifeof(stdin) && !ferror(stdin));

If the stdin stream contains the following lines:

2 quarts of oil
-12.8degrees Celsius
lots of luck

10.0LBS of

dirt

100ergs of energy

the execution of the above example will be analogous to the following assignments:

quant = 2; strcpy(units, 'quarts'™); strcpy(item, "oil');
count = 3;

quant = -12.8; strcpy(units, '‘degrees');

count = 2; // "C" failstomatch 0"

count = 0; // "I" failstomatch "%f""

quant = 10.0; strcpy(units, "LBS™); strcpy(item, "dirt");
count = 3;

count = 0; // "100e" failstomatch ""%f""

count = EOF;

EXAMPLE 4 In:

#include <stdio.h>

/* .. */

int d1, d2, nl, n2, i;

i = sscanf('123", "%d%n%n%d", &d1, &nl, &n2, &d2);

the value 123 is assigned to d1 and the value 3 to n1. Because %n can never get an input failure the value
of 3 is also assigned to n2. The value of d2 is not affected. The value 1 is assigned to i.

EXAMPLES5 In these examples, multibyte characters do have a state-dependent encoding, and the
members of the extended character set that consist of more than one byte each consist of exactly two bytes,
the first of which is denoted here by a 00 and the second by an uppercase letter, but are only recognized as
such when in the alternate shift state. The shift sequences are denoted by t and {, in which the first causes
entry into the alternate shift state.

After the call:

288 Library 87.19.6.2

24

25

26

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

#i ncl ude <stdi o. h>

[* .. =%

char str[50];
fscanf(stdin, "a%", str);

with the input line:
atoXayl bc

st r will contain 10XOY1\ 0 assuming that none of the bytes of the shift sequences (or of the multibyte
characters, in the more general case) appears to be a single-byte white-space character.

In contrast, after the call:

#i ncl ude <stdio. h>

#i ncl ude <stddef. h>

[*

wchar _t wstr[50];
fscanf(stdin, "a%s", wstr);

with the same input line, wst r will contain the two wide characters that correspond to 0OX and OY and a
terminating null wide character.

However, the call:

#i ncl ude <stdio. h>

#i ncl ude <stddef. h>

[*

wchar _t wstr[50];

fscanf(stdin, "aroXi%s", wstr);

with the same input line will return zero due to a matching failure against the | sequence in the format
string.

Assuming that the first byte of the multibyte character X is the same as the first byte of the multibyte
character OY, after the call:

#i ncl ude <stdio. h>

#i ncl ude <stddef. h>

[* *

wchar _t wstr[50];

fscanf(stdin, "argYi%s", wstr);

with the same input line, zero will again be returned, but st di n will be left with a partially consumed
multibyte character.

Forward references. the strtod, strtof, and strtol d functions (7.20.1.3), the
strtol,strtoll,strtoul, and strtoul | functions (7.20.1.4), conversion state
(7.24.6), the wer t onb function (7.24.6.3.3).

§7.19.6.2 Library 289

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

7.19.6.3 Thepri ntf function

Synopsis

#i ncl ude <stdi o. h>

int printf(const char * restrict format, ...);
Description

The pri nt f function is equivalent to f pri nt f with the argument st dout interposed
before the arguments to pri nt f .

Returns

The pri nt f function returns the number of characters transmitted, or a negative value if
an output or encoding error occurred.

7.19.6.4 Thescanf function

Synopsis

#i ncl ude <stdio. h>

i nt scanf(const char * restrict format, ...);
Description

The scanf function is equivalent to f scanf with the argument st di n interposed
before the arguments to scanf .

Returns

The scanf function returns the value of the macro EOF if an input failure occurs before
any conversion. Otherwise, the scanf function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an early
matching failure.

7.19.6.5 Thesnprintf function

Synopsis
#i ncl ude <stdio. h>
int snprintf(char * restrict s, size_t n,
const char * restrict format, ...);

Description

The snpri nt f function is equivalent to f pri nt f , except that the output is written into
an array (specified by argument s) rather than to a stream. If n is zero, nothing is written,
and s may be a null pointer. Otherwise, output characters beyond the n- 1st are
discarded rather than being written to the array, and a null character is written at the end
of the characters actually written into the array. If copying takes place between objects
that overlap, the behavior is undefined.

290 Library §7.19.6.5

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

Returns

The snpri nt f function returns the number of characters that would have been written
had n been sufficiently large, not counting the terminating null character, or a negative
value if an encoding error occurred. Thus, the null-terminated output has been
completely written if and only if the returned value is nonnegative and less than n.

7.19.6.6 Thespri ntf function

Synopsis
#i ncl ude <stdi o. h>

int sprintf(char * restrict s,
const char * restrict format, ...);

Description
The spri ntf function is equivalent to f pri nt f, except that the output is written into
an array (specified by the argument s) rather than to a stream. A null character is written

at the end of the characters written; it is not counted as part of the returned value. If
copying takes place between objects that overlap, the behavior is undefined.

Returns

The sprintf function returns the number of characters written in the array, not
counting the terminating null character, or a negative value if an encoding error occurred.

7.19.6.7 Thesscanf function
Synopsis

#i ncl ude <stdi o. h>
i nt sscanf(const char * restrict s,
const char * restrict format, ...);

Description

The sscanf function is equivalent to f scanf, except that input is obtained from a
string (specified by the argument s) rather than from a stream. Reaching the end of the
string is equivalent to encountering end-of-file for the f scanf function. If copying
takes place between objects that overlap, the behavior is undefined.

Returns

The sscanf function returns the value of the macro EOF if an input failure occurs
before any conversion. Otherwise, the sscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

§7.19.6.7 Library 291

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007

7.19.6.8 Thevf pri ntf function
Synopsis

#i ncl ude <stdarg. h>

#i ncl ude <stdi o. h>

int viprintf(FILE * restrict stream
const char * restrict format,
va list arg);

Description

WG14/N1256

The vfprintf function is equivalent to f pri ntf, with the variable argument list
replaced by ar g, which shall have been initialized by the va_start macro (and
possibly subsequent va_ar g calls). The vfprintf function does not invoke the

va_end macro.?>¥

Returns

The vfprintf function returns the number of characters transmitted, or a negative

value if an output or encoding error occurred.

EXAMPLE The following shows the use of the vf pri nt f function in a general error-reporting routine.

#i ncl ude <stdarg. h>
#i ncl ude <stdio. h>

voi d error(char *function_name, char *fornmat,

{
va_|ist args;
va_start(args, format);
/| print out name of function causing error
fprintf(stderr, "ERROR in %: ", function_nane);
/1 print out remainder of message
viprintf(stderr, format, args);
va_end(args);
}

254) As the functions vfprintf, vfscanf, vprintf, vscanf, vsnprintf, vsprintf, and
vsscanf invoke the va_ar g macro, the value of ar g after the return is indeterminate.

292 Library

§7.19.6.8

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

7.19.6.9 Thevf scanf function
Synopsis
#i ncl ude <stdarg. h>
#i ncl ude <stdi o. h>
int viscanf(FILE * restrict stream

const char * restrict format,
va list arg);

Description

The vfscanf function is equivalent to f scanf, with the variable argument list
replaced by ar g, which shall have been initialized by the va_start macro (and
possibly subsequent va_ar g calls). The vfscanf function does not invoke the
va_end macro.?>*

Returns

The vf scanf function returns the value of the macro EOF if an input failure occurs
before any conversion. Otherwise, the vf scanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

7.19.6.10 Thevpri ntf function

Synopsis
#i ncl ude <stdarg. h>
#i ncl ude <stdi o. h>
int vprintf(const char * restrict format,
va_list arg);

Description

The vprintf function is equivalent to pri ntf, with the variable argument list
replaced by ar g, which shall have been initialized by the va_start macro (and
possibly subsequent va_ar g calls). The vprintf function does not invoke the
va_end macro.?¥

Returns

The vpri nt f function returns the number of characters transmitted, or a negative value
if an output or encoding error occurred.

§7.19.6.10 Library 293

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

7.19.6.11 Thevscanf function

Synopsis
#i ncl ude <stdarg. h>
#i ncl ude <stdi o. h>
i nt vscanf(const char * restrict format,
va_list arg);

Description

The vscanf function is equivalent to scanf , with the variable argument list replaced
by ar g, which shall have been initialized by the va_start macro (and possibly
subsequent va_ar g calls). The vscanf function does not invoke the va_end
macro.2>%)

Returns

The vscanf function returns the value of the macro EOF if an input failure occurs
before any conversion. Otherwise, the vscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

7.19.6.12 Thevsnpri ntf function
Synopsis
#i ncl ude <stdarg. h>
#i ncl ude <stdio. h>
int vsnprintf(char * restrict s, size_t n,

const char * restrict format,
va_list arg);

Description

The vsnpri ntf function is equivalent to snpri nt f, with the variable argument list
replaced by ar g, which shall have been initialized by the va_start macro (and
possibly subsequent va_ar g calls). The vsnpri ntf function does not invoke the
va_end macro.?® If copying takes place between objects that overlap, the behavior is
undefined.

Returns

The vsnpri nt f function returns the number of characters that would have been written
had n been sufficiently large, not counting the terminating null character, or a negative
value if an encoding error occurred. Thus, the null-terminated output has been
completely written if and only if the returned value is nonnegative and less than n.

294 Library §7.19.6.12

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

7.19.6.13 Thevsprintf function
Synopsis
#i ncl ude <stdarg. h>
#i ncl ude <stdi o. h>
int vsprintf(char * restrict s,

const char * restrict format,
va list arg);

Description

The vsprintf function is equivalent to spri ntf, with the variable argument list
replaced by ar g, which shall have been initialized by the va_start macro (and
possibly subsequent va_ar g calls). The vsprintf function does not invoke the
va_end macro.?® If copying takes place between objects that overlap, the behavior is
undefined.

Returns

The vsprintf function returns the number of characters written in the array, not
counting the terminating null character, or a negative value if an encoding error occurred.

7.19.6.14 Thevsscanf function
Synopsis
#i ncl ude <stdarg. h>
#i ncl ude <stdio. h>
I nt vsscanf(const char * restrict s,

const char * restrict format,
va_list arg);

Description

The vsscanf function is equivalent to sscanf, with the variable argument list
replaced by ar g, which shall have been initialized by the va_start macro (and
possibly subsequent va_ar g calls). The vsscanf function does not invoke the
va_end macro.?¥

Returns

The vsscanf function returns the value of the macro EOF if an input failure occurs
before any conversion. Otherwise, the vsscanf function returns the number of input |
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

§7.19.6.14 Library 295

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

7.19.7 Character input/output functions
7.19.7.1 Thef get c function
Synopsis

#i ncl ude <stdi o. h>
int fgetc(FILE *stream;

Description

If the end-of-file indicator for the input stream pointed to by st reamis not set and a
next character is present, the f get ¢ function obtains that character as an unsi gned
char converted to an i nt and advances the associated file position indicator for the
stream (if defined).

Returns

If the end-of-file indicator for the stream is set, or if the stream is at end-of-file, the end-
of-file indicator for the stream is set and the f get ¢ function returns ECF. Otherwise, the
f get c function returns the next character from the input stream pointed to by st r eam
If a read error occurs, the error indicator for the stream is set and the f get ¢ function
returns EOF.2%%)

7.19.7.2 Thef get s function
Synopsis
#i ncl ude <stdi o. h>

char *fgets(char * restrict s, int n,
FILE * restrict stream;

Description

The f get s function reads at most one less than the number of characters specified by n
from the stream pointed to by st reaminto the array pointed to by s. No additional
characters are read after a new-line character (which is retained) or after end-of-file. A
null character is written immediately after the last character read into the array.

Returns

The fgets function returns s if successful. If end-of-file is encountered and no
characters have been read into the array, the contents of the array remain unchanged and a
null pointer is returned. If a read error occurs during the operation, the array contents are
indeterminate and a null pointer is returned.

255) An end-of-file and a read error can be distinguished by use of the f eof and f er r or functions.

296 Library §7.19.7.2

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

7.19.7.3 Thef put c function
Synopsis

#i ncl ude <stdio. h>
int fputc(int ¢, FILE *stream;

Description

The f put ¢ function writes the character specified by ¢ (converted to an unsi gned
char) to the output stream pointed to by st ream at the position indicated by the
associated file position indicator for the stream (if defined), and advances the indicator
appropriately. If the file cannot support positioning requests, or if the stream was opened
with append mode, the character is appended to the output stream.

Returns

The f put ¢ function returns the character written. If a write error occurs, the error
indicator for the stream is set and f put ¢ returns EOF.

7.19.7.4 Thef put s function
Synopsis
#i ncl ude <stdi o. h>

int fputs(const char * restrict s,
FILE * restrict stream;

Description

The f put's function writes the string pointed to by s to the stream pointed to by
st r eam The terminating null character is not written.

Returns

The f puts function returns EOF if a write error occurs; otherwise it returns a
nonnegative value.

7.19.7.5 Theget c function
Synopsis

#i ncl ude <stdi o. h>
int getc(FILE *strean);

Description

The get c function is equivalent to f get c, except that if it is implemented as a macro, it
may evaluate st r eammore than once, so the argument should never be an expression
with side effects.

§7.19.7.5 Library 297

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Returns

The get ¢ function returns the next character from the input stream pointed to by
st r eam If the stream is at end-of-file, the end-of-file indicator for the stream is set and
get c returns EOF. If a read error occurs, the error indicator for the stream is set and
get c returns EOF.

7.19.7.6 Theget char function
Synopsis

#i ncl ude <stdi o. h>
i nt getchar(void);

Description
The get char function is equivalent to get ¢ with the argument st di n.
Returns

The get char function returns the next character from the input stream pointed to by
st di n. If the stream is at end-of-file, the end-of-file indicator for the stream is set and
get char returns EOF. If a read error occurs, the error indicator for the stream is set and
get char returns ECF.

7.19.7.7 Theget s function
Synopsis

#i ncl ude <stdi o. h>
char *gets(char *s);

Description

The get s function reads characters from the input stream pointed to by st di n, into the
array pointed to by s, until end-of-file is encountered or a new-line character is read.
Any new-line character is discarded, and a null character is written immediately after the
last character read into the array.

Returns

The get s function returns s if successful. If end-of-file is encountered and no
characters have been read into the array, the contents of the array remain unchanged and a
null pointer is returned. If a read error occurs during the operation, the array contents are
indeterminate and a null pointer is returned.

Forward references. future library directions (7.26.9).

298 Library §7.19.7.7

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

7.19.7.8 The put c function
Synopsis

#i ncl ude <stdio. h>
int putc(int c, FILE *strean);

Description

The put ¢ function is equivalent to f put c, except that if it is implemented as a macro, it
may evaluate st r eammore than once, so that argument should never be an expression
with side effects.

Returns

The put ¢ function returns the character written. If a write error occurs, the error
indicator for the stream is set and put ¢ returns ECF.

7.19.7.9 The put char function
Synopsis

#i ncl ude <stdi o. h>
int putchar(int c);

Description
The put char function is equivalent to put ¢ with the second argument st dout .
Returns

The put char function returns the character written. If a write error occurs, the error
indicator for the stream is set and put char returns EOF.

7.19.7.10 Theput s function
Synopsis

#i ncl ude <stdi o. h>
i nt puts(const char *s);

Description

The put s function writes the string pointed to by s to the stream pointed to by st dout ,
and appends a new-line character to the output. The terminating null character is not
written.

Returns

The put s function returns EOF if a write error occurs; otherwise it returns a nonnegative
value.

§7.19.7.10 Library 299

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

7.19.7.11 Theunget c function
Synopsis

#i ncl ude <stdi o. h>
int ungetc(int ¢, FILE *stream;

Description

The unget ¢ function pushes the character specified by ¢ (converted to an unsi gned
char) back onto the input stream pointed to by st r eam Pushed-back characters will be
returned by subsequent reads on that stream in the reverse order of their pushing. A
successful intervening call (with the stream pointed to by st r eam to a file positioning
function (f seek, f set pos, or r ewi nd) discards any pushed-back characters for the
stream. The external storage corresponding to the stream is unchanged.

One character of pushback is guaranteed. If the unget c function is called too many
times on the same stream without an intervening read or file positioning operation on that
stream, the operation may fail.

If the value of ¢ equals that of the macro EOF, the operation fails and the input stream is
unchanged.

A successful call to the unget c¢ function clears the end-of-file indicator for the stream.
The value of the file position indicator for the stream after reading or discarding all
pushed-back characters shall be the same as it was before the characters were pushed
back. For a text stream, the value of its file position indicator after a successful call to the
unget ¢ function is unspecified until all pushed-back characters are read or discarded.
For a binary stream, its file position indicator is decremented by each successful call to

the unget ¢ function; if its value was zero before a call, it is indeterminate after the
call.?%®)

Returns

The unget ¢ function returns the character pushed back after conversion, or ECF if the
operation fails.

Forward references: file positioning functions (7.19.9).

256) See “future library directions™ (7.26.9).

300 Library §7.19.7.11

WG14/N1256 Committee Draft — Septermber 7, 2007 1SO/IEC 9899:TC3

7.19.8 Direct input/output functions
7.19.8.1 Thef r ead function
Synopsis
#i ncl ude <stdio. h>
size t fread(void * restrict ptr,

size_t size, size_t nnenb,
FILE * restrict stream;

Description

The f read function reads, into the array pointed to by ptr, up to nmenb elements
whose size is specified by si ze, from the stream pointed to by stream For each
object, si ze calls are made to the f get ¢ function and the results stored, in the order
read, in an array of unsi gned char exactly overlaying the object. The file position
indicator for the stream (if defined) is advanced by the number of characters successfully
read. If an error occurs, the resulting value of the file position indicator for the stream is
indeterminate. If a partial element is read, its value is indeterminate.

Returns

The f r ead function returns the number of elements successfully read, which may be
less than nnenb if a read error or end-of-file is encountered. If si ze or nenb is zero,
f read returns zero and the contents of the array and the state of the stream remain
unchanged.

7.19.8.2 Thefwr i t e function
Synopsis
#i ncl ude <stdi o. h>
size t fwite(const void * restrict ptr,

size_t size, size_t nnenb,
FILE * restrict strean);

Description

The f wri t e function writes, from the array pointed to by pt r, up to nmenb elements
whose size is specified by si ze, to the stream pointed to by st r eam For each object,
si ze calls are made to the f put ¢ function, taking the values (in order) from an array of
unsi gned char exactly overlaying the object. The file position indicator for the
stream (if defined) is advanced by the number of characters successfully written. If an
error occurs, the resulting value of the file position indicator for the stream is
indeterminate.

§7.19.8.2 Library 301

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N1256

Returns

The f wri t e function returns the number of elements successfully written, which will be
less than nnmenb only if a write error is encountered. If si ze or nnenb is zero,
fwrit e returns zero and the state of the stream remains unchanged.

7.19.9 File positioning functions
7.19.9.1 Thef get pos function

Synopsis
#i ncl ude <stdi o. h>
int fgetpos(FILE * restrict stream
fpos_t * restrict pos);
Description
The f get pos function stores the current values of the parse state (if any) and file
position indicator for the stream pointed to by st r eamin the object pointed to by pos.

The values stored contain unspecified information usable by the f set pos function for
repositioning the stream to its position at the time of the call to the f get pos function.

Returns

If successful, the f get pos function returns zero; on failure, the f get pos function
returns nonzero and stores an implementation-defined positive value in er r no.

Forward references: the f set pos function (7.19.9.3).
7.19.9.2 Thef seek function
Synopsis

#i ncl ude <stdi o. h>
int fseek(FILE *stream long int offset, int whence);

Description

The f seek function sets the file position indicator for the stream pointed to by st r eam
If a read or write error occurs, the error indicator for the stream is set and f seek fails.

For a binary stream, the new position, measured in characters from the beginning of the
file, is obtained by adding of f set to the position specified by whence. The specified
position is the beginning of the file if whence is SEEK_SET, the current value of the file
position indicator if SEEK CUR, or end-of-file if SEEK _END. A binary stream need not
meaningfully support f seek calls with a whence value of SEEK_END.

For a text stream, either of f set shall be zero, or of f set shall be a value returned by
an earlier successful call to the f t el | function on a stream associated with the same file
and whence shall be S