
Online and Offline Selling in Limit Order
Markets

Kevin L. Chang1? and Aaron Johnson2??

1 Yahoo Inc.
klchang@yahoo-inc.com

2 Yale University
ajohnson@cs.yale.edu

Abstract. Completely automated electronic securities exchanges and
algorithms for trading in these exchanges have become very important
for modern finance. In [4], Kakade et al. introduced the limit order mar-
ket model, which is a prevalent paradigm in electronic markets. In this
paper, we consider both online and offline algorithms for maximizing
revenue when selling in limit order markets. We first prove that the stan-
dard reservation price algorithm has an optimal competitive ratio for this
problem. This ratio is not constant, and so we consider computing solu-
tions offline. We show that the offline optimization problem is NP-hard,
even for very restricted instances. We complement the hardness result
by presenting an approximation scheme that runs in polynomial time for
a wide class of instances.

1 Introduction

Electronic exchanges are very important venues for trading many different classes
of financial securities. With the widespread use of such markets, a technique
known as algorithmic trading has become popular among financial institutions
and institutional investors who seek to buy or sell large amounts of a particular
security. Consider, for instance, a pension fund that would like to sell many
shares of a particular stock. Typically, such an investor would not sell large
amounts of stock himself by just submitting an order to a stock exchange, but
rather would seek the expertise of a broker (e.g. an investment bank) to perform
the transaction on his behalf. A standard strategy for the broker is to break the
large order into many smaller orders and to submit the orders gradually over a
given time horizon, with the obvious goal of maximizing his total revenue.

Advances in financial technology have automated this process, and the pen-
sion fund’s entire trade can now be effected by computer with little human
intervention: computer programs can choose how to divide the large order into
smaller orders, choose at what time and at what price to submit the smaller

? Work performed while affiliated with the Max Planck Institute for Computer Science.
?? Supported by NSF grants 0428422, 0534052, and 0716223, ONR grants N00014-01-

1-0795 and N00014-04-1-0725, and ARO grant W911NF-05-1-0417.

orders, and then actually execute the transactions on an electronic market. So-
phisticated algorithms for such large trades are offered by most large investment
banks and by many smaller firms specializing in financial technology.

The manner in which an electronic market itself executes the various orders
from clients can also be complex. One of the most important electronic exchange
paradigms is the electronic communication network (ECN), which implements a
limit order market. Prominent ECNs for trading equities and equity derivatives
are operated by NASDAQ, Instinet, and NYSE-Euronext.

In a limit order market, buyers and sellers submit limit orders to buy or sell
a commodity; these orders have semantics such as “I would like to buy v shares,
but I am only willing to pay p USD or less for each share.” The market matches
buyers and sellers based on a transparent function of the orders submitted. Often,
the input order stream is available to market participants, and so algorithms
should be conscious of this market microstructure in order to effectively trade.

In this paper, we will study natural theoretical computer science questions
motivated by algorithmic trading in limit order markets. We consider both on-
line and offline algorithms for placing sell orders in limit order markets, with the
goal of maximizing the revenue generated by selling volume N of a particular
commodity (e.g. a stock). This problem domain was introduced into the theo-
retical computer science literature by Kakade, Kearns, Mansour and Ortiz in [4],
although online trading algorithms in much simpler market models have been
studied for many years.

1.1 The Trading Model: The Mechanics of Limit Order Markets

In a limit order market, market participants submit limit orders, which consist
of three-tuples: σ = 〈θ, p, v〉. The parameter θ specifies whether the order is to
buy or to sell; p denotes the least competitive price the market participant is
willing to accept, that is, the lowest price per share that is acceptable for a sell
order, or the highest price per share for a buy order; and v denotes the volume,
that is, the number of shares to transact.

A sell order σ1 = 〈S, p1, v1〉 can be “matched” to a buy order σ2 = 〈B, p2, v2〉
if p1 ≤ p2. If σ1 and σ2 transact and v1 > v2, then σ2 will be filled, but σ1 will
only be partially filled: its volume will be reduced to v1 ← v1 − v2. If v1 < v2,
then σ1 will be filled, and for σ2, we have v2 ← v2 − v1. Observe that when
p1 < p2, any price p ∈ [p1, p2] would be acceptable to both parties. Limit order
markets use the convention that the transaction will occur at the limit price of
the order that arrived first. With this convention, it is advantageous to be the
second of the two matched orders to arrive.

At any time step, buy and sell orders that have been submitted but that have
not yet been paired with suitable counterparties are stored in the buy order book
and the sell order book, respectively. Orders in the book are sorted according to
their prices, with the most competitive orders at the “top” of the book (i.e. in
the buy order book, orders with the highest price are at the top; in the sell order
book, orders with the lowest price are at the top). Ties are broken by placing
the order that arrives first higher in the book. An important property of the two

books is that the prices of all orders in the buy book are lower than the prices
of all orders in the sell book, since the books consist of orders that have not yet
been matched.

When a new sell order σs = 〈S, ps, vs〉 arrives, it is compared with the top
order in the buy book, say σb = 〈B, pb, vb〉. If ps > pb, then no transaction can
occur and σs will be placed in the sell book according to the rules specified in
the previous paragraph. If pb ≥ ps, then min {vb, vs} shares are sold at price pb

per share. If vs ≥ vb, then σb has been filled and is removed from the buy book,
while the volume of σs is adjusted accordingly and a new matching buy order is
sought. If vs < vb, then the order σs is filled, and the volume of σb is adjusted
accordingly. An arriving buy order would be processed in an analogous fashion.
The state of the book is public knowledge in many ECNs and can therefore be
exploited by sophisticated traders.

Table 1 is an example of buy and sell or- Buy orders Sell orders
Price Volume Price Volume
102.20 100 102.55 200
102.00 500 102.93 300

Table 1.

der books. If a new sell order arrived at price
102.00 and volume 50, then it would transact
with the buy order at price 102.20. The vol-
ume of this buy order would be reduced by
50.

1.2 The Trading Problem

The trading over the course of the time horizon is represented by time steps
t = 1, . . . n. At time step t, order σt is placed by some market participant (not
the algorithm). As each order arrives, executions occur and the book is updated
as described above.

The problem that we consider is to design an algorithm that inserts sell
orders into this stream in order to maximize its revenue. At each time step t, the
algorithm may place orders before the arrival of σt. It cannot sell a total volume
of more than N , nor can it submit buy orders.

We will consider both online and offline algorithms for this problem. In the
online problem, the algorithm observes the market orders over time and, as they
come in, must insert its own orders. The standard measure of quality of an online
algorithm is defined by its competitive ratio. A randomized profit-maximizing
algorithm has a competitive ratio at most c > 0 if, for all input sequences Σ,
E [Rev] ≥ 1

c · OPT, where OPT is the revenue that results from an optimum,
offline placement of orders on input Σ and E [Rev] is the expected revenue of
the algorithm. We refer the reader to the book by Borodin and El-Yaniv [1] for
an introduction to online algorithms.

1.3 Our Contributions

We show that the standard online reservation price algorithm yields a competi-
tive ratio of e log R ≤ 2.72 log R in the order book model, where R = pmax/pmin

is the price ratio between the highest and lowest possible prices in the order

stream. This competitive ratio is optimal, in the sense that any randomized al-
gorithm must have competitive ratio at least 1

2 log R. All logarithms are base e.
Our bound on the competitive ratio is an improvement over the O(log R log N)
bound for the reservation price algorithm by Kakade et al. [4], because our bound
has no dependence on N .

Since no online selling algorithm can achieve a competitive ratio that is
o(log R), we examine maximizing revenue in the offline case. We prove that this
optimization problem is NP-hard by reducing from knapsack, even for the re-
stricted case where market participants only submit orders with three distinct
prices. We also show that a simple dynamic programming algorithm will find
the optimum solution. Like knapsack, the running time is pseudopolynomial:
polynomial in N and the largest volume of any order (which in general can be
exponential in the size of the input) when the number of distinct prices that mar-
ket participants may submit is a fixed constant k. We then prove that the input
volumes can be adjusted so that running the dynamic programming algorithm
on the adjusted input will yield a polynomial-time approximation scheme when
there is a fixed constant k of distinct prices. The running time with approxima-
tion ration 1−ε is polynomial in n, 1/ε and R . We note that all securities indeed
only have a constant number of possible prices (e.g. US equities are traded in
multiples of $.01), although this constant is admittedly large.

The offline optimization problem is a natural and theoretically interesting
question to consider. Although it cannot immediately be applied to the real
online problem faced by a trader, nonetheless these results could be of interest
to a broader audience. The NP-hardness of computing the offline optimum even
with knowledge of the entire order stream is a very strong statement about the
intractability of optimization, for any conceivable context.

Offline algorithms have many potential applications. For instance, an approx-
imation algorithm can be used for studying historical data, and the output of the
approximation algorithm can be used to compare the realized performance of a
trading algorithm to its theoretical optimum. Also, an offline algorithm could be
coupled with an appropriate statistical model for generating sample paths of the
future evolution of market microstructure in order to design realizable trading
strategies.

Finally, we generalize some of our results to the buying case.

1.4 Related Work in Theoretical Computer Science

Online algorithms for selling in limit order markets were first introduced by
Kakade, Kearns, Mansour and Ortiz in [4]. Kakade et al. considered selling al-
gorithms that seek to optimize revenue, as well as selling algorithms that seek
to sell shares at the average price of the market (the Volume Weighted Average
Price, which is a popular benchmark for commercially available trading algo-
rithms). Even-Dar, Kakade, Kearns, and Mansour also considered the stability
of limit order dynamics in [3].

The limit order market is a generalization of simpler online trading models.
El-Yaniv, Fiat, Karp, and Turpin in [2] considered the one-way trading, time

series search and two-way trading problems in this framework. This work was
later extended by Lorenz, Panagiotou, and Steger in [5].

1.5 Preliminaries

The input order stream will be denoted by Σ = σ1, . . . , σn, where order σt =
〈θt, pt, vt〉 arrives at time t. The algorithm’s sequence of sell orders is represented
by a set

{
σA

i

}
, where σA

t denotes a sell order that is placed right before the arrival
of σt ∈ Σ at time t. If the algorithm places a set of sell orders ΣA in the order
sequence Σ, we will denote the new order stream by Σ ·ΣA.

If the limit prices of all orders in the input stream fall into the interval
[pmin, pmax], which is known to the algorithm, then R = pmax/pmin is the price
ratio. In our paper, we will refer to Lemma 5.3 by Evan-Dar et al. [3]. The lemma
is most easily stated for the case where all orders have unit volume:

Lemma 1 (Stability Lemma [3]). Suppose all orders have unit volume, and
the order stream Σ′ is derived from Σ by inserting a single order σ. (1) If σ is
not executed in Σ′, then the sets of executed orders in Σ and in Σ′ are identical.
(2) If σ is executed in Σ′, then at most 1 order (as specified by id) was executed
in Σ but not in Σ′. Conversely, at most 1 order (other than σ) was executed in
Σ′ but not in Σ.

From a high-level perspective, the stability lemma states that if we insert an
extra order into the order sequence, it will not affect the set of executed orders
by very much.

2 Optimal Online Algorithms

We show in this section that the reservation price algorithm for selling in the
order book model has an optimal competitive ratio. This algorithm was origi-
nally considered for the max-search problem (also called the time-series search
problem) by El-Yaniv et al. [2] and later by Lorenz, Panagiotou and Steger in
[5] and by Kakade et al. in [4] for selling in the order book model.

The reservation price algorithm is: pick an integer i uniformly at random
between 0 and blog Rc and place an order to sell all N shares of stock at price
eipmin at time t = 0, where R is the price ratio.

Theorem 2. The reservation price algorithm for selling in the order book model
has competitive ratio e log R. Furthermore, any randomized algorithm must have
competitive ratio at least 1

2 log R.

Proof. We first prove that the reservation price algorithm has competitive ratio
at most e log R. Let pres = eipmin be the reservation price randomly chosen
by the algorithm. Suppose p1, . . . , pN are the prices realized for the sale of the
N shares by the optimal solution, ΣA, and let OPT =

∑n
1 pi be the optimal

revenue. Let Pi = {pj : pres ≤ pj ≤ e · pres} be the set of prices of executed
orders that are within a factor of e of the price pres.

Claim. The reservation price algorithm will sell at least |Pi| shares at price pres.

The main idea of the proof, which is omitted for space, is that if σR
0 =

〈S, pres, N〉 is the order placed by the reservation price algorithm, then in the
set of executions of Σ · (

{
σR

0

}
∪ ΣA), σR

0 will execute |Pi| shares, since it will
have a higher priority than the orders in Pi. It follows that if σR

0 is placed by
itself, it will realize at least as much revenue.

With probability 1/ log R, the reservation price algorithm will choose reser-
vation price pres ← eipmin. Then the expected revenue of the algorithm is

blog Rc∑
i=0

1
log R

|Pi| eipmin ≥
blog Rc∑

i=1

∑
pj∈Pi

pj

e log R
=

OPT
e log R

.

Thus, the competitive ratio of the reservation price algorithm is at most e log R.
In order to establish the lower bound, we observe that it is straightforward

to reduce the online max-search problem to our problem of selling in a limit
order market. In this problem, a player observes a sequence of prices and tries to
select the highest one. The 1

2 log R lower bound on the competitive ratio for any
randomized algorithm for max-search proved by Lorenz et al. in [5] establishes
the lower bound for limit order markets. ut

3 NP-Hardness of the Offline Problem

We prove the NP-completeness of optimal selling by reduction from Knapsack.
Our reduction is to the special case of instances in which only three different
prices occur, ph, pm, pl, where ph ≥ pm ≥ pl.

We will use several facts about the structure of the optimum solution in the
three-price case.

Lemma 3. There exists an optimal solution that places all its high-price sell
orders at time t = 0. The number of such orders can be arbitrarily large.

Lemma 4. There exists an optimal solution that places all its low-price orders
immediately after the last execution it realizes at either price ph or price pm.

Lemma 5. There exists an optimal solution that only places a medium-price
order immediately after an execution occurs at a high price.

Lemma 6. There exists an optimal solution, such that if we attempt to insert
another medium-price order after an execution at a high price, then the algorithm
will achieve one less execution at a high price, except when this occurs after the
last execution at a high price.

The proofs of these lemmas show that any optimal solution can easily be con-
verted to satisfy these properties.

We will reduce the NP-complete Knapsack problem to offline selling. An
input to Knapsack IK is a set of n pairs, (wi, vi), a capacity C, and a value V .

It is in the language if there exists a subset S ⊆ [n] such that
∑

i∈S vi ≥ V and∑
i∈S wi ≤ C. Let v∗ = maxi(vi) and let W =

∑
i wi. We can assume that all

numbers in the instance are positive integers, and that v∗ > 1.
The three prices in the selling instance we will create are pl = 1, pm =

(C + 1)v∗, and ph = (C + 1)v∗ + 1. Let ai = (C + 1)(wiv
∗ − vi) and bi =

((C + 1)(wiv
∗ − vi) + wi)(C + 1)(v∗). For 1 ≤ i ≤ n, let Σi be the following

sequence of limit orders:

1. 〈B, pm, ai + wi〉 2. 〈S, pl, wi〉 3. 〈B, pl, wi〉 4. 〈S, pm, ai〉 5. 〈B, ph, ai + bi〉

Let Ω be the following order sequence:

1. 〈S, pl, W − C〉 2. 〈B, pm, pmW 〉

Let Σ be the concatenated order sequence (Σ1, . . . , Σn, Ω). The total volume
of buy orders in Σ is N =

∑
i(2ai + 2wi + wipm + bi). N will be the number of

shares to sell. The revenue to raise will be R = ph

∑
i(ai +bi)+p2

mW +(C +1)V .
Then IS = (Σ,N,R) is an input to the offline selling problem. It is in the
language if R revenue can be obtained by selling at most N shares.

Lemma 7. If there exists a solution S ⊆ [n] to IK with total value V , then there
exists a solution to IS with revenue of at least R.

Proof Sketch: Given S, first insert the order σA
0 = 〈S, ph,

∑
i(ai + bi)〉 at the be-

ginning of Σ. σA
0 executes with every high-price buy order, which yields revenue

ph

∑
i(ai + bi). If i ∈ S, insert the order σA

i = 〈S, pm, ai + wi〉 at the beginning
of Σi. When σA

i is added, then ai + wi sales are made by σA
i at the medium

price, and ai less sales are made from the high-price buy order at the end of Σi.
Therefore the change in revenue from σA

i is pm(ai + wi) − ph(ai) = (C + 1)vi.
Finally, insert the order σA

n+1 = 〈S, pm, pmW 〉 after subsequence Σn, and insert
σA

n+2 = 〈S, pl, C〉 at the end of Ω. Regardless of the previous insertions, the rev-
enue from σA

n+1 and σA
n+2 is p2

mW + pl

(
C −

∑
i∈S wi

)
≥ p2

mW . Then the total
revenue obtained is at least ph

∑
i(ai + bi) + p2

mW + (C + 1)V = R. 2

Next we prove the converse of Lemma 7. By Lemma 3, we can assume that
the optimal solution for IS places a large sell order at price ph at the beginning
of Σ. Observe that in the resulting execution, that sell order executes at the
high price after every subsequence Σi. By Lemma 5, we can assume that all
medium-price orders in the optimal solution are each inserted at the beginning
either of some Σi or of Ω. Let S ⊆ [n] be the set of Σi subsequences for which
this happens. Finally, by Lemma 4, we can assume that any low-price order is
inserted at some point after the last high-price or medium-price order is inserted.

Lemma 8. For i ∈ S, there is an optimal solution in which the medium-price
order inserted at the beginning of Σi has volume ai + wi.

Proof Sketch: Let σA
i = 〈S, pm, v〉, i ∈ S, be the medium-price order inserted at

the beginning of Σi. If v > ai + wi or v ≤ ai, decreasing v increases high-price
sells and decreases medium-price sells, for a net gain in revenue. Otherwise, v can
be increased to ai + wi without reducing high sells, contradicting Lemma 6. 2

Lemma 9. There is an optimal solution in which any low-price order is inserted
after the Σn subsequence.

Proof Sketch: Suppose instead that the low-price order σA
l is inserted before Σi.

Consider moving σA
l to the beginning of Σi. If σA

l reduces the volume of high-
prices transactions before Σi, this move would increase net revenue. Otherwise,
the move maintains revenue.

2

Lemma 10. There exists an optimal solution with the order 〈S, pm, pmW 〉 in-
serted at the beginning of Ω and the order

〈
S, pl, C −

∑
i∈S wi

〉
inserted at the

end.

Proof Sketch: By Lemmas 4, 5 and 10, the solution places a low-price order in Ω
that may be preceded by a medium-price order. Inspection shows that including
the medium-price order is optimal. 2

We can see by inspecting Ω that the payoff of the orders described in Lemma 10,
expressed as a function of the volume of the low-price buy book, is:

ρ(l) =
{

p2
mW + pl(C − l) 0 ≤ l ≤ C

p2
mW − pm(l − C) C < l ≤W.

(1)

Lemma 11. We can assume that
∑

i∈S wi ≤ C.

Proof. Suppose instead that
∑

i∈S wi > C. Consider removing the medium-
price order at the beginning of Σi, i ∈ S. The sequence loses the pm(ai + wi)−
ph(ai) = (C+1)vi revenue from that order. The transactions in Σj subsequences
are unaffected, but at the end of each there is an additional wi volume in the
buy book at the low price. Equation 1 shows that this volume increases the
revenue obtained by at least (C + 1)v∗. Therefore the total change in revenue
is nonnegative, and we can convert this sequence into an optimum such that∑

i∈S wi ≤ C.

Finally, we can show that the optimal revenue of IS can give us a lower
bound on the value of optimal subsets in IK.

Lemma 12. If there exists a solution to IS with revenue of at least R, then
there exists a solution to IK with total value at least V .

Proof. If
∑

i∈S vi ≥ V , then, by Lemma 11, S is a solution to IK of value at
least V . Suppose otherwise, that

∑
i∈S vi < V . The solution receives ph

∑
i(ai +

bi) revenue from the initial high-price sell order. It receives (C + 1)
∑

i∈S vi ≤
(C + 1)(V − 1) revenue from the medium-price orders in S. We can see from
Equation 1 that it receives no more than p2

mW + pl(C) revenue from the two
orders in Ω. This accounts for all of the revenue R′ of the solution. However,
R′ −R = (C + 1)(V − 1) + pl(C)− (C + 1)V < 0, contradicting the assumption
of the lemma. ut

Theorem 13. The decision version of optimal offline selling is NP-complete.

Proof. The decision version of the offline selling problem is in NP, because
we can calculate the revenue of a solution by running the limit order market
algorithm on the total sequence. Also, the previous lemmas show that the input
to Knapsack is in the language if and only if its reduction is a member of the
offline selling problem language. ut

In contrast to the three-price case, it can be shown that if there are only two
prices in the order sequence, the problem can be solved exactly in O(n) time.
The algorithm simply places one high-price sell order at the beginning and then
tries all positions for the low-price order.

4 Offline Algorithms and Approximation Schemes

In this section, we present approximation schemes for the offline selling problem.
The general approach to our algorithm is similar to the FPTAS for knapsack,
but the technical details are more involved. We first give a pseudopolynomial
dynamic programming algorithm. Then we show that this algorithm can be used
in an approximation scheme by reducing and rounding the order volumes. The
approximation scheme will have running time polynomial in 1/ε, the maximum
price ratio R, and n, if the number of prices at which market participants can
submit orders is a fixed constant.

4.1 Pseudopolynomial Time Dynamic Programming Algorithm

A simple dynamic programming algorithm can compute the optimal placement
of sell orders in polynomial time, under the assumption that the volume of each
limit order is 1, and that the number of distinct prices at which the market
participants can place orders is at most a fixed constant k.

The input to the dynamic programming subproblem is given by: (1) Times
t1 and t2, such that t1 ≤ t2. (2) The initial buy and and sell order books at time
t1: Bt1 , St1 . (3) The final order books at time t2: Bt2 , St2 . (4) m, the number of
shares to be sold by the algorithm between times t1 and t2.

Each subproblem is then: Given buy and sell order books Bt1 and St1 at
time t1 (prior to the arrival of order σt1), find the optimum placement of orders
between times t1 and t2 (inclusive), such that the buy and sell order books at
the end of time t2 are Bt2 and St2 and that the number of shares sold by the
algorithm between times t1 and t2 is at most m.

Theorem 14. For the case where each order has unit volume, the dynamic pro-
gramming algorithm will find an optimal solution in time O(N3k+5n3k+5), where
k is the number of distinct prices.

The details of the algorithm and its analysis follow standard dynamic pro-
gramming techniques. This algorithm can be used with orders of arbitrary vol-
ume, which adds an additional factor in the runtime.

Corollary 15. If the volume of each order is unrestricted, the dynamic program-
ming algorithm will run in time O(n2N3k+5(nV)3k+3), where V is the maximum
volume of any order.

4.2 PTAS for the Arbitrary Volume Case

We now show how the input can be preprocessed in two steps so that the dynamic
programming algorithm from the previous section can compute a solution with
revenue at least (1− ε)OPT in time O

(
n12k+16 (R/ε)6k+8

)
, for input sequences

with arbitrary volumes in each order.

Step 1: Reduce to the Significant Volume Case.

Our first step will be to modify the instance to ensure that N is at least a
fraction of the total volume of all orders, which we call the significant volume
condition. Σ satisfies this condition if (n+1) ·N ≥ V , where V is the maximum
volume of any order in Σ.

Lemma 16. Given an order stream Σ, we can construct an order stream Π
such that

1. If V is the maximum volume of any order πi ∈ Π, then (n + 1) ·N ≥ V .
2. If ΣA is any set of sell orders with total volume at most N placed by the

algorithm, it will realize the same revenue in Π ·ΣA as in the original input
Σ ·ΣA.

We assume that there is at least one order in the original sequence Σ, σi =
〈ti, pi, vi〉 ∈ Σ such that vi ≥ N · (n + 1). Since a selling algorithm will only
transact N shares, intuitively its action should have very little effect on order
σi, which contains many more shares.

Let transΣ(σi) denote the set of orders that are matched with σi in the
evolution of the order sequence Σ. Let unexΣ(σi) denote the volume of σi that
is unexecuted in the evolution of Σ. Let matchΣ(σi, σj) denote the number of
shares of σi that are matched with σj in the order sequence Σ.

Lemma 17. Let ΣA be any set of orders placed by the algorithm with an aggre-
gate volume of at most N . Then for any σi, σj ∈ Σ,

matchΣ·ΣA(σi, σj) ≥ matchΣ(σi, σj)−N.

The lemma follows from applying the Stability Lemma to the transactions
between σi and σj .

Lemma 17 implies that σi and σj have excess volume that is, in some sense,
superfluous to the problem of selling at most N shares. We eliminate these in a
new order sequence Π.

For each order σi ∈ Σ, where σi = 〈θi, pi, vi〉, we create order πi such that
πi = 〈θi, pi, v

′
i〉, where v′i = vi −

∑
σj∈transΣ(σi)

max(matchΣ(σi, σj) − N, 0) −
max(unexΣ(σi)−N, 0). With these new volumes,

vol(πi) ≤ vol(σi)−
∑

j

matchΣ(σi, σj)− unexΣ(σi) + (n + 1)N = (n + 1)N.

Thus, the modified input sequence Π = π1, . . . , πn satisfies Condition 1 of
Lemma 16. Condition 2 follows from Lemma 17.

Step 2: Round Volumes.

Recall that V is the maximum volume of any order. We now assume that our
input has been reduced to the significant volume case, where (n + 1) · N ≥ V .
Let M = ε ·N/(nR). In the second preprocessing step, we round the volume of
every order in Σ to the nearest multiple of M . The volume of each order will be
changed by at most M/2 and the number of possible values for the volume of an
order will be V/M = nV R/(Nε) ≤ n(n + 1)R/ε. Let Σ′ be the input sequence
of orders with rounded volumes.

Lemma 18. Finding the optimum solution to Σ′ will induce a solution with
revenue at least (1− ε)OPT for the original input sequence Σ.

Proof. We may assume that N is at most the aggregate volume of all buy orders
in Σ. Then, OPT ≥ pmin · N , because the algorithm could place the order
〈S, pmin, N〉 at the beginning and sell to the first N buy orders. We first prove
that there exists a solution with revenue at least (1− ε/2)OPT for Σ′. Let ΣA

be an optimum set of sell orders for the input sequence Σ. We may assume that
the realized price for every order in ΣA is the same as the price of the order.

Recall that our rounding scheme changed the volume of each order by at most
M/2. The Stability Lemma therefore implies that the total volume of shares that
are executed in Σ ·ΣA but not in Σ′ ·ΣA is at most n ·M/2. Therefore, there
are at most n ·M/2 shares that the algorithm sold in Σ ·ΣA but did not sell in
Σ′ ·ΣA. The total revenue lost is at most

pmax ·
nM

2
=

ε

2
· pmin ·N ≤

ε

2
·OPT.

An analogous argument will prove that the optimum solution on Σ′ with
revenue OPT′ will induce a solution on Σ with revenue at least (1− ε/2)OPT′.
It can then be inferred that the optimum solution for Σ′ will induce a solution
on Σ with revenue at least (1− ε)OPT. ut

We combine the two preprocessing steps with the dynamic programming
algorithm to obtain an approximation scheme that runs in polynomial time
when the number of price levels k is constant.

Theorem 19. For any ε > 0, dynamic programming with preprocessing will
yield an algorithm with approximation ratio at least 1 − ε that runs in time
O

(
n12k+16 (R/ε)6k+8

)
.

5 Extension to Buying

In the buying case, the algorithm’s task is to insert buy orders into the order
sequence in order to buy at least N shares, with the goal of minimizing the total
cost of the trade.

We note that there is an asymmetry between the profit maximization (selling
case) and the cost minimization (buying case) online trading problems. The
results of Steger et al. [5] for the min-search problem imply that no algorithm
can achieve a competitive ratio better than O(

√
R). For improved guarantees, we

consider offline algorithms. The dynamic programming algorithm can be easily
modified to the buying case. During the rounding step , however, we must set
M = αN/n, for any α > 0.

Theorem 20. Let OPT be the cost of the offline optimum solution that buys
exactly N shares. For any α > 0, the dynamic programming with preprocessing
will yield an algorithm that buys at least (1−α)N shares with cost at most OPT.
The algorithm runs in time O

(
n12k+16 (1/α)6k+8

)
.

References

1. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

2. R. El-Yaniv, A. Fiat, R. M. Karp, and G. Turpin. Optimal search and one-way
trading online algorithms. Algorithmica, 30(1):101–139, 2001.

3. E. Even-Dar, S. M. Kakade, M. S. Kearns, and Y. Mansour. (In)Stability properties
of limit order dynamics. In ACM Conference on Electronic Commerce, pages 120–
129, 2006.

4. S. Kakade, M. J. Kearns, Y. Mansour, and L. E. Ortiz. Competitive algorithms
for VWAP and limit order trading. In ACM Conference on Electronic Commerce,
pages 189–198, 2004.

5. J. Lorenz, K. Panagiotou, and A. Steger. Optimal algorithms for k-search with
applications in option pricing. In ESA 2007, Proceedings 15th Annual European
Symposium, pages 275–286, 2007.

