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Abstract

We consider using trust information to improve the anonymity provided
by onion-routing networks. In particular, we introduce a model of trust in
network nodes and use it to design path-selection strategies that minimize
the probability that the adversary can successfully control the entrance to
and exit from the network. This minimizes the chance that the adversary
can observe and correlate patterns in the data flowing over the path and
thereby deanonymize the user. We first describe the general case in which
onion routers can be assigned arbitrary levels of trust. Selecting a strategy
can be formulated in a straightforward way as a linear program, but it is
exponential in size. We thus analyze a natural simplification of path selection
for this case. More importantly, however, when choosing routes in practice,
only a very coarse assessment of trust in specific onion routers is likely to
be feasible. Therefore, we focus next on the special case in which there are
only two trust levels. For this more practical case we identify three optimal
route-selection strategies such that at least one is optimal, depending on the
trust levels of the two classes, their size, and the reach of the adversary.
This can yield practical input into routing decisions. We set out the relevant
parameters and choices for making such decisions.
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1. Introduction

When designing or analyzing anonymous communication
networks, researchers generally assume that all nodes routing
traffic are equally trusted. But this typically is incorrect. There
is much information available to those selecting routes that can
affect trust: information about who runs some components of
the infrastructure, what computing platforms are used, how
long and how reliably some components have been running,
etc. And if routing designs were to begin taking trust into
account, then even more extensive and diverse bases for trust
might be available.

Onion routing is a type of anonymous communication that
creates cryptographic circuits along an unpredictable route
through a network of nodes called onion routers and passes
traffic bidirectionally along those circuits with minimal latency
[1], [2], [3]. An adversary observing an entry node and an
exit node of an onion-routing network through which one is,
e.g., browsing the web can easily link the two ends of the
connection and correlate source to destination. This has been
an acknowledged feature of the design since its inception [4].
Correlation is easily done with extremely high confidence by
passive timing, that is, simply by observing the timing pattern

of data entering the network and of data exiting the network
and matching incoming and outgoing patterns. Correlation
can also be done with active timing, where the adversary
inserts unique patterns in incoming data and observes where
they appear among outgoing data. It is this vulnerability of
onion routing circuits to hostile pairs of entry and exit nodes
that is our focus. There are many documented attacks that
have some affect on onion routing—correlation, congestion,
intersection, destination fingerprinting, latency, etc. None of
the others have the efficiency or certainty that correlation does
when an attacker owns so little of the network (i.e., just one
entry node and one exit node) and observes so little traffic.

Correlation is, at least in this way, the most significant
unaddressed problem for onion routing and one that can
likely be improved with trust knowledge. (Correlation could be
countered by mixing, padding, or other approaches; however,
to date no proposed countermeasure has had both low enough
overhead and high enough expectation of success against
realistic attackers to be pursued in practice.) This introduces
many questions, such as whether using more trusted nodes
helps profile or identify clients and what to do about that,
how to model diverse trust assumptions, etc. But even ignoring
these, it is not obvious how to take advantage of trust as a
criterion in route selection. In particular, using trusted nodes
more often has the disadvantage of simultaneously providing
a small set of nodes for the adversary attempt to monitor.
This paper is specifically focused on whether there is a way
to use trust to reduce the probability of a circuit compromise
by endpoints.

Trust has many meanings and applications in computer
security [5], [6], [7], [8], [9], [10], [11], [12]. Much of the
literature is concerned in one way or another with propagation
or transfer of trust from where it is to where it needs to be.
Our concern is not with the transfer of trust information but
with what it means in the context of onion routing and how to
make use of it. We consider how trust associated with network
nodes or links might be used to protect (or reveal) information
that would undermine the anonymity of communicants.

Tor [13] is the current widely-deployed and used public
onion-routing network, with an estimated quarter-million con-
current users and a few thousand network nodes. It is thus
useful to consider trust issues that arise for this deployed
network. For example, a correlating adversary could try to
compromise nodes in the network. Because Tor nodes are run



by volunteers, however, an even easier attack is to simply set
up hostile nodes and use those to attack traffic on the network.
We have already noted that correlation attacks are strong and
low cost. This shows us that they are also easy to deploy in
practice.

One way Tor reduces the threat of linking exit activity to
sources is by use of entry guards, a small number of nodes that
a single client uses persistently to connect to the Tor network.
If a client has chosen guard nodes that are not compromised,
it can never be linked by correlation to its activity by a pair
of compromised entry-exit nodes. When entry guards were
introduced [14], there was a brief discussion of the relative
merits of choosing guards randomly versus based on trust
or other features of the guard nodes. So far, no one has
analyzed the implications of choosing nodes based on trust.
Entry guards are currently chosen randomly from the set of
Tor nodes (subject to some performance and other criteria).
Abusing entry-guard selection criteria can increase the chances
of a node being chosen as an entry guard, especially if they
are based on reliability, performance, etc. rather than based
on any sort of trust. Many of the threats initially observed
about this ([14], [15]) are not feasible in the current Tor
network. Statistically, however, the percentage of all circuits
compromised by hostile entry-exit pairs is not reduced by the
use of randomly chosen entry guards, nor is the probability
that any given client will have compromised guards; it only
affects the distribution of compromised circuits over the client
space. If one were able to choose not just guards but whole
routes from a more trusted set of nodes, then one’s threat of
circuit compromise might be reduced. We hope through our
analysis to show how best to add this protection to Tor and
similar systems.

In this paper we first set out a simple model that should
facilitate reasoning about using trust in routing. We define trust
simply to be the probability that an attempt by the adversary
to control a node fails. We include a roving adversary that
can attempt to compromise a certain number of nodes. Route
selection is modeled as a three-stage game in which the user
first picks a distribution over paths, then the adversary chooses
a set of nodes to attempt to compromise, and finally the user
samples a path from his distribution. While we expect this
model to bear further fruit, we use it in this paper to show a
number of results of both theoretical and practical interest.

We consider various strategies for choosing first and last
nodes in the network so as to minimize the maximum probabil-
ity a correlating adversary has for linking source to destination.
We first look at the general case, in which there is an arbitrary
number of trust levels. We observe that a straightforward
algorithm to calculate an optimal distribution runs in time
exponential in the size of the adversary. We consider a
natural simplification of looking at distributions on individual
nodes rather than pairs of nodes and considering the product
distribution as an approximation of the joint distribution on
pairs. We find two optimal distributions over single nodes, but
we then show that optimal distributions on pairs are arbitrarily
better than products of those optimal distributions on single

nodes.
In practice, it is unlikely that one can realistically assign

many different levels of trust, and so we next consider restrict-
ing to the case where there are only two trust levels for nodes
in the network. Here we find three distributions and prove that
in every case one of them must be optimal. Lastly, we discuss
determining in practice when one of the three distributions
is optimal based on the values of the system variables: trust
values, size of the trusted and untrusted sets, and the size of
the adversary.

2. An uncompromising model of node trust

A user wants to use a network of onion routers for anony-
mous communication. He trusts some onion routers more than
others in the sense that he trusts that they are less likely to
attempt to compromise his anonymity. How should he take
this trust into account when he selects his paths?

2.1. The model

To make this question concrete, we need to make the notions
of trust, anonymity, and an adversary precise.

Let R be the set of routers, |R| = n. Let there be an
adversary that is trying to compromise the user’s anonymity.
The adversary selects k routers in R that he will attempt to
compromise and use for deanonymization. If a router is not
selected, it cannot be used by the adversary in an attack.

When an onion router i is selected, the adversary fails to
compromise it with probability ti. This represents the user’s
trust in the router. It will be convenient to define ci = 1−ti, the
probability that the adversary does successfully compromise
router i when he attempts to do so.

A user selects a path for a circuit from some probability
distribution. If the adversary has selected and successfully
compromised the first and last nodes on the chosen path, the
user has no anonymity. Otherwise, the user’s connection is
anonymous. Therefore, to calculate anonymity, we need only
look at the user’s distribution over entry-and-exit-node pairs.

We would like to find the probability distribution over
pairs of routers that minimizes the chance that both members
of the pair are selected by the adversary and successfully
compromised. More precisely, we want to find p ∈ ∆n(n−1)/2,
that is, a probability distribution p over pairs in R, that
minimizes

c(p) = max
K⊆R:|K|=k

∑
{r,s}∈(K

2 )
p(r, s)crcs

For a set S and j ≤ |S|, we use
(
S
j

)
to represent the collection

of all subsets of S of size j. Also, for convenience, we write
p({r, s}) as p(r, s).

2.2. The adversary

Attackers of limited size have long been countenanced in
the security and fault-tolerance literature. While caution might



suggest designing against an adversary that can compromise
the entire network as a worst case, usable results are often
broken against such an adversary. And, especially for large
diverse networks, it is typically unrealistic to assume that an
adversary has such reach. System and protocol designs have
been shown to provide a guarantee against various types of
failure or compromise as long as no more than some fixed
threshold of nodes is compromised at any time, e.g., Byzantine
fault-tolerance.

The particular partial-network adversary from which our
work derives is the roving adversary of Ostrovsky and
Yung [16]. They introduced and were motivated by the concept
of proactive security, in which an adversary could compromise
arbitrary optimal sets of nodes given his current information.
The roving adversary can potentially compromise every node
in the network, but it can compromise no more than a fixed
maximum number of nodes at any one time. Proactive security
is concerned with properties that are resilient to such attacks.
This can be useful for secret sharing and other distributed ap-
plications. The adversary model was applied to onion routing
by Syverson et al. [4].

We alter the basic roving adversary model in two ways.
First, to incorporate trust we add the idea that an adversary
does not always succeed when attempting to compromise a
node. Second, the adversary selects only one set to attack—
there is no roving. It may be useful to bring roving back in
for future work. Though likely of limited use for individual
correlation attacks (given the typically short duration of onion-
routing circuits), roving could allow the adversary to learn
various communication and trust properties of the network and
its users.

The adversary is assumed to have prior knowledge of the
distribution that is used to pick a route, and he uses this
knowledge to pick the set of nodes that he will attempt to
compromise. It is realistic in many settings to assume the
adversary has such knowledge. For example, the probability
distributions may be set in some software or common system
parameters given to a wide group in which there is at least
one compromised member. The adversary may also be able to
infer trust information from outside knowledge about the user.

2.3. Trust

Trust is captured in our model with the probability ti that the
adversary’s attempt to compromise a node fails. This notion
accommodates several different means by which users in the
real world might trust an onion router.

The probability might represent the user’s estimate of how
likely it is that the operator of a given node is trying to provide,
rather than break, anonymity. It might represent the user’s faith
in the security of a given node against outside attack.

To arrive at such conclusions, the users must rely on some
outside knowledge. This might include knowledge of the
organizations or individuals who run nodes, both knowledge
of their technical competence and the likelihood of themselves
harboring ill intent. It also includes knowledge of computing

platforms on which a network node is running, geopolitical
information about the node, knowledge about the hosting fa-
cility where a node might be housed or the service provider(s)
for its access to the underlying communications network, etc.

Admittedly, it may not be the case that one can realistically
assign specific probabilities to each node in the network
separately. It is for this reason that we consider in sections 5
and 6 restriction to just two trust levels. Even if one cannot be
certain of the probability of compromise to assign at one level
or another, one may be in a position to know the divergence of
those levels. This is particularly the case if one is considering
nodes run by, e.g., security or law-enforcement agencies of
friendly governments or their contractors vs. the rest of the
nodes on the network. Alternatively one can imagine sets of
nodes run by reputable human rights groups, NGOs, or human
rights agencies of friendly governments.

Unlike many other areas, network performance or reliability
reputation are not good bases for trust for anonymous com-
munication. That is because an adversary that is focused on
learning as much as possible about communication patterns
has incentive to run the highest performing, most reliable
nodes in the network. Thus, many of the usual metrics do
not apply. The relation however is subtle because failure to
consider performance at all would always result in the optimal
choice being a secure brick [17].

2.4. Anonymity

We will consider a user to be anonymous unless the adver-
sary has compromised the first and last routers on his path.
This is motivated by the correlation attacks mentioned above.
The model does not include some other methods the adversary
can use, for example congestion attacks [18], [19], denial-of-
service attacks [20], latency [21], or destination fingerprint-
ing [22], [23]. It also does not take into account the total effect
of an adversary’s actions on a user’s anonymity, such as the
analysis performed in [24]. The attacks on which we focus
are conceptually much simpler than these others, but more
importantly, as noted in Section 1, none of these other attacks
succeeds with as much certainty using as little resources as
this one. Note that such entry-exit correlation attacks could
also be done by the links from source to the entry onion
router on the entry side and links from the exit onion router to
the destination on the exit side (or by the destination itself).
For example, an autonomous system or internet exchange on
these links could participate in a correlation attack [25], [26].
We focus, however, on just the attack as it can be done by
network nodes. Besides simplifying analysis, this is reasonable
to model as a practical attack given the ease with which nodes
can be added to the network.

Using this model, the user’s selection of the pair constituting
the first and last onion routers on his path is the only relevant
factor in his anonymity. The user may make this selection
using any probability distribution p over pairs of routers.



2.5. Objective function

We set as our objective function to find the distribution
on pairs of routers that minimizes the probability of circuit
compromise over all possible sets that the adversary could
choose:

min
p∈∆n(n−1)/2

max
K⊆R:|K|=k

∑
{r,s}∈(K

2 )
p(r, s)crcs.

This provides a worst-case guarantee, and if the user has
a distribution with a low worst-case value, he is guaranteed
anonymity with high probability regardless of the adversary’s
actions. As a worst-case criterion, however, it may direct the
user to protect against adversarial actions that are unlikely.
Indeed, while the adversary’s goal is to find the subset K ⊆ R
that maximizes his chance of compromise, it is easy to see that
this problem in general is equivalent to the NP-hard problem
CLIQUE. Therefore the adversary may fail in many cases to
actually select the worst-case set.

3. Strategies for the general case

Given arbitrary trust values t1, . . . , tn, we would like to find
a polynomial-time algorithm that takes as input the trust values
and outputs an optimal or near-optimal distribution p∗.

3.1. Exact algorithm

There is a straightforward formulation of this problem as a
linear program. Let the set of variables be pij , i, j ∈ R. The
following constraints ensure that p is a probability distribution:∑

{r,s}∈(R
2) prs = 1

0 ≤ prs ≤ 1 for all {r, s} ∈
(

R

2

)
.

We want to find the distribution that satisfies the minimax
criterion

min
p

max
K∈(R

k)

∑
{r,s}∈(K

2 )
crcsp(r, s).

For any fixed K, the sum

c(p, K) =
∑

{r,s}∈(K
2 )

p(r, s)crcs

is linear in p. Therefore the minimax criterion minimizes the
maximum of linear functions. We can thus transform it into
a simple minimization problem by adding a slack variable t
and some linear constraints. We force t to be greater than the
maximum of our linear functions:

t− c(p, K) ≥ 0 for all K ∈
(

R

k

)
Then the objective function is simply min t. Unfortunately,

this linear program is of exponential size
(
O(nk)

)
because of

the constraints for each subset.

3.2. Choosing a simple distribution

A straightforward simplification is to consider restricting
the output to be a distribution in which the first and last
routers are chosen independently and identically at random
and then minimizing the probability that they are individually
compromised.

Let pR be a distribution on R. We consider the distribution
p∗R that minimizes the probability that an adversary chooses
and successfully compromises a single router:

c(pR) = max
K∈(R

k)

∑
r∈K

pR(r)cr

p∗R = argmin
pR

c(pR)

The following theorem states that it is always optimal either
to put all the probability on the most trusted router or to set
the probabilities such that the values cipR(ri) are equal for
all ri ∈ R.

Theorem 1: Let cµ = minj cj . Let p1
R put all the probability

on the most trusted router:

p1
R(r) =

{
1 if r = rµ

0 otherwise

Let p2
R set probability inversely proportional to ci:

p2
R(ri) = α/ci

where α = (
∑

i 1/ci)
−1.

Then

c(p∗R) =
{

c(p1
R) if cµ ≤ kα

c(p2
R) otherwise

Proof: Suppose pR is an optimal distribution. Sort the
routers so that c1pR(r1) ≥ c2pR(r2) ≥ . . . ≥ cnpR(rn). The
set K that maximizes

∑
r∈K crpR(r) is then {r1, r2, . . . , rk},

and the value of pR is c(pR) =
∑k

i=1 cipR(ri).
Let l be the largest index such that clpR(rl) = ckpR(rk).
If l < n, we could decrease cipR(ri), k ≤ i ≤ l by moving

εck/ci probability from ri to rl+1. This decreases ciri by ckε
and increases cl+1pR(rl+1) by εcl+1ck/ci. For small enough
ε we maintain that if i < j then cipR(ri) ≥ cjpR(rj), and
therefore we reduce the value c(pR). Therefore pR cannot be
optimal, contradicting our assumption.

Thus it must be that l = n. Let m be the smallest index such
that cmpR(rm) = ckpR(rk). Assume that pR is an optimal
distribution that has the smallest m possible.

If m = 1, we are in the case that cipR(ri) = cjpR(rj) for
1 ≤ i, j ≤ n. This is the distribution p2

R.
Suppose m > 1. If pR(rm) = 0, then c(pR) =∑m−1
i=1 cipR(ri). Let cµ = mini ci. Because all of the proba-

bility is contained in a set that the adversary can completely
select, we do not increase c(pR) by moving all the probability



to rµ:

c(pR) =
m−1∑
i=1

cipR(ri)

≥
m−1∑
i=1

cµpR(ri)

= cµ.

cµ is equal to c(p1
R).

Now consider the case that pR(rm) > 0. Recall that
cipR(ri) = cjpR(rj) for all pairs ri,rj , in the set S =
{ri, m ≤ i ≤ n}. Consider moving probability between rm−1

and S in a way that maintains the equality of cipR(ri) for
ri ∈ S. This can be achieved by setting the probability of
rm−1 to

p′R(rm−1, t) = pR(rm−1) + t

and the probability of ri ∈ S to

p′R(ri, t) = pR(ri)−
t

ci(
∑

rj∈S 1/cj)
.

For small enough values of t, this preserves the property that
if i > j then cip

′
R(ri, t) ≤ cjp

′
R(rj , t). Therefore c(p′R) =∑k

i=1 cip
′
R(ri, t). The fact that p′R is linear in t makes c(p′R)

also linear in t for small enough values of t.
If Dtc(p′R)|t=0 ≥ 0, then for t < 0 large enough c(p′R)

doesn’t increase. This corresponds to moving probability from
rm−1 to S, and the smallest t that maintains the ordering
by cip

′
R(ri) results in cm−1p

′
R(rm−1) = cmp′R(rm). This

contradicts the assumption about the minimality of the index
m.

If Dtc(p′R)|t=0 ≤ 0, then for t > 0 small enough c(p′R)
doesn’t increase. This corresponds to moving probability from
S to rm−1. In fact, no positive value of t increases c(p′R).
This is because setting t > 0 decreases the probability of all
ri, i > k, and only increases the probability of rm−1, m ≤ k,
and thus preserves the fact that c(p′R) =

∑k
i=1 cip

′
R(ri, t).

Therefore we can increase t until cip
′
R(ri) = 0 for all ri ∈ S.

This puts us in the case where p′R(rm) = 0, which we have
already shown implies that c(p′R) ≥ c(p1

R).
Thus we have shown that either p1

R or p2
R is an optimal

distribution. c(p1
R) = c1 and c(p2

R) = kα. Therefore, if c1 ≤
kα, c(p∗R) = c(p1

R), and otherwise c(p∗R) = c(p2
R).

We might hope that the product distributions p1
R × p1

R and
p2

R × p2
R over R × R are good approximations to an optimal

distribution p∗. However, this is not the case, and we can find
inputs such that c(pi

R)/c(p∗), i ∈ {1, 2}, is arbitrarily high.
In fact, we can show this for slightly improved distributions
p1 and p2 over

(
R
2

)
.

Notice that pi
R × pi

R, i ∈ {1, 2}, puts positive probability
on the user choosing the same router twice. The problem as
formulated in Section 2 allows distributions only over distinct
pairs in

(
R
2

)
. This doesn’t affect the optimum, however. There

is always an optimal distribution that puts zero probability on

(r, r) ∈ R×R. Let p be a distribution on R×R. Then let

p′(r, s) =
{

0 if r = s
p(r, s) + qrs otherwise

where for all r ∈ R,
∑

s 6=r qrs = p(r, r).
Lemma 2: c(p′) ≤ c(p) ¤
Now assume that c1 ≤ c2 ≤ . . . ≤ cn and consider two

distributions over
(
R
2

)
:

p1(r, s) =
{

1 if r = c1 ∧ s = c2

0 otherwise

and

p2(r, s) =
α

crcs

where α =
(∑

{r,s}∈(R
2) 1/(crcs)

)−1

. By Lemma 2 c(p1) ≤
c(p1

R) and c(p2) ≤ c(p2
R).

Now let In = (c1, . . . , cn, k) be a problem instance that, as
n grows, satisfies

1) c1 = O(1/n).
2) c2 > c for some constant c ∈ (0, 1).
3) k = o(n)
4) k = ω(1)

For large enough n, In has an optimal value that is
arbitrarily smaller than the values achieved by p1 and p2. Let
c(In, p) be the value of In under distribution p.

Theorem 3:

c(In, p1)/c(In, p∗) = Ω
(n

k

)
(1)

c(In, p2)/c(In, p∗) = Ω(k) (2)

Proof: The following distribution achieves the ratios in
Eqs. 1 and 2. Let

p3(r, s) =
{

α
crcs

if r = r1

0 otherwise

where α =
(∑

i>1 1/(c1ci)
)−1

. This distribution puts weight
on all distinct pairs that include r1. It represents a middle
approach between putting all the probability on the lightest
pair, as p1 does, and spreading the probability over all pairs,
as p2 does. The optimal distribution for each In only has
higher ratios with p1 and p2 than p3 does.

The ratio between p1 and p3 is

c(In, p1)
c(In, p3)

=
c1c2

(k − 1)/ (
∑n

i=2 1/(c1ci))
≥ (1 + c2(n− 2)/cn)/(k − 1)

= Ω
(n

k

)
.



The ratio between p2 and p3 is

c(In, p2)
c(In, p3)

=

(
k
2

) (∑
i6=j 1/(cicj)

)−1

(k − 1)/ (
∑n

i=2 1/(c1ci))
(3)

=
k

2

(
1 + c1

∑
2≤i<j≤n 1/(cicj)∑n

i=2 1/ci

)−1

(4)

≥ k

2

(
1 +

c1

2

(
n∑

i=2

1/ci − 1

))−1

(5)

= Ω(k). (6)

In Eq. 5,
∑n

i=2 1/ci is bounded by n because ci > c, i > 1.
The last line then follows because c1 = O(1/n).

Intuitively, the reason p1 does arbitrarily worse than p3 is
that it doesn’t take advantage of an adversary of size o(n) by
putting probability on Ω(n) pairs, while p2 does arbitrarily
worse than p3 because it puts probability on pairs {ri, rj},
i, j > 1, that have Ω(n) times higher probability of being
successfully compromised than pairs including r1.

4. When pairing off, trust is everything

Allowing arbitrary trust values may be unnecessarily gen-
eral. Users are unlikely to have precise knowledge of the
probability of compromise for each onion router in the net-
work. Instead, they seem more likely to have a few classes
of trust into which they can partition the routers, or to have
detailed knowledge about only a small number of routers.
This fact may help us deal with the apparent computational
intractability of the general problem. Also, the potentially
complicated optima that result from arbitrary trust values may
not satisfy other criteria for path-selection strategies that our
problem formulation does not include. For example, we may
want the number of possible optimal strategies to be small so
users share their behavior with many others, or we may want
the strategies to be robust to small changes in trust values.

Therefore, we now consider the case that there are only two
trust values. We refer to the nodes with higher trust as the
trusted set, and nodes with lower trust as the untrusted set.
This case is simple yet results in non-obvious conclusions, and
also still provides practical advice to users.

In Section 5 we show that, when there are only two trust
values, there are three strategies that are potentially optimal.
But first we give here a lemma that allows us to consider only
distributions that treat the routers within a trust set identically.
Note that this lemma holds for general trust values.

Lemma 4: Let U be a set of routers with identical trust
values c, where |U | = m. Let V be the rest of the routers,
where |V | = n. Then the set of routers is R = U ∪ V . There
exists an optimal distribution p in which the following hold:

1) For all {u, v}, {w, x} ∈
(
U
2

)
, p(u, v) = p(w, x).

2) For all v ∈ V , u, w ∈ U , p(v, u) = p(v, w).
Proof: Consider some distribution over pairs p :

(
R
2

)
→

[0, 1],
∑
{r,s}∈(R

2) p(r, s) = 1. Consider any subset S ⊆ V .
Let XS be a subset chosen randomly from all subsets X of

size k such that X ∩ V = S. Let j = k − |S| be the size of
XS ∩U . Let c(p, K) be the probability of compromise under
p, given that set K is chosen by the adversary. That is,

c(p, K) =
∑

{r,s}∈(K
2 )

p(r, s)crcs

We can calculate the expected probability of compromise
of XS as follows:

E [c(p, XS)]

=


(

m

j

)−1 ∑
T⊆(U

j )



∑
{t,u}∈(T

2)
p(t, u)c2+

∑
u∈T,v∈S

p(u, v)c · cv+∑
{v,w}∈(S

2)
p(v, w)cvcw


(7)

=



(
m

j

)−1(
m− 2
j − 2

)
c2

∑
{t,u}∈(U

2)
p(t, u)+

(
m

j

)−1(
m− 1
j − 1

)
c
∑

v∈S,u∈U

p(v, u)cv+∑
{v,w}∈(S

2)
p(v, w)cvcw

(8)

=



j(j − 1)c2

m(m− 1)

∑
{t,u}∈(U

2)
p(t, u)+

j · c
m

∑
v∈S,u∈U

p(v, u)cv+∑
{v,w}∈(S

2)
p(v, w)cvcw

(9)

There must be some set T ⊆ U of size j such that c(p, S ∪
T ) is at least the expectation expressed in Eq. 9. If we modify p
to treat all nodes in U the same, and thus satisfy the conditions
in the statement of the lemma, every such T achieves the value
in Eq. 9. Let p′ be this modified distribution:

p′(r, s) =


∑
{t,u}∈(U

2) p(t, u)/
(
m
2

)
if {r, s} ∈

(
U
2

)∑
u∈U p(r, u)/m if r ∈ V, s ∈ U∑
u∈U p(s, u)/m if r ∈ U, s ∈ V

p(r, s) if {r, s} ∈
(
V
2

)
The probability of compromise for any value S ∪ T of XS

is

c(p′, S ∪ T ) =
(

j

2

)(
m

2

)−1 ∑
{t,u}∈(U

2)
p(t, u)c2+

j

m

∑
v∈S

∑
u∈U

p(v, u)cvc+∑
{v,w}∈(S

2)
p(v, w)cvcw.

(10)



Equations 9 and 10 are equal, and therefore
maxT :|T |=j c(p′, S ∪ T ) ≤ maxT :|T |=j c(p, S ∪ T ). Be-
cause this holds for all S ⊆ V , maxK:|K|=k c(p′, K) ≤
maxK:|K|=k c(p, K).

5. Choosing pairs to avoid compromise

“Dear Abby, Dear Abby, Well I never thought, that me
and my girlfriend would ever get caught.”

John Prine — Lyrics to “Dear Abby”

Now we analyze optimal distributions for selecting pairs
when there are two trust values in the network, c1 and c2,
with c1 ≤ c2. We show that, in this case, one of the following
strategies is always optimal: (i) choose a pair of trusted routers
uniformly at random, (ii) choose pairs such that p(r, s)crcs is
equal for all {r, s} ∈

(
R
2

)
, or (iii) choose only fully-trusted or

fully-untrusted pairs such that the adversary has no advantage
in attacking either trusted or untrusted routers. Distribution
(i), corresponds to distribution p2, described in Section 3.2,
with the difference that (i) spreads probability to all the most-
trusted routers and not just two. Distribution (ii) corresponds
to distribution p1 of Section 3.2. Distribution (iii) shows that
non-obvious distributions can exist even when the trust values
are very restricted.

Let U be the trusted set, with trust value c1, |U | = m. Let
V be the untrusted set, with trust value c2, |V | = n.

Theorem 5: Let v0 = max(k − m, 0) and v1 = max(k −
n, 0). Then let g0 = v0(v0−1)

n(n−1) and g1 = v1(v1−1)
m(m−1) . One of the

following is an optimal distribution:

p(r, s) =



(c2)
2

(m
2 )(c2)2+(mn)(c1c2)+(n

2)(c1)2

if {r, s} ∈
(
U
2

)
(c1c2)

(m
2 )(c2)2+(mn)(c1c2)+(n

2)(c1)2

if (r, s) ∈ U × V ∪ V × U

(c1)
2

(m
2 )(c2)2+(mn)(c1c2)+(n

2)(c1)2

if {r, s} ∈
(
V
2

)
(11)

p(r, s) =
{ (

m
2

)−1
if {r, s} ∈

(
U
2

)
0 otherwise

(12)

p(r, s) =



(
m
2

)−1 c2
2(1−g0)

c2
1(1−g1)+c2

2(1−g0)

if {r, s} ∈
(
U
2

)
(
n
2

)−1 c2
1(1−g1)

c2
1(1−g1)+c2

2(1−g0)

if {r, s} ∈
(
V
2

)
0
if (r, s) ∈ U × V ∪ V × U

(13)

Proof: Let p be some distribution on
(
R
2

)
. By Lemma 4,

we can assume that p(t, u) = p(x, y), if t, u, x, y ∈ U .
Similarly, p(v, w) = p(x, y), if v, w, x, y ∈ V . Again using

Lemma 4, p(u, v) = p(u, y) = p(x, y), if u, x ∈ U and
v, y ∈ V . This shows that all pairs intersecting both U and V
have equal probability.

If k >= n + m, the adversary can try to compromise all
routers. Thus the best strategy is to only choose pairs from the
trusted set U , as described in Eq. 12. From now on, assume
that k < n + m.

Let Kj ⊆ R be of size k and have an intersection with
U of size j. The value of j alone determines the probability
of compromise for Kj , because it determines the number of
pairs in

(
U
2

)
, U × V , and

(
V
2

)
. As we have just shown, the

exact pairs included do not matter because their probability is
determined by their class. Let p1 =

∑
{t,u}∈(U

2) p(t, u), p2 =∑
(u,v)∈U×V p(u, v), and p3 =

∑
{v,w}∈(V

2) p(v, w). Then we
can say that

c(p, Kj) =
(

j

2

)
(c1)2

p1(
m
2

) + j(k − j)c1c2
p2

mn
+(

k − j

2

)
(c2)2

p3(
n
2

) (14)

To narrow the set of possible optimal assignments of p1,
p2, and p3, we will first consider the effect of varying p2.
The quantity we want to minimize is the maximum value of
Eq. 14. Equation 14 is a quadratic function of j. Assume that
the second derivative is non-zero. If it is zero it is easy to show
that the distribution p is the distribution described in Eq. 11.
Otherwise, we will show that we can improve the maximum
by changing p2. We can find the local extremum by taking the
derivative of Eq. 14 and setting it to zero. Solving for j gives

j∗ =

n(n− 1)p1c
2
1 − k(m− 1)(n− 1)p2c1c2+

(2k − 1)m(m− 1)p3c
2
2

2(n(n− 1)p1c
2
1 − (m− 1)(n− 1)p2c1c2+

m(m− 1)p3c
2
2)

. (15)

Unfortunately, j∗ must be integral to represent a worst-case
subset, and therefore we cannot just substitute the expression
in Eq. 15 into Eq. 14 and solve for the optimal value of
p2. There may in fact be two values of j that are maxima,
and varying p2 could possibly increase the value at one while
decreasing the value at other. Therefore, while varying p2, we
simultaneously vary p1 and p3 to maintain the local extremum
of Eq. 14 at j∗. Then both possible maxima are changed in
the same way.

By observing that p3 = 1 − p1 − p2 in Eq. 15 we can see
that p1 and p2 are linearly related. Solve this for p1 and call
the expression p′1. Now let j′ ∈ N, 0 ≤ j′ ≤ k, be any value
that maximizes c(p, Kj′). j′ is either an endpoint of [0, k] or
a closest integer to a local maximum. Substitute p′1 for p1 in
c(p, Kj′), and the result is a linear function of p2. Therefore
either increasing or decreasing p2 does not increase c(p, Kj′).
Suppose we move p2 in the direction that decreases c(p, Kj′).
Because we vary p′1 (and p3) with p2 in such a way as to
maintain the extremum of the parabola at the same value j∗,
j′ is maintained as a maximum of c(p, Kj) as long as the
second derivative of c(p, Kj′) remains non-zero.



The process of changing p2 stops when (i) the second
derivative of c(p, Kj′) becomes zero, (ii) p2 reaches zero, (iii)
p3 reaches zero, or (iv) p1 reaches zero.

Case (i): In this case, all sets have the same value. This is
only satisfied when the distribution is that of Eq. 11.

Case (ii): In this case, all probability is in pairs of two
trusted or two untrusted nodes. Therefore the maximizing
value of j must be when it is as small as possible or as large
as possible, i.e., at max(0, k−n) or max(k,m). If the former
case is strictly larger, we can reduce it by decreasing p3 and
increasing p1. If the latter case is strictly larger, we can do
the reverse. Therefore the value in these two cases must be
equal. To find the probabilities p1 and p3 that satisfy this, let
p3 = 1− p1, v0 = max(k −m, 0), and v1 = max(k − n, 0).
Then setting them equal and solving for p1 yields the condition

p1 =
c2
2

(
1− v0(v0−1)

n(n−1)

)
c2
1

(
1− v1(v1−1)

m(m−1)

)
+ c2

2

(
1− v0(v0−1)

n(n−1)

) . (16)

Equation 16 then gives us the probability for each pair in
(
U
2

)
and

(
V
2

)
, and this is the same as the distribution in Eq. 13.

Case (iii): In this case, p3 = 0. Then if p2 = 0 also, we put
all probability in the trusted nodes, which is the distribution
described in Eq. 12.

Now suppose that p2 > 0. We will consider moving
probability between p1, p2, and p3 to show that this case isn’t
possible. Let p2 = 1 − p1 in Eq. 14 and call this c3(p, Kj).
Then use this to consider trading off p1 and p2 to find the
optimal assignment. As p1 varies, the change in the value of
the set Kj is

Dp1c3(p, Kj) =
jc1

m

[
(j − 1)c1

m− 1
− (k − j)c2

n

]
. (17)

Next, let p2 = 1− p1 − p3 in Eq. 14 and call this c4(p, Kj).
Moving p2 to p3 results in a change of

Dp3c4(p, Kj) =
(k − j)c2

n

[
(k − j − 1)c2

n− 1
− jc1

m

]
. (18)

Let j∗ ∈ argmaxjc(p, Kj) be the largest integer that is a
maximum of c(p, Kj).

We observe that D2
j c(p, Kj) ≤ 0. If not, we would have

j∗ = k. Then Eq. 17 shows that decreasing p1 would decrease
the value at j∗, and p1 is non-zero so we could do this because,
at p1 = 0, c(p, Kj) is largest at j∗ = dk/2e 6= k. Such a
decrease would contradict the optimality of j∗.

Now, because D2
j c(p, Kj) ≤ 0, there may be some ĵ ∈

argmaxjc(p, Kj) such that ĵ < j∗. There are four cases
to consider here: (1) Dp1c3(p, Kj∗), Dp1c3(p, Kĵ) ≤ 0, (2)
Dp1c3(p, Kj∗), Dp1c3(p, Kĵ) ≥ 0, (3) Dp1c3(p, Kj∗) ≥ 0
and Dp1c3(p, Kĵ) ≤ 0, and (4) Dp1c3(p, Kj∗) ≤ 0 and
Dp1c3(p, Kĵ) ≥ 0.

In case (1), we could decrease c at j∗ and ĵ by moving
probability from p2 to p1. This would contradict the optimality
of p.

For case (2), we use the fact that

0 ≤ a < b ⇒ a− 1
b− 1

<
a

b
. (19)

Inequality 19 implies that if Dp1c3(p, Kj) ≥ 0, then
Dp3c4(p, Kj) ≤ 0. Therefore we could decrease c at j∗ and
ĵ by moving probability from p2 to p3, contradicting the
optimality of p.

For case (3), we show that we can still decrease both j∗

and ĵ while maintaining their equality, and hence maximality,
by moving some probability from p2 to p1 and p3. Moving
probability from p2 to p1 increases the value at j∗ and
decreases the value at ĵ. This implies, by Inequality 19, that
moving probability from p2 to p3 decreases the value at j∗.
Furthermore, can assume that it increases it at ĵ because oth-
erwise we could decrease both j∗ and ĵ by moving probability
directly from p2 to p3.

For j∗ and ĵ to be integral maxima of Eq. 14, it must be
that j∗ − 1 = ĵ. Also, solving Dp1c3 = Dp3c4 for j, we
find that at this point, Dp1c3 ≤ 0 and Dp3c4 ≤ 0. Therefore,
j∗ is at most one more than this point. We can observe by
calculation that within this range the ratio |Dp1c3/Dp3c4| is
less than one. Similarly, ĵ is at most one less than this point,
and within this range the ratio |Dp1c3/Dp3c4| is greater than
one.

This shows that we can move probability from p2 to p1 and
p3 at rates that decrease the value at both j∗ and ĵ. Because
they were maximum, we have lowered the value of the worst-
case subset Kj∗ , contradicting the optimality of p.

Case (4) is not possible because D2
j [Dp1c2] ≥ 0 and

Dp1c3(p, K0) = 0.
Case (iv): In this case, if p2 > 0, the case is symmetric to

the case of p1, p2 > 0 and we can apply the same argument.
Therefore assume that p2 = 0, which implies that p3 = 1. It
must be that m < n because otherwise we could set p1 = 1
and p3 = 0 and improve the worst case. But now consider
moving some probability from p3 to p1. Let p1 = 1 − p3 in
Eq. 14 and call this c3. The change in the worst-case case
subset, Kn, is

Dp3c3(p, Kn) = c2
2 −

(k − n)(k − n− 1)c2
1

m(m− 1)
.

This must be greater than zero because c2 ≥ c1 and k−n < m.
Therefore decreasing p3 decreases c(p, Kn), contradicting the
optimality of p.

6. Choosing a distribution

We have shown that there are three possibilities for an
optimal strategy in choosing nodes that will minimize the
best chances a fixed size adversary has to compromise both
endpoints of an onion-routing circuit when a trusted set is
available. To choose a distribution, a user can simply calculate
the probability of compromise in each case and use the
distribution with the smallest result. The optimal distribution
depends on all the variables in the system: the trust values,



the size of the trusted set, the size of the untrusted set, and
the size of the adversary.

In the first distribution, described in Eq. 11, the user chooses
pairs {i, j} to make p(i, j)cicj equal for all i, j. This is a
random choice of pairs weighted by the trust in the pair. The
probability of compromise under this strategy is

C1 =
k(k − 1)c2

1c
2
2

m(m− 1)c2
2 + 2mnc1c2 + n(n− 1)c2

1

. (20)

This strategy is optimal when the network is large compared
to the adversary, and so it benefits the user to spread out
his distribution, even to less-trusted routers. It is also optimal
when the trust values are close.

In the second distribution, described in Eq 12, the user
randomly selects pairs from within the trusted set. This can
only be optimal if the size k of the adversary is larger than the
size m of the trusted set. Otherwise, the user could decrease
the probability of compromise by putting some of the pair-
selection distribution on pairs outside the trusted set. Doing so
would not change the adversary’s worst-case subset, which is
entirely in the trusted set, but it would decrease the probability
that those nodes are chose by the user. The probability of
compromise, assuming k > m, is simply

C2 = c2
1. (21)

We can compare this to Eq. 20 and observe that c1 can always
be made small enough to make this value less than the value
of the first strategy. These equations also show that choosing
only trusted nodes will be optimal when k is large relative to
the network. When k = m + n, this case is always optimal.

The third distribution, given in Eq. 13, is perhaps the
least obvious one, and arises as a result of the fact that
users choose their distribution over pairs, while the adversary
attacks individual routers. Let v0 = max(k − m, 0) and
v1 = max(k − n, 0). Then let g0 = v0(v0 − 1)/(n(n − 1))
and g1 = v1(v1 − 1)/(m(m− 1)). In general, the probability
of compromise under this distribution is

C3 =


c2
1c2

2(1−g0)

c2
1(1−g1)+c2

2(1−g0)
+

v0(v0−1)c2
1c2

2(1−g1)

n(n−1)(c2
1(1−g1)+c2

2(1−g0))

(22)

=


v1(v1−1)c2

1c2
2(1−g0)

m(m−1)(c2
1(1−g1)+c2

2(1−g0))
+

c2
1c2

2(1−g1)

c2
1(1−g1)+c2

2(1−g0)

(23)

To make some sense of this, it is helpful to consider some
special cases. When n > k,m < k, the probability of
compromise is

C3 =
k(k − 1)c2

1c
2
2

n(n− 1)(c2
1 + c2

2(1− g0))

We can see that there is some large m such that C3 is less
than C2 and C1. What happens in this case is that there are
large number of routers, and the user wants to spread his
probability among them. However, because k > n, spreading
the probability to all cross-pairs (one trusted and one untrusted

router) means that an adversary selecting as many untrusted
routers as possible gains (k−n)n/(mn) = (k−n)/m of the
probability on such pairs. On the other hand, when spreading
to trusted pairs (k−n)(k−n− 1)/(m(m− 1)) of the shifted
probability is captured by the adversary. The latter shrinks
quadratically with m while the former shrinks only linearly. At
some point it will be beneficial to spread probability to trusted
pairs but not to cross-pairs. The case when m > k, n < k is
similar. This distribution is never optimal when m > k and
n > k, because the worst-case sets are contained within U and
V , and so spreading probability to the cross-pairs some small
amount will always decrease the probability of compromise.

7. Conclusion and future work

We have set out a simple model for reasoning about using
trust for routing in onion-routing anonymity networks. This
model modifies the traditional roving adversary by adding
trust; so the success of the adversary in attacking nodes he
chooses becomes probabilistic rather than certain. Trust is thus
defined as the probability that the adversary fails in attempting
to compromise a node. We used this model to look at end-to-
end correlation attacks by nodes in onion-routing networks.
We expect this model to be useful for future research by
ourselves and others.

We used our model to show optimal strategies for choosing
routes when trust information is available. The strategies are
optimal in that they minimize the maximum probability a
correlating adversary has for linking source to destination.

In the general case, where there is an arbitrary number of
trust levels, we presented an algorithm to calculate an optimal
distribution, an algorithm which runs in time exponential in
the size of the adversary. We described a natural simplification
and approximation of this, which permitted the calculation of
optimal strategies on selection of individual nodes, but we
also showed that the approximation based on this is arbitrarily
worse than optimal distributions on pairs of nodes.

We then turned to consider a practical approach by limiting
ourselves to two trust levels. In addition to being computation-
ally tractable, users of deployed networks are more likely to
be capable in practice of dividing routers into these levels. We
described three distributions for this case and proved that one
of them must be optimal. Lastly, we discussed determining in
practice when one of the three distributions is optimal based
on the values of the system variables: trust values, size of the
trusted and untrusted sets, and the size of the adversary.

The results we have produced are more complicated than we
expected, both to describe and to prove. It will be interesting to
examine larger questions of trust in future work: What happens
when a network is shared between entities that do not share
trust levels placed on the nodes? What is the impact of trust
on profiling in this case? What is the effect of learning if we
add time to the model and allow the adversary to rove rather
than conducting a one-off attack?

Though our motivation is onion routing, our analysis applies
to any network where it would be beneficial to reduce the



chance of circuit-endpoint threats by choosing circuits with
less vulnerable endpoints. It clearly generalizes to other low-
latency anonymity designs, such as Crowds [27]. It also
applies beyond networks for anonymity to other concerns.
For example, network endpoints may be able to collaborate
to cover up checksum or other errors that might flag data-
integrity attacks. And, capturing internet traffic for any kind of
analysis (cryptanalysis, textual analysis, traffic analysis, etc.)
may be easier to do or harder to detect or both if pairs of nodes
are collaborating for route capture. Alternatively they might
collaborate for unfair resource sharing. Similar observations
apply to ad-hoc and peer-to-peer networks and to sensor
networks, for which vulnerability of cheap, low-power, and
physically accessible nodes is a known concern. Going further,
our results are not restricted in applicability to path endpoints.
In any setting in which sets of principals can collaborate
so that a successfully compromised pair can conduct an
attack our results are potentially applicable. Examining larger
numbers of nodes being attacked than just pairs is one possible
generalization of this work that should apply in many settings.
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