Y Gossamrer

L a6 st cres

www.Gossamer Sec.com

ASSURANCE ACTIVITY REPORT FOR
SAMSUNG ELECTRONICS CO., LTD.
SAMSUNG GALAXY DEVICES ON
ANDROID 13 - SPRING

Version 0.2
04/13/2023

Prepared by:
Gossamer Security Solutions
Accredited Security Testing Laboratory - Common Criteria Testing
Columbia, MD 21045

Prepared for:
National Information Assurance Partnership
Common Criteria Evaluation and Validation Scheme

Document: AAR-VID11342 © 2023 Gossamer Security Solutions, Inc.
All rights reserved.

Version 0.2, 04/13/2023

REVISION HISTORY

Revision Date Authors Summary
Version 0.1 03/17/2023 | Compton Initial draft
Version 0.2 04/13/2023 | Compton Addressed ECR comments

The TOE Evaluation was Sponsored by:
Samsung Electronics Co., Ltd.
416 Maetan-3dong, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-742 Korea

Evaluation Personnel:
e James Arnold
e Tammy Compton
e Will Micknick

Common Criteria Versions:
e Common Criteria for Information Technology Security Evaluation Part 1: Introduction, Version 3.1,
Revision 5, April 2017
Common Criteria for Information Technology Security Evaluation Part 2: Security functional components,
Version 3.1, Revision 5, April 2017
Common Criteria for Information Technology Security Evaluation Part 3: Security assurance components,
Version 3.1, Revision 5, April 2017

Common Evaluation Methodology Versions:
e Common Methodology for Information Technology Security Evaluation, Evaluation Methodology, Version

3.1, Revision 5, April 2017

S ———
GSS CCT Assurance Activity Report Page 2 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

TABLE OF CONTENTS

1. Introduction

11 Device Equivalence

1.2 CAVP Certificates

2. Protection Profile SFR Assurance Activities

2.1 Security audit (FAU)

2,11

2.1.2

2,13

2.1.4

2.1.5

2.1.6

2.1.7

Audit Data Generation - per TD0663 (MDFPP32:FAU_GEN.1)

Audit Data Generation (Bluetooth) - per TDO707 (BT10:FAU_GEN.1/BT)
Audit Data Generation (VPN Client) - per TD0647 (VPNC24:FAU_GEN.1/VPN)
Audit Data Generation (Wireless LAN) (WLANC10:FAU_GEN.1/WLAN)

Audit Review (MDFPP32:FAU_SAR.1)

Audit Storage Protection (MDFPP32:FAU_STG.1)

Prevention of Audit Data Loss (MDFPP32:FAU_STG.4)

2.2 Cryptographic support (FCS)

221

2.2.2

223

224

Cryptographic Key Generation (MDFPP32:FCS_CKM.1)
Cryptographic Key Generation (VPNC24:FCS_CKM.1)
VPN Cryptographic Key Generation (IKE) (VPNC24:FCS_CKM.1/VPN)

Cryptographic Key Generation (Symmetric Keys for WPA2/WPA3 Connections)

(WLANC10:FCS_CKM.1/WPA)

2.2.5

2.2.6

2.2.7

2.2.8

2.2.9

2.2.10

2.2.11

2.2.12

2.2.13

2.2.14

2.2.15

2.2.16

Cryptographic Key Establishment (MDFPP32:FCS_CKM.2/LOCKED)
Cryptographic Key Establishment (VPNC24:FCS_CKM.2/UNLOCK)
Cryptographic Key Establishment (MDFPP32:FCS_CKM.2/UNLOCKED)
Cryptographic Key Distribution (Group Temporal Key for WLAN) (WLANC10:FCS_CKM.2/WLAN)
Cryptographic Key Support (MDFPP32:FCS_CKM_EXT.1)

Cryptographic Key Random Generation (MDFPP32:FCS_CKM_EXT.2)

Cryptographic Key Generation (MDFPP32:FCS_CKM_EXT.3)

Key Destruction (MDFPP32:FCS_CKM_EXT.4)

TSF Wipe (MDFPP32:FCS_CKM_EXT.5)

Salt Generation (MDFPP32:FCS_CKM_EXT.6)

Bluetooth Key Generation (BT10:FCS_CKM_EXT.8)

Cryptographic Operation (MDFPP32:FCS_COP.1/CONDITION)

GSS CCT Assurance Activity Report Page 3 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

2.2.17 Cryptographic Operation (MDFPP32:FCS_COP.1/ENCRYPT)
2.2.18 Cryptographic Operation (VPNC24:FCS_COP.1/ENCRYPT)
2.2.19 Cryptographic Operation (MDFPP32:FCS_COP.1/HASH)

2.2.20 Cryptographic Operation (MDFPP32:FCS_COP.1/KEYHMAC)

2.2.21 Cryptographic Operation (MDFPP32:FCS_COP.1/SIGN)

2.2.22 HTTPS Protocol (MDFPP32:FCS_HTTPS_EXT.1)

2.2.23 IPsec - per TD0662 (VPNC24:FCS_IPSEC_EXT.1)

2.2.24 Initialization Vector Generation (MDFPP32:FCS_IV_EXT.1)

2.2.25 Random Bit Generation - per TD0676 (MDFPP32:FCS_RBG_EXT.1)

2.2.26 Random Bit Generator State Preservation (MDFPP32:FCS_RBG_EXT.2)
2.2.27 Cryptographic Algorithm Services (MDFPP32:FCS_SRV_EXT.1)

2.2.28 Cryptographic Algorithm Services (MDFPP32:FCS_SRV_EXT.2)

2.2.29 Cryptographic Key Storage (MDFPP32:FCS_STG_EXT.1)

2.2.30 Encrypted Cryptographic Key Storage (MDFPP32:FCS_STG_EXT.2)

2.2.31 Integrity of Encrypted Key Storage (MDFPP32:FCS_STG_EXT.3)

2.2.32 TLS Protocol (PKGTLS11:FCS_TLS_EXT.1)

2.2.33 TLS Client Protocol (PKGTLS11:FCS_TLSC_EXT.1)

2.2.34 TLS Client Protocol (EAP-TLS for WLAN) (WLANC10:FCS_TLSC_EXT.1/WLAN)
2.2.35 TLS Client Support for Mutual Authentication (PKGTLS11:FCS_TLSC_EXT.2)

2.2.36 TLS Client Support for Supported Groups Extension (EAP-TLS for WLAN)
(WLANC10:FCS_TLSC_EXT.2/WLAN)

2.2.37 TLS Client Support for Renegotiation (PKGTLS11:FCS_TLSC_EXT.4)
2.2.38 TLS Client Support for Supported Groups Extension (PKGTLS11:FCS_TLSC_EXT.5)
2.2.39 Supported WPA Versions - per TD0710 (WLANC10:FCS_WPA_EXT.1)
2.3 User data protection (FDP)
2.3.1 Access Control for System Services (MDFPP32:FDP_ACF_EXT.1)
2.3.2 Access Control for System Resources (MDFPP32:FDP_ACF_EXT.2)
2.3.3 Security Attribute Based Access Control (MDFPP32:FDP_ACF_EXT.3)
2.3.4 Protected Data Encryption (MDFPP32:FDP_DAR_EXT.1)
2.3.5 Sensitive Data Encryption (MDFPP32:FDP_DAR_EXT.2)
2.3.6 Subset Information Flow Control - per TD0596 (MDFPP32:FDP_IFC_EXT.1)

2.3.7 Subset Information Flow Control (VPNC24:FDP_IFC_EXT.1)

GSS CCT Assurance Activity Report Page 4 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

2.3.8 Storage of Critical Biometric Parameters (MDFPP32:FDP_PBA_EXT.1)
2.3.9 Full Residual Information Protection (VPNC24:FDP_RIP.2)

2.3.10 User Data Storage (MDFPP32:FDP_STG_EXT.1)

2.3.11 Inter-TSF User Data Transfer Protection (Applications) (MDFPP32:FDP_UPC_EXT.1/APPS) 137

2.3.12 Inter-TSF User Data Transfer Protection (Bluetooth) (MDFPP32:FDP_UPC_EXT.1/BLUETOOTH) .139
2.3.13 Split Tunnel Prevention (VPNC24:FDP_VPN_EXT.1)
2.4 Identification and authentication (FIA)
2.4.1 Authentication Failure Handling (MDFPP32:FIA_AFL_EXT.1)
2.4.2 Bluetooth User Authorization (BT10:FIA_BLT_EXT.1)
2.4.3 Bluetooth Mutual Authentication (BT10:FIA_BLT_EXT.2)
2.4.4 Rejection of Duplicate Bluetooth Connections (BT10:FIA_BLT_EXT.3)
2.4.5 Secure Simple Pairing (BT10:FIA_BLT_EXT.4)
2.4.6 Trusted Bluetooth Device User Authorization (BT10:FIA_BLT_EXT.6)
2.4.7 Untrusted Bluetooth Device User Authorization (BT10:FIA_BLT_EXT.7)
2.4.8 Accuracy of Biometric Authentication (MDFPP32:FIA_BMG_EXT.1)
2.49 Accuracy of Biometric Authentication (MDFPP32:FIA_BMG_EXT.1(2))
2.4.10 Port Access Entity Authentication (WLANC10:FIA_PAE_EXT.1)
2.4.11 Password Management (MDFPP32:FIA_PMG_EXT.1)
2.4.12 Authentication Throttling (MDFPP32:FIA_TRT_EXT.1)
2.4.13 Multiple Authentication Mechanisms (MDFPP32:FIA_UAU.5)
2.4.14 Re-authenticating (Credential Change) - per TDO706 (MDFPP32:FIA_UAU.6/CREDENTIAL)
2.4.15 Re-authenticating (TSF Lock) - per TD0O706 (MDFPP32:FIA_UAU.6/LOCKED)
2.4.16 Protected Authentication Feedback (MDFPP32:FIA_UAU.7)
2.4.17 Authentication for Cryptographic Operation (MDFPP32:FIA_UAU_EXT.1)
2.4.18 Timing of Authentication (MDFPP32:FIA_UAU_EXT.2)
2.4.19 Secondary User Authentication (MDFPP32:FIA_UAU_EXT.4)
2.4.20 X.509 Validation of Certificates - per TD0603 (MDFPP32:FIA_X509_EXT.1)
2.4.21 X.509 Certificate Validation (WLANC10:FIA_X509_EXT.1/WLAN)
2.4.22 X.509 Certificate Authentication - per TD0623 (MDFPP32:FIA X509 EXT.2)
2.4.23 X.509 Certificate Authentication (VPNC24:FIA_X509_ EXT.2)

2.4.24 X.509 Certificate Authentication (EAP-TLS for WLAN) - TD0703 applied
(WLANC10:FIA_X509_EXT.2/WLAN)

GSS CCT Assurance Activity Report Page 5 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

2.4.25 Request Validation of Certificates (MDFPP32:FIA_X509_EXT.3)
2.4.26 Certificate Storage and Management (WLANC10:FIA_X509_ EXT.6)
2.5 Security management (FMT)

2.5.1 Management of Security Functions Behavior - per TD0658 (MDFPP32:FMT_MOF_EXT.1)

2.5.2 Specification of Management Functions (VPN) (VPNC24:FMT_SMF.1/VPN)

2.5.3 Specification of Management Functions (MDFPP32:FMT_SMF_EXT.1)
2.5.4 Specification of Management Functions (BT10:FMT_SMF_EXT.1/BT)

2.5.5 Specification of Management Functions (WLAN Client) - per TD0667
(WLANC10:FMT_SMF_EXT.1/WLAN)

2.5.6 Specification of Remediation Actions (MDFPP32:FMT_SMF_EXT.2)
2.5.7 Current Administrator (MDFPP32:FMT_SMF_EXT.3)
2.6 Protection of the TSF (FPT)
2.6.1 Application Address Space Layout Randomization (MDFPP32:FPT_AEX_EXT.1)
2.6.2 Memory Page Permissions (MDFPP32:FPT_AEX_EXT.2)
2.6.3 Stack Overflow Protection (MDFPP32:FPT_AEX_EXT.3)
2.6.4 Domain Isolation (MDFPP32:FPT_AEX_EXT.4)
2.6.5 Kernel Address Space Layout Randomization (MDFPP32:FPT_AEX_EXT.5)
2.6.6 Write or Execute Memory Page Permissions (MDFPP32:FPT_AEX_EXT.6)
2.6.7 Application Processor Mediation (MDFPP32:FPT_BBD_EXT.1)
2.6.8 JTAG Disablement (MDFPP32:FPT_JTA_EXT.1)
2.6.9 Key Storage (MDFPP32:FPT_KST_EXT.1)
2.6.10 No Key Transmission (MDFPP32:FPT_KST_EXT.2)
2.6.11 No Plaintext Key Export (MDFPP32:FPT_KST_EXT.3)
2.6.12 Self-Test Notification (MDFPP32:FPT_NOT_EXT.1)
2.6.13 Reliable time stamps (MDFPP32:FPT_STM.1)
2.6.14 TSF Cryptographic Functionality Testing (MDFPP32:FPT_TST_EXT.1)
2.6.15 TSF Self-Test (VPNC24:FPT_TST_EXT.1/VPN)
2.6.16 TSF Integrity Checking (Post-Kernel) (MDFPP32:FPT_TST_EXT.2/POSTKERNEL)
2.6.17 TSF Integrity Checking (Pre-Kernel) (MDFPP32:FPT_TST_EXT.2/PREKERNEL)
2.6.18 TSF Cryptographic Functionality Testing (WLAN Client) (WLANC10:FPT_TST_EXT.3/WLAN)
2.6.19 Trusted Update: TSF Version Query (MDFPP32:FPT_TUD_EXT.1)

2.6.20 TSF Update Verification (MDFPP32:FPT_TUD_EXT.2)

GSS CCT Assurance Activity Report Page 6 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

2.6.21 Application Signing (MDFPP32:FPT_TUD_EXT.3)
2.6.22 Trusted Update Verification (MDFPP32:FPT_TUD_EXT.6)
2.7 TOE access (FTA)
2.7.1 TSF-and User-initiated Locked State (MDFPP32:FTA_SSL_EXT.1)
2.7.2 Default TOE Access Banners (MDFPP32:FTA_TAB.1)
2.7.3 Wireless Network Access (WLANC10:FTA_WSE_EXT.1)
2.8 Trusted path/channels (FTP)
2.8.1 Bluetooth Encryption (BT10:FTP_BLT_EXT.1)

2.8.2 Persistence of Bluetooth Encryption (BT10:FTP_BLT_EXT.2)

2.8.3 Bluetooth Encryption Parameters (BR/EDR) - per TD0640 (BT10:FTP_BLT_EXT.3/BR)

2.8.4 Bluetooth Encryption Parameters (LE) (BT10:FTP_BLT_EXT.3/LE)
2.8.5 Trusted Channel Communication (MDFPP32:FTP_ITC_EXT.1)
2.8.6 Trusted Channel Communication (VPNC24:FTP_ITC_EXT.1)
2.8.7 Trusted Channel Communication (Wireless LAN) (WLANC10:FTP_ITC_EXT.1/WLAN)
3. Protection Profile SAR Assurance Activities
3.1 Development (ADV)
3.1.1 Basic Functional Specification (ADV_FSP.1)
3.2 Guidance documents (AGD)
3.2.1 Operational User Guidance (AGD_OPE.1)
3.2.2 Preparative Procedures (AGD_PRE.1)
33 Life-cycle support (ALC)
3.3.1 Labeling of the TOE (ALC_CMC.1)
3.3.2 TOE CM Coverage (ALC_CMS.1)
3.3.3 Timely Security Updates (ALC_TSU_EXT.1)
3.4 Tests (ATE)
3.4.1 Independent Testing - Conformance (ATE_IND.1)
3.5 Vulnerability assessment (AVA)

3.5.1 Vulnerability Survey (AVA_VAN.1)

S ———
GSS CCT Assurance Activity Report Page 7 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

1. INTRODUCTION

This document presents evaluations results of the Samsung Electronics Co., Ltd. Samsung Galaxy Devices on
Android 13 MDFPP32/BT10/WLANC10/VPNC24/PKGTLS11 evaluation. This document contains a description of the
assurance activities and associated results as performed by the evaluators.

1.1 DEvICE EQUIVALENCE

This evaluation tested the following Galaxy devices. All devices were running Android 13.

Device Name Chipset Vendor Kernel Build Number

Snapdragon 8 Gen TP1A.220624.014
Galaxy S23 Ultra5G Qualcomm 2 Mobile Platform :

Galaxy S22 Ultra5G ~ Samsung Exynos 2200 TP1A.220624.014

Snapdragon 8 Gen TP1A.220624.014
Galaxy S22 5G Qualcomm 1 Mobile Platform .

Galaxy S21 Ultra5G Samsung Exynos 2100 ARMVS 5. TP1A.220624.014
Galaxy S21 Ultra5G Qualcomm Snapdragon 888 ARMv8 5. TP1A.220624.014
Galaxy S20+ 5G Samsung Exynos 990 ARMVS TP1A.220624.014
Galaxy S20+ 5G Qualcomm Snapdragon 865 ARMvS8 TP1A.220624.014
Galaxy Z Flip Qualcomm Snapdragon 855+ ARMV8 TP1A.220624.014
Galaxy XCover Pro Samsung Exynos 9611 ARMV8 TP1A.220624.014
Galaxy A53 5G Samsung Exynos 1280 ARMV8 SP1A.210812.016
Galaxy XCover6 Pro Qualcomm Snapdragon 778G ARMv8 5. SP1A.210812.016

Table 1 - Evaluated Devices

In addition to the evaluated devices, the below devices are claimed as equivalent with a note about the differences
between the evaluated device (first column) and the equivalent models (noted in the third column with the
differences in the fourth column). Equivalence in this table is determined by the use of identical processors, kernel
and build number, and is not made across processor types.

Evaluated Device SoC Equivalent Devices Differences
Galaxy 523+ 5G S23 Ultra > S23+ > S23 in terms of

Galaxy S23 Ultra5G Snapdragon 8 Gen 2 display size
Galaxy S23 5G

S22 Ultra > S22+ > S22 in terms of
display size

S22+ & S22 devices have S21 Ultra 5G
Wi-Fi chip

S22 Ultra > S22+ > S22 in terms of
display size

S22+ & S22 devices have S21 Ultra 5G
Wi-Fi chip

Galaxy S22+ 5G

Galaxy S22 Ultra5G Exynos 2200
Galaxy S22 5G

Galaxy S22 Ultra 5G

Galaxy S22 5G Snapdragon 8 Gen 1
Galaxy S22+ 5G

S —————
GSS CCT Assurance Activity Report Page 8 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

Equivalent Devices

Galaxy Tab S8 Ultra

Differences

Tab S8 devices are tablets (no voice
calling) with S Pen

Galaxy Tab S8+

Tab S8 Ultra > Tab S8+ > Tab S7 in
terms of display size

Galaxy Tab S8

Tab S8 Ultra & Tab S8+ have under
screen image fingerprint sensor

Tab S8 has power button fingerprint
sensor

Galaxy Z Flip4 5G

Z Flip4 & Z Fold4 have 2 displays &
folding display

Galaxy Z Fold4 5G

Z Fold4 > Z Flip4 in terms of display
size

Galaxy S21 Ultra5G Exynos 2100

Galaxy S21+ 5G

S$21 Ultra > S21+>S21>S21 FEin
terms of display size

Galaxy S21 5G

S21+ & S21 devices have S20+ 5G Wi-
Fi chip

Galaxy S21 Ultra5G Snapdragon 888

Galaxy S21+ 5G

S21 Ultra > S21+>S21>S21 FEin
terms of display size

Galaxy S21 5G

S21+ & S21 devices have S20+ 5G Wi-
Fi chip

Galaxy S21 5G FE

Z Fold3 5G & Z Flip3 5G have 2
displays & folding display

Galaxy Z Fold3 5G

Z Fold3 5G & Z Flip3 5G have power
button fingerprint sensor

Galaxy Z Flip3 5G

Z Fold3 & Z Flip3 have S22 Ultra Wi-Fi
chip

Galaxy S20+ 5G Exynos 990

Galaxy Note20 Ultra 5G

S20 Ultra > S20+ > S20 > S20 FE in

Galaxy Note20 Ultra LTE

terms of display size

Galaxy Note20 5G

5G devices have different cellular

Galaxy Note20 LTE

modem

Galaxy S20 Ultra 5G

Note20 Ultra > Note20 in terms of

Galaxy S20+ LTE

display size

Galaxy S20 5G

Note20 devices include S Pen &

Galaxy S20 LTE

functionality to take advantage of it

Galaxy S20 FE

for input (not security related)

Galaxy S20+ 5G

Snapdragon 865

Galaxy Z Fold2 5G

S20 Ultra > S20+ > S20 > S20 FE in
terms of display size

Galaxy Note20 Ultra 5G

Note20 Ultra > Note20 in terms of
display size

Galaxy Note20 5G

Note20 devices include S Pen &
functionality to take advantage of it
for input (not security related)

Galaxy Tab S7+

Z Fold2 5G & Z Flip have 2 displays &
folding display

GSS CCT Assurance Activity Report
Document: AAR-VID11342

Page 9 of 252

S ———
© 2023 Gossamer Security Solutions, Inc.

All rights reserved.

Version 0.2, 04/13/2023

Evaluated Device SoC Equivalent Devices Differences
Tab S7 devices are tablets (no voice
calling) with S Pen
Tx70 tablets only have Wi-Fi, others
have cellular
Tab S7+ > Tab S7 in terms of display
size
Tab S7+ & S20 FE have under screen
image fingerprint sensor
Tab S7 & Z Flip 5G have power button
fingerprint sensor

Galaxy Tab S7

Galaxy Z Flip 5G

Galaxy S20 Ultra 5G

Galaxy S20 5G

Galaxy S20 FE

Galaxy Z Flip Snapdragon 855+ N/A

XCover Pro is ruggedized

XCover Pro has Push-to-Talk button
Galaxy XCover Pro Exynos 9611 Galaxy A51 XCover Pro has removable battery

A51 has under screen image

fingerprint sensor

Tab Actived Pro is tablet and have
Galaxy XCover6 Pro Snapdragon 778G Galaxy Tab Active4 Pro bigger screen size

Table 2 - Equivalent Devices

In general, the devices include a final letter or number at the end of the name that denotes that the device is for a
specific carrier or region (for example, U = US Carrier build and F = International, which were used during the
evaluation).

For each device, there are specific models that are validated. This table lists the specific carrier models that have
the validated configuration (covering both evaluated and equivalent devices).

Chipset . Base Model .
Vendor Chipset Name Number Carrier Models

Device Name

Snapdragon 8 Gen2 W, B, N, U1, U, SC52D*,
-S91

(SM8550) SM-5918 SCG20*

Snapdragon 8 Gen2

(SM8550)

Snapdragon 8 Gen2 W, B, N, U1, U, SC51D%,
-S911

(SM8550) SM-59 SCG19*

Galaxy S22 Ultra 5G Samsung Exynos 2200 SM-G908 B

Snapdragon 8 Gen 1 W, E, N, U1, U, SC52C*,

(SM8450) SM-G908 SCG14*

Galaxy S22+ 5G Samsung Exynos 2200 SM-G906 B

Snapdragon 8 Gen 1

(SM8450)

Galaxy S22 5G Samsung Exynos 2200 SM-G901 B

Snapdragon 8 Gen 1 W, E, N, U1, U, SC51C*,

(SM8450) SM-G901 SCG13*

Galaxy S23 Ultra 5G Qualcomm

Galaxy S23+ 5G Qualcomm SM-S916 W, B, N, U1, U

Galaxy S23 5G Qualcomm

Galaxy S22 Ultra 5G Qualcomm

Galaxy S22+ 5G Qualcomm SM-G906 W, E, N, U1, U

Galaxy S22 5G Qualcomm

——————
GSS CCT Assurance Activity Report Page 10 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Device Name

Galaxy S21 Ultra 5G

Chipset
Vendor

Samsung

Version 0.2, 04/13/2023

Chipset Name

Exynos 2100

Base Model
Number

SM-G998

Carrier Models

B, N

Galaxy S21 Ultra 5G

Qualcomm

Snapdragon 888
(SM8350)

SM-G998

W, U1, U, SC52B*

Galaxy S21+ 5G

Samsung

Exynos 2100

SM-G996

B, N

Galaxy S21+ 5G

Qualcomm

Snapdragon 888
(SM8350)

SM-G996

W, U1, U, SCG10*

Galaxy S21 5G

Samsung

Exynos 2100

SM-G991

B, N

Galaxy S21 5G

Qualcomm

Snapdragon 888
(SM8350)

SM-G991

W, Q, U1, U, SC51B*, SCG09*

Galaxy S21 5G FE

Qualcomm

Snapdragon 888
(SM8350)

SM-G990

W, W2, B, B2, U1, U3, U, U2

Galaxy S20 Ultra 5G

Samsung

Exynos 990

SM-G988

B

Galaxy S20 Ultra 5G

Qualcomm

Snapdragon 865
(SM8250)

SM-G988

W, N, U1, U, SCG03*

Galaxy S20+ 5G

Samsung

Exynos 990

SM-G986

B

Galaxy S20+ 5G

Qualcomm

Snapdragon 865
(SM8250)

SM-G986

W, N, U1, U, SC52A*, SCG02*

Galaxy S20+ LTE

Samsung

Exynos 990

SM-G985

F

Galaxy $20 5G

Samsung

Exynos 990

SM-G981

B

Galaxy S20 5G

Qualcomm

Snapdragon 865
(SM8250)

SM-G981

W, N, U1, V, U, SC51A%,
SCGO1*

Galaxy S20 LTE

Samsung

Exynos 990

SM-G980

F

Galaxy S20 FE

Samsung

Exynos 990

SM-G780

F

Galaxy S20 FE

Qualcomm

Snapdragon 865
(SmM8250)

SM-G781

W, B,N, U1V, U

Galaxy Z Fold4 5G

Qualcomm

Snapdragon 8+ Gen 1
(SM8475)

SM-F936

W, B, N, U1, U, SC-55C*,
SCG16*

Galaxy Z Fold3 5G

Qualcomm

Snapdragon 888
(SM8350)

SM-F926

W, B, N, U1, U, SC-55B*%,
SCG11*

Galaxy Z Fold2 5G

Qualcomm

Snapdragon 865+
(SM8250)

SM-F916

W, B, N, U1, U

Galaxy Z Flip4

Qualcomm

Snapdragon 8+ Gen 1
(SM8475)

SM-F721

W, B, C, N, U1, U, SC-54C*,
SCG17*

Galaxy Z Flip3 5G

Qualcomm

Snapdragon 888
(SM8350)

SM-F711

W, B, N, U1, U, SC-54B*,
SCG12*

Galaxy Z Flip 5G

Qualcomm

Snapdragon 865+
(SM8250)

SM-F707

W, B, N, U1, U, SCG04*

Galaxy Z Flip

Qualcomm

Snapdragon 855+
(SM8150)

SM-F700

W, F, N, U1, U, SCV47*

Galaxy Note20 Ultra
5G

Samsung

Exynos 990

SM-N986

Galaxy Note20 Ultra
5G

Qualcomm

Snapdragon 865+
(SmM8250)

SM-N986

W, N, U1, U, SC53A*, SCG06*

S —————
© 2023 Gossamer Security Solutions, Inc.

GSS CCT Assurance Activity Report
Document: AAR-VID11342

Page 11 of 252

All rights reserved.

Device Name

Galaxy Note20 Ultra
LTE

Chipset
Vendor

Samsung

Version 0.2, 04/13/2023

Chipset Name

Exynos 990

Base Model
Number

SM-N985

Carrier Models

Galaxy Note20 5G

Samsung

Exynos 990

SM-N981

Galaxy Note20 5G

Qualcomm

Snapdragon 865+
(SmM8250)

SM-N981

Galaxy Note20 LTE

Samsung

Exynos 990

SM-N980

Galaxy Tab S8 Ultra

Qualcomm

Snapdragon 8 Gen 1
(SM8450)

SM-X906

SM-X900

Galaxy Tab S8+

Qualcomm

Snapdragon 8 Gen 1
(SmM8450)

SM-X808

SM-X806

SM-X800

Galaxy Tab S8

Qualcomm

Snapdragon 8 Gen 1
(SM8450)

SM-X708

u

SM-X706

B, N

SM-X700

None

Galaxy Tab S7+

Qualcomm

Snapdragon 865+
(SmM8250)

SM-T978

u

SM-T976

B, N

SM-T975

N, None

SM-T970

None

Galaxy Tab S7

Qualcomm

Snapdragon 865+
(SM8250)

SM-T878

u

SM-T875

N, None

SM-T870

None

Galaxy XCover Pro

Samsung

Exynos 9611

SM-G715

A, FN, U, W

Galaxy A51

Samsung

Exynos 9611

SM-A515

F,U,Ul, W

SM-S515

DL

Galaxy XCover6 Pro

Qualcomm

Snapdragon 778G
(SM7325)

SM-G736

W, B, U1, U

Galaxy A53 5G

Samsung

Exynos 1280
(S5E8825)

SM-A536

W, E, B, N, U1, V, U, SC-53C*,
SCG15*

SM-S536

DL

Galaxy Tab Active4 Pro

Qualcomm

Snapdragon 778G
(SM7325)

SM-T636

B, N

SM-T638

u

SM-T630

None

Table 3 - Carrier Models

| 1.2 CAVP CEeRTIFICATES

The TOE performs cryptographic algorithms in accordance with the following NIST standards and has received the

following CAVP algorithm certificates.

GSS CCT Assurance Activity Report

Document: AAR-VID11342

Page 12 of 252

© 2023 Gossamer Security Solutions, Inc.

All rights reserved.

Version 0.2, 04/13/2023

The BoringSSL v1.7 library (with both Processor Algorithm Accelerators (PAA) and without PAA) provides the
following algorithms.

Algorithm NIST Standard SFR Reference Cert#
AES 128/256 CBC, GCM, KW FIPS 197, SP 800-38A/D/F FCS_COP.1/ENCRYPT A3285
FCS_CKM.2(1)
FCS_CKM_EXT.3
DRBG CTR - 256 SP 800-90A FCS_RBG_EXT.1 A3285

FCS_CKM.1
FIPS 186-4 FCS_CKM.2(1) A3285
FCS_COP.1/SIGN
HMAC SHA-1/256/384/512 FIPS 198-1 & 180-4 FCS_COP.1/KEYHMAC A3285
RSA KeyGen/SigGen/SigVer — FIPS 186- FCS_CKM.1
2048/3072/4096 FCS_COP.1/SIGN
SHS SHA-1/256/384/512 FIPS 180-4 FCS_COP.1/HASH A3285
Table 4 - BoringSSL Cryptographic Algorithms

KAS ECC P-256/384/521 SP 800-56A A3285

ECDSA PKG/PKV/SigGen/SigVer —
P-256/384/521

A3285

The Samsung Crypto Extension v1.0 library provides the following algorithms.

Algorithm NIST Standard SFR Reference
Key-based KDF SP 800-108 FCS_CKM_EXT.3
Table 5 - Samsung Crypto Extension Cryptographic Algorithms

The evaluated devices utilize the following kernels for the Samsung Kernel Cryptographic Module (Kernel Crypto).

Device Kernel Version Kernel Crypto Version

All S23x 5.15

All S22x 5.10 2.2
A53 5.10 2.2
XCover6 Pro 5.4 2.2
All S21x 5.4 2.2
All Note20x/All S20x/All Tab S7x/Z Fold2/Z Flip 5G 4.19 2.1
A51/XCover Pro 4.14 2.1.1
All Foldx/Z Flip/ 4.14 2.0

Table 6 - Kernel Versions

The Samsung Kernel Cryptographic (“Kernel Crypto”) Module provides the following algorithms. Note that with
and without PAA is equivalent to with and without crypto extensions.

Algorithm NIST Standard SFR Reference

A1456, A1455, A970, A969
AES 128/256 CBC FIPS 197, SP 800-38A FCS_COP.1/ENCRYPT A47, Ad6, A45, Ad4
A43, A42
C406, C354
A3242
HMAC SHA-1/256 FIPS 198-1 & 180-4 FCS_COP.1/KEYHMAC A1456, A1455, A970, A969
AA7, Ad6, A45, Ad4

GSS CCT Assurance Activity Report Page 13 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=15737
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=15737
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=15737
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=15737
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=15737
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=15737
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=15737

Algorithm

Version 0.2, 04/13/2023

NIST Standard

SFR Reference

A43, A42
C406, C354

DRBG SHA-256 HMAC_DRBG

SP 800-90A

FCS_RBG_EXT.1

A3242

A1456, A1455, A970, AS69
A47, Ad6, A45, Ad4

A43, A42

C583, C354

SHS SHA-1/256

FIPS 180-4

FCS_COP.1/HASH

A3242

A1456, A1455, A970, A969
A47, Ad6, A45, Ad4

A43, A42

C406, C354

Table 7 - Samsung Kernel Cryptographic Algorithms

The evaluated devices utilize the Samsung SCrypto Cryptographic Module for cryptographic operations within the

TEE on each device. The following table lists the TEE operating systems for each device.

Device

All S23x(Qualcomm)

Snapdragon 8 Gen 2
Mobile Platform

TEE OS Version SCrypto Version

QSEE 5.24

All S22x (Samsung)

Exynos 2200

TEEGRIS 4.2.1

All S22x (Qualcomm)

Snapdragon 8 Gen 1
Mobile Platform

QSEE 5.16

All S21x (Samsung)

Exynos 2100

TEEGRIS 4.2

A53 5G

Exynos 1280

TEEGRIS 4.2.1

All S21x (Qualcomm)

Snapdragon 888

QSEE 5.11

XCover6 Pro (Qualcomm)

Snapdragon 778G

QSEE 5.11

All Note20x/All S20x (Samsung)

Exynos 990

TEEGRIS 4.1

All Note20x/All S20x/All Tab S7x/Z
Fold2/
Z Flip 5G (Qualcomm)

Snapdragon 865

QSEE 5.8

A51/XCover Pro (Samsung)

Exynos 9611

TEEGRIS 3.1

All Foldx/Z Flip/
Tab S6 (Qualcomm)

Snapdragon 855+

QSEE 5.2

Table 8 - TEE Environments

The Samsung SCrypto TEE library provides the following algorithms. Note that the TOE only performs RSA
signing/decryption (using the private key) in the TEE, and performs public key verification/encryption using
BoringSSL.

Algorithm

AES CBC/GCM 128/256

NIST Standard

FIPS 197, SP 800-
38A/D

FCS_COP.1/ENCRYPT

SFR Reference

A889, C1360
C428

DRBG AES-256 CTR_DRBG

SP 800-90A

FCS_RBG_EXT.1

A3243
A915
A889, C1360

GSS CCT Assurance Activity Report
Document: AAR-VID11342

Page 14 of 252

S —————
© 2023 Gossamer Security Solutions, Inc.

All rights reserved.

Version 0.2, 04/13/2023

Algorithm NIST Standard SFR Reference Cert#

C428

A3243
ECDSA PKG/PKV/SigGen/SigVer FIPS 186-4 FCS_CKM.1 A915
P-256/384/521 FCS_COP.1/SIGN A889, C1360

C428

A3243

A915

A889, C1360

C428

A3243

RSA KeyGen and SigGen (no PG 36 FCS_CKM.1FCS_CKM.2(1) A915
verification) 2048 bits FCS_COP.1(3) A889, C1360

C428

A3243

A915

A889, C1360
C428

A3243
A915

A889, C1360
C428

HMAC SHA-1/256/384/512 FIPS 198-1 & 180-4 FCS_COP.1/KEYHMAC

SHS SHA-1/256/384/512 FIPS 180-4 FCS_COP.1/HASH

Key-based KDF SP 800-108 FCS_CKM_EXT.3

Table 9 - SCrypto TEE Cryptographic Algorithms

The Chipset hardware for storage encryption has various modules that provide cryptographic functions. The
modules and versions are listed here. Only discrete modules are listed here.

Device Flash Crypto

All S23x(Qualcomm) Qualcomm ICE v4.0.1

Samsung FMP v4.0.1 (HW

fx8_sk_v1.00)

A53 (Samsung) Samsung FMP v4.0.1

All S22x (Qualcomm) Qualcomm ICE v3.3.0

XCover6 Pro (Qualcomm) Qualcomm ICE v3.2.0

All S21x (Samsung) Samsung FMP v3.0 (HW FX8_4.10)

All S21x (Qualcomm) Qualcomm ICE v3.2.0

All Note20x/All S20x/All Tab S7x/

Z Fold2/Z Flip 5G// Qualcomm ICE v3.1.0

All S10x/All Foldx/Z Flip (Qualcomm)

All Note20x/All S20x (Samsung) Samsung FMP v2.0 (HW FX6_V4.1)

A51/XCover Pro (Samsung) Samsung FMP v2.0 (HW FX6_V4.1)
Table 10 - Hardware Components

All S22x (Samsung)

The Samsung Flash Memory Protector (“FMP”) Driver Module provides the following software algorithms.

Algorithm NIST Standard SFR Reference

A2724, A2216
A958, A505
——————

GSS CCT Assurance Activity Report Page 15 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

SHS SHA-256 (Exynos FMP) FIPS 180-4 FCS_COP.1/HASH

Version 0.2, 04/13/2023

Algorithm NIST Standard SFR Reference

A41, A39
C1030, C353
A2724, A2216
A958, A505
A41, A39
C1030, C353

HMAC SHA-256 (Exynos FMP) FIPS 198-1 & 180-4 FCS_COP.1/KEYHMAC

Table 11 - FMP Driver Algorithms
The storage encryption modules provide the following algorithms.

Algorithm NIST Standard SFR Reference Cert#

A2723
A2217, A957
A40, A38
€859, C352

A2886, A2887, A2116,
A2117

XTS-AES 128/256 (Qualcomm) FIPS 197, SP 800-38E FCS_COP.1/ENCRYPT A1658, A1659, A772, A771
C1418, C1417
C440, C439

XTS-AES 256 (Exynos FMP) FIPS 197, SP 800-38E FCS_COP.1/ENCRYPT

Table 12 - Storage Hardware Algorithms

The devices contain unique Wi-Fi chipsets based on the model of the device. The chipsets are listed here.

Device Wi-Fi Chipset

S23 Ultra Qualcomm WCN7851

S$23 /S23+ Qualcomm WCN6856

Galaxy XCover6 Pro Qualcomm WCN6750

S22 Qualcomm WCN6856

S22+/S22 Ultra /S21 Ultra Broadcom BCM4389

S21+/S21/All Note20x/All S20x/

All Tab S7x/Z Fold2/Z Flip 5G/ Broadcom BCM4375B1

JAll Foldx/Z Flip/

A53/A51/XCover Pro Samsung S5N5C20X00-6030
Table 13 - Wi-Fi Hardware Components

The Wi-Fi chipset hardware provides the following algorithms.

Algorithm NIST Standard SFR Reference Cert#

AES 128 CCM (Qualcomm Wi-Fi) FIPS 197, SP 800-38C FCS_COP.1(1) A3238.5663
5926, C1025
4791
AES 128 CCM (Samsung Wi-Fi) FIPS 197, SP 800-38C FCS_COP.1(1) C1623

Table 14 - Wi-Fi Chip Algorithms

AES 128 CCM (Broadcom Wi-Fi) FIPS 197, SP 800-38C FCS_COP.1(1)

Several devices provide a secure processor for mutable hardware key storage. The devices and chipsets are listed
here.

——————
GSS CCT Assurance Activity Report Page 16 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023
I

Device Mutable Storage Chipset

All S23x(Qualcomm) Secure Processing Unit 6.1
All 522x(Qualcomm) Secure Processing Unit 5.0
All S22x (Samsung) Smart Secure Platform v1.2
All S21x (Samsung) Smart Secure Platform v1.1
All S21x (Qualcomm) Secure Processing Unit 4.1
All Note20x/All Tab S7x/Z Fold2/ Z Flip 5G All S20x (Qualcomm) Secure Processing Unit 4.0
Z Flip Secure Processing Unit 3.1
Table 15 - Mutable Key Storage Components

The chipsets for the mutable hardware key storage provide the following algorithms.

Algorithm NIST Standard SFR Reference

A3029, A3030, A2211, A2212
A2148, A2149, AB40, A836
FCS_COP.1/ENCRYPT A1007, A1006
C528, C471
A398, A396
A2840, A2028
SP 800-90A FCS_RBG_EXT.1 A774
A395, C433
A3030, A2212, A2149
ECDSA SigGen/SigVer A840
(P-256/384) FIPS 186-4 FCS_COP.1/SIGN A1006
A398, C528
A3029, A2211, A2149
HMAC SHA-256/384/512 A840 (256)
(Qualcomm) FIPS 198-1 & 180-4 FCS_COP.1/KEYHMAC A1007 (all), A1006 (384/512)
HMAC SHA-256 (Exynos) C471
A398 (384/512), A396 (all)
A3030, A2212, A2149
FCS_CKM.1 A840
RSA SigGen/SigVer - 2048 FIPS 186-4 FCS_CKM.2(1) A1006
FCS_COP.1/SIGN C528
A398
A3029, A2840, A2211, A2028,
A2149
A1007, A840, A774
A396, A395, C471, C433
Table 16 - Mutable Key Storage Cryptographic Algorithms

FIPS 197, SP 800-

AES CBC/GCM 128/256 38A/D

DRBG Hash_DRBG
(Qualcomm)

SHS SHA-256 FIPS 180-4 FCS_COP.1/HASH

The SoC hardware provides the following algorithms.

Algorithm NIST Standard

| Key-based KDF (Exynos) SP 800-108 FCS_CKM_EXT.3

GSS CCT Assurance Activity Report Page 17 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Algorithm

AES 128/256 CBC/GCM (Exynos)

Version 0.2, 04/13/2023

NIST Standard

FIPS 197, SP 800-38A/D

FCS_COP.1/ENCRYPT

SHS SHA-256 (Exynos)

FIPS 180-4

FCS_COP.1/HASH

HMAC SHA-256 (Exynos)

FIPS 198-1 & 180-4

FCS_COP.1/KEYHMAC

AES 128/256 CBC (Qualcomm)

FIPS 197, SP 800-38A

FCS_COP.1/ENCRYPT

A2908, A2045

A805

A104

c442

DRBG SHA-256 Hash_DRBG
(Qualcomm)

SP 800-90A

FCS_RBG_EXT.1

A2945, A2065

A764

A50

C443

SHS SHA-256 (Qualcomm)

FIPS 180-4

FCS_COP.1/HASH

A 2908, A2064, A2065

A805, A764, A763

A50

C443

Table 17 - SoC Cryptographic Algorithms

GSS CCT Assurance Activity Report
Document: AAR-VID11342

Page 18 of 252

© 2023 Gossamer Security Solutions, Inc.

All rights reserved.

Version 0.2, 04/13/2023

2. PROTECTION PROFILE SFR ASSURANCE ACTIVITIES

This section of the AAR identifies each of the assurance activities included in the claimed Protection Profile and
describes the findings in each case.

The following evidence was used to complete the Assurance Activities:

AAR v0.2

e Samsung Electronics Co., Ltd. Samsung Galaxy Devices on Android 13 — Spring Security Target, Version 0.5,
4/13/2023 [ST]
e Samsung Android 13 on Galaxy Devices Administrator Guide, version 9.0.2, April 13 2023 [Admin Guide]

2.1 SEcurmY AuDIT (FAU)

] 2.1.1 AuDIT DATA GENERATION - PER TDO663 (MDFPP32:FAU_GEN.1)

|2.1.1.1 MDFPP32:FAU_GEN.1.1

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

|2.1.1.2 MDFPP32:FAU_GEN.1.2

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined
Testing Assurance Activities: None Defined

Component TSS Assurance Activities: The evaluator shall examine the TSS to determine that it describes the

auditable events and the component that is responsible for each type of auditable event.

Section 6.1 of the ST provides a table of audit events. This tables incudes all required events, the contents of each
audit record, and which audit log stores the event. This table matches what is required in FAU_GEN.1.2.

Component Guidance Assurance Activities: The evaluator shall check the administrative guidance and ensure that
it lists all of the auditable events and provides a format for audit records. Each audit record format type must be
covered, along with a brief description of each field. The evaluator shall check to make sure that every audit event

S ———
GSS CCT Assurance Activity Report Page 19 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

type mandated by the PP is described and that the description of the fields contains the information required in
FAU_GEN.1.2.

The evaluator shall also make a determination of the administrative actions that are relevant in the context of this
PP including those listed in the Management section. The evaluator shall examine the administrative guide and
make a determination of which administrative commands are related to the configuration (including enabling or
disabling) of the mechanisms implemented in the TOE that are necessary to enforce the requirements specified in
the PP. The evaluator shall document the methodology or approach taken while determining which actions in the
administrative guide are security relevant with respect to this PP. The evaluator may perform this activity as part of
the activities associated with ensuring the AGD_OPE guidance satisfies the requirements.

Section 5.2 of the Admin Guide provides several tables which list the audit events corresponding with the
requirements claimed in the ST and with the associated audit events for those requirements from the MDFPP. The
evaluator confirmed the mapping is complete. Each of the listed events provides the required contents matching up
to the FAU_GEN.1 requirement. Section 5.1 of the Admin Guide contains the details of each audit record.

As part of testing, the evaluator verified each record in the Admin Guide and provided a sample of each.

Component Testing Assurance Activities: The evaluator shall test the TOE's ability to correctly generate audit
records by having the TOE generate audit records for the events listed in the provided table and administrative
actions. This should include all instances of an event. The evaluator shall test that audit records are generated for
the establishment and termination of a channel for each of the cryptographic protocols contained in the ST. For
administrative actions, the evaluator shall test that each action determined by the evaluator above to be security
relevant in the context of this PP is auditable. When verifying the test results, the evaluator shall ensure the audit
records generated during testing match the format specified in the administrative guide, and that the fields
specified in FAU_GEN.1.2 are contained in each audit record.

Note that the testing here can be accomplished in conjunction with the testing of the security mechanisms
directly. For example, testing performed to ensure that the administrative guidance provided is correct verifies
that AGD_OPE.1 is satisfied and should address the invocation of the administrative actions that are needed to
verify the audit records are generated as expected.

The evaluator tested the TOE's ability to correctly generate audit records by having the TOE generate audit records
for the events listed in the provided tables above including all administrative actions. Section 5.2 of the Admin
Guide includes audit events for the TOE and administrative actions. The evaluator collected these audit records
while running the security functional tests. When verifying the test results, the evaluator verified that the audit
records generated during testing matched the format specified in the administrative guide, and that the fields in
each audit record have the proper entries. For each type of audit record, the evaluator found that the TOE
correctly generated an audit log matching the vendor specified one. The evaluator collected a sample of each type
of audit record and included these samples in the Detailed Test Report for this evaluation.

2.1.2 AuDIT DATA GENERATION (BLUETOOTH) - PER TD0O707
(BT10:FAU_GEN.1/BT)

E———
GSS CCT Assurance Activity Report Page 20 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

2.1.2.1 BT10:FAU_GEN.1.1/BT

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

2.1.2.2 BT10:FAU_GEN.1.2/BT

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

Component TSS Assurance Activities: None Defined
Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: None Defined

2.1.3 AuUDIT DATA GENERATION (VPN CLIENT) - PER TDO647
(VPNC24:FAU_GEN.1/VPN)

|2.1.3.1 VPNC24:FAU_GEN.1.1/VPN

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

|2.1.3.2 VPNC24:FAU_GEN.1.2/VPN

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

S ———
GSS CCT Assurance Activity Report Page 21 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

Component TSS Assurance Activities: The evaluator shall examine the TSS to determine that it describes the
auditable events and the component that is responsible for each type of auditable event.

See MDFPP32:FAU_GEN.1.

Component Guidance Assurance Activities: The evaluator shall check the operational guidance and ensure that it
lists all of the auditable events and provides a format for audit records. Each audit record format type must be
covered, along with a brief description of each field. The evaluator shall check to make sure that every audit event
type mandated by the VPN Client PP-Module is described and that the description of the fields contains the
information required in FAU_GEN.1.2/VPN, and the additional information specified in the Auditable Events table
of the VPN Client PP-Module.

In particular, the evaluator shall ensure that the operational guidance is clear in relation to the contents for failed
cryptographic events. In the Auditable Events table of the VPN Client PP-Module, information detailing the
cryptographic mode of operation and a name or identifier for the object being encrypted is required. The evaluator
shall ensure that name or identifier is sufficient to allow an administrator reviewing the audit log to determine the
context of the cryptographic operation (for example, performed during a key negotiation exchange, performed
when encrypting data for transit) as well as the non-TOE endpoint of the connection for cryptographic failures
relating to communications with other IT systems.

The evaluator shall also make a determination of the administrative actions that are relevant in the context of the
VPN Client PP-Module. The TOE may contain functionality that is not evaluated in the context of the VPN Client PP-
Module because the functionality is not specified in an SFR. This functionality may have administrative aspects that
are described in the operational guidance. Since such administrative actions will not be performed in an evaluated
configuration of the TOE, the evaluator shall examine the operational guidance and make a determination of which
administrative commands, including subcommands, scripts, and configuration files, are related to the
configuration (including enabling or disabling) of the mechanisms implemented in the TOE that are necessary to
enforce the requirements specified in the VPN Client PP-Module, which thus form the set of 'all administrative
actions'. The evaluator may perform this activity as part of the activities associated with ensuring the AGD_OPE
guidance satisfies the requirements.

For each required auditable event, the evaluator shall examine the operational guidance to determine that it is
clear to the reader where each event is generated (e.g. the TSF may generate its own audit logs in one location

while the platform-provided auditable events are generated elsewhere).

See MDFPP32:FAU_GEN.1.

Component Testing Assurance Activities: The evaluator shall test the TOE's ability to correctly generate audit
records by having the TOE generate audit records in accordance with the EAs associated with the functional
requirements in the VPN Client PP-Module. Additionally, the evaluator shall test that each administrative action
applicable in the context of the VPN Client PP-Module is auditable. When verifying the test results, the evaluator
shall ensure the audit records generated during testing match the format specified in the administrative guide, and
that the fields in each audit record have the proper entries.

E———
GSS CCT Assurance Activity Report Page 22 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

Note that the testing here can be accomplished in conjunction with the testing of the security mechanisms
directly. For example, testing performed to ensure that the administrative guidance provided is correct verifies
that AGD_OPE.1 is satisfied and should address the invocation of the administrative actions that are needed to
verify the audit records are generated as expected.

See MDFPP32:FAU_GEN.1.

| 2.1.4 AupIT DATA GENERATION (WIRELESS LAN) (WLANC10:FAU_GEN. 1 /WLAN)

| 2.1.4.1 WLANCI10:FAU_GEN.1.1/WLAN

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

|2.1.4.2 WLANC10:FAU_GEN.1.2/WLAN

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined
Testing Assurance Activities: None Defined

Component TSS Assurance Activities: The evaluator shall check the TSS and ensure it provides a format for audit
records. Each audit record format type must be covered, along with a brief description of each field.

If 'invoke platform-provided functionality' is selected, the evaluator shall examine the TSS to verify it describes (for
each supported platform) how this functionality is invoked (it should be noted that this may be through a
mechanism that is not implemented by the WLAN Client; however, that mechanism will be identified in the TSS as
part of this evaluation activity).

Section 6.1 of the ST provides a reference to Section 5.1 in the Admin Guide for the format of the audit records.

Component Guidance Assurance Activities: The evaluator shall check the operational guidance and ensure it lists
all of the auditable events and provides a format for audit records. Each audit record format type must be covered,
along with a brief description of each field. The evaluator shall check to make sure that every audit event type
mandated by the PP-Module is described and that the description of the fields contains the information required in
FAU_GEN.1.2/WLAN, and the additional information specified in Table 2 in the main document and Table 5 in the
main document.

E———
GSS CCT Assurance Activity Report Page 23 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

The evaluator shall in particular ensure that the operational guidance is clear in relation to the contents for failed
cryptographic events. In the Auditable Events tables, information detailing the cryptographic mode of operation
and a name or identifier for the object being encrypted is required. The evaluator shall ensure that name or
identifier is sufficient to allow an administrator reviewing the audit log to determine the context of the
cryptographic operation (for example, performed during a key negotiation exchange, performed when encrypting
data for transit) as well as the non-TOE endpoint of the connection for cryptographic failures relating to
communications with other IT systems.

The evaluator shall also make a determination of the administrative actions that are relevant in the context of this
PP-Module. The TOE may contain functionality that is not evaluated in the context of this PP-Module because the
functionality is not specified in an SFR. This functionality may have administrative aspects that are described in the
operational guidance. Since such administrative actions will not be performed in an evaluated configuration of the
TOE, the evaluator shall examine the operational guidance and make a determination of which administrative
commands, including subcommands, scripts, and configuration files, are related to the configuration (including
enabling or disabling) of the mechanisms implemented in the TOE that are necessary to enforce the requirements
specified in the PP-Module, which thus form the set of 'all administrative actions'. The evaluator may perform this
activity as part of the activities associated with ensuring the AGD_OPE guidance satisfies the requirements.

See MDFPP32:FAU_GEN.1.

Component Testing Assurance Activities: The evaluator shall test the TOE's ability to correctly generate audit
records by having the TOE generate audit records in accordance with the assurance activities associated with the
functional requirements in this PP-Module. When verifying the test results, the evaluator shall ensure the audit
records generated during testing match the format specified in the administrative guide, and that the fields in each
audit record have the proper entries.

Note that the testing here can be accomplished in conjunction with the testing of the security mechanisms
directly. For example, testing performed to ensure that the administrative guidance provided is correct verifies
that AGD_OPE.1 is satisfied and should address the invocation of the administrative actions that are needed to

verify the audit records are generated as expected.

See MDFPP32:FAU_GEN.1.

] 2.1.5 AupiTREVIEW (MDFPP32:FAU_SAR.1)

|2.1.5.1 MDFPP32:FAU_SAR.1.1

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

E———
GSS CCT Assurance Activity Report Page 24 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

2.1.5.2 MDFPP32:FAU_SAR.1.2

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

Component TSS Assurance Activities: None Defined
Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: The evaluation activity for this requirement is performed in conjunction
with test for function 32 of FMT_SMF_EXT.1.

See test 32 of MDFPP32:FMT_SMF_EXT.1 for the audit review test.

] 2.1.6 AuDIT STORAGE PROTECTION (MDFPP32:FAU_STG.1)

|2.1.6.1 MDFPP32:FAU_STG.1.1

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

|2.1.6.2 MDFPP32:FAU_STG.1.2

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined
Testing Assurance Activities: None Defined

Component TSS Assurance Activities: The evaluator shall ensure that the TSS lists the location of all logs and the

access controls of those files such that unauthorized modification and deletion are prevented.

Section 6.1 of the ST states that the TOE stores audit records in a file within the file system accessible only to Linux
processes with system permissions (effectively the TSF itself and MDM agents using the defined APIs). These
restrictions prevent the unauthorized modification or deletion of the audit records stored in the audit files. The

S ———
GSS CCT Assurance Activity Report Page 25 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

exact location is provided in the KMD. These restrictions prevent the unauthorized modification or deletion of the
audit records stored in the audit files.

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: Test 1: The evaluator shall attempt to delete the audit trail in a manner
that the access controls should prevent (as an unauthorized user) and shall verify that the attempt fails.

Test 2: The evaluator shall attempt to modify the audit trail in a manner that the access controls should prevent (as
an unauthorized application) and shall verify that the attempt fails.

The TOE protects the security log in memory, and only allows access to the logd daemon, which only affords a
device owner the MDM API to retrieve a copy of these logs. Because of this, the evaluator had no method to
delete or modify the logs present in memory. The TOE also stores Logcat logs in memory buffers; however, it is
possible to clear this log as part of debugging access. In CC Mode, the debugging feature must be disabled and
therefore, unauthorized users have no access to the logs. Only an authorized administrator can read the audit trail
via the TOE’s MDM APIs.

Test 1: The evaluator attempted to delete the audit trail as an unauthorized user and confirmed that there were no
access controls of any kind to access or delete the logs.

Test 2: The evaluator tested both modification and removal and found no way to attempt modification or removal
of the admin protected audit logs while the device was configured with the CC requirement that USB debugging be
disabled and disallowed through the MDM APIs. The evaluator then turned on USB debugging and demonstrated
that the audit log was accessible to demonstrate the restriction.

| 2.1.7 PREVENTION OF AUDIT DATA Loss (MDFPP32:FAU_STG.4)

|2.1.7.1 MDFPP32:FAU_STG.4.1

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined
Testing Assurance Activities: None Defined

Component TSS Assurance Activities: The evaluator shall examine the TSS to ensure that it describes the size limits
on the audit records, the detection of a full audit trail, and the action(s) taken by the TSF when the audit trail is full.

The evaluator shall ensure that the action(s) results in the deletion or overwrite of the oldest stored record.

Section 6.1 of the ST states that the TOE pre-allocates a file system area (between 10MB and 50MB in size,
depending upon available storage on the device) by creating a /data/system/[admin_uid]_bubble/bubbleFile and
directory (/data/system/[admin_uid]) in which to archive compressed audit logs. If the TOE lacks sufficient space

E———
GSS CCT Assurance Activity Report Page 26 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

(at least 10MB), then the TOE returns a failure code in response to the administrator’s attempt to enable the
AuditLog. Once enabled, the TOE writes audit events into nodes until they read a given size, and then compresses
and archives the records. The TOE utilizes a circular buffer approach to handle when the accumulated, compressed
audit events exceed the allocated file system size. When the limit is reached, the TOE removes the oldest audit
logs, freeing space for new records.

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: None Defined

l 2.2 CrYPTOGRAPHIC SUPPORT (FCS)

] 2.2.1 CRYPTOGRAPHIC KEY GENERATION (MDFPP32:FCS_CKM.1)

|2.2.1.1 MDFPP32:FCS_CKM.1.1

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined
Testing Assurance Activities: None Defined

Component TSS Assurance Activities: The evaluator shall ensure that the TSS identifies the key sizes supported by
the TOE. If the ST specifies more than one scheme, the evaluator shall examine the TSS to verify that it identifies

the usage for each scheme.

The table in the FCS_CKM.1 section of the ST specifies which cryptographic libraries support RSA, DH, ECDH, and
ECDSA. The TOE generates RSA keys in its SCrypto library and generates DH/ECDH/ECDSA (including P-256, P384
and P-521) keys in BoringSSL and ECDSA (including P-256, P384 and P-521) keys in in SCrypto. The TOE supports
generating keys with a security strength of 112-bits and larger, thus supports 2048-bit RSA and DH keys, and 256-bit
ECDH/ECDSA keys. The usage for each scheme is described in FCS_CKM.2.

Cryptographic Library
BoringSSL (user space)
Kernel Crypto (Kernel)
SCrypto (TrustZone)

Application Processor

Component Guidance Assurance Activities: The evaluator shall verify that the AGD guidance instructs the
administrator how to configure the TOE to use the selected key generation scheme(s) and key size(s) for all uses
defined in this PP.

S ———
GSS CCT Assurance Activity Report Page 27 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

The Admin Guide, section 3.1, explains that when the TOE is in CC mode, it will only use approved cryptographic
functions. No additional configuration is needed beyond putting the device in CC mode.

Component Testing Assurance Activities: Evaluation Activity Note: The following tests require the developer to
provide access to a test platform that provides the evaluator with tools that are typically not found on factory
products.

Key Generation for FIPS PUB 186-4 RSA Schemes

The evaluator shall verify the implementation of RSA Key Generation by the TOE using the Key Generation test.
This test verifies the ability of the TSF to correctly produce values for the key components including the public
verification exponent e, the private prime factors p and q, the public modulus n and the calculation of the private
signature exponent d.

Key Pair generation specifies 5 ways (or methods) to generate the primes p and g. These include:
1. Random Primes:

- Provable primes

- Probable primes

2. Primes with Conditions:

- Primes p1, p2, 1,92, p and g shall all be provable primes

-Primes p1, p2, q1, and g2 shall be provable primes and p and g shall be probable primes

- Primes p1, p2, 91,92, p and g shall all be probable primes

To test the key generation method for the Random Provable primes method and for all the Primes with Conditions
methods, the evaluator must seed the TSF key generation routine with sufficient data to deterministically generate
the RSA key pair. This includes the random seed(s), the public exponent of the RSA key, and the desired key length.
For each key length supported, the evaluator shall have the TSF generate 25 key pairs. The evaluator shall verify

the correctness of the TSF's implementation by comparing values generated by the TSF with those generated from

a known good implementation.

If possible, the Random Probable primes method should also be verified against a known good implementation as
described above. Otherwise, the evaluator shall have the TSF generate 10 keys pairs for each supported key length
nlen and verify:

-n=p*q
- p and q are probably prime according to Miller-Rabin tests

-GCD(p-1,e)=1

E———
GSS CCT Assurance Activity Report Page 28 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

-GCD(g-1,e) =1

- 2716 < e < 27256 and e is an odd integer
- |p-q] > 2”*(nlen/2 - 100)

- p >= squareroot(2)*(2*(nlen/2 -1))

- g >= squareroot(2)*(2*(nlen/2 -1))

- 27(nlen/2) < d < LCM(p-1,9-1)

- e*d =1 mod LCM(p-1,9-1)

Key Generation for FIPS 186-4 Elliptic Curve Cryptography (ECC)
FIPS 186-4 ECC Key Generation Test

For each supported NIST curve, i.e. P-256, P-384 and P-521, the evaluator shall require the implementation under
test (IUT) to generate 10 private/public key pairs. The private key shall be generated using an approved random bit
generator (RBG). To determine correctness, the evaluator shall submit the generated key pairs to the public key
verification (PKV) function of a known good implementation.

FIPS 186-4 Public Key Verification (PKV) Test

For each supported NIST curve, i.e. P-256, P-384 and P-521, the evaluator shall generate 10 private/public key pairs
using the key generation function of a known good implementation and modify five of the public key values so that
they are incorrect, leaving five values unchanged (i.e. correct). The evaluator shall obtain in response a set of 10
PASS/FAIL values.

Key Generation for Curve25519

The evaluator shall require the implementation under test (IUT) to generate 10 private/public key pairs. The

private key shall be generated as specified in RFC 7748 using an approved random bit generator (RBG) and shall be
written in little-endian order (least significant byte first). To determine correctness, the evaluator shall submit the
generated key pairs to the public key verification (PKV) function of a known good implementation.

Note: Assuming the PKV function of the good implementation will (using little-endian order):
a. confirm the private and public keys are 32-byte values

b. confirm the three least significant bits of the first byte of the private

key are zero

c. confirm the most significant bit of the last byte is zero

E———
GSS CCT Assurance Activity Report Page 29 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

d. confirm the second most significant bit of the last byte is one
e. calculate the expected public key from the private key and confirm it
matches the supplied public key

The evaluator shall generate 10 private/public key pairs using the key generation function of a known good
implementation and modify 5 of the public key values so that they are incorrect, leaving five values unchanged (i.e.

correct). The evaluator shall obtain in response a set of 10 PASS/FAIL values.

Key Generation for Finite-Field Cryptography (FFC)

The evaluator shall verify the implementation of the Parameters Generation and the Key Generation for FFC by the
TOE using the Parameter Generation and Key Generation test. This test verifies the ability of the TSF to correctly
produce values for the field prime p, the cryptographic prime q (dividing p-1), the cryptographic group generator g,
and the calculation of the private key x and public key y.

The Parameter generation specifies 2 ways (or methods) to generate the cryptographic prime q and the field prime
p:

Cryptographic and Field Primes:

- Primes q and p shall both be provable primes

- Primes q and field prime p shall both be probable primes

and two ways to generate the cryptographic group generator g:

Cryptographic Group Generator:

- Generator g constructed through a verifiable process

- Generator g constructed through an unverifiable process

The Key generation specifies 2 ways to generate the private key x:

Private Key:

- len(q) bit output of RBG where 1 <= x <= g-1

- len(q) + 64 bit output of RBG, followed by a mod g-1 operation where 1<= x<=qg-1
The security strength of the RBG must be at least that of the security offered by the FFC parameter set.

To test the cryptographic and field prime generation method for the provable primes method and/or the group
generator g for a verifiable process, the evaluator must seed the TSF parameter generation routine with sufficient
data to deterministically generate the parameter set.

e —
GSS CCT Assurance Activity Report Page 30 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

For each key length supported, the evaluator shall have the TSF generate 25 parameter sets and key pairs. The
evaluator shall verify the correctness of the TSF's implementation by comparing values generated by the TSF with
those generated from a known good implementation. Verification must also confirm

-g!=0,1

- q divides p-1

-gMgmodp=1

-gMxmodp=y

for each FFC parameter set and key pair.

Diffie-Hellman Group 14 and FFC Schemes using 'safe-prime' groups

Testing for FFC Schemes using Diffie-Hellman group 14 and/or 'safe-prime' groups is done as part of testing in
FCS_CKM.2/UNLOCKED.

See Section 1.2 for a listing of applicable CAVP certificates.

] 2.2.2 CrRYPTOGRAPHIC KEY GENERATION (VPNC24:FCS_CKM.1)

|2.2.2.1 VPNC24:FCS_CKM.1.1

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined
Testing Assurance Activities: None Defined

Component TSS Assurance Activities: The evaluator shall ensure that the TSS identifies the key sizes supported by
the TOE. If the ST specifies more than one scheme, the evaluator shall examine the TSS to verify that it identifies

the usage for each scheme.

See the description for MDFPP32:FCS_CKM.1 above.

Component Guidance Assurance Activities: The evaluator shall verify that the AGD guidance instructs the
administrator how to configure the TOE to use the selected key generation scheme(s) and key size(s) for all uses
defined in this PP.

The Admin Guide, section 3.1, explains that when the TOE is in CC mode, it will only use approved cryptographic
functions. No additional configuration is needed beyond putting the device in CC mode.

E———
GSS CCT Assurance Activity Report Page 31 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

Component Testing Assurance Activities: The following tests require the developer to provide access to a test
platform that provides the evaluator with tools that are typically not found on factory products.

Key Generation for FIPS PUB 186-4 RSA Schemes

The evaluator shall verify the implementation of RSA Key Generation by the TOE using the Key Generation test.
This test verifies the ability of the TSF to correctly produce values for the key components including the public
verification exponent e, the private prime factors p and g, the public modulus n and the calculation of the private
signature exponent d.

Key Pair generation specifies 5 ways (or methods) to generate the primes p and g. These include:
1. Random Primes:

Provable primes

Probable primes

2. Primes with Conditions:

Primes p1, p2, q1,92, p and q shall all be provable primes

Primes p1, p2, g1, and g2 shall be provable primes and p and g shall be probable primes

Primes p1, p2, g1,92, p and q shall all be probable primes

To test the key generation method for the Random Provable primes method and for all the Primes with Conditions
methods, the evaluator must seed the TSF key generation routine with sufficient data to deterministically generate
the RSA key pair. This includes the random seed(s), the public exponent of the RSA key, and the desired key length.
For each key length supported, the evaluator shall have the TSF generate 25 key pairs. The evaluator shall verify

the correctness of the TSF's implementation by comparing values generated by the TSF with those generated from

a known good implementation.

If possible, the Random Probable primes method should also be verified against a known good implementation as
described above. Otherwise, the evaluator shall have the TSF generate 10 keys pairs for each supported key length

nlen and verify:

n=p*q

p and g are probably prime according to Miller-Rabin tests
GCD(p-1,e) =1

GCD(g-1,e)=1

2716 < e < 22256 and e is an odd integer

[p-q| >2"(nlen/2 &€ 100)

GSS CCT Assurance Activity Report Page 32 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

p >= squareroot(2)*(2*(nlen/2 -1))

g >= squareroot(2)*(2”A(nlen/2 -1))

27(nlen/2) < d < LCM(p-1,9-1)

e*d =1 mod LCM(p-1,9-1)
Key Generation for FIPS 186-4 Elliptic Curve Cryptography (ECC)
FIPS 186-4 ECC Key Generation Test

For each supported NIST curve, i.e., P-256, P-384 and P-521, the evaluator shall require the implementation under
test (IUT) to generate 10 private/public key pairs. The private key shall be generated using an approved random bit
generator (RBG). To determine correctness, the evaluator shall submit the generated key pairs to the public key
verification (PKV) function of a known good implementation.

FIPS 186-4 Public Key Verification (PKV) Test

For each supported NIST curve, i.e., P-256, P-384 and P-521, the evaluator shall generate 10 private/public key
pairs using the key generation function of a known good implementation and modify five of the public key values
so that they are incorrect, leaving five values unchanged (i.e., correct). The evaluator shall obtain in response a set
of 10 PASS/FAIL values.

Key Generation for Curve25519

The evaluator shall require the implementation under test (IUT) to generate 10 private/public key pairs. The
private key shall be generated as specified in RFC 7748 using an approved random bit generator (RBG). To
determine correctness, the evaluator shall submit the generated key pairs to the public key verification (PKV)

function of a known good implementation.

Note: Assuming the PKV function of the good implementation will:

a. confirm the private and public keys are 32-byte values

b. confirm the three least significant bits of the most significant byte of the private key are zero

c. confirm the most significant bit of the least significant byte is zero

d. confirm the second most significant bit of the most significant byte is one

e. calculate the expected public key from the private key and confirm it matches the supplied public key

The evaluator shall generate 10 private/public key pairs using the key generation function of a known good
implementation and modify 5 of the public key values so that they are incorrect, leaving five values unchanged
(i.e., correct). The evaluator shall obtain in response a set of 10 PASS/FAIL values.

Key Generation for Finite-Field Cryptography (FFC)

|
GSS CCT Assurance Activity Report Page 33 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

The evaluator shall verify the implementation of the Parameters Generation and the Key Generation for FFC by the
TOE using the Parameter Generation and Key Generation test. This test verifies the ability of the TSF to correctly
produce values for the field prime p, the cryptographic prime q (dividing p-1), the cryptographic group generator g,
and the calculation of the private key x and public key y.

The Parameter generation specifies 2 ways (or methods) to generate the cryptographic prime g and the field prime
p:

Cryptographic and Field Primes:

Primes g and p shall both be provable primes

Primes g and field prime p shall both be probable primes

and two ways to generate the cryptographic group generator g:
Cryptographic Group Generator:

Generator g constructed through a verifiable process

Generator g constructed through an unverifiable process

The Key generation specifies 2 ways to generate the private key x:
Private Key:

len(q) bit output of RBG where 1 <= x <=qg-1

len(q) + 64 bit output of RBG, followed by a mod g-1 operation where 1<= x<=qg-1

The security strength of the RBG must be at least that of the security offered by the FFC parameter set.

To test the cryptographic and field prime generation method for the provable primes method and/or the group
generator g for a verifiable process, the evaluator must seed the TSF parameter generation routine with sufficient
data to deterministically generate the parameter set.

For each key length supported, the evaluator shall have the TSF generate 25 parameter sets and key pairs. The
evaluator shall verify the correctness of the TSF's implementation by comparing values generated by the TSF with
those generated from a known good implementation.

Verification must also confirm
g!=0,1
g divides p-1

gAgmodp=1

e —
GSS CCT Assurance Activity Report Page 34 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

ghxmodp=y
for each FFC parameter set and key pair.

Testing for FFC Schemes using Diffie-Hellman group 14 is done as part of testing in CKM.2.1.

See Section 1.2 for a listing of applicable CAVP certificates.

] 2.2.3 VPN CRYPTOGRAPHIC KEY GENERATION (IKE) (VPNC24:FCS_CKM.1/VPN)

|2.2.3.1 VPNC24:FCS_CKM.1.1/VPN

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined
Testing Assurance Activities: None Defined

Component TSS Assurance Activities: The evaluator shall examine the TSS to verify that it describes how the key

generation functionality is invoked.

See MDFPP32:FCS_CKM.1.

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: If this functionality is implemented by the TSF, refer to the following EAs,
depending on the TOE's claimed Base-PP:

- GPOS PP: FCS_CKM.1
- MDF PP: FCS_CKM.1

- App PP: FCS_CKM.1/AK

- MDM PP: FCS_CKM.1

See MDFPP32:FCS_CKM.1.

2.2.4 CRYPTOGRAPHIC KEY GENERATION (SYMMETRIC KEYS FOR WPA2/WPA3
CONNECTIONS) (WLANC10:FCS_CKM.1/WPA)

S ———
GSS CCT Assurance Activity Report Page 35 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023
N ———

2.2.4.1 WLANCI10:FCS_CKM.1.1/7WPA

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined
Testing Assurance Activities: None Defined

Component TSS Assurance Activities: The evaluator shall verify that the TSS describes how the primitives defined
and implemented by this PP-Module are used by the TOE in establishing and maintaining secure connectivity to

the wireless clients. The TSS shall also provide a description of the developer's method(s) of assuring that their

implementation conforms to the cryptographic standards; this includes not only testing done by the developing
organization, but also any third-party testing that is performed.

Section 6.2 of the ST explains the TOE adheres to IEEE 802.11-2012 and IEEE 802.11ac-2014 for key generation. The
TOE’s wpa_supplicant provides the PRF384 and PRF704 for WPA3/WPA2 derivation of 128-bit or 256-bit AES
Temporal Key (using the HMAC implementation provided by BoringSSL) and employs its BoringSSL AES-256 DRBG
when generating random values used in the EAP-TLS and 802.11 4-way handshake. The TOE supports the AES-128
CCMP encryption mode. The TOE has successfully completed certification (including WPA3/WPA2 Enterprise) and
received Wi-Fi CERTIFIED Interoperability Certificates from the Wi-Fi Alliance. The Wi-Fi Alliance maintains a website
providing further information about the testing program: http://www.wi-fi.org/certification.

Device Name Model Number Wi-Fi Alliance Certificate Numbers
Galaxy S23 Ultra 5G S918x 121357,122661,122662,123273,123274

Galaxy S23+ 5G S916x 122589,122590,122593,124435,124462

Galaxy S23 5G S911x 121294,122411,122412,123226,123227,124434,124507,124508
Galaxy S22 Ultra 5G SM-5908x 116353,116355,114632,116354,116358,116357,114868

Galaxy S22+ 5G SM-S906x 115270,115305,114633,116454,115308,115307,114782

Galaxy S22 5G SM-S901x 116361, 114779,116363,116366,116365,114780

109316, 109492, 102944, 109411, 109165, 109412, 109166, 109493,
103093, 103095

102482, 103060, 102486, 109409, 109162, 109410, 109164, 103062,
103084, 103087

Galaxy S21 5G SM-G990x 102477, 103030, 102479, 103026, 103028, 103073, 103077, 103079
Galaxy Z Fold2 5G SM-F916x 100682, 100816, 101116, 101117, 101119

100017, 100500, 100502, 100521, 100031, 100478, 100210, 100207,
100208

Galaxy Note20 Ultra LTE ~ SM-N985x 100480, 100955

Galaxy Note20 5G SM-N981x 100679, 100789, 100245, 100029, 100233, 100241
Galaxy Note20 LTE SM-N980x 100787, 100785

Galaxy Tab S7+ SM-T97xx 100737, 100742, 99721, 100740, 100739, 100738
Galaxy Tab S7 SM-T87xx 100783, 100765, 100676, 100764

Galaxy Z Flip 5G SM-F707x 100216, 100401, 100391, 100394

Galaxy S21 Ultra 5G SM-G998x

Galaxy S21+ 5G SM-G996x

Galaxy Note20 Ultra5G ~ SM-N986x

e —
GSS CCT Assurance Activity Report Page 36 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

http://www.wi-fi.org/certification

Version 0.2, 04/13/2023

| Device Name Model Number Wi-Fi Alliance Certificate Numbers

Galaxy S20 Ultra 5G 94291, 94172, 93551, 94169, 94167

Galaxy S20+ 5G SM-G986x 93449, 93448, 92154, 93130, 93132, 83143

Galaxy S20+ LTE SM-G985x 93451

Galaxy S20 5G SM-G981x 93593, 93442, 92152, 93439

Galaxy S20 LTE SM-G980x 93452

Galaxy S20 FE SM-G78xx 102005, 101511, 101357, 101362, 101261, 101359, 101515, 101517
SM-A515x 92332, 94644, 95484, 95485
SM-S515x 95486

117220,117304,117536,117578,117579,117581,117880,117881,
117902

Galaxy XCover Pro SM-G715x 93570, 94494, 94793

Galaxy Tab S8 Ultra SM-X90x 117093,117199,117200,117201

Galaxy Tab S8+ SM-X80x 115111, 117202,117203,117204,117206,118083
Galaxy Tab S8 SM-X700x 117138,117267,117268,117269

Galaxy Fold 5G SM-F907x 90110, 82483

Galaxy Fold SM-F900x 82762, 81957, 83434

Galaxy Z Fold3 5G SM-F936x 112362,113877,112365,112366,113087

Galaxy Z Flip3 5G SM-F926x 101504,101502,112311,112329,112263,112237

119631,119976,119977,119978,119979,119980,119981,120027,120
147

Galaxy Z Flip 4 5G SM-F721x 119746,119748,119749,119750,119752,119755,119847

Galaxy Z Flip SM-F700x 94215, 93289, 93382, 93367, 93371, 93378
100616,100217,100216,100401,100393,100391,100395,100394,
100398,100396
Galaxy XCover6 Pro SM-G736x 119715, 119711, 119667, 119714, 119712

SM-T636x
Galaxy Tab Active4 Pro SM-T638x 12022,120634,120635,120636,120637

SM-T630x

Galaxy A51

Galaxy A53 5G SM-A536x

Galaxy ZFold 4 5G SM-F936x

Galaxy Z Flip 5G SM-F707x

109316, 109492, 102944, 109411, 109165, 109412, 109166, 109493,
103093, 103095
102482, 103060, 102486, 109409, 109162, 109410, 109164, 103062,
103084, 103087

Galaxy S21 SM-G990x 102477, 103030, 102479, 103026, 103028, 103073, 103077, 103079
Galaxy S21 5G FE SM-G990x 119290,119706,119879

Galaxy S21 Ultra SM-G998x

Galaxy S21+ SM-G996x

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: The evaluator shall perform the following tests:

Test 1: The evaluator shall configure the access point so the cryptoperiod of the session key is 1 hour. The

evaluator shall successfully connect the TOE to the access point and maintain the connection for a length of time

S ———
GSS CCT Assurance Activity Report Page 37 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

that is greater than the configured cryptoperiod. The evaluator shall use a packet capture tool to determine that
after the configured cryptoperiod, a re-negotiation is initiated to establish a new session key. Finally, the evaluator
shall determine that the renegotiation has been successful and the client continues communication with the
access point.

Test 2: The evaluator shall perform the following test using a packet sniffing tool to collect frames between the
TOE and a wireless LAN access point:

Step 1: The evaluator shall configure the access point to an unused channel and configure the WLAN sniffer to sniff
only on that channel (i.e., lock the sniffer on the selected channel). The sniffer should also be configured to filter
on the MAC address of the TOE and/or access point.

Step 2: The evaluator shall configure the TOE to communicate with a WLAN access point using IEEE 802.11-2012

and a 256-bit (64 hex values 0-f) pre-shared key. The pre-shared key is only used for testing.

Step 3: The evaluator shall start the sniffing tool, initiate a connection between the TOE and the access point, and
allow the TOE to authenticate, associate, and successfully complete the 4-way handshake with the client.

Step 4: The evaluator shall set a timer for 1 minute, at the end of which the evaluator shall disconnect the TOE
from the wireless network and stop the sniffer.

Step 5: The evaluator shall identify the 4-way handshake frames (denoted EAPOL-key in Wireshark captures) and
derive the PTK from the 4-way handshake frames and pre-shared key as specified in IEEE 802.11-2012.

Step 6: The evaluator shall select the first data frame from the captured packets that was sent between the TOE
and access point after the 4-way handshake successfully completed, and without the frame control value 0x4208
(the first 2 bytes are 08 42). The evaluator shall use the PTK to decrypt the data portion of the packet as specified
in IEEE 802.11-2012, and shall verify that the decrypted data contains ASCll-readable text.

Step 7: The evaluator shall repeat Step 6 for the next 2 data frames between the TOE and access point and without
frame control value 0x4208.

Test 1 — The access point was configured for a 1-hour cryptoperiod. The TOE was configured to connect to the access
point and a wireless packet capture was started. After an hour, the evaluator examined the packet capture and
ensured there was a re-key between the access point and the TOE.

Test 2 - The TOE was configured to connect to an access point and a wireless packet capture was started. The TOE
was connected and disconnected after a minute once a number of broadcast packets were observed using the packet
capture tool. The evaluator filtered the capture further to demonstrate the 4-way handshake and encrypted
broadcast packets. The evaluator then decrypted the packet capture and demonstrated the PTK and GTK were
derived.

See Section 1.2 for identification of CAVP certificates that map to this requirement (AES and HMAC).

e —
GSS CCT Assurance Activity Report Page 38 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

] 2.2.5 CrypPTOGRAPHIC KEY ESTABLISHMENT (MDFPP32:FCS_CKM.2/LOCKED)

| 2.2.5.1 MDFPP32:FCS_CKM.2.1/LOCKED

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

Component TSS Assurance Activities: None Defined
Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: The test for SP800-56A and SP800-56B key establishment schemes is
performed in association with FCS_CKM.2.1(1).

Curve25519 Key Establishment Schemes

The evaluator shall verify a TOE's implementation of the key agreement scheme using the following Function and
Validity tests. These validation tests for each key agreement scheme verify that a TOE has implemented the
components of the key agreement scheme according to the specification. These components include the
calculation of the shared secret K and the hash of K.

Function Test

The Function test verifies the ability of the TOE to implement the key agreement schemes correctly. To conduct
this test the evaluator shall generate or obtain test vectors from a known good implementation of the TOE
supported schemes. For each supported key agreement role and hash function combination, the tester shall
generate 10 sets of public keys. These keys are static, ephemeral or both depending on the scheme being tested.

The evaluator shall obtain the shared secret value K, and the hash of K.

The evaluator shall verify the correctness of the TSF's implementation of a given scheme by using a known good
implementation to calculate the shared secret value K and compare the hash generated from this value.

Validity Test

The Validity test verifies the ability of the TOE to recognize another party's valid and invalid key agreement results.
To conduct this test, the evaluator generates a set of 30 test vectors consisting of data sets including the
evaluator's public keys and the TOE's public/private key pairs.

The evaluator shall inject an error in some of the test vectors to test that the TOE recognizes invalid key agreement
results caused by the following fields being incorrect: the shared secret value K or the hash of K. At least two of the
test vectors shall remain unmodified and therefore should result in valid key agreement results (they should pass).

e —
GSS CCT Assurance Activity Report Page 39 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

The TOE shall use these modified test vectors to emulate the key agreement scheme using the corresponding
parameters. The evaluator shall compare the TOE's results with the results using a known good implementation
verifying that the TOE detects these errors.

See Section 1.2 for a listing of applicable CAVP certificates.

] 2.2.6 CrYPTOGRAPHIC KEY ESTABLISHMENT (VPNC24:FCS_CKM.2/UNLOCK)

| 2.2.6.1 YPNC24:FCS_CKM.2.1/UNLOCK

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined
Testing Assurance Activities: None Defined

Component TSS Assurance Activities: The evaluator shall ensure that the supported key establishment schemes
correspond to the key generation schemes identified in FCS_CKM.1.1. If the ST specifies more than one scheme,
the evaluator shall examine the TSS to verify that it identifies the usage for each scheme.

If 'Key establishment scheme using Diffie-Hellman group 14'is selected, the evaluator shall ensure that the TSS

describes how the implementation meets RFC 3526 Section 3.

See MDFPP32:FCS_CKM.2/UNLOCK

Component Guidance Assurance Activities: The evaluator shall verify that the AGD guidance instructs the

administrator how to configure the TOE to use the selected key establishment scheme(s).

The Admin Guide, section 3.1, explains that when the TOE is in CC mode, it will only use approved cryptographic
functions. No additional configuration is needed beyond putting the device in CC mode.

Component Testing Assurance Activities: The following tests require the developer to provide access to a test
platform that provides the evaluator with tools that are typically not found on factory products.

Key Establishment Schemes

The evaluator shall verify the implementation of the key establishment schemes supported by the TOE using the
applicable tests below.

SP800-56A Key Establishment Schemes

The evaluator shall verify a TOE's implementation of SP800-56A key agreement schemes using the following
Function and Validity tests. These validation tests for each key agreement scheme verify that a TOE has
implemented the components of the key agreement scheme according to the specifications in the

e —
GSS CCT Assurance Activity Report Page 40 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

Recommendation. These components include the calculation of the DLC primitives (the shared secret value Z) and
the calculation of the derived keying material (DKM) via the Key Derivation Function (KDF). If key confirmation is
supported, the evaluator shall also verify that the components of key confirmation have been implemented
correctly, using the test procedures described below. This includes the parsing of the DKM, the generation of
MACdata and the calculation of MACtag.

Function Test

The Function test verifies the ability of the TOE to implement the key agreement schemes correctly. To conduct
this test the evaluator shall generate or obtain test vectors from a known good implementation of the TOE
supported schemes. For each supported key agreement scheme-key agreement role combination, KDF type, and, if
supported, key confirmation role- key confirmation type combination, the tester shall generate 10 sets of test
vectors. The data set consists of one set of domain parameter values (FFC) or the NIST approved curve (ECC) per 10
sets of public keys. These keys are static, ephemeral or both depending on the scheme being tested.

The evaluator shall obtain the DKM, the corresponding TOE's public keys (static and/or ephemeral), the MAC
tag(s), and any inputs used in the KDF, such as the Other Information field Ol and TOE id fields.

If the TOE does not use a KDF defined in SP 800-56A, the evaluator shall obtain only the public keys and the hashed
value of the shared secret.

The evaluator shall verify the correctness of the TSF's implementation of a given scheme by using a known good
implementation to calculate the shared secret value, derive the keying material DKM, and compare hashes or MAC
tags generated from these values.

If key confirmation is supported, the TSF shall perform the above for each implemented approved MAC algorithm.
Validity Test

The Validity test verifies the ability of the TOE to recognize another party's valid and invalid key agreement results
with or without key confirmation. To conduct this test, the evaluator shall obtain a list of the supporting
cryptographic functions included in the SP800-56A key agreement implementation to determine which errors the
TOE should be able to recognize. The evaluator generates a set of 24 (FFC) or 30 (ECC) test vectors consisting of
data sets including domain parameter values or NIST approved curves, the evaluator's public keys, the TOE's

public/private key pairs, MACTag, and any inputs used in the KDF, such as the other info and TOE id fields.

The evaluator shall inject an error in some of the test vectors to test that the TOE recognizes invalid key agreement
results caused by the following fields being incorrect: the shared secret value Z, the DKM, the other information
field Ol, the data to be MACed, or the generated MACTag. If the TOE contains the full or partial (only ECC) public
key validation, the evaluator will also individually inject errors in both parties' static public keys, both parties'
ephemeral public keys and the TOE's static private key to assure the TOE detects errors in the public key validation
function and/or the partial key validation function (in ECC only). At least two of the test vectors shall remain
unmodified and therefore should result in valid key agreement results (they should pass).

E———
GSS CCT Assurance Activity Report Page 41 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

The TOE shall use these modified test vectors to emulate the key agreement scheme using the corresponding
parameters. The evaluator shall compare the TOE's results with the results using a known good implementation
verifying that the TOE detects these errors.

SP800-56B Key Establishment Schemes

The evaluator shall verify that the TSS describes whether the TOE acts as a sender, a recipient, or both for RSA-
based key establishment schemes.

If the TOE acts as a sender, the following assurance activity shall be performed to ensure the proper operation of
every TOE supported combination of RSA-based key establishment scheme:

To conduct this test the evaluator shall generate or obtain test vectors from a known good implementation of the
TOE supported schemes. For each combination of supported key establishment scheme and its options (with or
without key confirmation if supported, for each supported key confirmation MAC function if key confirmation is
supported, and for each supported mask generation function if KTS-OAEP is supported), the tester shall generate
10 sets of test vectors. Each test vector shall include the RSA public key, the plaintext keying material, any
additional input parameters if applicable, the MacKey and MacTag if key confirmation is incorporated, and the
outputted ciphertext. For each test vector, the evaluator shall perform a key establishment encryption operation
on the TOE with the same inputs (in cases where key confirmation is incorporated, the test shall use the MacKey
from the test vector instead of the randomly generated MacKey used in normal operation) and ensure that the
outputted ciphertext is equivalent to the ciphertext in the test vector.

If the TOE acts as a receiver, the following assurance activities shall be performed to ensure the proper operation
of every TOE supported combination of RSA-based key establishment scheme:

To conduct this test the evaluator shall generate or obtain test vectors from a known good implementation of the
TOE supported schemes. For each combination of supported key establishment scheme and its options (with our
without key confirmation if supported, for each supported key confirmation MAC function if key confirmation is
supported, and for each supported mask generation function if KTS-OAEP is supported), the tester shall generate
10 sets of test vectors. Each test vector shall include the RSA private key, the plaintext keying material (KeyData),
any additional input parameters if applicable, the MacTag in cases where key confirmation is incorporated, and the
outputted ciphertext. For each test vector, the evaluator shall perform the key establishment decryption operation
on the TOE and ensure that the outputted plaintext keying material (KeyData) is equivalent to the plaintext keying
material in the test vector. In cases where key confirmation is incorporated, the evaluator shall perform the key
confirmation steps and ensure that the outputted MacTag is equivalent to the MacTag in the test vector.

The evaluator shall ensure that the TSS describes how the TOE handles decryption errors. In accordance with NIST
Special Publication 800-56B, the TOE must not reveal the particular error that occurred, either through the
contents of any outputted or logged error message or through timing variations. If KTS-OAEP is supported, the
evaluator shall create separate contrived ciphertext values that trigger each of the three decryption error checks
described in NIST Special Publication 800-56B section 7.2.2.3, ensure that each decryption attempt results in an
error, and ensure that any outputted or logged error message is identical for each. If KTS-KEM-KWS is supported,

the evaluator shall create separate contrived ciphertext values that trigger each of the three decryption error

E———
GSS CCT Assurance Activity Report Page 42 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

checks described in NIST Special Publication 800-56B section 7.2.3.3, ensure that each decryption attempt results
in an error, and ensure that any outputted or logged error message is identical for each.

If 'Key establishment scheme using Diffie-Hellman group 143€} ' is selected, the evaluator shall also verify the
correctness of the TSF's implementation of Diffie-Hellman group 14 by using a known good implementation for
each protocol selected in FTP_ITC_EXT.1 in the MDF PP that uses Diffie-Hellman group 14. Note that because a TOE
that conforms to this PP-Module must implement IPsec, the tested protocols shall include IPsec at minimum.

See Section 1.2 for a listing of applicable CAVP certificates.

The evaluator tested with a known good implementation to verify the DH-14 implementation.

2.2.7 CRYPTOGRAPHIC KEY ESTABLISHMENT
(MDFPP32:FCS_CKM.2/UNLOCKED)

| 2.2.7.1 MDFPP32:FCS_CKM.2.1/UNLOCKED

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined
Testing Assurance Activities: None Defined

Component TSS Assurance Activities: The evaluator shall ensure that the supported key establishment schemes
correspond to the key generation schemes identified in FCS_CKM.1.1. If the ST specifies more than one scheme,
the evaluator shall examine the TSS to verify that it identifies the usage for each scheme.

If Diffie-Hellman group 14 is selected from FCS_CKM.2/UNLOCKED, the TSS shall describe how the implementation
meets RFC 3526 Section 3.

Section 6.2 of the ST states that the TOE supports RSA (800-56B, as an initiator only), DHE (FFC 800-56A), and
ECDHE (ECC 800-56A) methods in TLS key establishment/exchange. The TOE has CVL KAS and ECDSA CAVP
algorithm certificates for Elliptic Curve key establishment and key generation respectively as described in the
FCS_COP.1 section below. Samsung vendor-affirms that the TOE’s RSA key establishment follows 800-56B. The TOE
implementation meets RFC 3526 Section 3. The user and administrator need take no special configuration of the
TOE as the TOE automatically generates the keys needed for negotiated TLS ciphersuites. Because the TOE only
acts as a TLS client, the TOE only performs 800-56B encryption (specifically the encryption of the Pre-Master Secret
using the Server’s RSA public key) when participating in TLS_RSA_* based TLS handshakes. Thus, the TOE does not
perform 800-56B decryption. However, the TOE’s TLS client correctly handles other cryptographic errors (for
example, invalid checksums, incorrect certificate types, corrupted certificates) by sending a TLS fatal alert.

Component Guidance Assurance Activities: The evaluator shall verify that the AGD guidance instructs the
administrator how to configure the TOE to use the selected key establishment scheme(s).

e —
GSS CCT Assurance Activity Report Page 43 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

The Admin Guide, section 3.1, explains that when the TOE is in CC mode, it will only use approved cryptographic
functions. No additional configuration is needed beyond putting the device in CC mode.

Component Testing Assurance Activities: Evaluation Activity Note: The following tests require the developer to
provide access to a test platform that provides the evaluator with tools that are typically not found on factory
products.

The evaluator shall verify the implementation of the key establishment schemes supported by the TOE using the
applicable tests below.

SP800-56A Revision 3 Key Establishment Schemes

The evaluator shall verify a TOE's implementation of SP800-56A Revision 3 key establishment schemes using the
following Function and Validity tests. These validation tests for each key agreement scheme verify that a TOE has
implemented the components of the key agreement scheme according to the specifications in the
Recommendation. These components include the calculation of the DLC primitives (the shared secret value Z) and
the calculation of the derived keying material (DKM) via the Key Derivation Function (KDF). If key confirmation is
supported, the evaluator shall also verify that the components of key confirmation have been implemented
correctly, using the test procedures described below. This includes the parsing of the DKM, the generation of
MACdata and the calculation of MACtag.

Function Test

The Function test verifies the ability of the TOE to implement the key agreement schemes correctly. To conduct
this test the evaluator shall generate or obtain test vectors from a known good implementation of the TOE
supported schemes. For each supported key agreement scheme-key agreement role combination, KDF type, and, if
supported, key confirmation role- key confirmation type combination, the tester shall generate 10 sets of test
vectors. The data set consists of one set of domain parameter values (FFC) or the NIST approved curve (ECC) per 10
sets of public keys. These keys are static, ephemeral or both depending on the scheme being tested.

The evaluator shall obtain the DKM, the corresponding TOE's public keys (static and/or ephemeral), the MAC
tag(s), and any inputs used in the KDF, such as the Other Information field Ol and TOE id fields.

If the TOE does not use a KDF defined in SP 800-56A Revision 3, the evaluator shall obtain only the public keys and
the hashed value of the shared secret.

The evaluator shall verify the correctness of the TSF's implementation of a given scheme by using a known good
implementation to calculate the shared secret value, derive the keying material DKM, and compare hashes or MAC
tags generated from these values.

If key confirmation is supported, the TSF shall perform the above for each implemented approved MAC algorithm.
Validity Test

The Validity test verifies the ability of the TOE to recognize another party's valid and invalid key agreement results
with or without key confirmation. To conduct this test, the evaluator shall obtain a list of the supporting

e —
GSS CCT Assurance Activity Report Page 44 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

cryptographic functions included in the SP800-56A Revision 3 key agreement implementation to determine which
errors the TOE should be able to recognize. The evaluator generates a set of 24 (FFC) or 30 (ECC) test vectors
consisting of data sets including domain parameter values or NIST approved curves, the evaluator's public keys, the

TOE's public/private key pairs, MACTag, and any inputs used in the KDF, such as the other info and TOE id fields.

The evaluator shall inject an error in some of the test vectors to test that the TOE recognizes invalid key agreement
results caused by the following fields being incorrect: the shared secret value Z, the DKM, the other information
field OI, the data to be MACed, or the generated MACTag. If the TOE contains the full or partial (only ECC) public
key validation, the evaluator will also individually inject errors in both parties' static public keys, both parties'
ephemeral public keys and the TOE's static private key to assure the TOE detects errors in the public key validation
function and/or the partial key validation function (in ECC only). At least two of the test vectors shall remain
unmodified and therefore should result in valid key agreement results (they should pass).

The TOE shall use these modified test vectors to emulate the key agreement scheme using the corresponding
parameters. The evaluator shall compare the TOE's results with the results using a known good implementation
verifying that the TOE detects these errors.

SP800-56B Key Establishment Schemes

The evaluator shall verify that the TSS describes whether the TOE acts as a sender, a recipient, or both for RSA-
based key establishment schemes.

If the TOE acts as a sender, the following evaluation activity shall be performed to ensure the proper operation of
every TOE supported combination of RSA-based key establishment scheme:

To conduct this test the evaluator shall generate or obtain test vectors from a known good implementation of the
TOE supported schemes. For each combination of supported key establishment scheme and its options (with or
without key confirmation if supported, for each supported key confirmation MAC function if key confirmation is
supported, and for each supported mask generation function if KTS-OAEP is supported), the tester shall generate
10 sets of test vectors. Each test vector shall include the RSA public key, the plaintext keying material, any
additional input parameters if applicable, the MacKey and MacTag if key confirmation is incorporated, and the
outputted ciphertext. For each test vector, the evaluator shall perform a key establishment encryption operation
on the TOE with the same inputs (in cases where key confirmation is incorporated, the test shall use the MacKey
from the test vector instead of the randomly generated MacKey used in normal operation) and ensure that the
outputted ciphertext is equivalent to the ciphertext in the test vector.

If the TOE acts as a receiver, the following evaluation activities shall be performed to ensure the proper operation
of every TOE supported combination of RSA-based key establishment scheme:

To conduct this test the evaluator shall generate or obtain test vectors FCS_CKM.2.1/LOCKED from a known good
implementation of the TOE supported schemes. For each combination of supported key establishment scheme and
its options (with our without key confirmation if supported, for each supported key confirmation MAC function if
key confirmation is supported, and for each supported mask generation function if KTS-OAEP is supported), the
tester shall generate 10 sets of test vectors. Each test vector shall include the RSA private key, the plaintext keying
material (KeyData), any additional input parameters if applicable, the MacTag in cases where key confirmation is

E———
GSS CCT Assurance Activity Report Page 45 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

incorporated, and the outputted ciphertext. For each test vector, the evaluator shall perform the key
establishment decryption operation on the TOE and ensure that the outputted plaintext keying material (KeyData)
is equivalent to the plaintext keying material in the test vector. In cases where key confirmation is incorporated,
the evaluator shall perform the key confirmation steps and ensure that the outputted MacTag is equivalent to the
MacTag in the test vector.

The evaluator shall ensure that the TSS describes how the TOE handles decryption errors. In accordance with NIST
Special Publication 800-56B, the TOE must not reveal the particular error that occurred, either through the
contents of any outputted or logged error message or through timing variations. If KTS-OAEP is supported, the
evaluator shall create separate contrived ciphertext values that trigger each of the three decryption error checks
described in NIST Special Publication 800-56B section 7.2.2.3, ensure that each decryption attempt results in an
error, and ensure that any outputted or logged error message is identical for each. If KTS-KEMKWS is supported,
the evaluator shall create separate contrived ciphertext values that trigger each of the three decryption error
checks described in NIST Special Publication 800-56B section 7.2.3.3, ensure that each decryption attempt results
in an error, and ensure that any outputted or logged error message is identical for each.

RSAES-PKCS1-v1l_5 Key Establishment Schemes

The evaluator shall verify the correctness of the TSF's implementation of RSAES-PKCS1-v1_5 by using a known
good implementation for each protocol selected in FTP_ITC_EXT.1 that uses RSAES-PKCS1-v1_5.

Diffie-Hellman Group 14

The evaluator shall verify the correctness of the TSF's implementation of Diffie-Hellman group 14 by using a known
good implementation for each protocol selected in FTP_ITC_EXT.1 that uses Diffie-Hellman Group 14.

FFC Schemes using 'safe-prime' groups

The evaluator shall verify the correctness of the TSF's implementation of 'safe-prime' groups by using a known
good implementation for each protocol selected in FTP_ITC_EXT.1 that uses 'safe-prime' groups. This test must be
performed for each 'safe-prime’' group that each protocol uses.

See Section 1.2 for a listing of applicable CAVP certificates.

The evaluator tested with a known good implementation to verify the DH-14 implementation.

2.2.8 CRYPTOGRAPHIC KEY DISTRIBUTION (GROUP TEMPORAL KEY FOR WLAN)
(WLANC10:FCS_CKM.2/WLAN)

|2.2.8.1 WLANC10:FCS_CKM.2.1/WLAN

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

GSS CCT Assurance Activity Report Page 46 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

Testing Assurance Activities: None Defined

Component TSS Assurance Activities: The evaluator shall check the TSS to ensure that it describes how the GTK is
unwrapped prior to being installed for use on the TOE using the AES implementation specified in this PP-Module.

Section 6.2 of the ST states the TOE adheres to RFC 3394, SP 800-38F, and 802.11-2012 standards and unwraps the
GTK (sent encrypted with the WPA3/2 KEK using AES Key Wrap in an EAPOL-Key frame). The TOE, upon receiving
an EAPOL frame, will subject the frame to a number of checks (frame length, EAPOL version, frame payload size,
EAPOL-Key type, key data length, EAPOL-Key CCMP descriptor version, and replay counter) to ensure a proper
EAPOL message and then decrypt the GTK using the KEK, thus ensuring that it does not expose the Group
Temporal Key (GTK).

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: The evaluator shall perform the following test using a packet sniffing
tool to collect frames between the TOE and a wireless access point (which may be performed in conjunction with
the assurance activity for FCS_CKM.1.1/WLAN).

Step 1: The evaluator shall configure the access point to an unused channel and configure the WLAN sniffer to sniff
only on that channel (i.e., lock the sniffer on the selected channel). The sniffer should also be configured to filter

on the MAC address of the TOE and/or access point.

Step 2: The evaluator shall configure the TOE to communicate with the access point using IEEE 802.11-2012 and a
256-bit (64 hex values 0-f) pre-shared key, setting up the connections as described in the operational guidance.
The pre-shared key is only used for testing.

Step 3: The evaluator shall start the sniffing tool, initiate a connection between the TOE and access point, and
allow the TOE to authenticate, associate, and successfully complete the 4-way handshake with the TOE.

Step 4: The evaluator shall set a timer for 1 minute, at the end of which the evaluator shall disconnect the TOE
from the access point and stop the sniffer.

Step 5: The evaluator shall identify the 4-way handshake frames (denoted EAPOL-key in Wireshark captures) and
derive the PTK and GTK from the 4-way handshake frames and pre-shared key as specified in IEEE 802.11-2012.

Step 6: The evaluator shall select the first data frame from the captured packets that was sent between the TOE
and access point after the 4-way handshake successfully completed, and with the frame control value 0x4208 (the
first 2 bytes are 08 42). The evaluator shall use the GTK to decrypt the data portion of the selected packet as
specified in IEEE 802.11-2012, and shall verify that the decrypted data contains ASCllreadable text.

Step 7: The evaluator shall repeat Step 6 for the next 2 data frames with frame control value 0x4208.

See the test case for WLANC10:FCS_CKM.1/WPA.

See Section 1.2 for identification of CAVP certificates that map to this requirement.

e —
GSS CCT Assurance Activity Report Page 47 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023
N ———

] 2.2.2 CrYpPTOGRAPHIC KEY SUPPORT (MDFPP32:FCS_CKM_EXT.1)

|2.2.9.1 MDFPP32:FCS_CKM_EXT.1.1

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

2.2.9.2 MDFPP32:FCS_CKM_EXT.1.2

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

2.2.9.3 MDFPP32:FCS_CKM_EXT.1.3

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined
Testing Assurance Activities: None Defined

Component TSS Assurance Activities: The evaluator shall review the TSS to determine that a REK is supported by
the TOE, that the TSS includes a description of the protection provided by the TOE for a REK, and that the TSS
includes a description of the method of generation of a REK.

The evaluator shall verify that the description of the protection of a REK describes how any reading, import, and
export of that REK is prevented. (For example, if the hardware protecting the REK is removable, the description
should include how other devices are prevented from reading the REK.) The evaluator shall verify that the TSS
describes how encryption/decryption/derivation actions are isolated so as to prevent applications and system-level
processes from reading the REK while allowing encryption/decryption/derivation by the key.

The evaluator shall verify that the description includes how the OS is prevented from accessing the memory
containing REK key material, which software is allowed access to the REK, how any other software in the execution
environment is prevented from reading that key material, and what other mechanisms prevent the REK key
material from being written to shared memory locations between the OS and the separate execution environment.

e —
GSS CCT Assurance Activity Report Page 48 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

If key derivation is performed using a REK, the evaluator shall ensure that the TSS description includes a
description of the key derivation function and shall verify the key derivation uses an approved derivation mode
and key expansion algorithm according to FCS_CKM_EXT.3.2.

The evaluator shall verify that the generation of a REK meets the FCS_RBG_EXT.1.1 and FCS_RBG_EXT.1.2
requirements:

- If REK(s) is/are generated on-device, the TSS shall include a description of the generation mechanism including
what triggers a generation, how the functionality described by FCS_RBG_EXT.1 is invoked, and whether a separate
instance of the RBG is used for REK(s).

- If REK(s) is/are generated off-device, the TSS shall include evidence that the RBG meets FCS_RBG_EXT.1. This will
likely necessitate a second set of RBG documentation equivalent to the documentation provided for the RBG
Evaluation Activities. In addition, the TSS shall describe the manufacturing process that prevents the device
manufacturer from accessing any REK(s).

Section 6.2 of the TSS states the TOE supports a Root Encryption Key (REK) within the main (application) processor.
Requests for encryption or decryption chaining to the REK are only accessible through the Trusted Execution
Environment, or TEE (TrustZone). The REK lies in a series of 256-bit fuses, programmed during manufacturing. The
TEE does not allow direct access to the REK but provides services to derive a HEK (Hardware Encryption Key, which
is derived from the REK through a KDF function) for encryption and decryption.

The REK value is generated during manufacturing either by the TOE (if it detects that the REK fuses have not been
set) using its hardware DRBG or is generated during fabrication using an external RBG that meets the requirements
of this PP in that the process utilizes a SHA-256 Hash_DRBG seeded by a hardware entropy source identical in
architecture to that within the TOE. This fabrication process includes strict controls (including physical and logical
access control to the manufacturing room where programming takes place as well as video surveillance and access
only to specific, authorized, trusted individuals) to ensure that the fabricator cannot access any REK values
between generation and programming.

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: None Defined

] 2.2.10 CRYPTOGRAPHIC KEY RANDOM GENERATION (MDFPP32:FCS_CKM_EXT.2)

| 2.2.10.1 MDFPP32:FCS_CKM_EXT.2.1

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

e —
GSS CCT Assurance Activity Report Page 49 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

Component TSS Assurance Activities: The evaluator shall ensure that the documentation of the product's
encryption key management is detailed enough that, after reading, the product's key management hierarchy is
clear and that it meets the requirements to ensure the keys are adequately protected. The evaluator shall ensure
that the documentation includes both an essay and one or more diagrams. Note that this may also be documented
as separate proprietary evidence rather than being included in the TSS.

The evaluator shall also examine the key hierarchy section of the TSS to ensure that the formation of all DEKs is
described and that the key sizes match that described by the ST author. The evaluator shall examine the key
hierarchy section of the TSS to ensure that each DEK is generated or combined from keys of equal or greater
security strength using one of the selected methods.

- If the symmetric DEK is generated by an RBG, the evaluator shall review the TSS to determine that it describes
how the functionality described by FCS_RBG_EXT.1 is invoked. The evaluator uses the description of the RBG
functionality in FCS_RBG_EXT.1 or documentation available for the operational environment to determine that the
key size being requested is greater than or equal to the key size and mode to be used for the
encryption/decryption of the data.

- If the DEK is formed from a combination, the evaluator shall verify that the TSS describes the method of
combination and that this method is either an XOR or a KDF to justify that the effective entropy of each factor is
preserved. The evaluator shall also verify that each combined value was originally generated from an Approved
DRBG described in FCS_RBG_EXT.1.

- If 'concatenating the keys and using a KDF (as described in (SP 800-56C)' is selected, the evaluator shall ensure
the TSS includes a description of the randomness extraction step.

The description must include how an approved untruncated MAC function is being used for the randomness
extraction step and the evaluator must verify the TSS describes that the output length (in bits) of the MAC function
is at least as large as the targeted security strength (in bits) of the parameter set employed by the key
establishment scheme (see Tables 1-3 of SP 800-56C).

The description must include how the MAC function being used for the randomness extraction step is related to
the PRF used in the key expansion and verify the TSS description includes the correct MAC function:

- If an HMAC-hash is used in the randomness extraction step, then the same HMAC-hash (with the same hash

function hash) is used as the PRF in the key expansion step.

- If an AES-CMAC (with key length 128, 192, or 256 bits) is used in the randomness extraction step, then AES-CMAC
with a 128-bit key is used as the PRF in the key expansion step.

- The description must include the lengths of the salt values being used in the randomness extraction step and the
evaluator shall verify the TSS description includes correct salt lengths:

- If an HMAC-hash is being used as the MAC, the salt length can be any value up to the maximum bit length
permitted for input to the hash function hash.

E———
GSS CCT Assurance Activity Report Page 50 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

- If an AES-CMAC is being used as the MAC, the salt length shall be the same length as the AES key (i.e. 128, 192, or
256 bits).

(conditional) If a KDF is used, the evaluator shall ensure that the TSS includes a description of the key derivation
function and shall verify the key derivation uses an approved derivation mode and key expansion algorithm
according to SP 800-108 or SP 800-56C.

Section 6.2 of the TSS explains that the TOE supports Data Encryption Key (DEK) generation using its approved
RBGs for use in SD card encryption. The TOE RBGs are capable of generating AES 256-bit DEKs in response to
applications and services on the device. These can be accessed through both Android native APIs and C APIs
depending on the library being called. For FBE, the TOE supports using a SP800-108 KDF to concatenate keys
together to generate unique DEKs. The keys used in the SP800-108 KDF are generated by the approved RBGs. The
TOE can also generate 128-bit asymmetric keys used for sensitive data protection. The proprietary key hierarchy
diagrams in the KMD demonstrate all the required cryptographic operations. The evaluator examined the
proprietary key hierarchy diagrams and verified that each DEK is generated or combined from keys of equal or
greater security strength using one of the selected methods from the SFR.

Guidance Assurance Activities: The evaluator uses the description of the RBG functionality in FCS_RBG_EXT.1 or
documentation available for the operational environment to determine that the key size being generated or

combined is identical to the key size and mode to be used for the encryption/decryption of the data.

Section 6.2 of the TSS explains that the TOE supports Data Encryption Key (DEK) generation using its approved
RBGs for use in SD card encryption. The TOE RBGs are capable of generating AES 256-bit DEKs in response to
applications and services on the device. The 256-bit length matches the FCS_RBG_EXT.1 requirement.

Component Testing Assurance Activities: If a KDF is used, the evaluator shall perform one or more of the following
tests to verify the correctness of the key derivation function, depending on the mode(s) that are supported. Table
4 maps the data fields to the notations used in SP 800-108 and SP 800-56C.

Table 4: Notations used in SP 800-108 and SP 800-56C

Data Fields Notations

SP 800-108 SP 800-56C

Pseudorandom

function

e —
GSS CCT Assurance Activity Report Page 51 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

Counter length

Length of

output of PRF

Length of derived

keying material

Length of input values I length | length

Pseudorandom K1

input values | (key derivation key) (shared secret)

Pseudorandom

salt values

Randomness

extraction MAC

Counter Mode Tests:

The evaluator shall determine the following characteristics of the key derivation function:

- One or more pseudorandom functions that are supported by the implementation (PRF).
- One or more of the values 8, 16, 24, 32 that equal the length of the binary representation of the counter (r).

- The length (in bits) of the output of the PRF (h).

e —
GSS CCT Assurance Activity Report Page 52 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

- Minimum and maximum values for the length (in bits) of the derived keying material (L). These values can be
equal if only one value of L is supported. These must be evenly divisible by h.

- Up to two values of L that are NOT evenly divisible by h.

- Location of the counter relative to fixed input data: before, after, or in the middle.
-- Counter before fixed input data: fixed input data string length (in bytes), fixed input data string value.
-- Counter after fixed input data: fixed input data string length (in bytes), fixed input data string value.

-- Counter in the middle of fixed input data: length of data before counter (in bytes), length of data after counter
(in bytes), value of string input before counter, value of string input after counter.

- The length (I_length) of the input values I.

For each supported combination of |_length, MAC, salt, PRF, counter location, value of r, and value of L, the
evaluator shall generate 10 test vectors that include pseudorandom input values I, and pseudorandom salt values.
If there is only one value of L that is evenly divisible by h, the evaluator shall generate 20 test vectors for it. For
each test vector, the evaluator shall supply this data to the TOE in order to produce the keying material output.

The results from each test may either be obtained by the evaluator directly or by supplying the inputs to the
implementer and receiving the results in response. To determine correctness, the evaluator shall compare the
resulting values to those obtained by submitting the same inputs to a known good implementation.

Feedback Mode Tests:

The evaluator shall determine the following characteristics of the key derivation function:

- One or more pseudorandom functions that are supported by the implementation (PRF).

- The length (in bits) of the output of the PRF (h).

- Minimum and maximum values for the length (in bits) of the derived keying material (L). These values can be
equal if only one value of L is supported. These must be evenly divisible by h.

- Up to two values of L that are NOT evenly divisible by h.

- Whether or not zero-length IVs are supported.

- Whether or not a counter is used, and if so:
-- One or more of the values 8, 16, 24, 32 that equal the length of the binary representation of the counter (r).
-- Location of the counter relative to fixed input data: before, after, or in the middle.

o Counter before fixed input data: fixed input data string length (in bytes), fixed input data string value.

e —
GSS CCT Assurance Activity Report Page 53 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

o Counter after fixed input data: fixed input data string length (in bytes), fixed input data string value.

o Counter in the middle of fixed input data: length of data before counter (in bytes), length of data after
counter (in bytes), value of string input before counter, value of string input after counter.

- The length (I_length) of the input values I.

For each supported combination of |_length, MAC, salt, PRF, counter location (if a counter is used), value of r (if a
counter is used), and value of L, the evaluator shall generate 10 test vectors that include pseudorandom input
values | and pseudorandom salt values. If the KDF supports zero-length Vs, five of these test vectors will be
accompanied by pseudorandom IVs and the other five will use zero-length IVs. If zero-length IVs are not supported,
each test vector will be accompanied by an pseudorandom IV. If there is only one value of L that is evenly divisible
by h, the evaluator shall generate 20 test vectors for it.

For each test vector, the evaluator shall supply this data to the TOE in order to produce the keying material output.
The results from each test may either be obtained by the evaluator directly or by supplying the inputs to the
implementer and receiving the results in response. To determine correctness, the evaluator shall compare the
resulting values to those obtained by submitting the same inputs to a known good implementation.

Double Pipeline Iteration Mode Tests:

The evaluator shall determine the following characteristics of the key derivation function:
- One or more pseudorandom functions that are supported by the implementation (PRF).
- The length (in bits) of the output of the PRF (h).

- Minimum and maximum values for the length (in bits) of the derived keying material (L). These values can be

equal if only one value of L is supported. These must be evenly divisible by h.

- Up to two values of L that are NOT evenly divisible by h.
- Whether or not a counter is used, and if so:
-- One or more of the values 8, 16, 24, 32 that equal the length of the binary representation of the counter (r).
-- Location of the counter relative to fixed input data: before, after, or in the middle.
o Counter before fixed input data: fixed input data string length (in bytes), fixed input data string value.
o Counter after fixed input data: fixed input data string length (in bytes), fixed input data string value.

o Counter in the middle of fixed input data: length of data before counter (in bytes), length of data after
counter (in bytes), value of string input before counter, value of string input after counter.

- The length (I_length) of the input values I.

e —
GSS CCT Assurance Activity Report Page 54 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

For each supported combination of |_length, MAC, salt, PRF, counter location (if a counter is used), value of r (if a
counter is used), and value of L, the evaluator shall generate 10 test vectors that include pseudorandom input
values |, and pseudorandom salt values. If there is only one value of L that is evenly divisible by h, the evaluator
shall generate 20 test vectors for it.

For each test vector, the evaluator shall supply this data to the TOE in order to produce the keying material output.
The results from each test may either be obtained by the evaluator directly or by supplying the inputs to the
implementer and receiving the results in response. To determine correctness, the evaluator shall compare the

resulting values to those obtained by submitting the same inputs to a known good implementation.

See Section 1.2 for a listing of applicable CAVP certificates.

] 2.2.11 CrYPTOGRAPHIC KEY GENERATION (MDFPP32:FCS_CKM_EXT.3)

| 2.2.11.1 MDFPP32:FCS_CKM_EXT.3.1

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

2.2.11.2 MDFPP32:FCS_CKM_EXT.3.2

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined
Testing Assurance Activities: None Defined

Component TSS Assurance Activities: The evaluator shall examine the key hierarchy section of the TSS to ensure
that the formation of all KEKs are described and that the key sizes match that described by the ST author. The
evaluator shall examine the key hierarchy section of the TSS to ensure that each key (DEKs, software-based key
storage, and KEKs) is encrypted by keys of equal or greater security strength using one of the selected methods.

The evaluator shall review the TSS to verify that it contains a description of the conditioning used to derive KEKs.
This description must include the size and storage location of salts. This activity may be performed in combination
with that for FCS_COP.1/CONDITION.

(conditional) If the symmetric KEK is generated by an RBG, the evaluator shall review the TSS to determine that it
describes how the functionality described by FCS_RBG_EXT.1 is invoked. The evaluator uses the description of the

RBG functionality in FCS_RBG_EXT.1 or documentation available for the operational environment to determine

e —
GSS CCT Assurance Activity Report Page 55 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

that the key size being requested is greater than or equal to the key size and mode to be used for the
encryption/decryption of the data.

(conditional) If the KEK is generated according to an asymmetric key scheme, the evaluator shall review the TSS to
determine that it describes how the functionality described by FCS_CKM.1 is invoked. The evaluator uses the
description of the key generation functionality in FCS_CKM.1 or documentation available for the operational
environment to determine that the key strength being requested is greater than or equal to 112 bits.

(conditional) If the KEK is formed from a combination, the evaluator shall verify that the TSS describes the method
of combination and that this method is either an XOR, a KDF, or encryption.

(conditional) If a KDF is used, the evaluator shall ensure that the TSS includes a description of the key derivation
function and shall verify the key derivation uses an approved derivation mode and key expansion algorithm
according to SP 800-108.

(conditional) If 'concatenating the keys and using a KDF (as described in (SP 800-56C)' is selected, the evaluator
shall ensure the TSS includes a description of the randomness extraction step. The description must include

- How an approved untruncated MAC function is being used for the randomness extraction step and the evaluator
must verify the TSS describes that the output length (in bits) of the MAC function is at least as large as the targeted
security strength (in bits) of the parameter set employed by the key establishment scheme (see Tables 1-3 of SP
800-56C).

- How the MAC function being used for the randomness extraction step is related to the PRF used in the key
expansion and verify the TSS description includes the correct MAC function:

-- If an HMAC-hash is used in the randomness extraction step, then the same HMAC-hash (with the same hash

function hash) is used as the PRF in the key expansion step.

-- If an AES-CMAC (with key length 128, 192, or 256 bits) is used in the randomness extraction step, then AES-
CMAC with a 128-bit key is used as the PRF in the key expansion step.

- The lengths of the salt values being used in the randomness extraction step and the evaluator shall verify the TSS
description includes correct salt lengths:

-- If an HMAC-hash is being used as the MAC, the salt length can be any value up to the maximum bit length
permitted for input to the hash function hash.

-- If an AES-CMAC is being used as the MAC, the salt length shall be the same length as the AES key (i.e. 128, 192,
or 256 bits).

The evaluator shall also ensure that the documentation of the product's encryption key management is detailed
enough that, after reading, the product's key management hierarchy is clear and that it meets the requirements to
ensure the keys are adequately protected. The evaluator shall ensure that the documentation includes both an
essay and one or more diagrams. Note that this may also be documented as separate proprietary evidence rather
than being included in the TSS.

E———
GSS CCT Assurance Activity Report Page 56 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

Section 6.2 of the TSS explains the TOE generates KEKs (which are always AES 256-bit keys generated by one of the
TOE’s DRBGs) through a combination of methods. First, the TOE generates a KEK (the Keystore masterkey) for each
user of the TOE. The TOE also generates encryption KEKs for FBE, the SD Card encryption, and work profile encryption
(normal and sensitive).

The TOE generates a number of different KEKs. In addition to the TSF KEKs, applications may request key generation
(through either the Android APIs or SCrypto APIs within the TEE), and the TOE utilizes its BoringSSL/SCrypto
CTR_DRBG and Kernel Crypto HMAC_DRBG to satisfy those requests. The requesting application ultimately chooses
whether to use that key as a DEK or a KEK, but it is worth mentioning here, as an application can utilize such a key
as a KEK, should it choose.

The KMD provides the key hierarchy diagrams and a more detailed discussion of how keys are derived.

Section 1.2 contains a mapping to CAVP certificates and includes one for KDF for FBE.

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: If a KDF is used, the evaluator shall perform one or more of the following
tests to verify the correctness of the key derivation function, depending on the mode(s) that are supported. Table
5 maps the data fields to the notations used in SP 800-108 and SP 800-56C.

Table 5: Notations used in SP 800-108 and SP 800-56C

Data Fields Notations

SP 800-108 SP 800-56C

Pseudorandom

function

Counter length

Length of

output of PRF

e —
GSS CCT Assurance Activity Report Page 57 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

Length of derived

keying material

Length of input values I length I length

Pseudorandom K1

input values | (key derivation key) (shared secret)

Pseudorandom

salt values

Randomness

extraction MAC

Counter Mode Tests:
The evaluator shall determine the following characteristics of the key derivation function:
- One or more pseudorandom functions that are supported by the implementation (PRF).

- One or more of the values 8, 16, 24, 32 that equal the length of the binary representation of the counter (r).

- The length (in bits) of the output of the PRF (h).

- Minimum and maximum values for the length (in bits) of the derived keying material (L). These values can be
equal if only one value of L is supported. These must be evenly divisible by h.

- Up to two values of L that are NOT evenly divisible by h.
- Location of the counter relative to fixed input data: before, after, or in the middle.
-- Counter before fixed input data: fixed input data string length (in bytes), fixed input data string value.

-- Counter after fixed input data: fixed input data string length (in bytes), fixed input data string value.

GSS CCT Assurance Activity Report Page 58 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

-- Counter in the middle of fixed input data: length of data before counter (in bytes), length of data after counter
(in bytes), value of string input before counter, value of string input after counter.

- The length (I_length) of the input values I.

For each supported combination of |_length, MAC, salt, PRF, counter location, value of r, and value of L, the
evaluator shall generate 10 test vectors that include pseudorandom input values I, and pseudorandom salt values.
If there is only one value of L that is evenly divisible by h, the evaluator shall generate 20 test vectors for it. For
each test vector, the evaluator shall supply this data to the TOE in order to produce the keying material output.

The results from each test may either be obtained by the evaluator directly or by supplying the inputs to the
implementer and receiving the results in response. To determine correctness, the evaluator shall compare the
resulting values to those obtained by submitting the same inputs to a known good implementation.

Feedback Mode Tests:

The evaluator shall determine the following characteristics of the key derivation function:
- One or more pseudorandom functions that are supported by the implementation (PRF).
- The length (in bits) of the output of the PRF (h).

- Minimum and maximum values for the length (in bits) of the derived keying material (L). These values can be
equal if only one value of L is supported. These must be evenly divisible by h.

- Up to two values of L that are NOT evenly divisible by h.

- Whether or not zero-length IVs are supported.

- Whether or not a counter is used, and if so:

-- One or more of the values 8, 16, 24, 32 that equal the length of the binary representation of the counter (r).

-- Location of the counter relative to fixed input data: before, after, or in the middle.

--- Counter before fixed input data: fixed input data string length (in bytes), fixed input data string value.

--- Counter after fixed input data: fixed input data string length (in bytes), fixed input data string value.

--- Counter in the middle of fixed input data: length of data before counter (in bytes), length of data after counter
(in bytes), value of string input before counter, value of string input after counter.

--- Counter before fixed input data: fixed input data string length (in bytes), fixed input data string value.
--- Counter after fixed input data: fixed input data string length (in bytes), fixed input data string value.

--- Counter in the middle of fixed input data: length of data before counter (in bytes), length of data after counter
(in bytes), value of string input before counter, value of string input after counter.

E———
GSS CCT Assurance Activity Report Page 59 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

- The length (I_length) of the input values I.

For each supported combination of |_length, MAC, salt, PRF, counter location (if a counter is used), value of r (if a
counter is used), and value of L, the evaluator shall generate 10 test vectors that include pseudorandom input
values | and pseudorandom salt values. If the KDF supports zero-length Vs, five of these test vectors will be
accompanied by pseudorandom IVs and the other five will use zero-length IVs. If zero-length IVs are not supported,
each test vector will be accompanied by an pseudorandom IV. If there is only one value of L that is evenly divisible
by h, the evaluator shall generate 20 test vectors for it.

For each test vector, the evaluator shall supply this data to the TOE in order to produce the keying material output.
The results from each test may either be obtained by the evaluator directly or by supplying the inputs to the
implementer and receiving the results in response. To determine correctness, the evaluator shall compare the
resulting values to those obtained by submitting the same inputs to a known good implementation.

Double Pipeline Iteration Mode Tests:

The evaluator shall determine the following characteristics of the key derivation function:
- One or more pseudorandom functions that are supported by the implementation (PRF).
- The length (in bits) of the output of the PRF (h).

- Minimum and maximum values for the length (in bits) of the derived keying material (L). These values can be
equal if only one value of L is supported. These must be evenly divisible by h.

- Up to two values of L that are NOT evenly divisible by h.

- Whether or not a counter is used, and if so:

-- One or more of the values 8, 16, 24, 32 that equal the length of the binary representation of the counter (r).

-- Location of the counter relative to fixed input data: before, after, or in the middle.
--- Counter before fixed input data: fixed input data string length (in bytes), fixed input data string value.
--- Counter after fixed input data: fixed input data string length (in bytes), fixed input data string value.

--- Counter in the middle of fixed input data: length of data before counter (in bytes), length of data after counter
(in bytes), value of string input before counter, value of string input after counter.

- The length (I_length) of the input values I.

For each supported combination of |_length, MAC, salt, PRF, counter location (if a counter is used), value of r (if a
counter is used), and value of L, the evaluator shall generate 10 test vectors that include pseudorandom input
values |, and pseudorandom salt values. If there is only one value of L that is evenly divisible by h, the evaluator
shall generate 20 test vectors for it.

e —
GSS CCT Assurance Activity Report Page 60 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

For each test vector, the evaluator shall supply this data to the TOE in order to produce the keying material output.
The results from each test may either be obtained by the evaluator directly or by supplying the inputs to the
implementer and receiving the results in response. To determine correctness, the evaluator shall compare the
resulting values to those obtained by submitting the same inputs to a known good implementation.

See Section 1.2 for a listing of applicable CAVP certificates.

] 2.2.12 Key DEsTRUCTION (MDFPP32:FCS_CKM_EXT.4)

|2.2.12.1 MDFPP32:FCS_CKM_EXT.4.1

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

|2.2.12.2 MDFPP32:FCS_CKM_EXT.4.2

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined
Testing Assurance Activities: None Defined

Component TSS Assurance Activities: The evaluator shall check to ensure the TSS lists each type of plaintext key
material (DEKs, software-based key storage, KEKs, trusted channel keys, passwords, etc.) and its generation and
storage location.

The evaluator shall verify that the TSS describes when each type of key material is cleared (for example, on system
power off, on wipe function, on disconnection of trusted channels, when no longer needed by the trusted channel
per the protocol, when transitioning to the locked state, and possibly including immediately after use, while in the
locked state, etc.).

The evaluator shall also verify that, for each type of key, the type of clearing procedure that is performed
(cryptographic erase, overwrite with zeros, overwrite with random pattern, or block erase) is listed. If different
types of memory are used to store the materials to be protected, the evaluator shall check to ensure that the TSS

describes the clearing procedure in terms of the memory in which the data are stored.

Samsung provided a proprietary table in Section 2.1 of the KMD that lists each type of plaintext key material by its
name (type and size in bits), its origin, its storage location, when it is cleared and what type of clearing. Section 6.2
of the ST states that the TOE destroys cryptographic keys when they are no longer in use by the system. The

E———
GSS CCT Assurance Activity Report Page 61 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

exceptions to this are public keys (that protect the boot chain and software updates) and the REK, which are never
cleared. Keys stored in RAM during use are destroyed by a zero overwrite. Keys stored in Flash (i.e. eMMC) are
destroyed by cryptographic erasure through a block erase call to the flash controller for the location where the FBE
and SD Card keys are stored. Once these are erased, all keys (and data) stored within the encrypted data partition
of the TOE are considered cryptographically erased.

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: The following tests require the developer to provide access to a test
platform that provides the evaluator with tools that are typically not found on factory products.

For each software and firmware key clearing situation (including on system power off, on wipe function, on
disconnection of trusted channels, when no longer needed by the trusted channel per the protocol, when

transitioning to the locked state, and possibly including immediately after use, while in the locked state) the

evaluator shall repeat the following tests.

For these tests the evaluator shall utilize appropriate development environment (e.g. a Virtual Machine) and
development tools (debuggers, simulators, etc.) to test that keys are cleared, including all copies of the key that
may have been created internally by the TOE during normal cryptographic processing with that key.

Test 1: Applied to each key held as plaintext in volatile memory and subject to destruction by overwrite by the TOE
(whether or not the plaintext value is subsequently encrypted for storage in volatile or non-volatile memory). In
the case where the only selection made for the destruction method key was removal of power, then this test is
unnecessary. The evaluator shall:

1. Record the value of the key in the TOE subject to clearing.

2. Cause the TOE to perform a normal cryptographic processing with the key from Step #1.

3. Cause the TOE to clear the key.

4. Cause the TOE to stop the execution but not exit.

5. Cause the TOE to dump the entire memory of the TOE into a binary file.

6. Search the content of the binary file created in Step #5 for instances of the known key value from Step #1.
7. Break the key value from Step #1 into 3 similar sized pieces and perform a search using each piece.

Steps 1-6 ensure that the complete key does not exist anywhere in volatile memory. If a copy is found, then the
test fails.

Step 7 ensures that partial key fragments do not remain in memory. If a fragment is found, there is a minuscule
chance that it is not within the context of a key (e.g., some random bits that happen to match). If this is the case
the test should be repeated with a different key in Step #1. If a fragment is found the test fails.

E———
GSS CCT Assurance Activity Report Page 62 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

Test 2: Applied to each key held in non-volatile memory and subject to destruction by overwrite by the TOE. The
evaluator shall use special tools (as needed), provided by the TOE developer if necessary, to view the key storage
location:

1. Record the value of the key in the TOE subject to clearing.
2. Cause the TOE to perform a normal cryptographic processing with the key from Step #1.
3. Cause the TOE to clear the key.

4. Search the non-volatile memory the key was stored in for instances of the known key value from Step #1. If a
copy is found, then the test fails.

5. Break the key value from Step #1 into 3 similar sized pieces and perform a search using each piece. If a fragment
is found then the test is repeated (as described for test 1 above), and if a fragment is found in the repeated test
then the test fails.

Test 3: Applied to each key held as non-volatile memory and subject to destruction by overwrite by the TOE. The
evaluator shall use special tools (as needed), provided by the TOE developer if necessary, to view the key storage
location:

1. Record the storage location of the key in the TOE subject to clearing.

2. Cause the TOE to perform a normal cryptographic processing with the key from Step #1.

3. Cause the TOE to clear the key.

4. Read the storage location in Step #1 of non-volatile memory to ensure the appropriate pattern is utilized.

The test succeeds if correct pattern is used to overwrite the key in the memory location. If the pattern is not found
the test fails.

Test 1 — The evaluator received an engineering build from Samsung. The evaluator then used that build to run a
series of memory dump tests that dumped the memory on the device. The evaluator took the memory dumps and
searched those dumps with a hex search tool to search for known keys. The evaluator was unable to find any of the
keys in the dump files.

Test 2 — Not applicable. This test requires destruction of plaintext keys and describes the applicable method. None
of the keys stored in flash is stored in plaintext so it appears they are not subject to this test. Furthermore, this test
applies to cases where keys are subject to destruction by overwrite and the flash-based encrypted keys in this case
are subject to cryptographic erasure.

Test 3 — See test case 2 for rationale why this is not applicable.

] 2.2.13 TSFWiPE (MDFPP32:FCS_CKM_EXT.5)

e —
GSS CCT Assurance Activity Report Page 63 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

2.2.13.1 MDFPP32:FCS_CKM_EXT.5.1

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

2.2.13.2 MDFPP32:FCS_CKM_EXT.5.2

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined
Testing Assurance Activities: None Defined

Component TSS Assurance Activities: The evaluator shall check to ensure the TSS describes how the device is
wiped, the type of clearing procedure that is performed (cryptographic erase or overwrite) and, if overwrite is
performed, the overwrite procedure (overwrite with zeros, overwrite three or more times by a different
alternating pattern, overwrite with random pattern, or block erase).

If different types of memory are used to store the data to be protected, the evaluator shall check to ensure that
the TSS describes the clearing procedure in terms of the memory in which the data are stored (for example, data
stored on flash are cleared by overwriting once with zeros, while data stored on the internal persistent storage
device are cleared by overwriting three times with a random pattern that is changed before each write).

Section 6.2 of the ST states the TOE provides a TOE Wipe function that first erases the encrypted DEKs used to
encrypt the data partition using a block erase and read verify command to ensure that the UFS blocks containing

the encrypted DEKs (FBE and SD card) are now reported as empty. After the encrypted keys have been erased, the

TOE will delete the entire user partition with a block erase command and then reformat the partition. Upon
completion of reformatting the Flash partition holding user data, the TOE will perform a power-cycle.

Component Guidance Assurance Activities: The evaluator shall verify that the AGD guidance describes how to
enable encryption, if it is not enabled by default. Additionally the evaluator shall verify that the AGD guidance
describes how to initiate the wipe command.

Section 2.2 of the Admin Guide states the mobile device automatically encrypts data on the internal flash media of
the device using AES 256. Section 8.2 discusses the wipe procedure.

Component Testing Assurance Activities: The following test may require the developer to provide access to a test
platform that provides the evaluator with tools that are typically not found on consumer Mobile Device products.

e —
GSS CCT Assurance Activity Report Page 64 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

The evaluator shall perform one of the following tests. The test before and after the wipe command shall be
identical. This test shall be repeated for each type of memory used to store the data to be protected.

Method 1 for File-based Methods:

Test 1: The evaluator shall enable encryption according to the AGD guidance. The evaluator shall create a user data
(protected data or sensitive data) file, for example, by using an application. The evaluator shall use a tool provided
by the developer to examine this data stored in memory (for example, by examining a decrypted files). The
evaluator shall initiate the wipe command according to the AGD guidance provided for FMT_SMF_EXT.1. The
evaluator shall use a tool provided by the developer to examine the same data location in memory to verify that
the data has been wiped according to the method described in the TSS (for example, the files are still encrypted
and cannot be accessed).

Method 2 for Volume-based Methods:

Test 1: The evaluator shall enable encryption according to the AGD guidance. The evaluator shall create a unique
data string, for example, by using an application. The evaluator shall use a tool provided by the developer to search
decrypted data for the unique string. The evaluator shall initiate the wipe command according to the AGD
guidance provided for FMT_SMF_EXT.1. The evaluator shall use a tool provided by the developer to search for the
same unique string in decrypted memory to verify that the data has been wiped according to the method
described in the TSS (for example, the files are still encrypted and cannot be accessed).

Method 1:

Test 1 —The evaluator encrypted the internal device storage and SD card. The evaluator then wrote a known pattern
to the internal storage and SD card (note that the Z Flip4 device does not have SD card support). Next the evaluator
wiped the device and dumped the contents of the internal storage and SD card. The evaluator found the contents
of internal storage and SD card to be wiped.

Method 2:

Not applicable — the TOE uses file-based encryption

] 2.2.14 SALT GENERATION (MDFPP32:FCS_CKM_EXT.6)

|2.2.14.1 MDFPP32:FCS_CKM_EXT.6.1

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

e —
GSS CCT Assurance Activity Report Page 65 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

Component TSS Assurance Activities: The evaluator shall verify that the TSS contains a description regarding the
salt generation, including which algorithms on the TOE require salts. The evaluator shall confirm that the salt is
generated using an RBG described in FCS_RBG_EXT.1. For PBKDF derivation of KEKs, this evaluation activity may be
performed in conjunction with FCS_CKM_EXT.3.2.

The ST, section 6.2, explains the TOE creates salt and nonces (which are just salt values used in WPA3/WPA2) using
its AES-256 CTR_DRBG. For each place that required a salt value (algorithms, PBKDF derivation of KEKs) the
evaluator verified the salt was included in the description.

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: None Defined

] 2.2.15 BLUETOOTH KEY GENERATION (BT 10:FCS_CKM_EXT.8)

|2.2.15.1 BT10:FCS_CKM_EXT.8.1

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined
Testing Assurance Activities: None Defined

Component TSS Assurance Activities: The evaluator shall ensure that the TSS describes the criteria used to
determine the frequency of generating new ECDH public/private key pairs. In particular, the evaluator shall ensure

that the implementation does not permit the use of static ECDH key pairs.

Section 6.2 of the ST states the TOE will generate new ECDH key pairs for every pairing attempt.

Component Guidance Assurance Activities: None Defined
Component Testing Assurance Activities: The evaluator shall perform the following steps:

Step 1: Pair the TOE to a remote Bluetooth device and record the public key currently in use by the TOE. (This
public key can be obtained using a Bluetooth protocol analyzer to inspect packets exchanged during pairing.)

Step 2: Perform necessary actions to generate new ECDH public/private key pairs. (Note that this test step
depends on how the TSS describes the criteria used to determine the frequency of generating new ECDH
public/private key pairs.)

Step 3: Pair the TOE to a remote Bluetooth device and again record the public key currently in use by the TOE.

Step 4: Verify that the public key in Step 1 differs from the public key in Step 3.

e —
GSS CCT Assurance Activity Report Page 66 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

Test - The evaluator set up each of the TOE devices one at a time to snoop Bluetooth connections and then
advertise for Bluetooth. For each TOE device, the evaluator used a test device to repeatedly attempt to pair with
the TOE device — the attempts were alternately accepted and rejected (cancelled on the TOE device). The test
device was unpaired immediately after every successful pairing. After several attempts were concluded, the
Bluetooth log was collected from the TOE device. The evaluator found that the public keys were different in every
case indicating that the public key pairs change for every pairing attempt.

] 2.2.16 CRYPTOGRAPHIC OPERATION (MDFPP32:FCS_COP.1/CONDITION)

|2.2.16.1 MDFPP32:FCS_COP.1.1/CONDITION

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined
Testing Assurance Activities: None Defined

Component TSS Assurance Activities: The evaluator shall check that the TSS describes the method by which the
password is first encoded and then fed to the SHA algorithm and verify the SHA algorithm matches the first
selection.

If a key stretching function, such as PBKDF2, is selected the settings for the algorithm (padding, blocking, etc.) shall
be described. The evaluator shall verify that the TSS contains a description of how the output of the hash function
or key stretching function is used to form the submask that will be input into the function and is the same length as
the KEK as specified in FCS_CKM_EXT.3.

If any manipulation of the key is performed in forming the submask that will be used to form the KEK, that process
shall be described in the TSS.

Section 6.2 explains that The TOE conditions the user’s password using a combination of functions to increase the
memory required for derivation to thwart attacks. This combination of functions is embedded in the scrypt
algorithm. Scrypt uses three steps to condition the password:

1. One PBKDF2 operation (NIST SP 800-132)
2. Several rounds of ROMix operations
3. One final PBKDF2 operation (NIST SP 800-132)

This value is used as input for decrypting other keys that are tied to successful user authentication.

To unlock the user’s keystore, the value generated in the previous step us conditioned further using PBKDF2 (NIST
SP 800-132). The key derivation function uses the value derived from the initial password conditioning and a
randomly generated 128-bit salt in 8192 HMAC-SHA-256 iterations to generate a 256-bit KEK.

e —
GSS CCT Assurance Activity Report Page 67 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

In both cases of conditioning, the time needed to derive keying material does not impact or lessen the difficulty
faced by an attacker’s exhaustive guessing as the combination of the password derived KEK with REK value entirely
prevents offline attacks and the TOE’s maximum incorrect password login attempts (between 1 and 30 incorrect
attempts with 4 character, minimum, passwords) prevents exhaustive online attacks.

Component Guidance Assurance Activities: There are no guidance evaluation activities for this component.

Component Testing Assurance Activities: There are no test evaluation activities for this component. No explicit
testing of the formation of the submask from the input password is required.

] 2.2.17 CRYPTOGRAPHIC OPERATION (MDFPP32:FCS_COP.1/ENCRYPT)

| 2.2.17.1 MDFPP32:FCS_COP.1.1/ENCRYPT

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

Component TSS Assurance Activities: None Defined
Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: Evaluation Activity Note: The following tests require the developer to
provide access to a test platform that provides the evaluator with tools that are typically not found on factory
products.

AES-CBC Tests
Test 1: AES-CBC Known Answer Tests

There are four Known Answer Tests (KATs), described below. In all KATs, the plaintext, ciphertext, and IV values
shall be 128-bit blocks. The results from each test may either be obtained by the evaluator directly or by supplying
the inputs to the implementer and receiving the results in response. To determine correctness, the evaluator shall
compare the resulting values to those obtained by submitting the same inputs to a known good implementation.

Test 1.1: KAT-1. To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of 10 plaintext values
and obtain the ciphertext value that results from AES-CBC encryption of the given plaintext using a key value of all
zeros and an IV of all zeros. Five plaintext values shall be encrypted with a 128-bit all-zeros key, and the other five
shall be encrypted with a 256-bit all-zeros key.

To test the decrypt functionality of AES-CBC, the evaluator shall perform the same test as for encrypt, using 10
ciphertext values as input and AES-CBC decryption.

e —
GSS CCT Assurance Activity Report Page 68 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

Test 1.2: KAT-2. To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of 10 key values and
obtain the ciphertext value that results from AES-CBC encryption of an all-zeros plaintext using the given key value
and an IV of all zeros. Five of the keys shall be 128-bit keys, and the other five shall be 256-bit keys.

To test the decrypt functionality of AES-CBC, the evaluator shall perform the same test as for encrypt, using an all-
zero ciphertext value as input and AES-CBC decryption.

Test 1.3: KAT-3. To test the encrypt functionality of AES-CBC, the evaluator shall supply the two sets of key values
described below and obtain the ciphertext value that results from AES encryption of an all-zeros plaintext using the
given key value and an IV of all zeros. The first set of keys shall have 128 128-bit keys, and the second set shall have
256 256-bit keys. Key i in each set shall have the leftmost i bits be ones and the rightmost N-i bits be zeros, foriin
[1,N].

To test the decrypt functionality of AES-CBC, the evaluator shall supply the two sets of key and ciphertext value
pairs described below and obtain the plaintext value that results from AES-CBC decryption of the given ciphertext
using the given key and an IV of all zeros. The first set of key/ciphertext pairs shall have 128 128-bit key/ciphertext

pairs, and the second set of key/ciphertext pairs shall have 256 256-bit key/ciphertext pairs. Key i in each set shall

have the leftmost i bits be ones and the rightmost N-i bits be zeros, for i in [1,N]. The ciphertext value in each pair
shall be the value that results in an all-zeros plaintext when decrypted with its corresponding key.

Test 1.4: KAT-4. To test the encrypt functionality of AES-CBC, the evaluator shall supply the set of 128 plaintext
values described below and obtain the two ciphertext values that result from AES-CBC encryption of the given
plaintext using a 128-bit key value of all zeros with an IV of all zeros and using a 256-bit key value of all zeros with
an IV of all zeros, respectively. Plaintext value i in each set shall have the leftmost i bits be ones and the rightmost
128-i bits be zeros, foriin [1,128].

To test the decrypt functionality of AES-CBC, the evaluator shall perform the same test as for encrypt, using
ciphertext values of the same form as the plaintext in the encrypt test as input and AES-CBC decryption.

Test 2: AES-CBC Multi-Block Message Test

The evaluator shall test the encrypt functionality by encrypting an i-block message where 1 < i <= 10. The evaluator
shall choose a key, an IV and plaintext message of length i blocks and encrypt the message, using the mode to be
tested, with the chosen key and IV. The ciphertext shall be compared to the result of encrypting the same plaintext
message with the same key and IV using a known good implementation.

The evaluator shall also test the decrypt functionality for each mode by decrypting an i-block message where 1 < i
<= 10. The evaluator shall choose a key, an IV and a ciphertext message of length i blocks and decrypt the message,
using the mode to be tested, with the chosen key and IV. The plaintext shall be compared to the result of
decrypting the same ciphertext message with the same key and IV using a known good implementation.

Test 3: AES-CBC Monte Carlo Tests

e —
GSS CCT Assurance Activity Report Page 69 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

The evaluator shall test the encrypt functionality using a set of 200 plaintext, IV, and key 3-tuples. 100 of these
shall use 128 bit keys, and 100 shall use 256 bit keys. The plaintext and IV values shall be 128-bit blocks. For each 3-
tuple, 1000 iterations shall be run as follows:

Input: PT, IV, Key

fori=1to 1000:

ifi==1:

CT[1] = AES-CBC-Encrypt(Key, IV, PT)
PT=IV

else:

CT[i] = AES-CBC-Encrypt(Key, PT)

PT = CT[i-1]

The ciphertext computed in the 1000 iteration (i.e., CT[1000]) is the result for that trial. This result shall be
compared to the result of running 1000 iterations with the same values using a known good implementation.

The evaluator shall test the decrypt functionality using the same test as for encrypt, exchanging CT and PT and
replacing AES-CBC-Encrypt with AES-CBC-Decrypt.

AES-CCM Tests

Test 1: The evaluator shall test the generation-encryption and decryption-verification functionality of AES-CCM for
the following input parameter and tag lengths:

128 bit and 256 bit keys

Two payload lengths. One payload length shall be the shortest supported payload length, greater than or equal to
zero bytes. The other payload length shall be the longest supported payload length, less than or equal to 32 bytes
(256 bits).

Two or three associated data lengths. One associated data length shall be 0, if supported. One associated data
length shall be the shortest supported payload length, greater than or equal to zero bytes. One associated data
length shall be the longest supported payload length, less than or equal to 32 bytes (256 bits). If the
implementation supports an associated data length of 2 bytes, an associated data length of 2216 bytes shall be
tested.

Nonce lengths. All supported nonce lengths between 7 and 13 bytes, inclusive, shall be tested.

Tag lengths. All supported tag lengths of 4, 6, 8, 10, 12, 14 and 16 bytes shall be tested.

To test the generation-encryption functionality of AES-CCM, the evaluator shall perform the following four tests:

|
GSS CCT Assurance Activity Report Page 70 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

Test 1.1: For EACH supported key and associated data length and ANY supported payload, nonce and tag length,
the evaluator shall supply one key value, one nonce value and 10 pairs of associated data and payload values and
obtain the resulting ciphertext.

Test 1.2: For EACH supported key and payload length and ANY supported associated data, nonce and tag length,
the evaluator shall supply one key value, one nonce value and 10 pairs of associated data and payload values and
obtain the resulting ciphertext.

Test 1.3: For EACH supported key and nonce length and ANY supported associated data, payload and tag length,
the evaluator shall supply one key value and 10 associated data, payload and nonce value 3-tuples and obtain the
resulting ciphertext.

Test 1.4: For EACH supported key and tag length and ANY supported associated data, payload and nonce length,
the evaluator shall supply one key value, one nonce value and 10 pairs of associated data and payload values and
obtain the resulting ciphertext.

To determine correctness in each of the above tests, the evaluator shall compare the ciphertext with the result of
generation-encryption of the same inputs with a known good implementation.

To test the decryption-verification functionality of AES-CCM, for EACH combination of supported associated data
length, payload length, nonce length and tag length, the evaluator shall supply a key value and 15 nonce,
associated data and ciphertext 3-tuples and obtain either a FAIL result or a PASS result with the decrypted payload.
The evaluator shall supply 10 tuples that should FAIL and 5 that should PASS per set of 15.

AES-GCM Test

The evaluator shall test the authenticated encrypt functionality of AES-GCM for each combination of the following
input parameter lengths:

128 bit and 256 bit keys

Two plaintext lengths. One of the plaintext lengths shall be a non-zero integer multiple of 128 bits, if supported.
The other plaintext length shall not be an integer multiple of 128 bits, if supported.

Three AAD lengths. One AAD length shall be 0, if supported. One AAD length shall be a non-zero integer multiple of
128 bits, if supported. One AAD length shall not be an integer multiple of 128 bits, if supported.

Two IV lengths. If 96 bit IV is supported, 96 bits shall be one of the two IV lengths tested.

Test 1: The evaluator shall test the encrypt functionality using a set of 10 key, plaintext, AAD, and IV tuples for each
combination of parameter lengths above and obtain the ciphertext value and tag that results from AES-GCM
authenticated encrypt. Each supported tag length shall be tested at least once per set of 10. The IV value may be
supplied by the evaluator or the implementation being tested, as long as it is known.

E———
GSS CCT Assurance Activity Report Page 71 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

Test 2: The evaluator shall test the decrypt functionality using a set of 10 key, ciphertext, tag, AAD, and IV 5-tuples
for each combination of parameter lengths above and obtain a Pass/Fail result on authentication and the
decrypted plaintext if Pass. The set shall include five tuples that Pass and five that Fail.

The results from each test may either be obtained by the evaluator directly or by supplying the inputs to the
implementer and receiving the results in response. To determine correctness, the evaluator shall compare the
resulting values to those obtained by submitting the same inputs to a known good implementation.

XTS-AES Test

Test 1: The evaluator shall test the encrypt functionality of XTS-AES for each combination of the following input
parameter lengths:

256 bit (for AES-128) and 512 bit (for AES-256) keys

Three data unit (i.e., plaintext) lengths. One of the data unit lengths shall be a non-zero integer multiple of 128
bits, if supported. One of the data unit lengths shall be an integer multiple of 128 bits, if supported. The third data
unit length shall be either the longest supported data unit length or 216 bits, whichever is smaller.

using a set of 100 (key, plaintext and 128-bit random tweak value) 3-tuples and obtain the ciphertext that results
from XTS-AES encrypt.

The evaluator may supply a data unit sequence number instead of the tweak value if the implementation supports
it. The data unit sequence number is a base-10 number ranging between 0 and 255 that implementations convert
to a tweak value internally.

Test 2: The evaluator shall test the decrypt functionality of XTS-AES using the same test as for encrypt, replacing
plaintext values with ciphertext values and XTS-AES encrypt with XTS-AES decrypt.

AES Key Wrap (AES-KW) and Key Wrap with Padding (AES-KWP) Test

Test 1: The evaluator shall test the authenticated encryption functionality of AES-KW for EACH combination of the
following input parameter lengths:

128 and 256 bit key encryption keys (KEKs)

Three plaintext lengths. One of the plaintext lengths shall be two semi-blocks (128 bits). One of the plaintext

lengths shall be three semi-blocks (192 bits). The third data unit length shall be the longest supported plaintext

length less than or equal to 64 semi-blocks (4096 bits).

using a set of 100 key and plaintext pairs and obtain the ciphertext that results from AES-KW authenticated
encryption. To determine correctness, the evaluator shall use the AES-KW authenticated-encryption function of a
known good implementation.

Test 2: The evaluator shall test the authenticated-decryption functionality of AES-KW using the same test as for
authenticated-encryption, replacing plaintext values with ciphertext values and AES-KW authenticated-encryption
with AES-KW authenticated-decryption.

GSS CCT Assurance Activity Report Page 72 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

Test 3: The evaluator shall test the authenticated-encryption functionality of AES-KWP using the same test as for
AES-KW authenticated-encryption with the following change in the three plaintext lengths:

One plaintext length shall be one octet. One plaintext length shall be 20 octets (160 bits).
One plaintext length shall be the longest supported plaintext length less than or equal to 512 octets (4096 bits).

Test 4: The evaluator shall test the authenticated-decryption functionality of AES-KWP using the same test as for
AES-KWP authenticated-encryption, replacing plaintext values with ciphertext values and AES-KWP authenticated-
encryption with AES-KWP authenticated-decryption.

See Section 1.2 for a listing of applicable CAVP certificates.

Per NIAP Policy Letter #5 CAVP Mapping, AES-CCMP is addressed by Wi-Fi Alliance certification in addition to its
AES-CCM certificate already listed in Section 1.2. See WLANC10:FCS_CKM.1 for Wi-Fi Alliance certificate numbers.

| 2.2.18 CRYPTOGRAPHIC OPERATION (VPNC24:FCS_COP.1/ENCRYPT)

| 2.2.18.1 YPNC24:FCS_COP.1.1/ENCRYPT

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

Component TSS Assurance Activities: None Defined
Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: Refer to the EAs for FCS_COP.1/ENCRYPT in the MDF PP (included
below). The only change to this SFR is that some selections are mandated, therefore the corresponding testing is
mandatory. The actual testing for those selections is not changed.

The following tests require the developer to provide access to a test platform that provides the evaluator with
tools that are typically not found on factory products.

AES-CBC Tests
Test 1: AES-CBC Known Answer Tests

There are four Known Answer Tests (KATs), described below. In all KATs, the plaintext, ciphertext, and IV values
shall be 128-bit blocks. The results from each test may either be obtained by the evaluator directly or by supplying
the inputs to the implementer and receiving the results in response. To determine correctness, the evaluator shall
compare the resulting values to those obtained by submitting the same inputs to a known good implementation.

GSS CCT Assurance Activity Report Page 73 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

Test 1.1: KAT-1. To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of 10 plaintext values
and obtain the ciphertext value that results from AES-CBC encryption of the given plaintext using a key value of all
zeros and an IV of all zeros. Five plaintext values shall be encrypted with a 128-bit all-zeros key, and the other five
shall be encrypted with a 256-bit all-zeros key.

To test the decrypt functionality of AES-CBC, the evaluator shall perform the same test as for encrypt, using 10
ciphertext values as input and AES-CBC decryption.

Test 1.2: KAT-2. To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of 10 key values and
obtain the ciphertext value that results from AES-CBC encryption of an all-zeros plaintext using the given key value
and an IV of all zeros. Five of the keys shall be 128-bit keys, and the other five shall be 256-bit keys.

To test the decrypt functionality of AES-CBC, the evaluator shall perform the same test as for encrypt, using an all-
zero ciphertext value as input and AES-CBC decryption.

Test 1.3: KAT-3. To test the encrypt functionality of AES-CBC, the evaluator shall supply the two sets of key values
described below and obtain the ciphertext value that results from AES encryption of an all-zeros plaintext using the
given key value and an IV of all zeros. The first set of keys shall have 128 128-bit keys, and the second set shall have
256 256-bit keys. Key i in each set shall have the leftmost i bits be ones and the rightmost N-i bits be zeros, foriin
[1,N].

To test the decrypt functionality of AES-CBC, the evaluator shall supply the two sets of key and ciphertext value
pairs described below and obtain the plaintext value that results from AES-CBC decryption of the given ciphertext
using the given key and an IV of all zeros. The first set of key/ciphertext pairs shall have 128 128-bit key/ciphertext

pairs, and the second set of key/ciphertext pairs shall have 256 256-bit key/ciphertext pairs. Key i in each set shall

have the leftmost i bits be ones and the rightmost N-i bits be zeros, for i in [1,N]. The ciphertext value in each pair
shall be the value that results in an all-zeros plaintext when decrypted with its corresponding key.

Test 1.4: KAT-4. To test the encrypt functionality of AES-CBC, the evaluator shall supply the set of 128 plaintext
values described below and obtain the two ciphertext values that result from AES-CBC encryption of the given
plaintext using a 128-bit key value of all zeros with an IV of all zeros and using a 256-bit key value of all zeros with
an IV of all zeros, respectively. Plaintext value i in each set shall have the leftmost i bits be ones and the rightmost
128-i bits be zeros, foriin [1,128].

To test the decrypt functionality of AES-CBC, the evaluator shall perform the same test as for encrypt, using
ciphertext values of the same form as the plaintext in the encrypt test as input and AES-CBC decryption.

Test 2: AES-CBC Multi-Block Message Test

The evaluator shall test the encrypt functionality by encrypting an i-block message where 1 < i <= 10. The evaluator
shall choose a key, an IV and plaintext message of length i blocks and encrypt the message, using the mode to be
tested, with the chosen key and IV. The ciphertext shall be compared to the result of encrypting the same plaintext
message with the same key and IV using a known good implementation.

E———
GSS CCT Assurance Activity Report Page 74 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

The evaluator shall also test the decrypt functionality for each mode by decrypting an i-block message where 1 < i
<=10. The evaluator shall choose a key, an IV and a ciphertext message of length i blocks and decrypt the message,
using the mode to be tested, with the chosen key and IV. The plaintext shall be compared to the result of
decrypting the same ciphertext message with the same key and IV using a known good implementation.

Test 3: AES-CBC Monte Carlo Tests

The evaluator shall test the encrypt functionality using a set of 200 plaintext, IV, and key 3-tuples. 100 of these
shall use 128 bit keys, and 100 shall use 256 bit keys. The plaintext and IV values shall be 128-bit blocks. For each 3-
tuple, 1000 iterations shall be run as follows:

Input: PT, IV, Key

fori=1to 1000:

ifi==1:

CT[1] = AES-CBC-Encrypt(Key, IV, PT)
PT =1V

else:

CT[i] = AES-CBC-Encrypt(Key, PT)

PT = CT[i-1]

The ciphertext computed in the 1000 iteration (i.e., CT[1000]) is the result for that trial. This result shall be
compared to the result of running 1000 iterations with the same values using a known good implementation.

The evaluator shall test the decrypt functionality using the same test as for encrypt, exchanging CT and PT and
replacing AES-CBC-Encrypt ith AES-CBC-Decrypt.

AES-CCM Tests

Test 1: The evaluator shall test the generation-encryption and decryption-verification functionality of AES-CCM for
the following input parameter and tag lengths:

128 bit and 256 bit keys

Two payload lengths. One payload length shall be the shortest supported payload length, greater than or equal to

zero bytes. The other payload length shall be the longest supported payload length, less than or equal to 32 bytes
(256 bits).

Two or three associated data lengths. One associated data length shall be 0, if supported. One associated data
length shall be the shortest supported payload length, greater than or equal to zero bytes. One associated data
length shall be the longest supported payload length, less than or equal to 32 bytes (256 bits). If the

e —
GSS CCT Assurance Activity Report Page 75 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

implementation supports an associated data length of 2 bytes, an associated data length of 2216 bytes shall be
tested.

Nonce lengths. All supported nonce lengths between 7 and 13 bytes, inclusive, shall be tested.
Tag lengths. All supported tag lengths of 4, 6, 8, 10, 12, 14 and 16 bytes shall be tested.
To test the generation-encryption functionality of AES-CCM, the evaluator shall perform the following four tests:

Test 1.1: For EACH supported key and associated data length and ANY supported payload, nonce and tag length,
the evaluator shall supply one key value, one nonce value and 10 pairs of associated data and payload values and
obtain the resulting ciphertext.

Test 1.2: For EACH supported key and payload length and ANY supported associated data, nonce and tag length,
the evaluator shall supply one key value, one nonce value and 10 pairs of associated data and payload values and
obtain the resulting ciphertext.

Test 1.3: For EACH supported key and nonce length and ANY supported associated data, payload and tag length,
the evaluator shall supply one key value and 10 associated data, payload and nonce value 3-tuples and obtain the
resulting ciphertext.

Test 1.4: For EACH supported key and tag length and ANY supported associated data, payload and nonce length,
the evaluator shall supply one key value, one nonce value and 10 pairs of associated data and payload values and
obtain the resulting ciphertext.

To determine correctness in each of the above tests, the evaluator shall compare the ciphertext with the result of
generation-encryption of the same inputs with a known good implementation.

To test the decryption-verification functionality of AES-CCM, for EACH combination of supported associated data
length, payload length, nonce length and tag length, the evaluator shall supply a key value and 15 nonce,
associated data and ciphertext 3-tuples and obtain either a FAIL result or a PASS result with the decrypted payload.
The evaluator shall supply 10 tuples that should FAIL and 5 that should PASS per set of 15.

AES-GCM Test

The evaluator shall test the authenticated encrypt functionality of AES-GCM for each combination of the following
input parameter lengths:

128 bit and 256 bit keys

Two plaintext lengths. One of the plaintext lengths shall be a non-zero integer multiple of 128 bits, if supported.

The other plaintext length shall not be an integer multiple of 128 bits, if supported.

Three AAD lengths. One AAD length shall be 0, if supported. One AAD length shall be a non-zero integer multiple of
128 bits, if supported. One AAD length shall not be an integer multiple of 128 bits, if supported.

Two IV lengths. If 96 bit IV is supported, 96 bits shall be one of the two IV lengths tested.

o —— T
GSS CCT Assurance Activity Report Page 76 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

Test 1: The evaluator shall test the encrypt functionality using a set of 10 key, plaintext, AAD, and IV tuples for each
combination of parameter lengths above and obtain the ciphertext value and tag that results from AES-GCM
authenticated encrypt. Each supported tag length shall be tested at least once per set of 10. The IV value may be
supplied by the evaluator or the implementation being tested, as long as it is known.

Test 2: The evaluator shall test the decrypt functionality using a set of 10 key, ciphertext, tag, AAD, and IV 5-tuples
for each combination of parameter lengths above and obtain a Pass/Fail result on authentication and the
decrypted plaintext if Pass. The set shall include five tuples that Pass and five that Fail.

The results from each test may either be obtained by the evaluator directly or by supplying the inputs to the
implementer and receiving the results in response. To determine correctness, the evaluator shall compare the
resulting values to those obtained by submitting the same inputs to a known good implementation.

XTS-AES Test

Test 1: The evaluator shall test the encrypt functionality of XTS-AES for each combination of the following input
parameter lengths:

256 bit (for AES-128) and 512 bit (for AES-256) keys

Three data unit (i.e., plaintext) lengths. One of the data unit lengths shall be a non-zero integer multiple of 128
bits, if supported. One of the data unit lengths shall be an integer multiple of 128 bits, if supported. The third data
unit length shall be either the longest supported data unit length or 216 bits, whichever is smaller.

using a set of 100 (key, plaintext and 128-bit random tweak value) 3-tuples and obtain the ciphertext that results
from XTS-AES encrypt.

The evaluator may supply a data unit sequence number instead of the tweak value if the implementation supports
it. The data unit sequence number is a base-10 number ranging between 0 and 255 that implementations convert
to a tweak value internally.

Test 2: The evaluator shall test the decrypt functionality of XTS-AES using the same test as for encrypt, replacing
plaintext values with ciphertext values and XTS-AES encrypt with XTS-AES decrypt.

AES Key Wrap (AES-KW) and Key Wrap with Padding (AES-KWP) Test

Test 1: The evaluator shall test the authenticated encryption functionality of AES-KW for EACH combination of the
following input parameter lengths:

128 and 256 bit key encryption keys (KEKs)

Three plaintext lengths. One of the plaintext lengths shall be two semi-blocks (128 bits). One of the plaintext

lengths shall be three semi-blocks (192 bits). The third data unit length shall be the longest supported plaintext
length less than or equal to 64 semi-blocks (4096 bits).

e —
GSS CCT Assurance Activity Report Page 77 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

using a set of 100 key and plaintext pairs and obtain the ciphertext that results from AES-KW authenticated
encryption. To determine correctness, the evaluator shall use the AES-KW authenticated-encryption function of a
known good implementation.

Test 2: The evaluator shall test the authenticated-decryption functionality of AES-KW using the same test as for
authenticated-encryption, replacing plaintext values with ciphertext values and AES-KW authenticated-encryption
with AES-KW authenticated-decryption.

Test 3: The evaluator shall test the authenticated-encryption functionality of AES-KWP using the same test as for
AES-KW authenticated-encryption with the following change in the three plaintext lengths:

One plaintext length shall be one octet. One plaintext length shall be 20 octets (160 bits).
One plaintext length shall be the longest supported plaintext length less than or equal to 512 octets (4096 bits).

Test 4: The evaluator shall test the authenticated-decryption functionality of AES-KWP using the same test as for
AES-KWP authenticated-encryption, replacing plaintext values with ciphertext values and AES-KWP authenticated-
encryption with AES-KWP authenticated-decryption.

See Section 1.2 for a listing of applicable CAVP certificates.

| 2.2.19 CrYPTOGRAPHIC OPERATION (MDFPP32:FCS_COP.1/HASH)

| 2.2.19.1 MDFPP32:FCS_COP.1.1/HASH

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined
Testing Assurance Activities: None Defined

Component TSS Assurance Activities: The evaluator shall check that the association of the hash function with
other TSF cryptographic functions (for example, the digital signature verification function) is documented in the
TSS. The evalutator shall check that the TSS indicates if the hashing function is implemented in bit-oriented and/or

byte-oriented mode.

Section 6.2 of the ST associates the hash function with HMAC and digital signature operations.

Component Guidance Assurance Activities: The evaluator checks the AGD documents to determine that any

configuration that is required to be done to configure the functionality for the required hash sizes is present.

The Admin Guide, section 3.1, explains that when the TOE is in CC mode, it will only use approved cryptographic
functions. No additional configuration is needed beyond putting the device in CC mode.

e —
GSS CCT Assurance Activity Report Page 78 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

Component Testing Assurance Activities: The TSF hashing functions can be implemented in one of two modes.
The first mode is the byte oriented mode. In this mode the TSF only hashes messages that are an integral number
of bytes in length; i.e., the length (in bits) of the message to be hashed is divisible by 8. The second mode is the bit
oriented mode. In this mode the TSF hashes messages of arbitrary length. As there are different tests for each
mode, an indication is given in the following sections for the bit oriented vs. the byte oriented testmacs.

The TSF may implement either bit-oriented or byte-oriented; both implementations are not required. The
evaluator shall perform all of the following tests for each hash algorithm implemented by the TSF and used to
satisfy the requirements of this PP.

The following tests require the developer to provide access to a test platform that provides the evaluator with
tools that are typically not found on factory products.

Test 1: Short Messages Test: Bit-oriented Mode

The evaluators devise an input set consisting of m+1 messages, where m is the block length of the hash algorithm.
The length of the messages ranges sequentially from 0 to m bits. The message text shall be pseudorandomly
generated. The evaluators compute the message digest for each of the messages and ensure that the correct
result is produced when the messages are provided to the TSF.

Test 2: Short Messages Test: Byte-oriented Mode

The evaluators devise an input set consisting of m/8+1 messages, where m is the block length of the hash

algorithm. The length of the messages range sequentially from 0 to m/8 bytes, with each message being an

integral number of bytes. The message text shall be pseudorandomly generated. The evaluators compute the
message digest for each of the messages and ensure that the correct result is produced when the messages are
provided to the TSF.

Test 3: Selected Long Messages Test: Bit-oriented Mode

The evaluators devise an input set consisting of m messages, where m is the block length of the hash algorithm.
The length of the ith message is 512 + 99*i, where 1 <= i <= m. The message text shall be pseudorandomly
generated. The evaluators compute the message digest for each of the messages and ensure that the correct
result is produced when the messages are provided to the TSF.

Test 4: Selected Long Messages Test: Byte-oriented Mode

The evaluators devise an input set consisting of m/8 messages, where m is the block length of the hash algorithm.
The length of the ith message is 512 + 8*¥*99*i, where 1 <= i <= m/8. The message text shall be pseudorandomly
generated. The evaluators compute the message digest for each of the messages and ensure that the correct
result is produced when the messages are provided to the TSF.

Test 5: Pseudorandomly Generated Messages Test

This test is for byte oriented implementations only. The evaluators randomly generate a seed that is n bits long,
where n is the length of the message digest produced by the hash function to be tested. The evaluators then

E———
GSS CCT Assurance Activity Report Page 79 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

formulate a set of 100 messages and associated digests by following the algorithm provided in Figure 1 of SHAVS.
The evaluators then ensure that the correct result is produced when the messages are provided to the TSF.

See Section 1.2 for a listing of applicable CAVP certificates.

] 2.2.20 CRYPTOGRAPHIC OPERATION (MDFPP32:FCS_COP.1/KEYHMAC)

| 2.2.20.1 MDFPP32:FCS_COP.1.1/KEYHMAC

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined
Testing Assurance Activities: None Defined

Component TSS Assurance Activities: The evaluator shall examine the TSS to ensure that it specifies the following
values used by the HMAC function: key length, hash function used, block size, and output MAC length used.

The ST, section 6.2, explains that for the HMAC implementation, the TOE accepts all key sizes of 160, 256, 384, &
512; supports all SHA sizes save 224 (e.g., SHA-1, 256, 384, & 512), utilizes the specified block size (512 for SHA-1
and 256, and 1024 for SHA-384 & 512) and output MAC lengths of 160, 256, 384, and 512.

Component Guidance Assurance Activities: There are no guidance evaluation activities for this component.

Component Testing Assurance Activities: The following tests require the developer to provide access to a test
platform that provides the evaluator with tools that are typically not found on factory products.

For each of the supported parameter sets, the evaluator shall compose 15 sets of test data. Each set shall consist
of a key and message data. The evaluator shall have the TSF generate HMAC tags for these sets of test data. The
resulting MAC tags shall be compared to the result of generating HMAC tags with the same key and IV using a

known good implementation.

See Section 1.2 for a listing of applicable CAVP certificates.

Per NIAP Policy Letter #5 CAVP Mapping, 802.11-2012 key generation is addressed by Wi-Fi Alliance certification
and HMAC certification. The 802.11ac-2013 protocol is implemented in the wpa_supplicant. The wpa_supplicant
uses BoringSSL and its CAVP number is listed in section 1.2 which includes HMAC SHA-384. See
WLANC10:FCS_CKM.1 for the Wi-Fi Alliance certificate number.

] 2.2.21 CRYPTOGRAPHIC OPERATION (MDFPP32:FCS_COP.1/SIGN)

e —
GSS CCT Assurance Activity Report Page 80 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

2.2.21.1 MDFPP32:FCS_COP.1.1/SIGN

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

Component TSS Assurance Activities: None Defined
Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: The following tests require the developer to provide access to a test
platform that provides the evaluator with tools that are typically not found on factory products.

Test 1: ECDSA Algorithm Tests
Test 1.1: ECDSA FIPS 186-4 Signature Generation Test

For each supported NIST curve (i.e., P-256, P-384 and P-521) and SHA function pair, the evaluator shall generate 10
1024-bit long messages and obtain for each message a public key and the resulting signature values R and S. To
determine correctness, the evaluator shall use the signature verification function of a known good
implementation.

Test 1.2: ECDSA FIPS 186-4 Signature Verification Test

For each supported NIST curve (i.e., P-256, P-384 and P-521) and SHA function pair, the evaluator shall generate a
set of 10 1024-bit message, public key and signature tuples and modify one of the values (message, public key or

signature) in five of the 10 tuples. The evaluator shall obtain in response a set of 10 PASS/FAIL values.

Test 2: RSA Signature Algorithm Tests

Test 2.1: Signature Generation Test The evaluator shall verify the implementation of RSA Signature Generation by
the TOE using the Signature Generation Test. To conduct this test the evaluator must generate or obtain 10
messages from a trusted reference implementation for each modulus size/SHA combination supported by the TSF.
The evaluator shall have the TOE use their private key and modulus value to sign these messages.

The evaluator shall verify the correctness of the TSF's signature using a known good implementation and the
associated public keys to verify the signatures.

Test 2.2: Signature Verification Test

The evaluator shall perform the Signature Verification test to verify the ability of the TOE to recognize another
party's valid and invalid signatures. The evaluator shall inject errors into the test vectors produced during the
Signature Verification Test by introducing errors in some of the public keys e, messages, IR format, and/or
signatures. The TOE attempts to verify the signatures and returns success or failure.

e —
GSS CCT Assurance Activity Report Page 81 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

The evaluator shall use these test vectors to emulate the signature verification test using the corresponding
parameters and verify that the TOE detects these errors.

See Section 1.2 for a listing of applicable CAVP certificates.

| 2.2.22 HTTPS ProTOCOL (MDFPP32:FCS_HTTPS_EXT.1)

| 2.2.22.1 MDFPP32:FCS_HTTPS_EXT.1.1

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

2.2.22.2 MDFPP32:FCS_HTTPS_EXT.1.2

TSS Assurance Activities: None Defined
Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

2.2.22.3 MDFPP32:FCS_HTTPS_EXT.1.3

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

Component TSS Assurance Activities: None Defined
Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: Test 1: The evaluator shall attempt to establish an HTTPS connection
with a webserver, observe the traffic with a packet analyzer, and verify that the connection succeeds and that the
traffic is identified as TLS or HTTPS.

Other tests are performed in conjunction with FCS_TLSC_EXT.1.

Certificate validity shall be tested in accordance with testing performed for FIA_X509_EXT.1, and the evaluator
shall perform the following test:

GSS CCT Assurance Activity Report Page 82 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

Test 2: The evaluator shall demonstrate that using a certificate without a valid certification path results in an
application notification. Using the administrative guidance, the evaluator shall then load a certificate or certificates
to the Trust Anchor Database needed to validate the certificate to be used in the function, and demonstrate that
the function succeeds. The evaluator then shall delete one of the certificates, and show that the application is
notified of the validation failure.

Test 1 —This was tested in FCS_TLSC_EXT.1.1, test case 1.

Test 2 - This was tested in FCS_TLSC_EXT.1.3, test case 1.

] 2.2.23 IPsec-PERTDO0662 (VPNC24:FCS_IPSEC_EXT.1)

Component TSS Assurance Activities: In addition to the TSS EAs for the individual FCS_IPSEC_EXT.1 elements
below, the evaluator shall perform the following:

If the TOE boundary includes a general-purpose operating system or mobile device, the evaluator shall examine
the TSS to ensure that it describes whether the VPN client capability is architecturally integrated with the platform
itself or whether it is a separate executable that is bundled with the platform.

Section 1.4 of the ST states the TOE is a mobile device based on Android 13 with a built-in IPsec VPN client and
modifications made to increase the level of security provided to end users and enterprises.

Component Guidance Assurance Activities: In addition to the Operational Guidance EAs for the individual
FCS_IPSEC_EXT.1 elements below, the evaluator shall perform the following:

If the configuration of the IPsec behavior is from an environmental source, most notably a VPN gateway (e.g
through receipt of required connection parameters from a VPN gateway), the evaluator shall ensure that the
operational guidance contains any appropriate information for ensuring that this configuration can be properly
applied.

Note in this case that the implementation of the IPsec protocol must be enforced entirely within the TOE
boundary; i.e. it is not permissible for a software application TOE to be a graphical front-end for IPsec functionality
implemented totally or in part by the underlying OS platform. The behavior referenced here is for the possibility
that the configuration of the IPsec connection is initiated from outside the TOE, which is permissible so long as the

TSF is solely responsible for enforcing the configured behavior. However, it is allowable for the TSF to rely on low-

level platform-provided networking functions to implement the SPD from the client (e.g., enforcement of packet

routing decisions).

Section 3.4.4 of the Admin Guide explains the security functions implemented in the Gateway. It explains what
needs to be configured in a Gateway including encryption settings, IKE protocols, and cryptoperiod.

e —
GSS CCT Assurance Activity Report Page 83 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

Component Testing Assurance Activities: As a prerequisite for performing the Test EAs for the individual
FCS_IPSEC_EXT.1 elements below, the evaluator shall do the following:

The evaluator shall minimally create a test environment equivalent to the test environment illustrated below. It is
expected that the traffic generator is used to construct network packets and will provide the evaluator with the
ability manipulate fields in the ICMP, IPv4, IPv6, UDP, and TCP packet headers. The evaluator shall provide
justification for any differences in the test environment.

Note that the evaluator shall perform all tests using the VPN client and a representative sample of platforms listed

in the ST (for TOEs that claim to support multiple platforms).

The evaluator set up a test environment as described in Section 3.4. In the test set up, the “endpoint” is
configured to also have the ability to capture all traffic on the connected LAN. The TOE devices connect to an
Access Point connected to that LAN so that it is possible to capture all traffic coming and going to each TOE test
device. In regard to traffic generators, the evaluator used other devices on the test LAN as necessary to generate
any traffic required by each individual test case. In many cases, processes on the “endpoint” generate the
necessary traffic, but there are exceptions where multiple traffic sources are necessary.

2.2.23.1 YVPNC24:FCS_IPSEC_EXT.1.1

TSS Assurance Activities: The evaluator shall examine the TSS and determine that it describes how the IPsec
capabilities are implemented.

If the TOE is a standalone software application, the evaluator shall ensure that the TSS asserts that all IPsec
functionality is implemented by the TSF. The evaluator shall also ensure that the TSS identifies what platform
functionality the TSF relies upon to support its IPsec implementation, if any (e.g. does it invoke cryptographic
primitive functions from the platform's cryptographic library, enforcement of packet routing decisions by low-level

network drivers).

If the TOE is part of a general-purpose desktop or mobile OS, the evaluator shall ensure that the TSS describes at a
high level the architectural relationship between the VPN client portion of the TOE and the rest of the TOE (e.g. is
the VPN client an integrated part of the OS or is it a standalone executable that is bundled into the OS package). If
the SPD is implemented by the underlying platform in this case, then the TSS describes how the client interacts
with the platform to establish and populate the SPD, including the identification of the platform's interfaces that
are used by the client.

In all cases, the evaluator shall also ensure that the TSS describes how the client interacts with the network stack
of the platforms on which it can run (e.g., does the client insert itself within the stack via kernel mods, does the
client simply invoke APIs to gain access to network services).

The evaluator shall ensure that the TSS describes how the SPD is implemented and the rules for processing both
inbound and outbound packets in terms of the IPsec policy. The TSS describes the rules that are available and the
resulting actions available after matching a rule. The TSS describes how the available rules and actions form the
SPD using terms defined in RFC 4301 such as BYPASS (e.g., no encryption), DISCARD (e.g., drop the packet), and
PROTECT (e.g., encrypt the packet) actions defined in RFC 4301. As noted in section 4.4.1 of RFC 4301, the

e —
GSS CCT Assurance Activity Report Page 84 of 252 © 2023 Gossamer Security Solutions, Inc.
Document: AAR-VID11342 All rights reserved.

Version 0.2, 04/13/2023

processing of entries in the SPD is non-trivial and the evaluator shall determine that the description in the TSS is
sufficient to determine which rules will be applied given the rule structure implemented by the TOE. For example,
if the TOE allows specification of ranges, conditional rules, etc., the evaluator shall determine that the description
of rule processing (for both inbound and outbound packets) is sufficient to determine the action that will be
applied, especially in the case where two different rules may apply. This description shall cover both the initial
packets (that is, n