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Abstract—In this paper, we propose a browser fingerprinting
technique that can track users not only within a single browser
but also across different browsers on the same machine. Specif-
ically, our approach utilizes many novel OS and hardware level
features, such as those from graphics cards, CPU, and installed
writing scripts. We extract these features by asking browsers
to perform tasks that rely on corresponding OS and hardware
functionalities.

Our evaluation shows that our approach can successfully
identify 99.24% of users as opposed to 90.84% for state of the
art on single-browser fingerprinting against the same dataset.
Further, our approach can achieve higher uniqueness rate than
the only cross-browser approach in the literature with similar
stability.

I. INTRODUCTION

Web tracking is a debatable technique used to remember
and recognize past website visitors. On the one hand, web
tracking can authenticate users—and particularly a combina-
tion of different web tracking techniques can be used for multi-
factor authentication to strengthen security. On the other hand,
web tracking can also be used to deliver personalized service—
if the service is undesirable, e.g., some unwanted, targeted ads,
such tracking is a violation of privacy. No matter whether we
like web tracking or whether it is used legitimately in the
current web, more than 90% of Alexa Top 500 websites [39]
adopt web tracking, and it has drawn much attention from
general public and media [6].

Web tracking has been evolving quickly. The first-
generation tracking technique adopts stateful, server-set iden-
tifiers, such as cookies and evercookie [21]. After that,
the second-generation tracking technique called fingerprint-
ing emerges, moving from stateful identifiers to stateless—
i.e., instead of setting a new identifier, the second-generation
technique explores stateless identifiers like plug-in versions
and user agent that already exist in browsers. The second-
generation technique is often used together with the first to

†The author contributed to the paper when he was a REU student at Lehigh
University.

restore lost cookies. Both first and second generation tracking
are constrained in a single browser, and nowadays people
are developing third-generation tracking technique that tries
to achieve cross-device tracking [16].

The focus of the paper is a 2.5-generation technique in
between the second and the third, which can fingerprint a
user not only in the same browser but also across different
browsers on the same machine. The practice of using multiple
browsers is common and promoted by US-CERT [42] and
other technical people [12]: According to our survey,1 70%
of studied users have installed and regularly used at least two
browsers on the same computer.

The proposed 2.5-generation technique, from the positive
side, can be used as part of stronger multi-factor user au-
thentications even across browsers. From another angle, just
as many existing research works on new cyber attacks, the
proposed 2.5-generation tracking can also help to improve
existing privacy-preserving works, and we will briefly discuss
the defense of our cross-browser tracking in Section VII.

Now, let us put aside the good, the bad and the ugly
usages of web tracking, and look at the technique itself. To
fingerprint different browsers installed on the same machine,
one simple approach is to use existing features that fingerprint
single browser. Because many existing features are browser
specific, the cross-browser stable ones are not unique enough
even when combined together for fingerprinting. That is why
the only cross-browser fingerprinting work, Boda et al. [14],
adopts IP address as a main feature. However, IP address,
as a network-level feature, is excluded from modern browser
fingerprinting in the famous Panopticlick test [5] and many
other related works [10, 20, 26, 32, 34, 36]. The reason is that IP
address changes if allocated dynamically, connected via mobile
network, or a laptop switches locations such as from home to
office—and is unavailable behind an anonymous network or a
proxy.

In the paper, we propose a (cross-)browser fingerprinting
based on many novel OS and hardware level features, e.g.,
these from graphics card, CPU, audio stack, and installed
writing scripts. Specifically, because many of such OS and
hardware level functions are exposed to JavaScript via browser
APIs, we can extract features when asking the browser to per-
form certain tasks through these APIs. The extracted features
can be used for both single- and cross-browser fingerprinting.

1More details about our experiment can be found in Appendix A.
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Let us take WebGL, a 3D component implemented in
browser canvas object, for example. While canvas, especially
the 2D part, has been used in single-browser fingerprinting [9,
32], WebGL is actually considered as “too brittle and un-
reliable” even for a single browser by a very recent study
called AmIUnique [26]. The reason for such conclusion is that
AmIUnique selects a random WebGL task and does not restrict
many variables, such as canvas size and anti-aliasing, which
affect the fingerprinting results.

Contrasting with this conclusion drawn by AmIUnique, we
show that WebGL can be used not only for single- but also for
cross-browser fingerprinting. Specifically, we ask the browser
to render more than 20 tasks with carefully selected computer
graphics parameters, such as texture, anti-aliasing, light, and
transparency, and then extract features from the outputs of
these rendering tasks.

Our principal contribution is being the first to use many
novel OS and hardware features, especially computer graphics
ones, in both single- and cross-browser fingerprinting. Particu-
larly, our approach with new features can successfully finger-
print 99.24% of users as opposed to 90.84% for AmIUnique,
i.e., state of the art, on the same dataset for single-browser
fingerprinting. Moreover, our approach can achieve 83.24%
uniqueness with 91.44% cross-browser stability, while Boda
et al. [14] excluding IP address only have 68.98% uniqueness
with 84.64% cross-browser stability.

Our secondary contribution is that we make several inter-
esting observations for single- and cross-browser fingerprint-
ing. For example, we find that the current measurement of
screen resolution, e.g., the one done in AmIUnique, Panop-
ticlick [5, 17] and Boda et al. [14], is unstable, because the
resolution changes in Firefox and IE when the user zooms
in or out the web page. Therefore, we take the zoom level
into consideration, and normalize the width and height in
screen resolution. For another example, we find that both
DataURL and JPEG formats are unstable across different
browsers, because these formats are with loss and implemented
differently in multiple browsers and the server side as well.
Therefore, we need to adopt lossless formats for server-client
communications in cross-browser fingerprinting.

Our work is open-source and available at https://github.
com/Song-Li/cross browser/, and a working demo is at http:
//www.uniquemachine.org.

The rest of the paper is organized as follows. We first
present all the features including old ones adopted and mod-
ified from AmIUnique and new ones proposed by us in
Section II. Then, we introduce the design of our browser
fingerprinting including the overall architecture, rendering
tasks, and mask generation in Section III. After that, we talk
about our implementation in Section IV, and data collection in
Section V. We evaluate our approach and present the results in
Section VI. Next, we discuss the defense of our fingerprinting
in Section VII, some ethics issues in Section VIII, and related
work in Section IX. Our paper concludes in Section X.

II. FINGERPRINTABLE FEATURES

In this section, we introduce fingerprintable features used
in this paper. We start from features used in prior works, and

then introduce some features that need modification especially
for cross-browser fingerprinting. Next, we present our newly-
proposed features.

Although there are no restrictions for features on single-
browser fingerprinting, our cross-browser features need to
reflect the information and operation of the level below the
browser, i.e., the OS and hardware level. For example, both
vertex and fragment shaders expose the behaviors of GPU and
its driver in the OS; the number of virtual cores is a CPU
feature; the installed writing scripts are OS-level features. The
reason is that these features in the OS and hardware level are
relative more stable across browsers: all browsers are running
on top of the same OS and hardware.

Note that if an operation, especially the outputs of the op-
eration, is contributed by both the browser and the underlying
(OS and hardware) levels, we can use it for single-browser
fingerprinting, but need to get rid of the browser factor in
cross-browser fingerprinting. For example, when we render an
image as a texture on a cube, the texture mapping is an GPU
operation but the image decoding is a browser one. Therefore,
we can only use PNG, a lossless format, for cross-browser
fingerprinting. For another example, the dynamic compression
operation of audio signals is performed by both the browser
and the underlying audio stack, and we need to extract the
underlying features. Now let us introduce these features used
in the paper.

A. Prior Fingerprintable Features

In this part of the section, we introduce fingerprintable
features that we adopted from state of the art. There are 17
features presented in the Table I of the AmIUnique paper [26],
and we have all of them for our single-browser fingerprinting.
More detailed can be found in their paper. Because many of
such features are browser specific, we adopt a subset with
4 features for cross-browser fingerprinting, namely screen
resolution, color depth, list of fonts, and platform. Some of
these features need modifications and are introduced below.

B. Old Features with Major Modifications

One prior feature, screen resolution, needs refactoring
for both single- and cross-browser fingerprinting. Then, we
introduce another fingerprintable feature, the number of CPU
virtual cores. Lastly, two prior features need major modifica-
tions for cross-browser fingerprinting.

Screen Resolution. The current measurement of screen resolu-
tion is via the “screen” object under JavaScript. However, we
find that many browsers, especially Firefox and IE, change the
resolution value in proportion to the zoom level. For example,
if the user enlarges the webpage with “ctrl++” in Firefox and
IE, the screen resolution is inaccurate. We believe that the
zoom level needs to be considered in both single- and cross-
browser fingerprinting.

Specifically, we pursue two separate directions. First, we
adopt existing work [13] on the detection of zoom levels based
on the size of a div tag and the device pixel ratio, and then
adjust the screen resolution correspondingly. Second, because
the former method is not always reliable as acknowledged by
the inventors, we adopt a new feature, i.e., the ratio between
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screen width and height, which does not change with the zoom
level.

In addition to screen resolution, we also find that some
other properties, such as availHeight, availWidth, availLeft,
availTop, and screenOrientation, are useful in both single-
and cross-browser fingerprinting. The first four represents the
available screens for the browser excluding system areas, such
as the top menu and the tool bar of a Mac OS. The last one
shows the position of the screen, e.g., whether the screen is
landscape or portrait, and whether the screen is upside down.

Number of CPU Virtual Cores. The core number can be ob-
tained by a new browser feature called hardwareConcurrency,
which provides the capability information for Web Workers.
Now, many browsers support such feature, but some, especially
early versions of browsers, do not. If not supported, there exsits
a side channel [1] to obtain the number. Specifically, one can
monitor the finishing time of payload when increasing the
number of web workers. When the finishing time increases
significantly at a certain level of web workers, the limit of
hardware concurrency is reached, making it useful to finger-
print the number of cores. Note that, some browsers, such as
Safari, will cut the number available cores to Web Workers
by half, and we need to double the number for cross-browser
fingerprinting.

The number of cores is known by the inventor to be
fingerprintable [2] and this is one of the reasons that they
call it hardwareConcurrency rather than cores. However, the
feature is never being used or measured in prior arts of browser
fingerprinting.

AudioContext. AudioContext provides a bundle of audio signal
processing functionalities from signal generation to signal
filtering with the help of audio stack in the OS and the
audio card. Specifically, existing fingerprinting work [18] uses
OscillatorNode to generate a triangle wave, and then feed
the wave into DynamicsCompressorNode, a signal processing
module that suppresses loud sounds or amplifies quiet sounds,
i.e., creating a compression effect. Then, the processed audio
signal is converted to the frequency domain via AnalyserNode.

The wave in the frequency domain differs from one browser
to another on the same machine. However, we find that peak
values and their corresponding frequencies are relatively stable
across browsers. Therefore, we create a list of bins with small
steps on both the frequency and value axes, and map the peak
frequencies and values to the corresponding bins. If one bin
contains a frequency or value, we mark the bin as one and
otherwise zero: such list of bins serve as our cross-browser
feature.

In addition to the wave processing, we also obtain the fol-
lowing information from the destination audio device: sample
rate, max channel count, number of inputs, number of outputs,
channel count, channel count mode, and channel interpretation.
Note that to the best of our knowledge, none of existing
fingerprinting works have used such audio device information
for browser fingerprinting.

List of Fonts. The measurement in AmIUnique is based on
Flash plugin, however Flash is disappearing very fast, which
is also mentioned and acknowledged in their paper. At the time
of our experiment, Flash has already become little supported to

obtain the font list. Instead, we adopt the side-channel method
mentioned by Nikiforakis et al. [36], where the width and
height of a certain string is measured to determine the font
type. Note that not all fonts are cross-browser fingerprintable
because some fonts are web specific and provided by browsers,
and we need to apply a mask shown in Section III-C to select
a subset. Another thing worth noting is that we are aware that
Fifield et al. [20] provide a subset of 43 fonts for fingerprinting,
however their work is based on single-browser fingerprinting
and not applicable in our cross-browser scenario.

C. Newly-proposed Atomic Fingerprintable Features

In this and next subsection, we introduce our newly-
proposed fingerprintable features. We first start with atomic
features, and by atomic, we mean that the browser exposes
either an API or a component directly to the JavaScript. Then,
we will introduce composite features, which usually requires
more than one API and component to collaborate.

Line, curve, and anti-aliasing. Line and curve are 2D features
supported by both Canvas (2D part) and WebGL. Anti-aliasing
is a computer graphics technique used to diminish aliasing
by smoothing jaggies, i.e., jagged or stair-stepped lines, in
either single line/curve object or the edge of a computer
graphics model. There are many existing algorithms [4] for
anti-aliasing, such as first-principles approach, signal pro-
cessing approach, and mipmapping, which make anti-aliasing
fingerprintable.

Vertex shader. A vertex shader, rendered by GPU and the
driver, converts each vertex in a 3D model to its coordinate in
a 2D clip-space. In WebGL, a vertex shader may accept data
in 3 ways: attributes from buffers, uniforms that always stay
the same, and texture from fragment shader. A vertex shader
is usually combined with a fragment shader described below
when rendering a computer graphics task.

Fragment shader. A fragment shader, rendered by GPU and
the driver as well, processes a fragment, such as a triangle
outputted by the rasterization, into a set of colors and a single
depth value. In WebGL, fragment shader takes data in the
following ways:
• Uniforms. A uniform value stays the same for every pixel

in a fragment during a single draw call. Therefore, uniforms
are non-fingerprintable features, and we list it here for
completeness.
• Varyings. Varyings pass values from the vertex shader to

the fragment shader that interpolates between these values
and rasterizes the fragment, i.e., drawing each pixel in the
fragment. The interpolation algorithm varies in different
computer graphics cards, and thus varyings are fingerprint-
able.
• Textures. Given a setting of mapping between vertexes

and texture, a fragment shader calculates the color of each
pixel based on the texture. Due to the limited resolution
of the texture, the fragment shader needs to interpolate
values for a target pixel based on these pixels in the texture
surrounded by the target. The texture interpolation algorithm
also differs from one graphic card to another, making texture
fingerprintable.
Textures in WebGL can be further classified into several
categories: (1) normal texture, i.e., the texture that we
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introduced above; (2) depth texture, i.e., a texture that
contains depth values for each pixel; (3) animating texture,
i.e., a texture that contains video frames instead of static
images; and (4) compressed texture, i.e., a texture that
accepts compressed format.

Transparency via Alpha Channel. Transparency, a feature
provided by GPU and the driver, allows the background to be
intermingled with the foreground. Specifically, alpha channel
with a value between 0 and 1 composites background and
foreground images into a single, final one using a compositing
algebra. There are two fingerprinting points in an alpha chan-
nel. First, we can use one single alpha value to fingerprint the
compositing algorithm between background and foreground.
Second, we can fingerprint the changes of transparency effects
when the alpha value increases from 0 to 1. Because some
graphics cards adopt discrete alpha values, some jumps may
be observed in the changes of transparency effects.

Image encoding and decoding. Images can be encoded and
compressed in different formats, such as JPEG, PNG, and
DataURL. Some of the formats, such as PNG, are lossless,
while some, such as JPEG, are compressed with loss of
information. The decompression of a compressed images is
a fingerprintable feature, because different algorithms may un-
cover different information during decompression. According
to our study, this is a single-browser feature, and cannot be
used for cross-browser.

Installed writing scripts (languages). Writing scripts (systems),
or commonly known as written languages, such as Chinese,
Korean, and Arabic, require the installation of special libraries
to display due to the size of the libraries and locality of the
languages. Browsers do not provide APIs to access the list of
installed languages, however such information can be obtained
via a side channel. Specifically, a browser with a particular
language installed will display the language correctly, and
otherwise show several boxes. That is, the existence of boxes
can be used to fingerprint the presence of that language.

D. Newly-proposed Composite Fingeprintable Features

Now, let us introduce our newly-proposed composite fin-
geprintable features, which are rendered by more than one
browser API or component, and sometimes with additional
algorithms built atop of browser APIs.

Modeling and multiple models. Modeling, or specifically 3D
modeling in this paper, is a computer graphics process of math-
ematically describing an object via three-dimensional surfaces.
The vertexes of a model are handled by the vertex shader,
and the surface by the fragment shader. Different objects are
represented by different models, and may interact with each
other especially when techniques below, such as lighting, exist.

Lighting and shadow mapping. Lighting is the simulation of
light effects in computer graphics, and shadow mapping is to
test whether a pixel is visible under a certain light and add cor-
responding shadows. There are many types of lighting, such as
ambient lighting, directional lighting, and point lighting, which
differ in the sources of the light. Additionally, many effects are
accompanied by lights, such as reflection, translucency, light
tracing, and indirect illumination, when lights interact with one
computer graphics model or multiple models. WebGL does not
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Fig. 1: System Architecture

provides direct APIs for lights and shadows, and some WebGL
libraries (such as three.js) provides high-level APIs built on
top of WebGL’s vertex and fragment shaders for lights and
shadows.

Camera. Camera, or specifically pinhole camera model, maps
3D points in a space onto 2D points in an image. In WebGL,
a camera is represented by a camera projection matrix handled
by the vertex and fragment shaders, and can be used to rotate
and zoom in and out an object.

Clipping Planes. Clipping restricts the rendering operations
within a defined region of interest. In 3D rendering, a clipping
plane is some distance away from and perpendicular to the
camera so that it can prevent rendering surfaces that are too
far from the camera. In WebGL, clipping planes are performed
by the vertex and fragment shaders with additional provided
algorithms.

III. DESIGN

A. Overall Architecture

Figure 1 shows the system architecture. First, the task
manager at the server side sends various rendering tasks, such
as drawing curves and lines, to the client side. Note that the
rendering tasks also involve obtaining OS and hardware level
information, like screen resolution and timezone. Then, the
client-side browser renders these tasks by invoking a specific
API or a combination of APIs, and produces corresponding
results, e.g., images and sound waves. Then, these results,
especially images, are converted into hashes so that they can
be conveniently sent to the server. Meantime, the browser also
collects browser-specific information, such as whether anti-
aliasing and compressed textures are supported, which will be
used at the server side for fingerprints composition.

Next, when the server collects all the information from
the client side, the server will start to composite fingerprints.
Specifically, a fingerprint is generated from a list of hashes
from the client side and a mask that is a list of one or zero
corresponding to the hash list—we perform an “and” operation
between the list of hashes and the mask, and then generate
another hash as the fingerprint. The mask for single-browser
fingerprinting is straightforward, a list of all ones. The mask for
cross-browser fingerprinting is composited from two sources.
First, the collected browser information will contribute to the
mask: if the browser does not support anti-aliasing, the bit
values in the mask for all tasks that involve anti-aliasing are
zero. Second, we will have a different mask for each browser
pair, e.g., Chrome vs. Firefox and Chrome vs. Windows Edge.
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In the next two sections, we first introduce our rendering
tasks at client side, and then our fingerprints composition,
especially how to generate the masks.

B. Rendering Tasks

In this section, we introduce different rendering tasks
proposed in this work. Before that, let us first present the
basic canvas setting below. The size of the canvas is 256×256.
The axes of the canvas are defined as follows. [0, 0, 0] is the
middle of the canvas, where x-axis is the horizontal line that
increases to the right, y-axis is the vertical line that increases
to the bottom, and z-axis increases when moving far from the
screen. An ambient light with the power of [R: 0.3, G: 0.3, B:
0.3] on a scale of 1 is present, and a camera is placed at the
location of [0, 0, -7]. These two components are necessary,
because otherwise the model is entirely black. In the rest of
the paper, unless specified, such as Task (d) with 2D features
and other tasks with additional lights, we use the same basic
settings in all the tasks.

Note that unlike the settings in AmIUnique [26], our canvas
setting is reliable when the condition of the current window
changes. Specifically, we tested three different changes: win-
dow size, side bar, and zoom-level. First, we manually change
the window size, and find that the contents in the canvas remain
the same both visually and computationally in terms of hash
value. Second, we zoom in and out the current window, and
find that the contents change visually according to definition,
but the hash value remain the same. Lastly, we open a browser
console as a side bar, and find that the canvas contents also
remain the same similar to changing window size. Now let us
introduce our rendering tasks from Task (a) to (r).

Task (a): Texture. The task in Figure 2(a) is to test the regular
texture feature in the fragment shader. Specifically, a classical
Suzanne Monkey Head model [19] is rendered on a canvas
with a randomly-generated texture. The texture, a square with
a size as 256×256, is created by randomly picking a color for
each pixel. That is, we generate three random values uniformly
between 0 and 255 for three primary colors—red, green and
blue—at one pixel, mix three primary colors together, and use
it as the color for the pixel.

We choose this randomly-generated texture rather than
a regular one, because this texture has more fingerprintable
features. The reasons are as follows. When a fragment shader
maps a texture to a model, the fragment shader needs to
interpolate points in the texture so that the texture can be
mapped to every point on the model. The interpolation al-
gorithm differs from one graphic card to another, and the
difference is amplified when the texture changes drastically
in color. Therefore, we generate this texture in which colors
change greatly between each pair of adjacent pixels.

Task (b): Varyings. This task, shown in Figure 2(b), is designed
to test the varying feature of the fragment shader on a canvas.
Different varying colors are drawn on six surfaces of a cube
model with a specification of the color of four points on each
surface. We choose this varying color to enlarge the color
differences and changes on each single surface. For example,
when blue is abundant (such as 0.9 with a scale of 1) on
one vertex of a surface, the other vertex will lack blue (such
as 0.1) and have more green or red color. Additionally, a

camera is placed at the location of [0, 0, -5] for the purpose
of comparison with Task (c).

Task (b’): Anti-aliasing+Varyings. The task in Figure 2(b’) is
to test the anti-aliasing feature, i.e., how browsers smooth the
edge of models. Specifically, we adopt the same task in Task
(b), and add anti-aliasing. If we enlarge Figure 2(b’), we will
find that the edges of both models are smoothed.

Task (c): Camera. The task in Figure 2(c) is to test the camera
feature, i.e., a projection matrix fed into the fragment shader.
Every setting in this task is the same as Task (a) except for
the camera, which is moved to a new location of [-1, -4, -10].
The same cube looks smaller than the one in Task (a), because
the camera is moved further from the cube (the z-axis is -10
as opposed to -5).

Task (d): Lines and Curves. The task in Figure 2(d) is to
test lines and curves. One curve and three lines with different
angles are drawn on a canvas. Specifically, the curve obeys
the following function: y = 256 − 100cos(2.0πx/100.0) +
30cos(4.0πx/100.0) + 6cos(6.0πx/100.0), where [0, 0] is
the left and top of the canvas, x-axis increases to the right,
and y-axis increases to the bottom. The starting and ending
points of three lines are {[38.4, 115.2], [89.6, 204.8]}, {[89.6,
89.6], [153.6, 204.8]}, and {[166.4, 89.6], [217.6, 204.8]}.
We choose these specific lines and curves so that we can test
different gradients and shapes.

Task (d’): Anti-aliasing+Lines and Curves. Task (d’) is an anti-
aliasing version of Task (d).

Task (e): Multi-models. The task in Figure 2(e) is to test how
different models influence each other in the same canvas. In
addition to the Suzanne model, we introduce another model
that looks like a single-person armed sofa (called sofa model),
and put two models in parallel. Another randomly-generated
texture following the same procedure described in Task (a) is
mapped to the sofa model.

Task (f): Light. The task in Figure 2(f) is to test the interaction
of a diffuse, point light and the Suzanne model. A diffuse, point
light causes diffuse reflection when illuminating an object.
Specifically, the light is white with the same values across
RGB, the power of the light is 2 for each primary color, and
the light source is located at [3.0, -4.0, -2.0].

We choose a white light source in this task because the
texture is colorful, and a single-color light may diminish some
subtle differences on the texture. The power of the light is also
carefully chosen, because a very weak light will not illuminate
the Suzanne model, making it invisible, but a very strong light
will make everything white and diminish all the fingerprintable
features. In a small scale experiment with 6 machines, when
increasing the power from 0 to 255, we find that when the
light power is 2, the pixel differences among these machines
are the maximum. The light position is randomly chosen and
does not affect the feature fingerprinting results.

Task (g): Light and Models. The task in Figure 2(g) is to test
the interaction of a single, diffuse, point light and two models,
because one model may create a shadow on another when
illuminated by a point light. Every setting of light is the same
as Task (f), and the models are the same as Task (e).
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(a) Texture (b) Varyings (b’) Anti-aliasing (c) Camera (d) Lines&Curves (e) Multi-models (f) Light

(g) Light&Models (h) Specular Light (i) Two Textures (j) Alpha (0.09–1) (k) Complex Lights (l) Clipping Plane (m) Cubemap Texture

(n) DDS Textures (o) PVR Textures (p) Float Texture (q) Video (r) Writing Scripts (Systems)

Fig. 2: Client-side Rendering Tasks for the Purpose of Fingerprinting

Task (h): Specular Light. The task in Figure 2(h) is to test
the effects of a diffuse point light with another color and a
specular point light on two models. Similar to diffuse point
light, a specular point light will cause a specular reflection on
an object. Specifically, both lights are located at [0.8, -0.8, -
0.8], the RGB of the diffuse point light is [0.75, 0.75, 1.0],
and the RGB of the specular light is [0.8, 0.8, 0.8].

There are two things worth noting. First, we choose the
specific camera location because it is closer to the models and
has bigger effects. Particularly, one may notice the spot on the
back of the sofa model illuminated by the specular point light.
Second, although the color of the diffuse point light is towards
blue, but still has much red and green. We want to test other
colors, but white light is still the best for fingerprinting given
that the texture is colorful.

Task (h’): Anti-aliasing+Specular Light. Task (h’) is an anti-
aliasing version of Task (h).

Task (h”): Anti-aliasing+Specular Light+Rotation. Task (h’)
is the same as Task (h’) but with 90 degree rotation.

Task (i): Two Textures. The task in Figure 2(i) is to test the
effects of mapping two different textures to the same objects.
On top of Task (h), i.e., every other setting is the same, we
map another layer of randomly-generated texture to both the
Suzanne and sofa model.

Task (j): Alpha. The task in Figure 2(j) consisted of 8 sub-tasks
is to test the effects of different alpha values. Specifically, we
put the Suzanne and sofa models in parallel, and change the
alpha values chosen from this specific set, {0.09, 0.1, 0.11,
0.39, 0.4, 0.41, 0.79, 1}, where 0 means completely transparent
and 1 no transparency.

Again, there are two things worth noting. First, we choose
this value set carefully to reflect different alpha values and
small value changes: three representative values {0.1, 0.4,
0.8} as well as their nearby values are selected. Values are

augmented in 0.01, because many GPUs do not accept smaller
steps. Second, the Suzanne and sofa models are positioned so
that they are partially overlapped and the hidden structure of
the sofa model is visible when the model becomes transparent.
For example, the arm of the sofa model is partially visible
when viewing from the back of the model.

Task (k): Complex Lights. The task in Figure 2(l) is to test
complex light features, such as reflection, moving lights, and
light tracing among multiple models. Specifically, we generate
5,000 metallic ring models with different angles randomly
placed on the ground and piled together. For reliability, we use
a seeded random number generator with the same random seed
every time so that the test can be repeated on different browsers
and machines. Two point light sources, yellow and red, towards
the bottom are circling around in the right top corner of the
entire scene. When lights illuminate the rings underneath, other
rings also get illuminated through reflection and two colors
from different sources are intermingled together.

Note that we choose single-color light sources because the
models are not colorful, and lights with colors will illuminate
more details on the rings. Furthermore, lights with different
colors will interact with each other and create more detailed
effects.

Task (k’): Anti-aliasing+Complex Lights. Task (k’) is an anti-
aliasing version of Task (k).

Task (l): Clipping Plane. The task in Figure 2(n) is to test
the movement of a clipping plane and the FPS. Specifically,
we put a static positive tetrahedron on the ground, illuminate
it with collimated light, and move the clipping plane so that
the observer feels that the tetrahedron is moving. The captured
image in Figure 2(n) is upside down when the clipping plane
moves to that position.

Task (m): Cubemap Texture+Fresnel Effect. The task in Fig-
ure 2(n) is to test cubemap texture and fresnel effect in
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light reflection. Particularly, cubemap texture [7] is a special
texture that utilizes the six faces of a cube as the map
shape, and fresnel effect is an observation that the amount
of reflected light depends on the viewing angle. We create a
cubemap texture with a normal campus scene, and put several
transparent bubbles on top of the texture for the fresnel effect.
All the bubbles are moving randomly and bumping to each
other in animation.

Task (n): DDS Textures. DDS Textures refer to those that use
DirectDraw Surface file format, a special compressed data
format with the S3 Texture Compression (S3TC) algorithm.
There are five different variations of S3TC from DXT1 to
DXT5, and each format has an option to enable mipmapping,
a technique to scale high-resolution texture into multiple
resolutions within the texture file. Because DXT2 is similar
to DXT3 and DXT4 similar to DXT5, Task (p) only tests
DXT1, DXT3, and DXT5 with and without mipmapping in
each column as shown in Figure 2(p). For comparison, we
also include an uncompressed texture with ARGB format in
the rightmost column. There are two gray cubes in Figure 2(p)
because DXT3 and DXT5 with mipmapping is unsupported on
that specific machine.

Task (o): PVR Textures. PVR texture, or called PVRTC texture,
is another texture compression format adopted mostly by
mobile devices, such as all iPhone, iPod Touch, and iPad as
well as some Android products. Based on the size of data
blocks, there are two modes: 4 bit mode and 2 bit mode.
Further, there are two popular versions, v1 and v3, and we
can choose to enable mipmapping as well. In total, Task (q),
shown in Figure 2(q), has 8 subtasks that enumerate different
combinations of bit mode, version, and mipmapping. Similarly,
a gray cube means that the format is not supported.

Task (p): Float Textures. Float texture, or called floating point
texture, uses floating points instead of integers to represent
color values. A special type of floating point texture is depth
texture that contains the data from the depth buffer for a
particular scene. Task (r), shown in Figure 2(r), is adopted
from an existing online test [15] for the purpose of rendering
float and depth textures.

Task (q): Video (Animating Textures). The task in Figure 2(s)
is to test the decompression of videos. Specifically, we create
a two-second static scene video from a PNG file with three
different compression formats (namely WebM, high quality
MP4, and standard MP4), maps the video as an animating
texture to a cube, and capture six consecutive frames from the
video.

Note that although all the videos are created with one
single PNG file, the captured frames are different because the
compression algorithm is with loss. We choose six consecutive
frames because JavaScript only provides an API to obtain
frames at a certain time but not with certain frame numbers—
six consecutive frames can make sure that the target frame is
within the set based on our experiment.

Task (r): Writing Scripts. The task in Figure 2(t) is to obtain
the list of supported writing scripts, such as Latin, Chinese,
and Arabic, in a browser. Because none of existing browsers
provide an API to obtain the list of supported writing scripts,
we adopt a side channel to test the existence of each writing
script. Specifically, the method is as follows. The name of

Algorithm 1 Cross-browser Mask Generation
Input:

M : the set of all possible masks.
Hbrowser,machine = {Hashtask1, Hashtask2, Hashtask3, ...} : the hash
list for all the rendering tasks on one browser of a specific machine.
Hbrowser = {Hbrowser,machine1, Hbrowser,machine2, ...} : the hash list
for a browser.
HS = {Hchrome, Hfirefox, Hopera, ..} : the overall hash list.

Process:
1: for all possible {hbrowser1, hbrowser2} ⊂ HS do
2: Maxuniq ← 0
3: Maxmask ← null
4: for mask in M do
5: FS ← {}
6: Count← 0
7: for m1 ∈ hbrowser1 and m2 ∈ hbrowser2 do
8: if m1&mask == m2&mask and m1&mask /∈ FS then
9: Count + +

10: FS.add(m1&mask)
11: end if
12: end for
13: Uniq ← Count/size(hbrowser1)
14: if Uniq > Maxuniq then
15: Maxuniq ← Uniq
16: Maxmask ←Mask
17: end if
18: end for
19: Maxmask is the mask for browser 1 and 2.
20: end for

each writing script in its own language is rendered in the
browser. If the writing script is supported, the rendering will
succeed; otherwise, a set of boxes will be shown instead of
the script. Therefore, we can detect the boxes to test whether
the browser supports the script: For example, Figure 2(t) shows
that Javanese, Sudanese, Lontara and Thaana are not supported
in that specific tested browser. Our current test list has 36
writing scripts obtained from Wikipedia [8] and ranked by
their popularity.

C. Fingerprints Composition

In this section, we present how to form a fingerprint
at the server side based on the hashes from the client-side
rendering tasks. As mentioned, a fingerprint is a hash computed
from an “and” operation of the hash list of all the tasks and
a mask. The mask is straightly all ones for single-browser
fingerprinting, and computed from two sub-masks for cross-
browser fingerprinting. We have talked about the first sub-mask
computed from the fact whether a browser support certain
functionalities in Section III-A, and now will discuss the
second sub-mask, which differs for every browser pair.

The generation of the mask for every two browsers is a
training-based approach. Specifically, we use a small subset to
obtain a mask that optimizes both the cross-browser stability
and the uniqueness. Note that similar to false positive and
negative, these two numbers, i.e., cross-browser stability and
uniqueness, are two sides of a coin: When the cross-browser
stability increases, uniqueness decrease, and vice versa. Let
us think about two extreme examples. If we use single-
browser features, the cross-browser stability is zero but the
uniqueness is the highest. At contrast, if we use only one
feature, e.g., platform, the cross-browser stability is 100% but
the uniqueness is very low.

Algorithm 1 shows the training procedure of the mask for
every browser pair. We adopt a brute-force search: though not
the most efficient but the most effective and complete. Due to
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the small size of the training data, we realize that brute force
is possible and produces the best result. Specifically, we first
enumerate every browser pair (Line 1), and then every possible
mask (Line 4). For each mask, we go through the training data
(Line 7), and make sure to select the mask that maximizes the
cross-browser stability multiplying the uniqueness (Line 8–11
and 14–17).

IV. IMPLEMENTATION

Our open-source implementation, excluding all the open-
source libraries (e.g., three.js, a JavaScript 3D library, and
glMatrix, a JavaScript library for matrix operations), has
approximately 21K Lines of Code (LoC). Specifically, our
approach involves approximately 14K lines of JavaScript, 1K
lines of HTML, 2.4K lines of Coffeescript, 500 lines of C
code, and 3.7K lines of Python code.

We now divide our code into client and server, and describe
below. The client-side code has a manager in JavaScript that is
generated from Coffeescript. The manager performs three jobs:
(1) loading all the rendering tasks, (2) collecting all the results
from the rendering tasks as well as browser information, and
(3) sending the results to a snippet of JavaScript that performs
hashes and then communicates with the server-side code. Tasks
(n) and (o) are written in C and converted to JavaScript via
Emscripten. All other rendering tasks are written in JavaScript
directly: Tasks (k)–(m) are written with the help of three.js, and
the rest tasks are directly using either WebGL or JavaScript
APIs. All rendering tasks have used glMatrix for vector and
matrix operations.

The server side of our implementation is written in Python,
serving as a module of an Apache server. Our server-side code
can be further divided into two parts: the first with 1.2K LoC
for communicating with the client-side code and storing hashes
into a database and images into a folder, and the second with
2.5K LoC for the analysis such as generating and applying
masks on the collected fingerprints.

V. DATA COLLECTION

We collect data from two crowdsourcing websites, namely
Amazon Mechanical Turks and MacroWorkers. Specifically,
we instruct crowdsourcing workers to visit our website via
two different browsers at their own choice, and if they visit
the website via three browsers, they will get paid by a bonus.
After visiting, our website will provide a unique code for each
worker so that she can input it back to the crowdsourcing
website to get paid and optional bonus. Note that in our data
collection, in addition to hashes, we also send all the images
data to the server—such a step is not needed if deploying our
approach.

To ensure that we have the ground truth data, we insert a
unique identifier as part of the URL that each crowdsourcing
worker visits, e.g., http://oururl.com/?id=ABC. The unique
identifier is stored at the client-side browser as a cookie so
that if the user visits our website again, she will get the same
identifier. Additionally, we allow one crowdsourcing worker to
take the job only once. For example, the number of Human
Intelligence Tasks (HITs) in MTurks is one for each worker.

In total, we have collected 3,615 fingerprints from 1,903
users within three months. Some users just visit our website

TABLE I: Normalized Entropy for Six Attributes of the Dataset
Collected by Our Approach, AmIUnique, and Panopticlick
(The last two columns are copied from the AmIUnique paper)

Ours AmIUnique Panopticlick

User Agent 0.612 0.570 0.531
List of Plugins 0.526 0.578 0.817
List of Fonts (Flash) 0.219 0.446 0.738
Screen Resolution 0.285 0.277 0.256
Timezone 0.340 0.201 0.161
Cookie Enabled 0.001 0.042 0.019

with one browser and does not finish the two-browser task. We
use all the fingerprints directly for single-browser fingerprint-
ing. For cross-browser fingerprinting, the dataset is divided
equally into ten parts for each browser pair if there is enough
data: one for the generation of masks, and the other nine for
testing.

A. Comparing Our Dataset with AmIUnique and Panopticlick

The purpose of this part of the section is to compare
our dataset with AmIUnique and Panopticlick in the metrics
of normalized Shannon’s entropy invented in the AmIUnique
paper. Specifically, Equation 1 shows the definition according
to their paper:

NH =
H(X)

HM
=
−
∑

i P (xi)log2P (xi)

log2(N)
(1)

H(X) is the Shannon’s entropy where X is a variable with
possible values {x1, xi, ..} and P(X) a probability function.
HM is the worse case scenario in which every fingerprint has
the same probability and we have the maximum entropy. N is
the total number of fingerprints.

Table I shows the comparison result where the statistics
for AmIUnique and Panopticlick are obtained from Table III of
the AmIUnique paper. We observe that the normalized entropy
values of our dataset are very similar to datasets used in past
approaches except for list of fonts and timezone.

First, the normalized entropy of list of fonts drops 0.22
from AmIUnique and 0.52 from Panopticlick. The reason as
explained by AmIUnique is that Flash is disappearing. By
the time that we collect data, the percentage of browsers
with Flash support decreases even more when compared with
AmIUnique. To further validate our dataset, we also calculate
the normalized entropy for the list of fonts collected by
JavaScript. The value is 0.901, very close to the one from
Panopticlick.

Second, the normalized entropy of timezone increases
0.139 from AmIUnique and 0.179 from Panopticlick. The
reason is that our crowdsourcing workers from MicroWorkers
are very international, spanning from Africa and Europe to
Asia and Latin America. Specifically, MicroWorkers allow us
to create campaigns targeting different regions all over the
world, and we did create campaigns for each continental.

Another thing worth noting is that the normalized entropy
of cookie enabled is almost zero for our dataset. The reason
is that we collect data from crowdsourcing websites, where
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TABLE II: Overall Results Comparing AmIUnique, Boda et al.
excluding IP Address, and Our Approach (“Unique” means the
percentage of unique fingerprints out of total, “Entropy” the
Shannon entropy, and “Stability” the percentage of fingerprints
that are stable across browsers. We do not list cross-browser
number for AmIUnique and single-browser number for Boda
et al. in the table, because these number are very low and their
approaches are not designed for that purpose. )

Single-browser Cross-browser

Unique Entropy Unique Entropy Stability

AmIUnique [26] 90.84% 10.82
Boda et al. [14] 68.98% 6.88 84.64%
Ours 99.24% 10.95 83.24% 7.10 91.44%

workers need to get paid with cookie enabled. If they disable
cookies, they cannot even log into the crowdsourcing website.
At contrast, both AmIUnique and Panopticlick attract general
web users in which a small percentage may disable cookies. In
general, there are very few people disabling cookies, because
cookies are essential for many modern web functionalities.

VI. RESULTS

In this section, we first give an overview of our results,
and then break down the results by different browser pairs
and features. Lastly, we present some interesting observation.

A. Overview

We first give an overview of our results for both single-
and cross-browser fingerprinting. Specifically, we compare our
single-browser fingerprinting with AmIUnique, state of the art,
and our cross-browser fingerprinting with Boda et al. excluding
IP address. Note that although many new features, e.g., these
in AmIUnique, emerge after Boda et al., these features are
browser specific and we find that the features used in Boda et
al. are still the ones with the highest cross-browser stability.

We now introduce how we reproduce the results for these
two works. AmIUnique is open-source [3], and we can directly
download the source code from github. Boda et al. provides
an open testing website (https://fingerprint.pet-portal.eu/), and
we can download the fingerprinting JavaScript directly. We
believe that the direct usage of their source code minimizes
all the possible implementation biases.

The overall results of AmIUnique, Boda et al., and our
approach are shown in Table II. Let us first take a look at
single-browser fingerprinting. We compare our approach with
AmIUnique in terms of uniqueness and entropy. Uniqueness
means the percentage of unique fingerprints over the total
number of fingerprints, and entropy is the Shannon entropy.
The evaluation shows that our approach can uniquely identify
99.24% of users as opposed to 90.84% for AmIUnique,
counting to 8.4% increase. For the entropy, the maximum
value is 10.96, and both approaches, especially ours, are very
close to the maximum. That is, non-unique fingerprints in both
approaches are scattered in small anonymous groups.

Then, let us look at the metrics for cross-browser finger-
printing. In addition to uniqueness and entropy, we also cal-
culate another metrics called cross-browser stability, meaning

the percentage of fingerprints that are stable across different
browsers on the same machine. Although we select features
that are stable across browser most of time, fingerprints
from different browsers might still differ. For example, screen
resolutions could be different for Boda et al., if the user
chooses different zoom levels in two browsers. For another
example, GPU rendering might be different for our approach,
if one browser adopts hardware rendering but another software
rendering.

Now let us look at the cross-browser fingerprinting results
for Boda et al. and our approach. Table II shows that our
approach can identify 83.24% of users as opposed to 68.98%
for Boda et al. This is a huge increase with 14.26% difference.
The cross-browser stability also increases from 84.64% for
Boda et al. to 91.44% for our approach. One of the reasons is
that we make existing features, such as screen resolution and
the list of fonts, more stable across different browsers. The
entropy also increases from 6.88 for Boda et al. to 7.10 for
our approach.

B. Breakdown by Browser Pairs

In this part of the section, we break down our results by
different browser pairs shown in Table III. There are six differ-
ent types of browsers, and a category called others including
some uncommon browsers, such as Maxthon, Coconut, and
UC browser. The table is a lower triangular matrix due to
its symmetric property: If we list all the numbers, the upper
triangle is exactly the same as the lower. The main diagonal of
the table represents single-browser fingerprinting, and the other
part cross-browser. There are two N/A because Apple gives up
the support of Safari on Windows, and Microsoft never support
Internet Explorer and Edge Browser on Mac OS, i.e., Safari
does not co-exist with IE and Edge. There are two dashes as
well for others and Edge/IE/Safari, because we do not observe
any such pairs in our dataset.

Let us first look at the main diagonal. The stability for
single browser is obviously 100% because we are comparing
a browser to itself. The browser with lowest uniqueness is
Mozilla Firefox, because Firefox hides some information,
e.g., the WebGL render and vendor, for privacy reasons. The
uniqueness for IE and Edge is 100%, showing that both
browsers are highly fingerprintable. The uniqueness for Opera,
Safari, and other browsers is also 100%, but due to the small
number of samples in our dataset, we cannot draw further
conclusions for these browsers.

Then, we look at the lower triangle of the matrix except the
main diagonal, which shows the uniqueness and stability for
cross-browser fingerprinting. First, the cross-browser stability
for all pairs is very hight (> 85%) except for other browsers
and Opera vs. IE. Because the number of such pairs is small, it
is hard for us to generate a mask with reasonable cross-browser
stability.

Second, the uniqueness for IE and Edge vs. the rest is rela-
tively low when compared with other pairs. The reason is that
both IE and Edge are independently implemented by Microsoft
with fewer open-source libraries. That is, the common part
shared between IE/Edge and the rest is much less than these
among the rest browsers. At contrast, the uniqueness between

9



TABLE III: Cross-browser Fingerprinting Uniqueness and Stability Break-down by Browser Pairs

Browser Chrome Firefox Edge IE Opera Safari Other

Chrome 99.2% (100%)
Firefox 89.1% (90.6%) 98.6% (100%)
Edge 87.5% (92.6%) 97.9% (95.9%) 100% (100%)
IE 85.1% (93.1%) 91.8% (90.7%) 100% (95.7%) 100% (100%)
Opera 90.9% (90.0%) 100% (89.7%) 100% (100%) 100% (60.0%) 100% (100%)
Safari 100% (89.7%) 100% (84.8%) N/A N/A 100% (100%) 100% (100%)
Other 100% (22.2%) 100% (33.3%) - - 100% (50%) - 100% (100%)

Note: The format of each cell is as follows – Uniqueness (Cross-browser Stability).

IE and Edge is very high: 100% uniqueness with 95.7% cross-
browser stability, meaning that IE and Edge probably share a
considerable amount of code.

Third, it is interesting to compare IE and Edge. The
uniqueness of Edge Browser is higher than IE for all browser
pairs. The reason is that Edge Browser introduces more func-
tionalities, such as a full implementation of WebGL obeying
the standard, which exposes more fingerprinting aspects.

C. Breakdown by Features

In this part of the section, we break down our results
by different features and show it in Table IV. Specifically,
Table IV can be divided into two parts: the first part above
AmIUnique row showing the features adopted by AmIUnique,
the second part below the first showing all the new features
proposed by our approach. Now let us look at different
features.

1) Screen Resolution and Ratio: The single-browser en-
tropy for screen resolution and ratio is 7.41, while the entropy
for the width and height ratio drops significantly to 1.40.
The reason is that many resolutions, e.g., 1024×768 and
1280×960, share the same ratio. The cross-browser stability
for screen resolution is very low (9.13%), because users often
zoom in and out the web page as mentioned before. The
cross-browser stability for the width and height ratio is high
(97.57%) but lower than 100%, because some users adopt two
screens and put two browsers in separate ones.

2) List of Font: Due to the ongoing disappearance of Flash,
the entropy for the list of fonts obtained from Flash is as low
as 2.40, and at contrast the entropy for the list from JavaScript
is as high as 10.40. That means the list of fonts is still a highly
fingerprintable feature, and we need to obtain the feature using
JavaScript in the future.

Note that although the entropy for the font list from
JavaScript is high, it does not take a significant portion in
our fingerprinting. When we remove this feature, the single-
browser uniqueness of our approach only drops from 99.24%
to 99.09%, less than 0.2% difference. That is, our approach
can still fingerprint users with high accuracy without the font
list feature.

3) Anti-aliasing: Tasks (b), (b’), (d), (d’), (h), (h’), (k)
and (k’) are related to anti-aliasing. The entropy for single-
browser fingerprinting increases for (b), (d) and (h) when anti-
aliasing is added, but decreases for (k). The reason is that
(b), (d) and (h) has fewer edges, and anti-aliasing will add

more fingerprintable contents; at contrast, (k) contains many
small edges on each of the beans, and anti-aliasing will occupy
the contents of the beans and diminish some fingerprintable
contents inside of the beans.

Now let us look at cross-browser fingerprinting. The cross-
browser stability is the opposite of the single-browser entropy:
it decreases for (b), (d) and (h), but increases for (k). The
reason is that anti-aliasing is not supported for all browsers on
the same machine, making the stability decrease for (b), (d) and
(h). For similar reason, because anti-aliasing diminishes some
fingerprintable contents inside the bean, the cross-browser
stability increases for (k).

4) Line&Curves: Task (d) tests the effects of line and
curves. The entropy is low (1.09) and the cross-browser stabil-
ity is high (90.77%), because both lines and curves are simple
2D operations and do not differ too much across browsers and
machines. We manually compare those cases that are different
across machines or browsers, and find that the major difference
lies in the starting and ending point where there are one or two
pixels shifting.

5) Camera: When comparing the single-browser entropy
for Task (b) and (c), we find that the entropy decreases when
a camera is added. The reason is that the purpose of the
added camera is to zoom out the cube, which diminishes subtle
differences on the surface. The cross-browser stabilities for (b)
and (c) are very similar due to the similarity between (b) and
(c).

6) Texture: Let us first compare normal, DDS, PVR, cube-
map and float textures. The entropies for float and cubemap
textures are higher than all other textures, because float and
cubemap textures have more information, e.g., the depth in
float textures and a cube mapping for cubemap textures.
The entropy for PVR textures is very low (0.14), because
PVR textures are mostly supported on Apple mobile devices,
such as iPhones and iPads. As our dataset is collected from
crowdsourcing workers, very few of them will use Apple
mobile devices to perform the crowdsourcing tasks. Another
interesting observation is that the cross-browser stability for
DDS textures is low (68.18%). The reason is that DDS, a
Microsoft format, is unsupported on many browsers.

Second, let us look at two textures, i.e., Task (i). Compared
with Task (h), another layer of texture is added, but the entropy
for both single- and cross-browser fingerprinting decrease.
The reason is that the texture used in our tasks is carefully
created so that it can contain more fingerprintable features.

10



TABLE IV: Entropy and Cross-browser Stability by Features

Feature
Single-browser Cross-browser

Entropy Entropy Stability

User agent 6.71 0.00 1.39%
Accept 1.29 0.01 1.25%
Content encoding 0.33 0.03 87.83%
Content language 4.28 1.39 10.96%
List of plugins 5.77 0.25 1.65%
Cookies enabled 0.00 0.00 100.00%
Use of local/session storage 0.03 0.00 99.57%
Timezone 3.72 3.51 100.00%
Screen resolution and color depth 7.41 3.24 9.13%
List of fonts (Flash) 2.40 0.05 68.00%
List of HTTP headers 3.17 0.64 9.13%
Platform 2.22 1.25 97.91%
Do Not Track 0.47 0.18 82.00%
Canvas 5.71 2.73 8.17%
WebGL Vendor 2.22 0.70 16.09%
WebGL Renderer 5.70 3.92 15.39%
Use of an Ad blocker 0.67 0.28 70.78%

AmIUnique 10.82 0.00 1.39%

Screen Ratio 1.40 0.98 97.57%
List of fonts (JavaScript) 10.40 6.58 96.52%
AudioContext 1.87 1.02 97.48%
CPU Virtual cores 1.92 0.59 100.00%
Normalized WebGL Renderer 4.98 4.01 37.39%
Task (a) Texture 3.51 2.26 81.47%
Task (b) Varyings 2.59 1.76 88.25%
Task (b’) Varyings+anti-aliasing 3.24 1.66 73.95%
Task (c) Camera 2.29 1.58 88.07%
Task (d) Lines&Curves 1.09 0.42 90.77%
Task (d’) (d)+anti-aliasing 3.59 2.20 74.88%
Task (e) Multi-models 3.54 2.14 81.15%
Task (f) Light 3.52 2.27 81.23%
Task (g) Light&Model 3.55 2.14 80.94%
Task (h) Specular light 4.44 3.24 80.64%
Task (h’) (h)+anti-aliasing 5.24 3.71 70.35%
Task (h”) (h’)+rotation 4.01 2.68 75.09%
Task (i) Two textures 4.04 2.68 75.98%
Task (j) Alpha (0.09) 3.41 2.36 86.25%
Task (j) Alpha (0.10) 4.11 3.02 75.31%
Task (j) Alpha (0.11) 3.95 2.84 75.80%
Task (j) Alpha (0.39) 4.35 3.06 82.75%
Task (j) Alpha (0.40) 4.38 3.10 82.58%
Task (j) Alpha (0.41) 4.49 3.13 81.89%
Task (j) Alpha (0.79) 4.74 3.12 72.63%
Task (j) Alpha (1) 4.38 3.07 82.75%
Task (k) Complex lights 6.07 4.19 66.37%
Task (k’) (k)+anti-aliasing 5.79 3.96 74.45%
Task (l) Clipping plane 3.48 1.93 76.61%
Task (m) Cubemap texture 6.03 3.93 58.94%
Task (n) DDS textures 4.71 3.06 68.18%
Task (o) PVR textures 0.14 0.00 99.16%
Task (p) Float texture 5.11 3.63 74.41%
Task (q) Video 7.29 2.32 5.48%
Task (r) Writing scripts (support) 2.87 0.51 97.91%
Task (r) Writing scripts (images) 6.00 1.98 5.48%

All cross-browser features 10.92 7.10 91.44%
All features 10.95 0.00 1.39%

When we add two textures together, some of these features
are diminished, making two-texture task less fingerprintable.

7) Model: Let us compare Tasks (a) and (e) as well as
Tasks (f) and (g) for the effect of models. Compared to (a)
and (f), a sofa model is added to (e) and (g), and the entropy
increases a little bit, i.e., 0.03 for both tasks. The conclusion
is that the Sofa model does introduce more fingerprintable
features but the increase is very limited.

8) Light: Tasks (a), (e), (f), (h), and (k) are related to
lights. Let us first look at Task (f) in which a diffuse, point
light is added to Task (a). The entropy only increases 0.01
for both single- and cross-browser fingerprinting, showing that
the diffuse, point light has little impact in fingerprinting. As a
comparison, the effect of a specular light is more apparent
because the entropy for Task (h) is an increase of >0.9
when compared to Task (e) in both single- and cross-browser
fingerprinting. Lastly, let us look at Task (k), a complex light
example. The entropy for Task (k) is the highest among all
tasks except for video, because there are 5,000 models and
lights with different colors are reflected among all the models
and intermingled together.

9) Alpha: Task (j) tests alpha values from 0.09 to 1. It
is interesting that different alpha values have very different
entropies. In general, the trend is that when the alpha value
increases, the entropy increases as well but with many fall-
backs. We did not test continuous alpha values in our large-
scale experiment, but perform a small-scale one among five
machines. Specifically, we compare the differed pixels between
each Alpha value image and a standard one, and find that
the fallbacks are mainly caused by software rendering, which
approximates alpha values. Additionally, we observe some
patterns in the fallbacks, which happens in an approximate
0.1 incremental step.

10)Clipping Planes: Task (l) is to test the effect of clipping
planes, yielding 3.48 single-browser entropy and 1.93 cross-
browser entropy with 76.61% stability. The entropy is similar
to the one with pure texture, because clipping planes are im-
plemented in JavaScript and do not contribute to fingeprinting
much.

11) Rotation: Task (h”) is a rotation of Task (h’). The
entropy decreases and the cross-browser stability increases.
The reason is that the front of the Suzanne model and the
inside of the sofa model has more details. When we rotate both
models to another angle, the fingerprintable details decreases
and correspondingly the stability increases.

12) AudioContext: The AudioContext that we measure is
the cross-browser stable one, i.e., the destination audio device
information and the converted waves. The entropy is 1.87,
much smaller than the entire entropy of the entire wave—
which is 5.4 as measured by Englehardt et al. [18].

13)Video: Task (q) is testing the video feature. The entropy
for video is the highest (7.29) among all of rendering tasks,
because decoding video is a combination of the browser, the
driver, and sometimes the hardware as well. At contrast, the
cross-browser stability for video is very low (5.48%) and the
entropy also drops to 2.32. The reason is that similar to image
encoding and decoding, both WebM and MP4 video formats
are with loss and decoded by the browser. We do not find a
universal lossless format for videos as we do for images.
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14) Writing Scripts: Writing scripts are tested in Task (r).
We further divide Task (r) into two parts for the purpose of
cross-browser fingerprinting. The first part, we call it writing
scripts (support), only contains the information of whether
certain writing scripts are supported, i.e., a list of zeros and
ones where one means supported and zero not. As mentioned,
we obtain the information via box detection. The second part,
we call it writing scripts (images), is the images rendered
at the client-side. The single-browser entropy for writing
scripts (images) is 3.13 larger than the one for writing scripts
(support). That is, the images do contain more information than
whether the writing scripts are supported. The cross-browser
stability for writing scripts (support) is calculated based on the
results after applying our mask, because some writing scripts
are shipped with the browser and not cross-browser stable.
Correspondingly, the cross-browser entropy for writing scripts
(support) is lower than the single-browser one.

15) CPU Virtual Cores: The number of CPU virtual
cores, calculated from the HardwareConcurrency value only
(if not supported, the value is “undefined”), has an entropy
of 1.92 for single-browser fingerprinting. We expect that the
entropy will increase in the future, because just before our
submission, Firefox 48 starts to support the new feature.
The cross-browser stability is 100%, because we can detect
whether a browser supports HardwareConcurrency and applies
a customized mask. The cross-browser entropy is different
from the single-browser one due to the size of data, and the
normalized entropies for both are very similar.

16) Normalized WebGL Renderer: The WebGL renderer
is not cross-browser fingerprintable, partly because different
browsers provide different levels of information. We extract
the common information from different browsers, and align
the information in a standard format. Compared with the
original WebGL renderer with 5.70 entropy, the entropy for
the normalized one is 4.98. The reason for the drop is that the
extraction will discard some information, e.g., for Chrome,
to align with other browsers, e.g., Edge browser. Correspond-
ingly, the cross-browser stability increases from 15.39% for
the original WebGL renderer to 37.39% for the normalized
one.

There are two things worth noting here. First, the WebGL
vendor does not provide more information than the WebGL
renderer. That is, when we combine both values together, the
entropy is the one for WebGL renderer. Second, our GPU
tasks have much more information than the one provided by
WebGL vendor and renderer. Some browsers, namely Firefox,
do not provide WebGL vendor and renderer information, which
gives us much room to fill the gap. Furthermore, even when
a browser provide such information, the entropy for our GPU
tasks when combined together is 7.10, much larger than the
5.70 entropy provided by WebGL render. The reason is that
the rendering is a combination of software and hardware, and
WebGL renderer only provides the hardware information for
hardware rendering.

D. Observations

During our experiments and implementations, we have
observed several interesting facts and shown them below in
this subsection:

Observation 1: Our fingerprintable features are highly reliable,
i.e., the removal of one single feature has little impact on the
fingerprinting results.

In this part, we show the impact of removing a single
feature from both AmIUnique and our approach, and then
measure the uniqueness of both. The results show that the
uniqueness of our fingerprinting is still above 99% when
removing any single features in Table IV including all the
old ones from AmIUnique and our new ones. At contrast,
the uniqueness for AmIUnique drops below 84% if removing
any single one of the following six attributes, namely user
agent, timezone, list of plugins, content language, list of HTTP
headers, and screen resolution and color depth. In sum, our
approach is more reliable than AmIUnique in terms of used
features.

Observation 2: Software rendering can also be used for
fingerprinting.

One common understanding for WebGL is that software
rendering may diminish all the differences caused by the
graphic cards. However, our experiment shows that even soft-
ware rendering can be used for fingerprinting. Specifically, we
select all the data where WebGL is rendered by SwiftShader,
an open source software renderer invented by Google and
used by Chrome when hardware rendering is unavailable. We
calculate a special fingerprint only containing all our GPU
rendering tasks, i.e., Task (a)–(p) excluding writing scripts and
video.

Due to the high adoption of hardware rendering, we only
collect 88 cases using SwiftShader and find 11 distinct GPU
fingerprints with 7 unique ones. The uniqueness of software
rendering is definitely much lower than the one of hardware
rendering but still not zero. That is, we need to be careful
when adopting software rendering to mitigate WebGL-based
fingerprinting.

Observation 3: WebGL rendering is a combination of software
and hardware in which the hardware contributes more than the
software.

In this observation, we look at another extreme compared
to software rendering, which is Microsoft Basic Rendering.
Microsoft Basic Rendering provides a universal driver for all
kinds of graphic cards, i.e., the use of Microsoft Basic Render-
ing will minimize the effects of software driver and show the
ones brought by the hardware. Similar to the experiment for
software rendering, we select these that use Microsoft Basic
Rendering and calculate the fingerprints.

For similar reasons in software rendering, we only collect
32 cases using Microsoft Basic Rendering and find 18 distinct
GPU fingerprints with 15 unique values. The uniqueness of
Microsoft Basic Rendering is lower than the one using normal
graphic card drivers, meaning that WebGL is rendered by
both software and hardware. Meanwhile, we consider hardware
makes more contributions, because the uniqueness for Mi-
crosoft Basic Rendering is higher than the one for the software
renderer.

Observation 4: DataURL is implemented differently across
browsers.
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In this observation, we look at DataURL, a common format
used in prior fingerprinting to represent images. Surprisingly,
we find that DataURL is implemented very differently in
browsers, i.e., if we convert an image into DataURL, the
representation varies a lot across browsers. This is a good news
for single-browser fingerprinting but bad for cross-browser. As
shown in Table IV, the cross-browser rate for Canvas is very
low (8.17%), because we adopt the code from AmIUnique
where DataURL is used to store images.

Observation 5: Some differences between rendering results are
very subtle, i.e., with one or two pixel variance.

In this last observation, we manually compare the differ-
ences between rendering results, and find that while some
of them are large, especially between software and hardware
rendering, some are very subtle, especially when two graphic
cards are similar to each other. For example, the Suzanne
model rendered by an iMac and another Mac Pro only differs
one pixel on the texture, and if we rotate the model, the
difference will be gone.

VII. DEFENSE OF THE PROPOSED FINGERPRINTING

In this section, we discuss how to defend our proposed
browser fingerprinting. We will first start from existing de-
fense, the famous Tor browser, and then come to some visions
of our defense.

Tor Browser normalizes many browser outputs to mitigate
existing browser fingerprinting. That is, many features are
unavailable in Tor Browsers—based on our test, only the
following features, notably our newly proposed, still exist,
which include the screen width and height ratio, and audio
context information (e.g., sample rate and max channel count).
We believe that it is easy for Tor Browser to normalize these
remaining outputs.

Another thing worth mentioning is that Tor Browser dis-
ables canvas by default, and will ask users to allow the usage
of canvas. If the user does allow canvas, she can still be
fingerprinted. The Tor Browser document also mentions a
unimplemented software rendering solution, however as noted
in Section VI-D, the outputs of software rendering also differ
significantly in the same browser. We still believe that this
is the way to pursue, but more careful analysis is needed to
include all the libraries of software rendering.

Overall, the idea of defending browser fingerprinting can
be generalized as virtualization, and we need to find a correct
virtualization layer. Think about one extreme solution, which
is a browser running inside a virtual machine—everything is
normalized in the virtual machine, and the browser outputs
are the same across different physical machines. However, the
drawback is that machine virtualization is heavyweight. Tor
browser is another extreme—everything is virtualized as part
of a browser. This approach is lightweight, but we need to
find all possible fingerprintable places, such as canvas and
audio context: If one place is missing, the browser can still
be somehow fingerprinted. We leave it as our future work to
explore the correct virtualization layer.

VIII. DISCUSSIONS ON ETHICS ISSUES

We have discussed ethics issues with the institutional
review board (IRB) of our organization, and obtained the
IRB approval. Specifically, although web tracking can be used
to acquire private information, the identifiers that we obtain
from crowdsourcing workers, e.g., the behaviors of computer
graphics cards, are not private themselves. Only when the
identifiers are associated with private information, such as
browsing history, the combination is considered as private—
however, this step is out of scope of the research. Our survey
part, i.e., the study about the statistics of multiple browser
usage in the Appendix A, contains users’ browsing habits. In
order to ensure privacy, the survey is anonymized and we do
not store user ID from MicroWorkers.

IX. RELATED WORK

In this section, we discuss related work on existing web
tracking and anti-tracking techniques.

A. Web Tracking Techniques and Measurement

We first talk about the first generation tracking, i.e., cookie
or super-cookie based, and then the second generation, browser
fingerprinting.

1) Cookie or Super-cookie based Tracking: There is much
existing work focusing on the measurement or study of cookie
or super-cookie based web tracking techniques. Mayer et
al. [28] and Sanchez et al. [40] conduct comprehensive discus-
sions about third-party tracking, including tracking techniques,
business models, defense choices and policy debates. Another
important measurement work from Roesner et al. proposes
a comprehensive classification framework for different web
tracking deployed in real-world websites [39]. Lerner et al.
conduct an archaeological study of web tracking, including
cookie and super-cookie based as well as browser fingerprint-
ing, from 1996 to 2016 [27]. Soltani et al. and Ayenson
et al. measure the prevalence of non-cookie based stateful
tracking and show how tracking companies use multiple client-
side states to regenerate deleted identifiers [11, 41]. Metwalley
et al. [30] propose an unsupervised measurement of web
tracking. In addition to tracking behaviors and techniques,
Krishnamurthy et al. [22–25] focus on the risk of harm resulted
from web tracking, showing that not only user’s browsing
history, but also other sensitive personal information, such as
name and email, can be leaked out.

2) Browser Fingerprinting: Now let us discuss browser fin-
gerprinting, the second-generation web tracking. We first talk
about existing measurement studies. Yen et al. and Nikiforakis
et al. discuss different second-generation tracking techniques
used in existing fingerprinting tools and their effectiveness in
their works [36, 46]. Acar et al. [9] perform a large-scale study
of three advanced web tracking mechanisms, one on second-
generation web tracking, i.e., canvas fingerprinting, and the
other two staying on the first-generation web tracking, i.e.,
evercookies and use of ”cookie syncing” in conjunction with
evercookies. Fifield el al. [20] focus on a specific metric, i.e.,
the font, of second-generation web tracking. FPDetective [10]
conducts a large-scale study of millions of most popular web-
sites by focusing on the font detection with their framework.
Englehardt et al. [18] also conduct a large-scale study on 1
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million websites and find many new fingerprinting features,
such as AudioContext. We have used their newly discovered
fingerprinting features as part of prior ones in Section II of
our paper as well.

Now let us talk about browser fingerprinting works. Mow-
ery et al. [32] are probably one of the very early works in
proposing canvas-based fingerprinting. Some other works [31,
33] focus on fingerprinting browser JavaScript engine. Nakibly
et al. [34], a position paper, propose several hardware-based
tracking including microphone, motion sensor and GPU. Their
GPU tracking only includes timing-based features, less reli-
able than the technique in the paper. Laperdrix et al. [26],
i.e., AmIUnique, perform a most extensive study on browser
fingerprinting with 17 attributes and we have compared with
them throughout our paper. Boda et al. [14] attempts to achieve
cross-browser tracking, but their features are old ones from
single-browser tracking including IP address. As discussed, IP
addresses are unreliable when a machine is using a DHCP,
behind a NAT, or moved to a new location like a laptop.

As a general comparison with existing works, our approach
introduces many new features on the OS and hardware levels.
For example, we introduce many GPU features such as tex-
tures, varyings, lights and models. For another example, we
also introduce a side channel to detect installed writing scripts
and some new information in AudioContext. All these new
features contribute to our high fingerprinting uniqueness and
cross-browser stability.

B. Existing Anti-tracking Mechanisms

We first talk about existing anti-tracking for the first-
generation tracking, and then for the second.

1) Anti-tracking against Cookie or Super-cookie based
Techniques: Roesner et al. [39] proposed a tool called Share-
MeNot, defending social media button tracking, such as Face-
book Like button. Private browsing mode [44, 45] isolates
normal browsing from private ones with a separate user profile.
Similarly, TrackingFree [37] adopts the profile-based isola-
tion and proposes an indegree-bounded graph for the profile
creation. The Do Not Track (DNT) [43] header is a opt-
out approach, which requires tracker compliance. As shown
by prior works [28, 39], DNT cannot effectively protect users
from tracking in real world. Users can also disable third-party
cookie, which is supported by most browsers to avoid cookie-
based tracking. Meng et al. [29] design a policy and empower
users to control whether to be tracked, but they have to rely
on an existing anti-tracking technique.

All the aforementioned works focus on cookies or super-
cookie based web tracking, and can either fully or partially
prevent such tracking. None of them can prevent the proposed
fingerprinting in this paper, because the proposed belongs to
the second generation, which does not require a server-side,
stateful identifier.

2) Anti-tracking against Browser Fingerprinting: Tor
Browser [38] can successfully defend many browser finger-
printing techniques, including features proposed in our paper.
Please refer to Section VII for more details. Other than the
normalization technique proposed in Tor Browser, PriVarica-
tor [35] adds randomized noise to fingerprint-able outputs.

Because PriVaricator is not open source, we could not test
our fingerprinting against their defense.

X. CONCLUSION

In conclusion, we have proposed a novel browser finger-
printing that can identify not only users behind one browser but
also these that use different browsers on the same machine. Our
approach adopts OS and hardware levels features including
graphic cards exposed by WebGL, audio stack by Audio-
Context, and CPU by hardwareConcurrency. Our evaluation
shows that our approach can uniquely identify more users than
AmIUnique for single-browser fingerprinting, and than Boda
et al. for cross-browser fingerprinting. Our approach is highly
reliable, i.e., the removal of any single feature only decreases
the accuracy by at most 0.3%.
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APPENDIX A
SURVEY OF PEOPLE’S USAGE OF MULTIPLE BROWSERS

In this appendix, we study the statistics of people who
use multiple browsers on the same machine. Note that this
is a small-scale, separate study from all other designs and
experiments of the paper. We perform the study to strengthen
the motivation of the paper. Our results show that people
do use more than one browser on the same machine with a
considerable amount of time.

Now let us introduce our experiment setup on MicroWork-
ers, a crowdsourcing website. We conduct a survey with an
open question that ask survey takers which browser(s) they
have and normally use as well as how much time in terms of
percentage they spend on each browser. They are free to write
anything into a multiple-line text box.

Here are our experiment results. We have collected 102
answers with one answer just copying our survey link and an-
other mentioning a browser that does not exist. After excluding
these two invalid answers, we have exactly 100 in total. 95%
of the surveyed users have installed more than two browsers
because IE or Edge are installed by default. We further count
the percentage of them using two or more browser regularly,
i.e., they spend at least more than 5% time on one of the
browser.

The results of people using browsers are shown in Table V.
70% of the surveyed takers use two or more browsers regularly,
and only 30% use a single browser. Browser types in the
survey answers include Chrome, Firefox, IE, Edge, Safari,
Coconut Browser, and Maxthon. The results show that people
do use multiple browsers, and cross-browser fingerprinting is
important and necessary.
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