
Published as a conference paper at ICLR 2019

NEURAL HEURISTICS FOR SAT SOLVING

Sebastian Jaszczur
University of Warsaw

Michał Łuszczyk
University of Warsaw

Henryk Michalewski
University of Warsaw, deepsense.ai

ABSTRACT

We use neural graph networks with a message-passing architecture and an attention
mechanism to enhance the branching heuristic in two SAT-solving algorithms.
We report improvements of learned neural heuristics compared with two standard
human-designed heuristics.

1 INTRODUCTION

1: function DPLL(Φ)
2: Φ← simplify(Φ)
3: if Φ is trivially satisfiable then return True
4: if Φ is trivially unsatisfiable then return False
5: literal← choose-literal(Φ)
6: if DPLL(Φ ∧ literal) then return True
7: if DPLL(Φ ∧ ¬literal) then return True
8: return False

Algorithm 1: High level overview of DPLL. In this
work, we embed neural network as choose-literal.
In DPLL, simplify contains unit propagation and
clause elimination. Trivially satisfiable and trivially un-
satisfiable for CNF means respectively an empty formula,
and a formula containing an empty clause.

The Boolean satisfiability problem (SAT) is the
problem of determining the existence of a so-
lution for a given propositional logic formula.
It is a NP-complete problem, meaning that any
NP problem can be reduced to SAT problem in
polynomial time (Kar72).

We explore the possibility of using neural net-
works in SAT solving as branching heuris-
tics in search algorithms1. We focus on two
SAT-solving algorithms: DPLL (Algorithm
1) and more advanced CDCL. Both of those
are complete backtracking-based search algo-
rithms. Both depend on the branching heuristic
choose-literal, which chooses branching
variable and its Boolean value. The expected
running time is heavily dependent on the quality
of this heuristic (MS99). In this work we use neural networks as choose-literal heuristic and
compare its performance with DLIS and Jeroslow-Wang One-Sided (JW-OS) heuristics, which are
presented in (MS99; MMZ+01) as one of the best strategies in most circumstances. We compare the
performance in terms of number of branching decisions and show the possibility of enhancing the
performance of SAT solvers with the help of learned heuristics.

2 RELATED WORK

(SLB+18) proposed the NeuroSAT message-passing network architecture for SAT-solving that
generates the assignment of variables directly in the graph. This is an important inspiration for
our work, although in contrast to (SLB+18) we use a message-passing network for guidance
of a backtracking-based algorithm instead. A similar graph representation, but more general in
order to accommodate for higher-order logic is used in FormulaNet presented in (WTWD17).
To the best of our knowledge the FormulaNet architecture was never used for neural guidance.
In (SLB+18; WTWD17) formulas are represented as graphs and a general approach to neural
networks and graphs, including the attention mechanism, can be found in (BHB+18; VCC+17).
The PossibleWorldNet architecture described in (ESA+18) is based on the TreeNN architecture,
with an additional idea of checking multiple possible worlds. We consider the exploration of
possible worlds as an alternative to structured backtracking-based search algorithms like DPLL
and CDCL. It is worth noting that PossibleWorldNet could be modified to use a message-passing
architecture while keeping the exploration of possible worlds. Another application of TreeNN for
proof synthesis in propositional logic was proposed in (SS18). EqNet (ACKS16) solves a more

1See https://bit.ly/neurheur for a TPU-bound implementation of all algorithms in this paper.

1

https://bit.ly/neurheur


Published as a conference paper at ICLR 2019

general problem of determining equivalence of Boolean (alternatively: arithmetic) expressions
(satisfiability can be seen as equivalence to any unsatisfiable formula e.g. a ∧ ¬a). However, the
formulas solved by EqNet have up to 10 variables and 13 symbols, while we tackle formulas beyond
one hundred variables and thousands of symbols. Learned Restart Policy (LOM+18) presents
a different approach to improve a SAT solver with machine learning, where the network decides
at each step whether the algorithm should be restarted to follow another random path in the search tree.

3 ARCHITECTURE

We use a message-passing graph-based neural network architecture similar to NeuroSAT introduced
in (SLB+18). The general idea is to represent a formula as a graph with two node types (literal and
clause) and two edge types (literal-literal edges represent the negation relation, and clause-literal
edges represent relation between each clause and literals it contains). Example formula represented
as a graph is shown in Figure 2 Left. Each node has its own state, represented by an embedding
vector. Thanks to this representation, we have the following properties: 1. Invariance to variable
renaming. 2. Invariance to negation of all occurrences of a variable. 3. Invariance to permutation of
literals in a clause. 4. Invariance to permutation of clauses in a formula.

LEt-1

CCL

MLP1 AGGR

CONCAT
CEt-1

CLL

LEt

CCL

CEt

CLL

MLP2

MLP3

AGGR

AGGR

CONCAT
MLP4

MLP5

Figure 2: Left: A graph representation of formula (A ∨ ¬C ∨B) ∧ (¬B ∨ C) used in our work. In the model
nodes are unlabeled (labels are included only for the reader’s convenience). Different colors mark two distinct
types of nodes (clause and literal) and two distinct types of edges (literal-literal and clause-literal). Right:
Overview of message-passing architecture. In each iteration we take as the input: connection matrix between
clauses and literals (CCL), connection between literals and their negations (CLL), literal embeddings from
previous iteration (LEt−1), and clause embeddings from previous iteration (CEt−1). We use 5 separate MLPs,
which share parameters across iterations. Aggregation method depends on a model, see the description below.

We initialize all embedding vectors with a trainable initial embedding, different for each type of
node. Then we run a number of iterations (from 20 to 40 in our experiments), visualized in Figure 2
Right. Each iteration consists of three stages: Stage 1. Message: Each node generates a message
vector V (and a vector K if needed) based on its embedding, to every connected node. V and K are
generated with a three-layer MLP with LeakyReLU (MHN13) activation after each hidden layer and
linear activation after the last layer. Stage 2. Aggregate: all messages are delivered according to the
connection matrix, then aggregated for each receiver with one of the aggregation functions (described
in the next paragraph). Stage 3. Update: Each node updates its embedding based on its previous
embedding and aggregated received messages. New embedding is computed by a three-layer MLP
with LeakyReLU activation after each hidden layer and sigmoid activation after the last layer.

We explore two different aggregation methods. The first is the average of received V vectors. The
second method is a modified attention mechanism. As a message, instead of just a single vector V ,
we send two vectors, V and K. Receiving node generates one vector Q based on its embedding,
and the result of aggregation is

∑
i Vi sigmoid(Ki · Q). Thanks to this, each message may be

selectively rejected or accepted by the receiver, depending on relation between K and Q. The
intuitive difference between this mechanism and the standard attention is as follows: the standard
attention as in (VCC+17) chooses one message to look at, while our mechanism rejects or accepts
messages independently and looks at their sum.

Like NeuroSAT, our architecture learns to predict satisfiability of the whole formula (which we name
sat prediction). However, it also predicts, for each literal separately, the existence of a solution

2



Published as a conference paper at ICLR 2019

with this literal (which we name policy prediction). To get policy prediction we add on top of each
literal’s embedding in each iteration a logistic regression (with parameters shared across all literals
and iterations). To get sat prediction we add a linear regression on top of each literal’s embedding in
each iteration, and then apply a sigmoid on sum of their outputs. We define sat loss as cross-entropy
loss between the sat prediction and the ground truth. We define policy loss as zero if formula is
unsatisfiable and as the average of cross-entropy losses between policy predictions and ground truths
if whole formula is satisfiable. To get a loss of the whole model we sum together both losses for
every iteration.

4 EXPERIMENTAL RESULTS

Dataset and training details. To train and evaluate the models we use a class of SAT problems
SR(n) introduced and described in detail in (SLB+18). It is parametrized only by n – the number of
variables used in a formula. Both the size and the number of clauses vary. The dataset is balanced
in terms of number of satisfiable and unsatisfiable examples. Each of the SR(n) samples has two
labels (see Section 3): sat indicating whether the formula Φ is satisfiable and policy indicating for
each literal l whether Φ ∧ l is satisfiable. We generate each of those numbers by running MiniSat
2.2 (ES03). Sample random SR(30) formulas are solved by MiniSAT 2.2 in 0.007 seconds, while
SR(110) takes 0.137 second and SR(150) takes 3.406 seconds (for a Xeon E5-2680v3@2,5 GHz
computer). We have trained separate models on SR(30), SR(50), SR(70) and SR(100). Table 1 shows
the details of the training procedure. Metrics sat error and policy error are defined as mean absolute
error of sat or policy prediction versus labels. The presented models are message-passing neural
networks with our modified attention mechanism.

Problem Loss sat error policy error Batch size Train. steps Train. time
SR(30) 28.178±0.672 0.084±0.004 0.050±0.002 128 1200K 20h
SR(50) 32.024±0.555 0.233±0.017 0.105±0.006 64 600K 12h
SR(70) 33.010±0.482 0.266±0.033 0.110±0.007 64 600K 22h
SR(100) 34.227±0.127 0.319±0.007 0.123±0.002 32 1200K 28h

Table 1: Each of the models was trained on SAT samples drawn from the distribution marked in the first column.
The metrics: loss, sat error and policy error are evaluated on an independently generated evaluation set. The
values indicate mean and standard deviation over 3-5 trained models. Models were trained using single TPU v2.

SR(10) SR(20) SR(30) SR(40) SR(50) SR(70) SR(90)SR(110)
0

25

50

75

100

%
 p

ro
bl

em
s s

ol
ve

d

DLIS
JW-OS
Model SR(30)
Model SR(50)
Model SR(70)
Model SR(100)

Figure 3: Performance of DPLL with different guid-
ance heuristics on specific problem sizes. The x
axis indicates the class of the evaluation set: eval-
uation is performed on fresh randomly chosen one
satisfiable hundred SR(x) formulas. The y axis in-
dicates the percent of instances (out of 100) solved
by DPLL within 1000 steps.

Experiment 1: comparison of all models with
DLIS and JW-OS heuristics. We evaluated the
DPLL algorithm guided by our 4 kinds of models
described above and compared to DPLL guided by
JW-OS and DLIS. As a performance consideration
we decided to stop DPLL after 1000 steps (see Exper-
iment 2 below for a comparison without this restric-
tion) and count the number of solved formulas out
of 100 in each class. We present the results in Figure
3. For this and subsequent experiments we only con-
sider satisfiable SR(n) samples. JW-OS proved to be
the best on average classes of problems: SR(50) and
SR(70), whereas neural guidance-based algorithms
proved to be the best on large problems: SR(90) and
SR(110).

Experiment 2: detailed comparison with the JW-OS heuristic. We have selected the SR(50)
model for a detailed comparison of the learned heuristics versus JW-OS and for the sake of this
comparison designed hybrid guidance algorithm that uses a model trained on SR(50) (a fixed one of
the three similar replicas) and switches to JW-OS when the network predicts sat probability below a
threshold of 0.32. We then compared the new hybrid guidance with the heuristic JW-OS without the
1000 step restriction. JW-OS was selected on the basis of Experiment 1. The experiment shows that
the hybrid approach is faster in terms of number of steps in a significant majority of cases, both when
used with DPLL (Figure 4 Left) and with CDCL (Figure 4 Right).

2We leave further parameter and model searches as a topic which should be considered in the full version of
this paper.

3



Published as a conference paper at ICLR 2019

SR(40) SR(50) SR(60) SR(70) SR(80) SR(90)
0

25

50

75

100

Hybrid solves in less steps
Same # steps
JW-OS solves in less steps

SR(30) SR(40) SR(50) SR(60) SR(70) SR(80)
0

25

50

75

100

Hybrid solves in less steps
Same # steps
JW-OS solves in less steps

Figure 4: Left: Comparison of Hybrid (ours) and JW-OS as heuristics in DPLL. We measure the performance of
each method according to the number of steps required to find a solution for a given SAT instance. A method
wins if it solves a given instance in a smaller number of steps. The blue bar reflects the percentage of formulas
where the Hybrid (ours) method won, the green bar means that JW-OS won, and the orange bar means that
there was a draw. Right: the same for CDCL.

SR(30)
level 20

SR(30)
level 30

SR(50)
level 20

SR(50)
level 30

SR(50)
level 40

SR(70)
level 20

SR(70)
level 30

10 1

6 × 10 2

Attention disabled
Attention enabled

Figure 5: Comparison of policy error with and
without attention. The presented values are mean
and standard deviation over 3-5 trained models
calculated on the evaluation set.

Experiment 3: an ablation for the attention mech-
anism. From experiments presented in Figure 5 fol-
lows that in most cases attention improved evaluation
metrics by a significant margin. Only in the case of
SR(30), level 20 attention degraded the model per-
formance. For SR(50), level 40 the metrics with and
without attention stayed within the standard deviation
of each other.

Reproducibility. For each set of hyperparameters
(e.g. SR(30), level 40), we trained five models. We
considered a model not correctly trained if adding it
to the set of models raised standard deviation of the
losses above 1, see Table 1. We excluded such models
(up to 2 models out of 5 for a set of hyperparameters)
from further comparisons and left the question of
stability of training as a topic of further investigations. The code including hyperparameters is
published at https://bit.ly/neurheur. Our code is based on TensorFlow (AAB+15). It
uses a CDCL implementation by (Zho18). We access MiniSat through PySAT interface (IMM18).

5 CONCLUSIONS AND FUTURE WORK

In this work we have shown three experiments confirming that SAT-solving can be augmented by
neural networks. The message-passing architecture augmented by attention performs competitively
comparing with standard heuristics when evaluated on relatively large propositional problems,
including problems with more than a hundred variables (see Section 4). From the ablation presented
in Experiment 3 follows that the message-passing architecture that uses the attention mechanism
overall performs better then the same architecture without attention and we attribute it to a selective
acceptance of incoming messages made possible by the attention mechanism. We believe that using
an appropriately large computing infrastructure the learning process can be extended to more complex
examples and that in the near future parallelization combined with a variant of the message-passing
architecture can be used to train models which will tackle larger SR problems, and possibly SAT
problem classes currently beyond the reach of SAT-solvers. As a future step we consider extending
our improved heuristics so that a neural network would be able to control other aspects of the SAT
solver behavior, like restarting and backtracking. Eventually, other prediction targets, including
expected number of steps, may be beneficial. Once we exhaust the pool of available supervised
data it would be interesting to apply reinforcement learning methods, including methods recently
presented in (KUMO18). In this work we focus on the number of steps of the algorithm rather than
execution time. Moving the main loop of DPLL or CDCL to a tensor computation graph would be a
step towards making the algorithms more competitive in terms of the execution time.

4

https://bit.ly/neurheur


Published as a conference paper at ICLR 2019

REFERENCES

[AAB+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[ACKS16] Miltiadis Allamanis, Pankajan Chanthirasegaran, Pushmeet Kohli, and Charles A.
Sutton. Learning continuous semantic representations of symbolic expressions. CoRR,
abs/1611.01423, 2016.

[BHB+18] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,
Vinícius Flores Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo,
Adam Santoro, Ryan Faulkner, Çaglar Gülçehre, Francis Song, Andrew J. Ballard,
Justin Gilmer, George E. Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash, Victo-
ria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matthew
Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational inductive biases,
deep learning, and graph networks. CoRR, abs/1806.01261, 2018.

[ES03] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Theory and Applications
of Satisfiability Testing, 6th International Conference, SAT 2003. Santa Margherita
Ligure, Italy, May 5-8, 2003 Selected Revised Papers, pages 502–518, 2003.

[ESA+18] Richard Evans, David Saxton, David Amos, Pushmeet Kohli, and Edward Grefenstette.
Can neural networks understand logical entailment? CoRR, abs/1802.08535, 2018.

[IMM18] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. PySAT: A Python toolkit
for prototyping with SAT oracles. In SAT, pages 428–437, 2018.

[Kar72] R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher,
editors, Complexity of Computer Computations, pages 85–103. Plenum Press, 1972.

[KUMO18] Cezary Kaliszyk, Josef Urban, Henryk Michalewski, and Mirek Olsák. Reinforcement
learning of theorem proving. CoRR, abs/1805.07563, 2018.

[LOM+18] Jia Hui Liang, Chanseok Oh, Minu Mathew, Ciza Thomas, Chunxiao Li, and Vijay
Ganesh. Machine learning-based restart policy for CDCL SAT solvers. In Theory and
Applications of Satisfiability Testing - SAT 2018 - 21st International Conference, SAT
2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July
9-12, 2018, Proceedings, pages 94–110, 2018.

[MHN13] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinearities improve
neural network acoustic models. In in ICML Workshop on Deep Learning for Audio,
Speech and Language Processing, 2013.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design
Automation Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001, pages
530–535, 2001.

[MS99] Joao Marques-Silva. The impact of branching heuristics in propositional satisfiability
algorithms. In EPIA, 1999.

[SLB+18] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura,
and David L. Dill. Learning a SAT solver from single-bit supervision. CoRR,
abs/1802.03685, 2018.

[SS18] Taro Sekiyama and Kohei Suenaga. Automated proof synthesis for propositional logic
with deep neural networks. CoRR, abs/1805.11799, 2018.

5



Published as a conference paper at ICLR 2019

[VCC+17] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò,
and Yoshua Bengio. Graph attention networks. CoRR, abs/1710.10903, 2017.

[WTWD17] Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng. Premise selection for theorem
proving by deep graph embedding. CoRR, abs/1709.09994, 2017.

[Zho18] Zhang Zhongwei. Simple SAT solver with CDCL implemented in Python. https:
//github.com/z11i/pysat/, 2018.

6

https://github.com/z11i/pysat/
https://github.com/z11i/pysat/

	Introduction
	Related work
	Architecture
	Experimental results
	Conclusions and future work

