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Abstract

Recent work [42] has established the need to build
a web browser as a multi-principal operating system
where a principal is a web site. That work designed
the protection architecture of such a browser. Another
fundamental facility that an OS must offer is resource
management, including both access control and resource
sharing among authorized principals. Unfortunately, re-
source management in existing browsers is largely non-
existent, and resource management of a commodity OS
is ill-suited for many web applications that embed con-
tent from other principals.

In this paper, we tackle the problem of resource man-
agement for web applications in a multi-principal OS-
based browser called ServiceOS. ServiceOS provides
web applications with systematic and consistent access
and control of devices, such as camera and GPS, and
it uses a novel DOM-recursive resource allocation pol-
icy by default when resources like CPU and network
bandwidth are under contention. We also introduce
application-specified resource allocation to allow web
programmers to explicitly influence resource manage-
ment based on web application semantics.

We have built a ServiceOS prototype that manages a
wide range of resources, including CPU, memory, net-
work bandwidth, and devices like cameras, microphones,
or GPS. Our evaluation shows that compared to existing
browsers, ServiceOS provides web applications with im-
proved service quality, fairness, and security.

1 Introduction

Web browsers have evolved into multi-principal operat-
ing environments where mutually distrusting web site
principals share the underlying system resources [41].
To this end, Gazelle [42] has proposed to architect a
web browser as a multi-principal operating system, sup-
porting web site principals as first-class citizens. While
Gazelle re-architected the protection architecture of a
browser, we tackle another fundamental OS facility: re-
source management, including resource access, control,
and sharing, for web applications in such an OS-based
browser. Figure [I] shows the architecture of such a
browser system; we provide more details in Section 2]
Resource management in existing browsers is largely
non-existent. Today’s browsers don’t manage resources
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Figure 1: Multi-principal OS-based browser architecture
where a principal is a web site: Principal instances’ processes
are restricted so that they can only issue ServiceOS system
calls by IPC to the browser kernel process and cannot interact
with the underlying commodity OS. The browser kernel pro-
cess handles ServiceOS system calls and utilizes the commod-
ity OS for system resource access and resource management as
it pertains to web applications.

like CPU, memory, or network bandwidth for web appli-
cations. They also don’t provide web applications with
systematic and consistent access and control of common
1/O devices, such as cameras or GPS. The lack of re-
source management directly impacts the capabilities and
quality of today’s web applications, making them less
rich and less robust than their desktop counterparts. Re-
cent work [32]] suggests relying on a commodity OS’s re-
source management for a multi-process-based browser.
However, we argue that resource management mecha-
nisms in commodity OSes can be ill-suited for many web
applications.

For resource sharing, one could consider mapping web
site principals onto user principals of a commodity OS
(i.e., putting different web site principals into separate
processes and labeling each process with a unique uid).
This is insufficient, as it is common for web applications
to embed content from different principals, such as an ad-
vertisement, a user profile enclosed in an <iframe> tag,
or a Flash movie enclosed in an <object> tag. Fun-
damentally, the fairness in resource management across
principals in commodity OSes (e.g., in CPU schedul-
ing) is not suited for web applications’ recursive, cross-
principal service composition because it would give a
principal the ability to obtain arbitrary amounts of re-
sources. As illustrated in Figure a web applica-
tion a . com embeds a principal attackerAd. com which
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Figure 2: Cross-principal service composition in web ap-
plications. By embedding many services, attackerAd.com can
mount a denial-of-service attack against a.com with current
scheduling mechanisms in commodity OSes.

can in turn embed many different principals to cause
denial-of-service to a . com with a commodity OS’s CPU
scheduling mechanisms.

For resource access control, web applications require
prudent considerations: for example, an untrusted site
should never access a privacy-sensitive device, such as a
microphone. Access control for web browsers also re-
quires easy extensibility to new devices and new web
APIs for accessing them, scalability to a large and grow-
ing number of web principals, and simplicity in man-
agement. Access control mechanisms in commodity
OSes were never designed to achieve these goals. To-
day, browser plug-ins, such as Flash or Google Gears,
are allowed to directly interact with the underlying OS
to access devices. Access control is then at the discre-
tion of each plug-in. This is flawed, because it results in
many security policies coexisting, and often conflicting,
within the same browser. Worse, the compromise of any
plug-in allows a malicious web site to bypass the plug-in
security model and access any devices at will.

In this paper, we devise resource management for
web applications in the context of ServiceO.Sﬂ a multi-
principal OS that supports web applications as first-class
principals. For access control, we separate access control
policies from resource access mechanisms and centralize
all access control decisions for all devices. Our key idea
for managing access is a Resource Object Model (ROM)
API for access control that is aware of device semantics.
The ROM eases extensibility to new devices and sim-
plifies access control management with flexible access
control granularities.

For resource sharing, when under resource contention,
we use DOM-recursive resource allocation policies by
default for divisible resources like CPU and network
bandwidth. The recursion hierarchy corresponds to the
principal embedding hierarchy of a web application, al-
lowing fair sharing of resources in the face of cross-
principal web application composition. The principal
embedding hierarchy typically corresponds to the HTML

IThe “service” in ServiceOS comes from the “service” in
“Software-as-a-Service”.

DOM [8§]] tree’s hierarchical relationship between the in-
volved principals, hence the name “DOM-recursive”. In
addition, we introduce application-specified resource al-
location so that a programmer can maximize a web appli-
cation’s performance by explicitly allocating resources to
embedded principals. Together, the DOM-recursive and
application-specified policies provide the optimal bal-
ance between fairness and efficiency.

We have built a Windows-based ServiceOS prototype
that manages a wide range of resources, including CPU,
memory, storage, network bandwidth, and peripheral de-
vices like cameras, microphones, or GPS. Our evaluation
shows that compared to existing browsers, ServiceOS
provides web applications with improved service qual-
ity, fairness, and security.

Section|2|gives the background on multi-principal OS-
based browser architecture. We establish our conceptual
framework in Section [3] categorizing resources accord-
ing to their semantics and deriving the appropriate access
control and resource sharing approach for each category.
We present our design on resource sharing in Section 4]
and on access control in Section[5] We describe our pro-
totype implementation in Section[6]and present our eval-
uation in Section [/l We compare and contrast with re-
lated work on web browsers and resource management
in Section (8| Finally, we conclude in Section E}

2  Multi-Principal OS-Based Browser
Architecture

In this section, we describe the architecture of Ser-
viceOS, which is a multi-principal OS that supports web
applications as first-class principals. Our architecture,
shown in Figure[] is based on the Gazelle browser’s ar-
chitecture [42] with slight adaptations for the purposes
of resource management.

Unlike traditional OSes, which treat users as prin-
cipals, ServiceOS treats web applications or web sites
as OS principals, as in Gazelle [42] and Mashu-
pOS [41]. The principal is labeled with the triple of
<protocol,domain, port>, just as in the same-origin
policy [35] in today’s browsers (but today’s browsers are
not constructed as multi-principal OSes [42]). A web site
principal can embed other principals through frame and
object tags.

A principal is the unit of protection. Principals are
completely isolated in resource access and usage. Any
sharing must be made explicit. Just as in desktop ap-
plications, where instances of an application are run in
separate processes for failure containment and indepen-
dent resource allocation, a principal instance is the unit of
failure containment and the unit of resource allocation.
For example, navigating to the same URL in different



tabs corresponds to two instances of the same principal.
When a . comembeds two b . com iframes, we assume the
two iframes are independent and run them using two in-
stances of b. comEl However, if a. com embeds a same-
origin frame, that frame runs in the same a.com prin-
cipal instance as the host page by default; we allow the
host page to change the default and designate an embed-
ded same-origin frame or object as a separate principal
instance for independent resource allocation and failure
containment. Principal instances are isolated for all run-
time resources, but principal instances of the same prin-
cipal share persistent state such as cookies and other lo-
cal storage. Protection unit, resource allocation unit, and
failure containment unit can each use a different mecha-
nism depending on the system implementation. Because
the implementation of our principal instances contains
native code, we use OS processes for all three purposes.

ServiceOS consists of both a browser kernel (BK) pro-
cess and a possibly customized commodity OS. The BK
process handles the ServiceOS system calls from prin-
cipal instances and utilizes the commodity OS to access
system resources. The logic for processing web content
(i.e., libweb, plug-ins) resides in the principal’s address
space, and the BK is agnostic to web content seman-
tics. Resource management functionality is mostly re-
alized in the BK, which relies on underlying OS mecha-
nisms to impose its resource sharing policies. If the OS
does not provide the necessary resource sharing mecha-
nisms, it may need to be customized. For example, for
our Windows-based prototype, we needed to customize
the CPU scheduling in Windows, but had we chosen to
build a Linux-based prototype, we could likely leverage
Linux’s existing group scheduling facility [5].

The processes of principal instances are restricted
so that they cannot interact with the underlying OS.
To access resources, they must use ServiceOS system
calls. Because plug-ins run in a web principal’s address
space, they are restricted to the same ServiceOS system
calls. The feasibility of such process restriction has been
demonstrated by the picoprocess design and implemen-
tation in Xax [9]].

3 Conceptual Framework

Resource management consists of access control and re-
source sharing. The access control for a resource de-
termines which principals can access the resource. Re-
source sharing manages resource contention, namely,

2per HTMLS5 (18] specification, such related same-origin frames
can access each other’s DOM and must share the same event loop. By
default, our model schedules them independently using different ren-
derers and relies on IPC for communication, but to support existing
semantics, we allow a b . com frame to specify that a related b . com
frame should share its principal instance.

how the resource should be shared among contending
authorized principals or their principal instances. Access
control and resource sharing are orthogonal to each other
and can be designed independently. Next, we map out the
resource characteristics for both access control and re-
source sharing and pinpoint the appropriate approaches.

Access Control. For access control, we have catego-
rized resources into basic computing resources, user in-
put devices, and peripheral resources, as shown in Ta-
ble [I Access control on basic computing resources,
such as CPU, memory, display, network bandwidth, and
storage, is a matter of principal admittance to the sys-
tem. The browser kernel can possibly adopt a whitelist
or blacklist-based filter (e.g., for anti-phishing purposes),
denying some principals from being admitted to the sys-
tem. Once a principal is admitted, it can access all of the
basic computing resources.

User input devices like mouse, keyboard, or touch
screen can only be used by the user, and cannot be used
by any web site principals; otherwise web site principals
could impersonate the user.

Peripheral resources, such as those listed in the table,
are subject to discretionary access control for which we
present our design in Section 3}

Resource Sharing. For resource sharing, we first di-
vide resources into runtime resources and persistent re-
sources, as shown in Table Runtime resources are only
available when the browser application is running, while
persistent resources like storage survive browser restarts.

A browser’s storage resources include cookies and
more recently client-side local storage and application
cache as proposed by HTMLS [[18]]. We observe that only
the user can be responsible for reclaiming and arbitrating
the storage space among principals when storage is under
contention (e.g., running out of disk space). For example,
a user may prefer all of her address book to be present at
all time, even if the address book web application has
exceeded a fair share of the storage space.

We further subdivide runtime resources into divisi-
ble and non-divisible resources. A divisible resource
allows fractions of the resource (whether in time di-
mension or space dimension) to be shared or allocated
among the contending principal instances. For divisible
resources, we apply DOM-recursive resource allocation
and application-specified resource allocation when un-
der resource contention; we present both in detail in Sec-
tion 4l

ServiceOS considers input sensors like GPS, ac-
celerometer, or compass as transactional, because such
a device’s interactions are independent from one another
and the device’s data can be obtained with a single sys-
tem call; each use is a short transaction (rather than a
long session that needs to be explicitly set up and torn
down). Such resources require no additional sharing



Resource types Resource Examples

Access Control Mechanism

basic computing resource

CPU, memory, display, data network, storage

principal admittance in BK

user input devices mouse, keyboard, touch screen

exclusive user access

peripheral resources

camera, GPS, telecom network, microphone, speaker

discretionary access control (Section 5)

Table 1: Resource characterization for access control.

Resource types

Resource Examples

Resource Sharing Mechanism

— CPU, memory, display, data network, input sensors | DOM-recursive sharing and application-
. divisible . . X
runtime (GPS, accelerometer, compass) specified resource allocation (Section 4)
resources non- session-based resources (telecom network, . )
I . user-arbitrated sharing
divisible | microphone, speaker, camera)

persistent resources | storage resources (disk, flash)

user-arbitrated sharing

Table 2: Resource characterization for resource sharing.

policies since they are effectively scheduled by the poli-
cies controlling CPU and memory — the BK accesses
them by executing the sensor’s read system call code
(abiding by CPU scheduling rules for principal instance
that is making this request) and reading buffered sensor
data from memory.

Non-divisible resources cannot be divided in time or
space. Session-based resources in the second row of Ta-
ble 2] are examples of such resources. When such re-
sources are under contention, users need to decide the
winner based on their needs. For example, the user is on
the phone using the telecom network through one appli-
cation; if another application needs to make a phone call,
the browser kernel must prompt the user to make a deci-
sion to either stay on the current call or make a new call.
Similarly, if a web application is in an exclusive video
camera recording session, only the user can be the de-
cision to interrupt it and grant camera access to another
application.

An allocated fraction of certain resources is accessible
to only one authorized principal instance or principal at a
time. For example, a CPU time slice or a piece of mem-
ory allocated for a principal instance can only be used by
that principal instance. On the other hand, depending on
device support, resources like speaker, microphone, and
video camera could offer simultaneous access from mul-
tiple principal instances. For example, several principal
instances may be fine with outputting to the speaker con-
currently and having their audio data mixed together; au-
dio and video streams from microphone and video cam-
era may be received simultaneously by multiple principal
instances for various recording purposes. Table |3 sum-
marizes exclusive-use and concurrent-use resources. For
concurrent-use resources, we allow web applications to
choose between concurrent and exclusive use. Our sys-
tem provides defaults for all such devices, and web ap-
plications are allowed to change the default later. For
example, as indicated in Section [5s Table [4 our sys-

Exclusive use for
principal instance
Exclusive use for
principal

CPU, memory, display, network
bandwidth, dialer

storage

speaker, microphone, camera,

Concurrent use
GPS, accelerometer, compass

Table 3: Exclusive use vs. concurrent use for an allocated
fraction of a resource.

tem permits concurrent use for speaker by default, but
not microphone for privacy reasons. Note that because
of their transactional read-only nature, input sensors like
GPS can always be read concurrently.

4 Resource Sharing

In this section, we present our resource sharing design
for divisible resources, including CPU, memory, display,
and data network bandwidth.

Resource sharing in ServiceOS is performed on prin-
cipal instances, which form the unit of our resource al-
location (Section [2). For example, in Figure 3] a.com
embeds content from two other principals, b.com and
c.com, and c. com further embeds content from d. com.
This corresponds to four principal instances with one in-
stance for each site.

4.1 DOM-recursive resource allocation

In the face of resource contention, the straightforward
“flat” scheduling across contending principal instances
(as in round-robin CPU scheduling for desktop applica-
tions in Windows or Linux) is not well-suited for Web
applications. Unlike desktop applications, a Web ap-
plication can embed content from other principals; flat
scheduling would enable a Web application to acquire
an arbitrary amount of resources, thereby conducting a
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Figure 3: DOM-recursive sharing in the presence of web
application composition. By default, ServiceOS allocates re-
sources according to the hierarchical share of each contending
principal instance.

denial-of-service attack. Figure [2| gives such an exam-
ple.

Instead, we must consider the hierarchical organiza-
tion of content on today’s Web pages. To this end, Ser-
viceOS uses DOM-recursive allocation, where the re-
source is divided recursively along the principal embed-
ding hierarchy of a web application. Namely, ServiceOS
first divides the resource into equal fractions among the
top-level contending principal instances, each of which
runs in a separate browser tab. The fraction of the re-
source assigned to a principal instance is then split fairly
among the principal instance itself and all of its embed-
ded principal instances that are actively contending for
the resource. We give the pseudo code for the recursive
allocate function below, which calculates the resource
share for each contending principal instance.

allocate(null, top_level_principal_instances, 1);

function allocate(parent, children, amount) {
numChildren = |children
if (parent !=null) {
numChildren++;
share[parent] = amount/numChildren;
}
foreach principallnstance in (children) {
share[principallnstance] = amount/numChildren;
if (hasChildren(principallnstance))
allocate (principallnstance,
principallnstance.children,
share[principallnstance]);

s

As an example, in Figure [3| assuming that a.com is
the only top-level web page (i.e., only one tab is opened),
if all principal instances are actively contending the re-
source, a.com, b.com, and c.com will each receive 1/3
of a resource; and c.com splits its 1/3 among itself and
d. com, so that each will get 1/6 of the resource. If b. com
is not contending the resource, then a.com and c.com
both receive 1/2, where c.com splits its share for itself
(1/4) and d. com (1/4).

The key property of our DOM-recursive resource allo-
cation policy is that it provides fairness across all the con-
tending principal instances at the same level of the prin-
cipal embedding hierarchy, but not across all the princi-
pal instances. We use this policy by default for allocating
CPU and network bandwidth (but not memory, as we will
see shortly).

We separate resource allocation policy from resource
allocation mechanisms.  We use the same DOM-
recursive resource allocation policy for all the relevant
resources, but resource allocation mechanism is differ-
ent from each resource. For CPU scheduling, existing
proportional scheduling mechanisms, such as a lottery
scheduler [39] or a hierarchical scheduler [5, 28], can be
used and fed with our policy; we used the former in our
implementation. For the data network bandwidth alloca-
tion mechanism, various bandwidth shapers [34, 10, 27]
can be used to fairly share bandwidth across contending
principal instances; we used NetLimiter [27]. Bandwidth
contention can happen when the last-hop bandwidth is
limited. For example, 3G networks offer an average of
only 841 Kbps [435].

In Section [/} we give realistic examples of how ex-
isting browsers, including Gazelle and Google Chrome,
allow resources to be taken over by misbehaving princi-
pals embedded in a web application, and how ServiceOS
can handle such situations gracefully.

Memory. Complex Web content may require signifi-
cant memory resources for processing. Unfortunately, a
script on a Web page (or in an embedded gadget) could
exhaust the host’s available memory, causing thrashing
or denying memory allocation to scripts in concurrently
executing Web content. The browser must manage mem-
ory to prevent such scenarios; for example, it seems plau-
sible for the browser to terminate an embedded untrusted
ad that is stealing memory from the parent page and other
top-level pages. However, this turns out to be a hard
problem. Memory is difficult to reclaim once allocated,
yet denying a memory allocation ultimately denies exe-
cution. Most browsers, such as Internet Explorer, choose
to ignore such problems, relying on the user to close
memory-intensive tabs; Google Chrome additionally en-
forces an arbitrary upper memory limit for any top-level
Web page, terminating all of its scripts once the limit is
exceeded. No browsers attempt to fairly manage mem-
ory among gadgets embedded on the same Web page.

In trying to improve upon these approaches, we con-
sidered and rejected several approaches. First, we
considered using DOM-recursive allocation for custom
working set management when memory is under con-
tention [16} 24} 22]]. We rejected this approach because
paging renders an application’s performance intolera-
ble, with little room for improvement. We also tried
to have the browser kernel permissively allocate mem-



ory to all principal instances; when out of memory, the
BK could simply terminate lowest-priority principal in-
stances (e.g., embedded ads) to reclaim memory. Un-
fortunately, determining the relative importance of vari-
ous embedded content is intractable for an arbitrary Web
page since the BK cannot infer the page’s semantics.
Therefore, terminating an embedded gadget might break
the functionality of another component on the parent
page.

Overall, we found that to improve memory manage-
ment within top-level tabs, the browser must know more
about a Web page’s resource usage semantics. Sec-
tion describes how Gazelle allows pages to express
such semantics, including new abstractions for specify-
ing memory requirements of various elements of a page.

Display. Fairly sharing the display is meaningless for
web applications. In fact, display is typically allocated
by a parent principal instance to its children through
explicit position and dimension specifications, such as
width and height attributes of frames and object tags.
Gazelle [42] gives a comprehensive design of display
management and protection; ServiceOS adopts Gazelle’s
display protection design.

Dynamically-generated content. Today’s
Web pages can execute code (e.g., JavaScript’s
document.createElement) to dynamically inject new
embedded content and new principal instances. Gazelle
properly readjusts its policies when such events occur.
Dynamically spawned principal instances result in new
processes created by the browser kernel, and the BK
recalculates the hierarchical resource shares used for
CPU and network allocation.

4.2 Application-Specified Allocation

In the absence of knowing web applications’ resource
needs, DOM-recursive resource allocation policy is fair
and prevents an embedded, misbehaving principal from
monopolizing resources. Nevertheless, a web applica-
tion itself may know how to optimally allocate resources
among itself and embedded content. For example, if
a.com embeds an untrusted ad, it might want to restrict
the ad’s CPU and memory usage; if a.com embeds a
video application, it might indicate that this video can
be best viewed with a bandwidth of 200 Kbps. To sup-
port such scenarios, we enable web programmers to pro-
vide application-specified resource allocation for their
web applications. Note that this does not violate hier-
archical fairness: on Figure[3] c . com’s resource policies
can influence c.com and d.com, but they cannot affect
resources granted to a.com or b. com.

For CPU and network bandwidth, we allow an appli-
cation to specify a resource share for each of its embed-
ded applications; this allows the application to grant rela-

tive priorities among its children and itself. The fractions
“zero” and “1” are interpreted as an absolute priority.

For memory, we allow an application to cus-
tomize the priority level of an embedded applica-
tion to “disposable”.  This indicates that the em-
bedded application can be safely terminated to re-
claim memory if memory contention arises. For
example, a Web application may embed an ad as
follows: <iframe src=’'http://ad.com’ cpu=0
memory=disposable>. This indicates that the ad
shouldn’t run when in CPU contention, and it should be
terminated when under memory contention.

We also allow preferred network bandwidth to be
expressed with a preferredBW attribute, which indi-
cates the bandwidth needed for optimal service qual-
ity. An embedded application with this specification will
receive higher priority in receiving its preferred band-
width amount or the available bandwidth, whichever is
smaller. When multiple embedded applications are given
preferred bandwidth specifications and when the system
cannot satisfy all their needs, the bandwidth allocation
will follow their relative proportions.

Currently, we assume that the creator of the includer
page knows the proper preferredBW. More elaborate
schemes, such as a negotiation process between the host-
ing page and the site providing the video, could be ex-
plored in future work.

Custom allocations can also be adjusted programmat-
ically at the runtime; only the principal who sets the al-
location can change the allocation. These custom alloca-
tions result in system calls to the browser kernel; the BK
then sets these policies for all resource allocation mech-
anisms.

One last consideration is mission-critical applications
like those that use a voice network (e.g., to receive a
phone call). These types of applications are granted ab-
solute priority in all resource use on ServiceOS.

5 Discretionary Access Control

In this section, we present our access control design for
peripheral resources (Table[T).

5.1 Systematic Access Control

Unlike ad-hoc resource access control in today’s com-
modity OSes (see Section [§), we want all web applica-
tions’ accesses to any peripheral resource to adhere to
a centrally-enforced access control policy. We achieve
such systematic access control by separating access con-
trol policies from resource access mechanisms. As illus-
trated in Figure fi] we build the access control layer as
a reference monitor [2], where the BK decides whether
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Figure 4: The flow of a resource access system call. The
browser kernel separates access control from the implementa-
tion of resource-accessing system calls.

each system call is permitted before ever reaching the
call’s implementation.

In contrast, some OSes place access control checks in-
side the kernel’s system call implementation. Our design
has the advantages of 1) single point of access control:
since access control is separated into its own module, ac-
cess control policies and their implementations are less
error-prone and easier to validate, and 2) extensibility:
support for new devices can be added to the BK without
touching the access control layer or understanding the
notion of web principals.

5.2 Resource Object Model

The rapidly evolving browsers and development of new
Web standards like HTMLS5 necessitate an access con-
trol system that is both extensible and manageable. For
extensibility, ServiceOS must be able to gracefully adapt
to newly-added devices or device APIs; for example, the
number of changes in access control state should be min-
imized. For manageability, ServiceOS must strike a bal-
ance in access control granularity. While fine granularity
is precise at granting only what is needed by a web ap-
plication, coarse granularity simplifies manageability by
reducing the number of access control operations.

To support these goals, we followed the principle of
separating resource semantics (e.g., location) from phys-
ical resources (e.g., GPS). More specifically, we orga-
nize the resource functionality hierarchically by seman-
tics into a resource object model (ROM) tree structure
(similar to DOM). Figure [3] gives an example ROM
tree. Leaves represent the most fine-grained function-
ality. Related resource functions at the same tree level
are grouped together into higher-level nodes in the tree,
forming more coarse-grained resource functionality that
can be granted. The root node groups all resources in the
system. Access to any node of the tree can be granted to
a web application; the leaf nodes in the subtree rooted by

attributes
ROM Nodes userask background lifetime | concurrent use
Speaker | don'’t ask allow forever yes
Location ask allow session n/a
Photo camera ask deny session n/a
Microphone ask allow session no
Dialer ask deny one-time n/a

Table 4: A default list of access rights handled out to a web
application.

that node represent all the functions granted to the web
application.

The separation of resource semantics from physical re-
sources eases extensibility when adding a new physical
resource that follows existing resource semantics. For
example, upgrading a GPS device to a newer model with
a new driver will not affect the ROM tree and its ac-
cess control at all; similarly, adding a new type of device
that provides location information under the “location”
node will still obey access control rules for the “location”
node.

The specific mechanism for implementing access con-
trol for ROM nodes could rely on ACLs, capabili-
ties [23} 16, [37]], or both. We detail our current imple-
mentation in Section

An access rule on a ROM node uses attributes that
indicate how access can be performed on a resource.
Currently, we support four such attributes: userask,
background, lifetime, and concurrent use. The boolean
userask attribute instructs the BK to either ask or not ask
the user to confirm the resource access. The background
attribute instructs the BK to deny or allow resource ac-
cess when a web application runs in tabs which are min-
imized, not focused, or otherwise not visible to the user.
The lifetime attribute can take the values “one-time”,
“session”, “forever” and informs the BK that access to
a ROM node is for either (1) one-time use (the rule will
be deleted after first use), (2) the duration of the cur-
rent browsing session of a particular principal instance
(the rule will be deleted after the user navigates away or
closes the window containing the principal instance), or
(3) forever (the rule will survive browser restarts and ap-
ply to all future instances of this principal). The concur-
rent use attribute is for resources that allow concurrent
access from multiple principal instances (see end of Sec-
tion [3): when its value is “yes”, it allows other principal
instances to use the resource concurrently with this prin-
cipal instance; when “no”, it denies access from other
principal instances when this principal’s instances are us-
ing the resource. The attribute list can be easily extended
to support other kinds of generic restrictions, such as an
ability to charge money (e.g., when dialing toll numbers
on a telecom network).

When a principal instance begins executing, the BK
grants it a list of default access rights, a sample list of
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| getPosition | | watchPosition | |getCity | | getZipCode |

Figure 5: A partial Resource Object Model (ROM) tree. The ROM organizes all resource functionality into a semantically

meaningful hierarchy.

such rights is shown in Table[d] A web application might
want to obtain additional access rights for a resource. For
example, it might want to avoid asking the user every
time it takes a picture (replace an ask Camera access right
with a don’t ask Camera access right), or it might want
to obtain permission to use a GPS in the background.
ServiceOS allows web applications to expand their ac-
cess rights for a resource with user approval. We adopt
manifests [21}, |19} [12]] as a mechanism for centralizing
all decisions involving the user and reducing the num-
ber of user prompts to at most one. Any web applica-
tion can provide a manifest specifying required resource
functionality; this is presented to the user when the appli-
cation loads and before any device access is performed.
The user can change the userask and other attributes for
any access right the service already possesses E} How-
ever, the user does not have the ability to issue arbitrary
new access rights to a web application by default. This
can protect access to very sensitive resources where users
might not be trusted with an access decision.

6 Implementation

We have implemented the ServiceOS architecture as
shown in Figure [ We implemented the browser ar-
chitecture on Windows Vista, adopting Gazelle’s de-
sign [42]. We only describe customizations to Windows
and additions to the browser kernel which enabled our
resource management design. CPU scheduling required
customizing the Windows kernel, which lacks hierarchi-
cal scheduling abstractions. To ease this effort, we im-
plemented and evaluated CPU scheduling on the Win-
dows CE 6.0 kernel, which is supported by Gazelle’s
browser kernel in addition to Windows Vista. We im-
plemented resource sharing for bandwidth and transac-
tional devices, as well as access control, in the browser
kernel. Our browser kernel can run on either Windows

3The way in which the user is asked for these security decisions
is critically important but out-of-scope for this paper; novel ideas are
explored in recent work [[17].

CE or Windows Vista, but due to current implementa-
tion limitations, device access by principal instances is
only supported on Windows Vista. Therefore, our CPU
scheduling experiments are conducted on Windows CE,
while other experiments use full-featured principal in-
stances on Windows Vista (Section[7).

6.1 CPU Scheduling

We modified the Windows CE kernel to implement
lottery scheduling [39]. By default, Windows CE
uses round-robin scheduling among 256 priority queues.
Many system-critical tasks, such as those servicing /O
interrupts and manipulating hardware devices, run at
high kernel-reserved priorities; to avoid disrupting these
services, we implement our lottery scheduler at a dedi-
cated priority level which is equivalent to applications’
default level. More details on a similar implementation
are described by Petrou et al [29].

The browser kernel is treated as a special process by
the scheduler: it is given absolute priority over all the
processes of principal instances, it instructs the CE ker-
nel to enter new principal instances into the lottery sched-
uler, and only its process is allowed to adjust ticket values
for principal instances. The scheduler first holds a lot-
tery to pick a principal instance process, and then it runs
the process’s threads (e.g., threads for JavaScript engine,
rendering, or IPC) round-robin. The browser kernel en-
forces application-specified resource allocation policies
by adjusting ticket amounts. We have not yet imple-
mented support for application-specified absolute prior-
ity.

One limitation of our current implementation is that
any CPU used by the browser kernel process on behalf
of a principal instance process (e.g., when processing a
system call) is not charged to the principal instance. We
could easily address this by modifying the BK to pro-
vide a separate request-handling thread for each princi-
pal instance, and have that thread share the principal in-
stance’s lottery tickets; many ways to solve this problem
have been studied [11} 3,133 [15]].



6.2 Memory

We implemented support for memory priorities in the
browser kernel using the Process Status API exposed
by Windows to obtain physical memory usage of a pro-
cess. The browser kernel inspects memory usage of all
principal instances and invokes application-specified ter-
mination algorithms when physical memory runs short.
We determine memory shortage conservatively before
the OS kernel engages its own algorithms when physi-
cal memory runs out. When calculating a principal in-
stance’s memory usage, the BK only considers pages
which are not shared with other instances.

6.3 Bandwidth

We used the NetLimiter [27] tool, which is a kernel
driver, to implement our bandwidth sharing policy. The
browser kernel programmatically manipulates NetLim-
iter’s grant and limit parameters for principal instances’
network connections to hierarchically enforce bandwidth
limits when under contention and to enforce application-
specified bandwidth allocation policies.

6.4 Device access

We have implemented the Resource Object Model APIs
(Section E]) for accessing cameras, GPS, local storage,
and network connectivity detection. We have exposed
access to these resources to Web applications through the
JavaScript DOM, defining device access APIs similar to
recommendations by W3C [30] and OpenAjax [25]. Our
architecture also requires us to port plug-ins like Flash
to use our device access system calls. We leave this as
future work; our evaluation in Section demonstrates
that our architecture would impose a very small perfor-
mance hit for plug-ins compared to their native device
access.

6.5 Access control mechanisms

For imposing access control policies, we considered us-
ing ACLs and capabilities. Each mechanism has its ad-
vantages and drawbacks. ACLs require maintaining a list
of authorized principals for each resource, raising com-
plexity in managing a very large and constantly growing
number of web site principals. Capabilities present an-
other set of challenges, such as revocation, determining
which sites have access to a resource, and the implicit
design principle that a capability can be passed around,
which would allow one web application to grant undesir-
able device access to arbitrary other web applications.
In ServiceOS, we have currently adopted a hybrid ap-
proach which is based on ACLs but borrows some ideas
from capabilities. All access control rules are located in

and maintained by the browser kernel exclusively. When
a new principal instance starts executing, the browser
kernel establishes a set of its access rights by combin-
ing a default-access list (Table [)), which is defined by
the browser vendor and the user, with any of the prin-
cipal’s persistent capabilities (those with a “forever” at-
tribute). The former specifies default rules for each ROM
node (like ACLs), the latter is attached to each web prin-
cipal (like capabilities) and takes priority in determining
any access. Although the number of per-principal lists of
rules can become large, we only expect a fraction of web
sites to use device access and still fewer to be granted
persistent access to a device.

7 Evaluation

In this section, we evaluate our prototype and demon-
strate the following key points:

o Unlike existing browsers, ServiceOS can effectively
insulate CPU usage of a web page from untrusted
content it embeds.

e Unlike existing browsers, ServiceOS can fairly al-
locate network bandwidth among two network-
intensive gadgets (i.e., applications) embedded on
the same web page. Furthermore, a custom policy
allows a gadget to preferentially receive more band-
width; this improved one streaming-video gadget’s
throughput by 4.6x over a default Windows pol-
icy and eliminated the buffering encountered during
video playback.

e Our prototype performs well for a sophisticated,
real-world AJAX web application which accesses
several devices, such as a camera. We find that de-
vice access in ServiceOS is only 5% slower than
that of a native application or a plug-in.

We run these experiments on our ServiceOS prototype
on a Windows Vista machine with a 3GHz dual-core pro-
cessor, 4GB RAM, and a gigabit Internet connection. For
our CPU experiments, we used a Windows CE device
emulator running on the above system.

7.1 CPU scheduling

We constructed a computation-intensive microbench-
mark application app.com which is in CPU contention
with a misbehaving ad. com that it embeds. The ad con-
tains an infinite loop of expensive image swapping op-
erations, and it embeds three other ads which perform
the same computation. The resulting web application
composition is shown in Figure [ We measure perfor-
mance by adapting the regexp JavaScript benchmark dis-
tributed with the V8 JavaScript Engine [38]]: we define
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Figure 6: Throughput of app.com when in CPU contention with a malicious principal ad.com. ServiceOS allows
app . com to regain most of the throughput it loses to ad . com in today’s browsers.

app . com’s throughput as the number of benchmark iter-
ations it is able to complete per second. We normalize
throughput measurements according to the baseline ob-
served when app . com executes without ad. com.

All popular browsers, including Chrome, Firefox, and
Internet Explorer, place all five web principals in the
above scenario into the same process and execute them
using the same instance of the JavaScript engine (despite
the fact that they are from different principals and can run
concurrently [32]). If ad . com’s computation runs before
app . com starts its benchmark (as in many sites with top-
placed banner ads), app . com’s code never runs and has a
throughput of 0. In contrast, both Gazelle and ServiceOS
run app.com and ad.com in separate processes using
different JavaScript runtimes. However, this in itself is
insufficient to guarantee CPU fairness: Figure [6] shows
that in Gazelle, app . com achieves a throughput of only
0.17 on average, because the OS splits CPU time fairly
between app . com and four malicious ad principals.

In contrast, under ServiceOS’s default DOM-recursive
sharing policy, app . com’s throughput improves to 0.45,
which gives the fairness that is absent in the exist-
ing browsers. This is because DOM-recursive sharing
gives 50% of the CPU to app.com and splits the other
50% among ad.com and its children. Furthermore, if
app.com takes advantage of our application-specified
QoS mechanisms and limits the untrusted ad . com iframe
to 5% of the CPU, its throughput jumps to 0.88. This
demonstrates that ServiceOS can accurately abide by
application-specified CPU allocation.

The slight variations in throughput over time observed
for our ServiceOS prototype are caused by the prob-
abilistic nature of our lottery-based scheduling imple-
mentation. Note that all scheduling strategies involving
several processes incur Windows CE’s overhead of con-
text switching. This overhead is responsible for making
app.com’s throughput to be somewhat lower (e.g., 0.44
instead of 0.50) than what our scheduling policy targets.

We measured the overhead of using our implementa-
tion of lottery scheduling to be negligible. In our mea-
surements, we adjusted amounts of tickets to simulate
the underlying OS’s round-robin scheduling. We found
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app.com
gadget.com gadget.com | video.com
— Existing browsers 687 Kbps 172 Kbps
- ServiceOS
video.com DOM-recursive policy 440 Kbps 404 Kbps
Custom app.com policy
(video.com:800Kbps) 45 Kbps 802 Kbps

Table 5: Network throughput of gadget.com and
video.com, both embedded by app.com. Unlike Win-
dows’s default policy, ServiceOS divides network bandwidth
fairly across gadget .com and video.com when they are
bandwidth contention; video . com can further improve video
playback with a custom policy specified by app . com.

that the throughput of app.com under a lottery-backed
scheduling is only 0.9% less than the throughput under
Windows’s default scheduling.

7.2 Network bandwidth

Today’s browsers rely on the underlying OS to man-
age network bandwidth contention among TCP con-
nections made by web applications. To demonstrate
why this approach is insufficient, we created an-
other simple web application, app.com, which em-
beds two bandwidth-intensive gadgets: gadget.com
and video.com. gadget.com continually downloads
and processes four concurrent TCP streams of XML data
using XmlHttpRequest, and video.com embeds a 52-
second streaming Flash video file from hulu.com. To
observe the network bandwidth under contention, we use
NetLimiter [27] to limit the host’s download capacity to
841 Kbps (average bandwidth available to smartphones
on a 3G network [45]]).

Our results are shown in Table We first mea-
sured the average network throughput over three min-
utes for both gadget .com and video.com using Inter-
net Explorer on our Windows system. We found that
as expected, all TCP connections share available band-
width fairly equally, and since gadget.com is using
four connections, it receives 4x more bandwidth than
video.com, leaving the latter with only 20% of avail-
able bandwidth. This significantly degrades performance
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Figure 7: Latencies involved when gallery.com takes a
photo. ServiceOS introduces only a 3.4 ms overhead (5%) on
top of OS-specific device processing code.

of video. com, causing video playback to become unus-
able due to frequent stops for buffering. Overall, the 52-
second video stream stopped for an additional 128 sec-
onds of buffering. We verified the same behavior occurs
with other browsers, including Firefox, Google Chrome,
and unmodified Gazelle.

In contrast, ServiceOS’s default policy allocates
bandwidth fairly among app.com, gadget.com, and
video.com. Since only the latter two are in bandwidth
contention here, they each get roughly half of the band-
width, and gadget.com’s four connections split only
gadget . com’s half of bandwidth, as Table 5] confirms.

The additional throughput is enough to improve, but
not resolve choppiness of video playback, reducing the
amount of buffering to 33 seconds. We next modify
app . com to specify that the video.com <iframe> re-
quires 800 Kbps of bandwidth, which is the target bitrate
of the video we tested, and check how well ServiceOS
adapts to this custom policy. The last row of Table [3]
shows that video.com now receives 802 Kbps, match-
ing the custom bandwidth specification. We indeed ob-
served that the video stream can now play back without
any buffering.

7.3 Device access

In this section, we evaluate performance of web appli-
cations that use ServiceOS’s device access mechanisms.
We focus on these main questions: 1) How much over-
head does ServiceOS impose on device access, compared
to a native desktop application or a plug-in? 2) Which
components are responsible for that overhead? 3) Is
our architecture able to handle throughput-intensive or
latency-sensitive device access?

To answer these questions, we wrote a ‘“photo
gallery” web application, which organizes a user’s pho-
tos. The application can use an attached camera to
take photos directly from the web page and auto-
matically upload them into its cloud databaseﬂ To
take a photo, the page calls a JavaScript function
navigator.devices.camera.take, which translates

4We imagine such an application would be convenient on camera
smartphones.
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into a system call to the browser kernel. Upon receiving
the system call, the BK verifies access control, accesses
the camera using Windows video capture APIs (analo-
gous to drivers for the BK), converts the resulting data
to a JPEG image, and returns the resulting bits to the
web page via an asynchronous upcall, which invokes a
JavaScript callback function. The web page then uploads
the photo into the cloud (using Xm1HttpRequest) and
adds it to the photo layout on the web page.

Comparison with a native application. To test our
gallery application, we have attached a Logitech Web-
cam, which produces 35KB 640x480 JPEG photos, to
our test system, and found that 61.2 ms passes between
the time a user clicks on the “take” button and the time
the web page receives the image data. We compared this
latency to a native application, which used the same APIs
to obtain the photo — that application’s latency was 58ms.
Thus, ServiceOS only imposed a 3.1 ms overhead (5%)
for accessing the camera.

Figure[7|breaks down the source of this small overhead
across various ServiceOS modules. We see a small 0.4
ms latency for access control, 1.2 ms for the system call
request, and 1.6 ms for the system call response that in-
cludes the image data. The latency for code that converts
JavaScript device functions into BK system calls is neg-
ligible. For our camera, these latencies are dominated by
the actual device access time (58 ms) and the time spend
uploading the photo (61 ms).

Performance of BK system calls. The above sug-
gests that the IPC used by our BK system calls might
be a potential source of overhead for larger data trans-
fers in other devices. To see how our system call im-
plementation scales for large transfers, we measured the
throughput of continually accessing 8MB chunks of data
from a web application’s local storage. We found that
our system call implementation can transfer data from
BK to a web application at a rate of 43.2 MB/sec. This
is sufficient to handle many throughput-intensive de-
vices. For example, the maximum read throughput for
modern Flash drives under ideal conditions is about 30
MB/sec [1]], and a typical 640x480 video camera re-
quires a throughput of 8.75 MB/sec without any com-
pression [43]].

To verify the absence of a throughput bottleneck in a
real-world scenario, we have modified our photo gallery
to provide video streaming functionality by continuously
taking and uploading photos into the cloud, and we
wrote a web page, which uses a simple AJAX-based
protocol [26] to download and render this photo stream
on a second client. Even with this simple streaming
method, the second client achieved an impressive rate of
12 frames per second for the 640x480 stream, limited
only by how fast photos could be obtained and uploaded.
Enhancing ServiceOS’s device APIs with a video capture



abstraction that provides data using a video-optimized
encoder is certain to improve the frame rate for such an
application.

Although we have not yet ported plug-ins to run on
ServiceOS, these results provide evidence that plug-ins
should not suffer major performance setbacks when ac-
cessing devices through Gazelle’s new system calls.

Ease of development. For device access, web appli-
cations need to use ServiceOS’s device APIs. We found
this effort to be straightforward: the photo gallery con-
tains 592 lines of HTML and JavaScript, of which only
about 10 lines deal with camera access; we added video
streaming functionality in 20 lines of code.

As another experiment, we have extended our photo
gallery to support offline operation by utilizing two ad-
ditional ServiceOS resources: local storage and network
connectivity detection. The gallery first registers to re-
ceive asynchronous connectivity events. If it learns of
network disconnection, it queues any new photos taken
into local storage, and transparently synchronizes them
later when it receives a “connected” evenf] This offline
functionality took only 40 lines of JavaScript to imple-
ment.

8 Related Work

Our work applies experience from decades of operating
system research to the browser design. In this section,
we first compare and contrast with existing browsers, and
then discuss relevant resource management literature.

8.1 Web Browsers

MashupOS [41] first identified browsers as a multi-
principal execution environment where the principal is a
web site. MashupOS proposed programmer abstractions
that enable browsers to offer the protection and commu-
nication model of a multi-principal OS. MashupOS ad-
dresses neither the re-architecting of browsers as an OS
nor issues in resource management.

Recent work looked at re-architecting the browser
with better protection. IE 8 [20]], Google Chrome [32} 4],
and OP [14] are all multi-process browser architectures.
What fundamentally sets the Gazelle browser [42] apart
from the aforementioned browsers is that Gazelle has a
multi-principal OS construction which gives its browser
kernel the exclusive control of cross-principal protec-
tion. In contrast, the other browsers’ protection logic
spreads into the principal space. The authors of Gazelle
gave a comprehensive comparison of its browser ar-
chitecture with the others. ServiceOS largely adopted

5Qur renderer supports a new scheme, localstorage://,
which allows web sites to display images from their local storage.
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Gazelle’s architecture. While Gazelle addressed only the
protection architecture, we tackle resource management
for web applications. All browsers to date don’t han-
dle resource management, which is a significant miss-
ing piece in browser design. Reis et al advocated rely-
ing on the operating system’s resource management for
Google Chrome [32]; we have shown that the OS’s re-
source management can be ill-suited for web applica-
tions (Section[I]and Section([7).

8.2 Access Control

Unix-based OSes use file-system-based access control.
Individual physical devices are mapped to files and the
permissions are set accordingly. Drivers, as well as
higher-level software that directly accesses devices, di-
rectly manipulate access control defaults for each phys-
ical device. Windows-based OSes use access tokens to
describe the privileges of a user account, and use security
descriptors to describe the access control list for a secur-
able object. A securable object can be a named Windows
object, such as files and physical devices, or an unnamed
object, such as process or thread objects.

While it is possible for a browser’s access control de-
sign to directly use Unix or Windows-style access con-
trol by mapping web site principals to distinct user prin-
cipals, such an approach is not without drawbacks. First,
it sacrifices the browser’s cross-platform portability and
ties the browser to a particular OS’s security model. Sec-
ond, Unix and Windows require configuring access con-
trol for each physical device, including newer models of
an old device and devices of the same semantics. This
complicates adding and upgrading new devices. Finally,
browsers often do not have sufficient privileges to mod-
ify system-wide device security policies; granting them
this power would pose an unnecessary security risk.

In contrast, ServiceOS’s access control design is OS-
independent, semantics-aware (access control is tied to
semantics of a class of resources, rather than physical
devices) to ease extensibility, and flexible with various
access control granularities. We strictly separate access
control policy from actual resource access for a simple
and robust system.

Some systems have defined applications [44, [12] as
principals and may even use the digital signatures of mo-
bile code providers [40] for labeling principals. In con-
trast with this work, ServiceOS treats a web site or web
application as first-class principal for all the tasks in the
operating system, including not only access control but
also resource sharing and protection.

Android [12] applications declare desired access rights
in a manifest, which is approved by the user during an ap-
plication’s installation. The manifest uses a flat names-
pace for all access rights. ServiceOS also allows web ap-



plications to use manifests to request a group of access
rights, but unlike Android’s flat namespace for capabil-
ities, our design uses the Resource Object Model to hi-
erarchically organize resource functionality according to
resource semantics. This benefits extensibility, enables
coarse-grained access control which simplifies manage-
ability by reducing the number of access rights that need
to be granted, and makes it more convenient to expose
resources to web applications using the DOM.

Browser plug-ins. Existing browsers don’t manage
resources, and they expose the underlying OS to browser
plugins. Therefore, some plugins, such as Java [40, [7],
Flash, or Google Gears [13], have implemented parts of
resource management, such as controlling access to we-
bcams, in their own runtimes. This practice is flawed
in that many plug-in security policies coexist, and often
conflict, within the same browser. Worse, the compro-
mise of any plug-in [36] allows a malicious web site to
bypass the plug-in security model and access any devices
at will. In contrast, our model unifies resource manage-
ment for all components of a modern browser and does
not depend on any support from any of the components.

8.3 Resource Sharing

In ServiceOS, we build on many existing proportional
scheduling mechanisms 39} 15, 3] to enable our DOM-
recursive policy. Lottery scheduling [39] pioneered such
a mechanism and advocated separation of scheduling
policy from scheduling mechanism. They experimented
with a load insulation scheduling policy for separating
one user’s tasks from another’s. Linux has a group sched-
uler [S], which is a CPU scheduling mechanism that en-
ables fair scheduling across user principals; e.g., a user
with 10 processes and another user with one process can
share the CPU fairly, rather than allowing the first user
to receive 10/11 of the CPU. Resource containers [3] are
proposed as a more fine-grained unit of resource allo-
cation than a process; a single web server process can
use one resource container for processing each incoming
request, allowing resource sharing within a process. Hi-
erarchical resource containers can be used to recursively
allocate resources down the container hierarchy.

We can use any of these scheduling mechanisms to re-
alize our DOM-recursive resource allocation policy; we
used lottery scheduling in our implementation due to its
simplicity and flexibility. Our contribution is formulat-
ing a policy for web browsers, where it is necessary to
use the principal embedding hierarchy as the default pol-
icy for scheduling CPU, bandwidth, and transactional re-
sources.

The hierarchical CPU scheduler in [28]] is designed to
support a variety of hard and soft real-time, as well as
best-effort applications on a general-purpose operating
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system. The nodes in its hierarchy represent application
classes with different QoS requirements, while the leaves
are schedulable threads. This hierarchy is entirely differ-
ent from our principal embedding hierarchy, where all
the nodes are schedulable, and the hierarchy partitions
resources among all nodes in the tree.

Regehr [31]’s hierarchical loadable scheduler (HLS)
consists of a hierarchy of heterogeneous, independent
schedulers, each of which may use a different schedul-
ing algorithm for the purpose of real-time systems. HLS
matches each application request with a scheduler that
can meet its requirements. Our policy only requires a
homogeneous, proportional scheduling algorithm.

9 Conclusions

Resource management has been a significant missing
piece in browser design to date. In this paper, we pre-
sented our design for resource management for web ap-
plications in ServiceOS, a multi-principal OS where a
web site is a first-class OS principal. ServiceOS provides
web applications with systematic and consistent access
and control of common I/O devices, such as cameras
or microphones, by centralizing access control policies
in an extensible layer. For sharing divisible resources,
such as CPU and network bandwidth, ServiceOS uses
a DOM-recursive sharing policy by default when in re-
source contention. This allows ServiceOS to insulate
resource usage of a web page from untrusted content it
embeds, and to allocate resources fairly among multiple
applications embedded on the same web page. We also
introduce application-specified resource allocation to al-
low web programmers to explicitly influence resource al-
locations based on web application semantics.

We have built and evaluated a ServiceOS prototype
that manages a wide range of resources. Our evaluation
shows that compared to existing browsers, ServiceOS
provides web applications with superior service quality,
fairness, and security.
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