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Abstract 
Recently it was shown that blood hemoglobin concentration could be predicted from retinal 
fundus photographs by deep learning models. However, it is unclear whether the models were 
quantifying current blood hemoglobin level, or estimating based on subjects’ pretest probability 
of having anemia. Here, we conducted an observational study with 14 volunteers who donated 
blood at an on site blood drive held by the local blood center (ie, at which time approximately 
10% of their blood was removed). When the deep learning model was applied to retinal fundus 
photographs taken before and after blood donation, it detected a decrease in blood hemoglobin 
concentration within each subject at 2-3 days after donation, suggesting that the model was 
quantifying subacute hemoglobin changes instead of predicting subjects’ risk. Additional 
randomized or controlled studies can further validate this finding. 
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Introduction 
Machine learning has been increasingly applied to medical images for novel tasks such as 
predicting cardiovascular risk factors, coronary artery calcium scores, and detecting chronic 
kidney disease and type 2 diabetes from retinal fundus photographs.1–4 In another study,5 deep 
learning models were able to predict blood hemoglobin concentration (ie, Hb concentration, or 
“[Hb]”) from retinal fundus photographs at an accuracy (mean absolute error (MAE) of 0.67 
g/dL) comparable to invasive testing by a point-of-care hemoglobin analyzer, suggesting 
potential utility as a cost-effective add-on to established diabetic retinopathy screening 
programs. In this study, the model was validated using data from the UK Biobank, where fundus 
photographs and associated lab measurements of [Hb] were available. Independent 
investigators further verified that the model generalized; ie, it was able to predict [Hb] and 
anemia in patients from a different continent and using different imaging devices.6 
 
However, these studies were limited to images collected at only one time point per patient. As 
such, the validation design of the prior studies did not enable evaluation focused on [Hb] 
change. Therefore, the models could be predicting [Hb] using “constant” or non-modifiable 
characteristics of the subjects, such as age, self-reported sex, or ethnicity (all of which are 
correlated with [Hb]7,8 and can be predicted to some extent from fundus photographs1,9) as 
discussed previously10. While the previous study showed that the model predicted [Hb] more 
accurately than using demographic information, the performance improvement may still be 
attributed to other non-modifiable factors such as anatomic phenotypes. Better understanding of 
whether the models are measuring current [Hb] (as opposed to a statistical “prior” on [Hb] based 
on patients' pretest probability of anemia or average [Hb] given demographic variables) is 
crucial to understanding its limitations and appropriate real world use. For example, models that 
measure anemia likelihood would be unlikely to help track anemia progression or recovery via 
repeated retinal photographs because the predictions would remain relatively constant. 
 
To distinguish between these possibilities, we conducted a non-randomized, prospective, pre-
post observational study to investigate whether the model-predicted [Hb] is affected by an 
intervention that acutely lowers [Hb]. Specifically, we recruited subjects who were volunteering 
for blood donation, and used the deep learning model to examine the retinal fundus 
photographs taken before versus after blood donation. Blood donation itself does not change 
the [Hb] (ie, the concentration) immediately, because the decrease in total Hb mass is balanced 
by a corresponding decrease in the circulating blood volume.11,12 The natural progression of 
physiological homeostasis following blood loss causes a delayed hemodilution upon blood 
plasma replenishment, which causes a [Hb]!"#$%#&'#!()&(!*#&+'!&(!&!"%,*!,-!./!01"2!&-(#%!

'#3#%&4!"&5'611,12 The subsequent [Hb] recovery requires red blood cell regeneration and takes 
a few months to a half year.12 Thus, blood donation poses a unique opportunity to examine the 
effect of subacute [Hb] decrease.  
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Results 
In this study, we captured fundus photographs at 3 time points: (1) within an hour before blood 
donation; (2) within an hour after blood donation; and (3) 2-3 days after blood donation (Figure 
1, Methods). Four fundus photographs were taken for each time point (left and right eyes, 
macular-centered and primary fields), and the [Hb] predictions for the four images were 
averaged per participant for comparison across time points using the Wilcoxon signed-rank test 
and with Bonferroni correction (Figure 2). The difference between predicted [Hb] before blood 
donation and after blood donation on the same day was not statistically significant (Figure 2b; p 
= 0.056; absolute change: -0.25 ± 0.08 g/dL [mean ± standard error], n=14). The predicted [Hb] 
2-3 days after the blood donation was also not statistically significantly different compared to 
after blood donation on the same day (absolute change: -0.26 ± 0.09 g/dL; Figure 2c, p = 
0.091), but was statistically significantly different compared to before blood donation (absolute 
change: -0.51 ± 0.10 g/dL; Figure 2d, p = 0.009). The predicted [Hb] at the first time point was 
compared against the reported [Hb] before the blood donation, and the MAE was 0.76 (95% 
confidence interval: 0.46 to 1.06, n=10). This is similar to previously reported MAE of 0.67 in the 
UK Biobank population.5 
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Figure 1 
a, Study design schematic, showing enrollment of volunteers who were scheduled to donate 
blood at a blood drive. Fundus photographs were taken at three time points: before the 
donation, within 1-2 hours after the donation, and 2-3 days post-donation. Participants who did 
not end up donating blood, or did not complete the fundus photography sequence were 
excluded. b, Based on physiology,11–13 the expected change in blood volume (blue broken line), 
hemoglobin (Hb) mass (red dash-dotted line), and hemoglobin concentration ([Hb], orange solid 
line) change over time post-donation. While total Hb mass decreases immediately, the [Hb] 
does not decrease until the lost plasma is replenished over the course of a few days. The 
recovery of [Hb] requires actual red cell regeneration and is a gradual process that takes 
months.  
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Figure 2 
a, Mean predicted blood hemoglobin concentration ([Hb]) for each participant at different 
timepoints. Broken lines indicate participants who reported double red cell donation. The three 
horizontal black lines indicate the three pairwise comparisons shown in panels b-d.  
b, Difference in predicted Hb between before and after blood donation on the same day. A black 
broken line indicates the identity line, where the predictions are the same in the two conditions. 
Text shows p-value (Wilcoxon signed rank test with Bonferroni correction), and mean and 
standard error of differences (pre-post, n=14). c, same as b, but comparing after blood donation 
on the same day and 2-3 days after blood donation. d, same as b, but comparing before blood 
donation and 2-3 days after blood donation. Bold indicates a statistically significant p-value.   
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Discussion 
The results showed a decrease in model-predicted blood [Hb] after blood donation. For a 
standard whole blood donation, a participant with 5000 mL of total blood would lose 
approximately 10% of their total hemoglobin in a 475 mL (1 pint) blood donation. This would 
lead to an approximately 1 g/dL decrease in [Hb] over a few days, once the blood plasma 
volume equilibrates (Figure 1).11–13 In this study, [Hb] decrease was estimated theoretically 
instead of measured invasively so as to avoid an unnecessary additional invasive procedure 
(venous blood draw or finger prick). The observed mean difference of the predictions (0.51 ± 
0.10 g/dL) was comparable to the theoretical calculations. The slight difference can potentially 
be attributed to the proportional bias of the model;5 the model overestimates low [Hb], which 
may result in an underestimation of the magnitude of the decrease. Improved calibration may 
help in this regard, and indeed the previously-described recalibrated model5 increases the mean 
difference of predicted [Hb] to 0.74 ± 0.15 g/dL. 
 
Interestingly, the model predictions also decreased (albeit by a much smaller magnitude on 
average, and not meeting statistical significance) for images taken on the same day after blood 
donation. In theory, the immediate effect of blood donation is on blood volume instead of 
concentration, suggesting that the model’s predictions may also be affected by total blood 
volume. Further validation on a larger cohort would be necessary to validate this finding, to 
evaluate appropriateness of application of this technique to situations where subjects may have 
experienced acute blood loss. 
 
When machine learning models are developed and evaluated using data from a single time 
point per subject, potential mechanisms underlying a significant association include not only 
direct measurement of the current condition, but also features that reflect pre-existing conditions 
or indicate risk of developing the current condition. For example, increased retinal venous 
tortuosity is associated with a longer duration of anemia.14 If a model only uses features that 
take some time to develop, the prediction indicates that the condition has been present for a 
while (and could have already resolved) instead of the current state. Hypothetically, if the 
subjects need to be anemic for months before the features used by the model manifests, the 
model should not immediately capture a [Hb] decrease following blood loss from blood donation. 
Though the detection of delayed responses can be a desirable feature in some applications 
(similar to how HbA1c is used for tracking average diabetes control over a few months), our 
results suggest detection of delayed responses is unlikely. 
 
Alternatively, the model may be detecting features related to “constant” or unmodifiable risk 
factors (e.g. genetic information, age, or anatomical phenotype). Such a model may be useful 
for screening, but repeated measurements cannot be used to track disease progression or 
treatment response. Therefore, differentiating between these possibilities and examining the 
temporal response of the model predictions is critical in assessing the clinical value of the 
machine learning models. 
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This pre-post study design was designed to avoid additional invasive procedures (eg, venous 
blood draws or finger pricks to quantify [Hb]) and intervening in the blood donation process (eg, 
via a randomized control arm where control subjects would be instructed not to donate). A 
similar pre-post study using transfusions (ie, adding instead of removing blood) was also 
conducted as a subanalysis in a prior work leveraging deep learning to predict the presence of 
anemia from electrocardiograms.15 However, the constraints of this study design means that 
some of the trends observed could be due to other unforeseen differences before and after the 
intervention (ie, between day 0 and days 2-3). Future studies may leverage the data from this 
pilot to help justify the utilization of venous draws or a reduction in the total number of blood 
donors in a randomized controlled study. Another potential design is a case-control study where 
subjects who donated blood could be matched with controls based on age and sex. In such a 
case-control study, the control arm would help determine whether other confounding factors 
contribute to the observed trends . As such, future studies are needed to confirm our 
observations. 
 
To summarize, this study utilized voluntary blood donation as an intervention that induces [Hb] 
decrease in participants, and confirmed that the model could capture short-term, time-varying 
changes in [Hb]. This observation suggests a low likelihood of a long temporal delay in model 
detection of [Hb] changes, or that the model is solely predicting [Hb] by quantifying pretest 
likelihood of anemia. Still, there remain open questions about the temporal response of the 
model, such as if the model would over- or underestimate [Hb] in the setting of an ongoing 
anemia progression. Further study is needed to evaluate the model’s ability to track [Hb] 
changes or anemia progression and treatment response. 

Methods 

Participants and study design 
Adult participants (age >= 18 years) planning to donate blood to a blood bank were recruited to 
volunteer for this study. The study was reviewed and approved by Advarra Institutional Review 
Board. All participants signed an approved consent form prior to initiating study activities and no 
compensation was offered for their participation.  
 
Each participant provided consent, completed a questionnaire, and underwent retinal fundus 
photography at three time points. Fundus photographs were taken at all three time points in a 
dark setting without pupil dilation using a Topcon NW-400. Age range and sex were self-
reported at study enrollment (the first time point). After 1-3 hours (the second time point), the 
participants were asked if they had donated blood (whole blood donation of approximately 
475mL, double red cell donation, plasma-only donation, or no donation). Participants also 
reported their pre-donation point-of-care blood [Hb], which was measured by the blood bank 
prior to blood donation. At the first two time points, the fundus photographs were taken in a 
trailer located near the blood bank vehicle. After 3 days (the third time point), the fundus 
photographs were taken in a darkroom. 
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Participants who reported no blood donation or plasma donation only were excluded from the 
analysis (n=3). Participants who reported double red cell donation were included in the analysis 
(n=2). To qualify for whole blood donation, donors must satisfy requirements such as feeling 
well, weighing at least 50 kg, and having [Hb] of at least 12.5 g/dL (female) or 13.0 g/dL 
(male).16 Participants who were unable to complete the full sequence of retinal fundus 
photographs at the three time points were excluded from the analysis (n=6). Because of 
scheduling reasons, 1 participant had the third time point’s images taken after 2 days (instead of 
3 days). After the exclusions, 14 participants were included in the analysis. Of these, the self-
reported age ranges were: 7 between 20-29, 4 between 30-39, and 3 above 39. The self-
reported sex were: 9 male and 5 female. There were no observable image quality differences 
between the 3 time points. 

Model development 
The model used in this study was previously described.5 Briefly, an ensemble of artificial neural 
networks based on the Inception-v3 architecture were trained to predict variables from the 
complete blood count (red blood cell count, hematocrit, and hemoglobin concentration) using 
data from the UK Biobank.17 Only the hemoglobin concentration predictions were used in this 
study. 

Statistical analysis 
To test for differences across different time points, the Wilcoxon signed-rank test was used. 
Bonferroni correction was applied to adjust the p-values for the three comparisons conducted in 
this analysis. To obtain 95% confidence intervals for MAE, we used the bootstrap procedure 
with 2,000 samples and reported the 2.5 and 97.5 percentiles.  

Data availability 
The informed consent and study protocol does not permit study images to be made available. 
Researchers interested in validating this model on their data can contact the corresponding 
author regarding a research collaboration (N.H.; nhammel@google.com) 
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