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Key Contributions

In this study, the original performance of deep learn-
ing models for screening mammography was reduced
in an independent clinical population.

Deep learning (DL) systems for mammography re-
quire local testing and may benefit from local retrain-
ing.

An openly available DL system approximates human
performance in an independent dataset.

There are multiple potential sources of reduced deep
learning system performance when deployed to a new
dataset and population.

ABSTRACT
Aim. To assess the generalisability of a deep learning (DL)
system for screening mammography developed at New York
University (NYU), USA (1, 2) in a South Australian (SA)
dataset.

Methods and Materials. Clients with pathology-proven le-
sions (n=3,160) and age-matched controls (n=3,240) were se-
lected from women screened at BreastScreen SA from Jan-
uary 2010 to December 2016 (n clients=207,691) and split
into training, validation and test subsets (70%, 15%, 15% re-
spectively). The primary outcome was area under the curve

(AUC), in the SA Test Set 1 (SATS1), differentiating inva-
sive breast cancer or ductal carcinoma in situ (n=469) from
age-matched controls (n=490) and benign lesions (n=44).
The NYU system was tested statically, after training without
transfer learning (TL), after retraining with TL and without
(NYU1) and with (NYU2) heatmaps.

Results. The static NYU1 model AUCs in the NYU test
set (NYTS) and SATS1 were 83.0%(95%CI=82.4%-
83.6%)(2) and 75.8%(95%CI=72.6%-78.8%), re-
spectively. Static NYU2 AUCs in the NYTS and
SATS1 were 88.6%(95%CI=88.3%-88.9%)(2) and
84.5%(95%CI=81.9%-86.8%), respectively. Train-
ing of NYU1 and NYU2 without TL achieved AUCs
in the SATS1 of 65.8% (95%CI=62.2%-69.1%) and
85.9%(95%CI=83.5%-88.2%), respectively. Retrain-
ing of NYU1 and NYU2 with TL resulted in AUCs of
82.4%(95%CI=79.7-84.9%) and 86.3%(95%CI=84.0-
88.5%) respectively.

Conclusion. We did not fully reproduce the reported perfor-
mance of NYU on a local dataset; local retraining with TL ap-
proximated this level of performance. Optimising models for
local clinical environments may improve performance. The
generalisation of DL systems to new environments may be
challenging.

BODY

Aim
To assess the generalisability of a previously published open-
access deep learning (DL) system for mammographic breast
cancer screening, developed on a US clinical population at
New York University (NYU)(1, 2), in the public, mammo-
graphic screening service of South Australia (SA).



Background
Breast cancer is responsible for 1 in 4 cancer deaths in
women worldwide.(3) Early detection and treatment of breast
cancer, when the tumour is smaller and less likely to have
metastasised, is associated with improved survival.(4) Delays
in diagnosis and treatment are associated with adverse clini-
cal outcomes.(5) Later detection and consequently more ad-
vanced cancers often require more intensive treatments that
can decrease quality of life.(6) An Australian case-control
study found a relative reduction in breast cancer mortality
of 30-41% associated with screening participation.(7) Ran-
domised controlled trials have demonstrated relative reduc-
tions of 20-30% in breast cancer mortality attributable to
mammographic screening programs, for women aged 50-69
years (8–11) and in women from age 40.(12)

BreastScreen Australia is the national, public screening
program for unsuspected breast cancer and has operated since
1991. It aims to reduce illness and death from breast can-
cer and to enable early intervention.(13) BreastScreen South
Australia (BSSA) operates the public screening program, in-
cluding mammography, in the state of South Australia. BSSA
invites women resident in South Australia, primarily aged
50 to 74, to undergo screening mammography exams every
two years at one of seven stationary and three mobile clin-
ics. The diagnostic accuracy of human radiologists interpret-
ing screening mammography has been reported in a seminal
study as a partial AUC of 88%.(14)

Convolutional neural networks (CNNs) are a family of
deep learning methods (15) which are especially suited to
analyse complex data such as images. With labelled exam-
ples to learn from, these models are automatically optimised
to improve performance at the given task (“training”).(15)
Training optimisation occurs via updates to the numerical pa-
rameters (or weights) of a model.(15) Rather than starting
training with random weights (random initialisation or train-
ing "from scratch"), weights can be transferred from another
learnt task and retrained (“transfer learning”).(16)

Recent studies have reported human or above
human-levels of performance with CNNs for screening
mammography.(2, 17–20) However, one study has found
that the performance of a commercial CNN system (21) was
reduced and inferior to humans when tested in another coun-
try and population to that of its training.(22) Some authors
have reported inconsistent performance of deep learning
models on mammogram classification, with AUCs ranging
from 88-95%.(23) CNN performance has been shown to
be sensitive to dataset characteristics, image idiosyncrasies,
and the distribution of the training data,(24–26) which

may account for reduced performance in some situations.
For example, there is evidence that the performance of
CNNs can vary based on the vendor of the mammography
equipment.(27) Some authors have suggested that adjusting
CNNs with local data may improve performance.(17) The
capacity of CNNs to maintain their performance on new and
independent data, including from new locations, is referred
to as ’generalisability’. To investigate the limitations of DL
generalisability in the context of screening mammography,
we tested an openly available DL system developed by Wu
et al. at NYU (1, 2) in the BSSA dataset.

Methods and Materials
The current study was approved by the Central Ade-
laide Local Health Network Institutional Review Board
(HREC/16/RAH/229, R20160601), with a waiver of con-
sent for the retrospective use of deidentified clinical data.
Women with biopsy and surgical pathology-proven lesions
(n=3160) and age-matched controls (n=3240) were selected
from all women screened at BSSA with full-field digital
mammography from January 1 2010 to December 31 2016
(n clients=207,691, see Figure 1). Clients were randomly
split into training, validation and test subsets (70%, 15%,
15% of the BSSA dataset respectively), stratified for the dom-
inant finding of the dominant lesion, based on further lesion
characterisation with mammographic and ultrasound imag-
ing. See Table 1 and supplementary material for further
dataset characteristics. The primary balanced test set (Test
Set 1) included women with invasive breast cancer (IBC)
or ductal carcinoma in situ (DCIS) (n=469), benign lesions
(n=44) and age-matched controls (see Table 1, figure 1, Ta-
ble S1 and S3). All case subsets were age-matched from a
pool of control clients. Where there were multiple poten-
tial controls of the same age, the control was randomly se-
lected. Clients with less than the four standard views - left
and right craniocaudal (CC) and mediolateral oblique (MLO)
- were removed from any training or analysis. We excluded
any client with previous malignancy or biopsy, implants or
breast symptoms from the control pool. Control clients with
only one round of screening were excluded and only exams
with at least one subsequent follow-up (where there were no
concerning abnormalities) were included (see figure 1).

To utilise the NYU models, all available biopsy-proven
benign cases were included with their own label for model
training and hyperparameter validation (see Figure 1). To
match the clinical task of interpreting screening mammo-
grams, the primary outcome of interest was differentiating
IBC or DCIS from age-matched controls and biopsied, be-
nign lesions. For all experiments, receiver operating charac-
teristic (ROC) curves and the area under these curves (AUC)
were calculated. Confidence intervals were calculated using



Malignant Benign Controls Total
Clients

Total Dataset
Clients 2837 323 6025 - 9185
Image manufacturer
Philips* 1930 223 2440 - 4593
Sectra Imtec AB 907 100 1944 - 4592
Mean age at screening (standard deviation) 62.949

(8.494)
59.64
(9.911)

62.647
(8.560)

- 61.745

Hormone Replacement Therapy 421 36 759 - 1216
Histological diagnosis (see Table S1) - -
Stage (see Table S2) - - -
Density (unknown)

Training set
Clients 1978 238 2262 - 4478
Image manufacturer
Philips* 1343 163 911 - 2417
Sectra Imtec AB 635 75 1351 - 2061
Mean age at screening (standard deviation) 63.218

(8.405)
59.204
(8.744)

62.793
(8.497)

- 61.738

Hormone Replacement Therapy 353 32 292 - 677

Validation set
Clients 434 41 488 - 963
Image manufacturer
Philips* 296 27 192 - 515
Sectra Imtec AB 138 14 296 - 448
Mean age at screening (standard deviation) 63.093

(8.745)
57.973
(11.052)

62.743
(9.052)

- 61.270

Hormone Replacement Therapy 77 9 55 - 141

Testing set Test Set 1† Test Set 2‡
Clients 425 44 490 2785 3744
Image manufacturer
Philips* 291 33 193 1144 1661
Sectra Imtec AB 134 11 297 1641 2083
Mean age at screening (standard deviation) 62.537

(8.644)
61.743
(7.202)

62.604
(8.501)

62.448
(8.478)

62.333

Hormone Replacement Therapy 68 4 64 403 539

Table 1. BSSA Dataset. *Philips Medical Systems and Philips Digital Mammography Sweden AB. †: Test Set 1 - balanced controls. ‡: Test Set 2 - approx. NYU prevalence
controls.



Fig. 1. Dataset flow diagram. 1. Excluding assessment mammograms. 2. We use ’round’ to refer to one episode of screening, consisting of at least four standard views
(’CC’ and ’MLO’ for each breast). 3. Stratified client-wise by dominant finding.



the bootstrap method (28), resampling test clients with re-
placement for ten thousand iterations.

All modelling and analyses were performed on a sin-
gle, physical workstation with 4TB of HDD, 2TB of NVME
SSD, an Intel® Core™ i9-7920X CPU @ 2.90GHz × 24 with
62GB of RAM and 2 x GeForce RTX 2080TIs (12GB each).

A. Replication of Static NYU Models. The model and pre-
processing code were run as published (1) on Test Set 1, al-
though some additional preprocessing was necessitated by
differences in image acquisition, storage and size (see Sup-
plementary Note 2 and Figures S4 and S5).

Patch-wise benign and malignant heatmaps were gener-
ated per image (see Figure 2) using a CNN trained on NYU
radiologists’ hand drawn benign (n=3 158) and malignant
(n=855) segmentations, produced by Wu et al. (2), which
is freely available (1). Inference of this network calculates
a probability of each patch belonging to benign and malig-
nant segmentations. These probabilities were overlayed on
original images (see Figure 2).

Wu et al. reported on two models, one which used the
four-view mammograms only as input (which we refer to as
NYU1), and another which included the heatmaps as well as
the four-view mammograms (NYU2). Our initial replication
analyses focused on applying the original NYU models to
local SA data without any retraining on local BSSA data, i.e.,
static model replication.

B. Retraining on BSSA Local Data. NYU1 and NYU2
CNNs were retrained on the BSSA training subset with hy-
perparameter selection using the validation BSSA subsets.
The heatmap-generating CNN was not retrained. Code was
refactored to utilise pytorch lightning(29), a pytorch wrap-
per. After selecting the best performing hyperparameters on
the validation data (see Supplementary Note 4 - Model Train-
ing), we report the number of epochs to the best validation
set performance and the AUCs of each model after training
“from scratch” with no transfer learning and after retraining
with transfer learning (using the NYU weights).

C. Additional Experiments. We assessed the effect of a
lower proportion of malignancy on performance with a sec-
ond test set (Test Set 2 - see Figure 1 and Table 1). We
re-sampled a larger number of age-matched control clients
to approximate the prevalence of malignancy in the work by
Wu et al. (8.4% breast-wise cancer incidence, 16.8% client-
wise incidence). Test Set 2 included the same malignant and
benign lesion clients as the balanced Test Set 1 and none of
the control clients used in any of the training, validation or

Test Set 1 subsets. In balancing computational cost, approx-
imating the client-wise prevalence used by the NYU group,
and the ’real-world’ prevalence of malignancy in a screening
population, the actual client-wise prevalence in the second
test set was 13.06% (see Figure 1).

We further investigated the cumulative effect on AUC of
transfer learning and heatmaps, compared to training from
scratch with images only, and produced separate results
for differentiating malignancy from benign lesions and age-
matched controls, stratified by client characteristics and radi-
ological findings.

Results
For comparison of performance, we refer to the results of the
single models described by Wu et al. (rather than the ensem-
ble results).(2) The replication analysis of the static NYU1
model achieved an AUC on the local Test Set 1 of 75.8%
(95%CI=72.6-78.8%), compared to 83.0% (95%CI=82.4-
83.6%) on NYU data, a drop of 7.2% (see Figure 3 and Ta-
ble 2). The static NYU2 model achieved an AUC of 84.5%
(95%CI=81.9-86.8%) on local data, compared to 88.6%
(95%CI=88.3%-88.9%) on NYU data(2), a drop of 4.1%.
Training of NYU1 and NYU2 on local data, without transfer
learning, resulted in AUCs of 65.8% (95%CI=62.2-69.1%)
and 85.9 (95%CI=83.5-88.2%), respectively. Retraining of
NYU1 and NYU2 on local data, with transfer learning, re-
sulted in modest performance improvements of 6.6% (AUC
= 82.4% (95%CI=79.7-84.9%)) and 1.8% (AUC = 86.3%
(95%CI=84.0-88.5%)) respectively.

The NYU2 model retrained with transfer learning
achieved an AUC on Test Set 2 of 87.9 (95%CI=86.0-89.6%
See Figure S2). For the best model (retrained NYU2), with an
operating point chosen for Test Set 1 sensitivity above 90%,
the specificity was 59.9%. For results by radiological and
client strata, see Table 3 and Supplementary Figure S1.

Discussion
To our knowledge, this is the first study to apply DL to an
Australian mammography dataset and the first to apply an in-
ternationally trained DL system to an Australian dataset. We
have investigated the replication of open-access deep learning
models for screening mammography developed in the USA
in data from South Australia. We demonstrate incomplete
replication and hence generalisability of the NYU models in
local data. Performance and generalisation are likely to im-
prove with the use of larger training datasets.

There was a decrease in diagnostic accuracy when apply-
ing the openly available models of Wu et al.(2) to the BSSA



Fig. 2. Wu et al. heatmaps on BSSA images. Plain MLO mammograms (left) with overlayed benign (middle) and malignant (right) patch-level heatmaps in a single client
with biopsy proven invasive ductal carcinoma. These heatmaps are produced by a CNN trained by Wu et. al. (2) (this model was not retrained). Top: left mediolateral oblique
view. Bottom: right mediolateral oblique view. Note the high probability of malignant segmentation for densities in the malignancy-free right breast and bilaterally in the axillae.
Right-sided images were horizontally flipped for model training, validation and testing. *Malignancy in the contralateral breast.

dataset. By retraining with transfer learning on local data,
we were able to achieve a level of performance similar to
that originally reported by Wu et al. on NYU data. The
observed improved performance with retraining was depen-

dent upon the availability of the original model and weights.
Without access to weights, retraining with transfer learning
is not possible. Replication may depend both on the amount
of data used to train the initial model and upon the amount of



Malignancy Differentiation on Test Set 1:
Area Under the Receiver Operating Characteristic Curve (95% CI) and Epochs

Static model Trained from scratch Retrained with transfer learning

NYU1 75.8 (72.6, 78.8) 65.8 (62.2 - 69.1) 82.4 (79.7, 84.9)
144 epochs 164 epochs

NYU2 84.5 (81.9, 86.8) 85.9 (83.5, 88.2) 86.3 (84.0 - 88.5)
132 epochs 76 epochs

Table 2. AUROC for malignancy differentiation. NYU1: image-only models. NYU2: images and benign and malignant heatmaps as model input, pictured in Figure 2 and
described by Wu et al.(2)

Category Subgroup / strata Clients (n) AUC (95%CI)
Age

< 50 56 90.6 (82.0, 97.2)
≥ 50 903 86.0 (83.6, 88.4)

Subtypes
IBC 340 87.5 (85.0, 89.8)
DCIS 85 90.8 (87.8, 93.5)

Assessment finding
Discrete mass 91 87.5 (83.1, 91.5)
Non-specific density, AD and
’other’

44 81.8 (74.5, 88.1)

Stellates and multiple masses 165 87.1 (83.8, 90.0)
Malignant calcification (versus be-
nign calcification)

142/16 77.9 (69.3, 85.7)

Size of invasive malig-
nancy

≤15mm 311 87.9 (85.4, 90.3)
>15mm 106 88.5 (84.8, 91.8)

Mammography system
vendor

Philips 517 83.4 (79.8, 86.7)
Sectra 442 86.2 (82.3, 89.9)

Table 3. NYU2 retrained with transfer learning results by strata - AUROC for differentiating malignancy from benign lesions and age-matched controls in Test Set 1 (except
malignant calcification which is calculated against benign calcification). AD: Architectural Distortion

local data available for retraining, among other factors. Re-
cent external testing shows that some well-trained models do
appear to generalise well across populations and mammog-
raphy system vendors (external testing AUC of 95.6%) (20).
Potentially, a sufficiently large number of training examples
may improve generalisability to a point where retraining on
local data either does not improve performance, or the im-
provement is negligible. Regardless, our results show that
testing of models on local data prior to clinical use is critical
to avoid potentially significant decreases in diagnostic accu-

racy.

There are several possible explanations for the reduced
static model performance. There were subtle visual differ-
ences when comparing BSSA and NYU images, despite pre-
processing (see Figure 4 and Supplementary Note 2). The
vendors of imaging equipment used to train the original NYU
model were Mammomat Inspiration (22.81%), Mammomat
Novation DR (12.65%), Lorad Selenia (40.92%) and Selenia
Dimensions (23.62%)(2) contrasting with BSSA equipment



Fig. 3. Top: Effect of retraining image-only (NYU1) model. Bottom: Effect of retrain-
ing image and heatmaps (NYU2) model.

Fig. 4. Image differences: BSSA images (left) and NYU images (right) not to
scale. Two pairs of MLO views showing subtle differences in image contrast and
opacity which may affect model generalisability.

vendors Sectra (46.03%) and Philips (53.97%) (see Table 1).
Performance variation based on the vendor of the equipment
has been described previously(27). Performance across ven-
dors in our dataset was similar, although the different vendors
between NYU model training and BSSA may be a source of
reduced generalisability. Subtle visual image differences as
well as different vendors or sets of vendors between training
and clinical deployment datasets may continue to be potential
sources of reduced performance in the future.

The ground truth may potentially be a source of variation
in diagnostic accuracy when attempting to replicate mam-
mography DL systems across populations and datasets. Ex-
cept for a small number of women who did not undergo
surgery, our ground truth for clients with malignancy is
the post-surgical specimen where all excised tissue under-
goes pathological examination and diagnosis with system-
atised nomenclature in medicine (SNOMED) classification.
The ground-truth in Wu et al.(2) was based on text mining
of biopsy pathology reports and we also see that a signifi-
cantly larger portion of NYU biopsies were for benign breasts
(76.2% versus 10.2% in the BSSA dataset; see supplemen-



tary Table S3). The pathological subtype terminology used
by BSSA were different to those presented in Wu et. al.
(see supplement Tables S3, S4, S5, S6). In screening mam-
mography datasets, it is possible that women with screening
rounds labeled as effectively normal subsequently went on to
develop a tumour which was diagnosed and treated in a sepa-
rate medical system, although this is unlikely to have a large
impact on our modelling. Despite differences in ground-truth
labelling, both models were ‘ignorant’ of tumour subclass la-
bels and were trained at a higher level of abstraction: malig-
nant or not. While different demographic and lifestyle fac-
tors are associated with the prevalence of tumour subtypes
(30, 31), the absolute number of subtypes and the magnitude
of any differing radiological appearances is unlikely to have
any significant effect on performance. In addition, some pro-
portion of invasive cancers will likely be completely mam-
mographically occult, only detectable with other modalities
such as ultrasound and MRI (based on current technology).
If this proportion differs significantly across populations, this
may affect performance of externally tested DL systems. Of
note, due to our exclusion criteria, the task of differentiating
malignancy in this dataset is less difficult compared to clin-
ical practice. The visual detection of malignancy in clients
with only one breast, previous biopsies and/or surgery, for
example, can be more challenging.

There is potential for reduced generalisation of diagnostic
DL systems due to differences in image size across datasets
(see Supplement figure S5) and this may continue to be an
issue in the future with different vendors. Some variation
in size is unavoidable in mammography. For example, the
acquisition process can introduce variation into the size of
breast tissue and its contents, relative to the pressure applied
to the breast, and there is obviously a natural variation in
breast and lesion size. The NYU system, like many CNNs,
accepts only a fixed image size and so there are preprocess-
ing choices when developing or validating DL for a range of
image and breast sizes. The degree to which apparent breast
size should be standardised, if at all, for CNNs is currently
unknown (or unpublished). We noticed that despite lower
resolution, using images closer to the size of NYU images
improved performance. Static NYU model performance on
native, full-sized images was reduced compared to images
down-scaled by a factor of two, or matched to NYU image
size (whilst using the exact same preprocessing method as
Wu et al. (excluding initial inversion of images)). See Sup-
plementary Figure S4.

Work by Wu et al. (2) included pretraining on over
100,000 clients, using Breast Imaging and Reporting Data
System (BIRADS) categories as the target output. This pre-
training ran for just under 2 weeks continuously (326 hours),

on four Nvidia V100 GPUs. The Wu et al. exam-level CNN
was trained for 12 hours on an Nvidia V100GPU(2). Be-
nign and malignant heatmaps (see Figure 2), which in the
current study improved diagnostic accuracy, were generated
as part of the Wu et al. freely available system,(1) includ-
ing a model trained on 4,013 segmentations hand-drawn by
NYU radiologists. The sharing of this time-consuming work
was of considerable benefit in our experiments when build-
ing a "local" model, with retraining taking significantly less
time than training from scratch on local data (see Table 2).
We also note that retraining using the NYU weights was far
quicker than the development of the original Wu et al. sys-
tem (2), despite using much less powerful hardware. In this
way, the sharing of models, weights and code expedites re-
search in the field. Recent works suggest that some com-
bined modelling of fine-grained, lesion-level and larger-scale
information is superior to modelling whole mammogram im-
ages alone. Strategies include using combinations of client-
level, image-level and patch-level models (17), pretraining
on lesion patches(18) and including patch-level heatmaps as
input.(2) The importance of both this fine-grained informa-
tion and the use of pretrained weights is highlighted in the
drop in AUC observed with the NYU1 model trained from
scratch, with randomly initialised weights.

Unfortunately, we were not able to assess performance
with respect to breast density, as it is not routinely collected
in Australia.(32)

Future Work. We plan to explore how DL systems might in-
tegrate with human reader assessments, and the effect this
would have on overall screening recall rates, positive predic-
tive value, sensitivity and specificity.

There are several recent studies which include or relate
to accommodating for subtle image differences. Recent ap-
proaches include an encoder-decoder module at the top of a
CNN(18), batch-instance normalisation (18) and neural style
transfer(33). This may be significant in the event that a
screening service changes equipment vendors, requiring tran-
sition of an existing model to slightly different images. In ad-
dition, a method to effectively combine large datasets, poten-
tially internationally, is with distributed or ’federated’ deep
learning (34). This may enable the training of large models
with images from multiple different sites, whilst client data
remains at its original site (35).

Conclusion
We were not able to fully reproduce the reported performance
of Wu et al. (2) in an Australian screening mammogra-
phy dataset. The availability of weights of the NYU models
allowed local retraining with transfer learning; model per-



formance in the local SA dataset then approached the lev-
els originally reported. The additional input of pixel-level
heatmaps improved performance, even without local retrain-
ing of the heatmap generating model, supporting the findings
reported in Wu et al.(2) Shared models and code enabled our
experiments, including to provide independent external test-
ing of the system, to test the effects of including heatmaps as
model inputs, and to investigate the effects of local retrain-
ing. Our findings suggest that (1) replication of initial model
performance in different clinical environments may be chal-
lenging and (2) access to model weights may be necessary to
enable datasets to be adapted to local clinical environments.
Local testing of DL systems is likely to be necessary for pre-
deployment model assessment, regulatory approval, and safe
clinical translation. Reduced performance of DL systems in
new environments may create challenges to the widespread
use of DL in radiology.
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Supplementary Note 1: BreastScreen South Australia Dataset
All full-field digital screening and assessment mammograms, were transferred to secure research storage (n images=2 004 985).
Only screening images with a view of craniocaudal (CC) or mediolateral oblique (MLO) were used (see main article, Figure 1).
The total number of clients with biopsy or surgical pathology-proven lesions in this study was 3160. There were 2837 clients
with malignant and 323 with benign lesions. A total of 9185 clients were used in this study although counts vary with respect
to inclusion of the balanced Test Set 1 and approximated NYU Test Set 2 (see Table 1. Details of image manufacturers, age,
hormone replacement therapy are described in Table 1. Histological diagnoses, tumour stage and their differences across NYU
and BSSA are described in Supplementary Tables S1, S2 and S3.

Supplementary Note 2: Dicoms, Transfer and Image Preparation
Clients’ identities were removed from all dicoms (digital communication in medicine file format) prior to transfer from BSSA to
our secure research storage. To enable the transfer of approx 100TBs of data, dicoms underwent lossless compression at BSSA.
Dicoms were extracted from the BSSA client Archiving and Communication System. SQL scripts were written to extract client
data. Dicoms and client data were then downloaded to physical external hard drives. All subsequent model development and
analysis used python 3.6.(1) Compressed dicoms were later decompressed with pydicom version 1.3.0.(2)

Mammograms from BSSA were all monochrome 1 photometric interpretation (where pixel array values are low for high
density / low x-ray beam intensity and high for low density / high x-ray beam intensity, see figure 1) and used a sigmoid voxel
of interest look-up table (LUT). Monochrome 1 images were excluded from Wu’s model development (3), a potential source
of reduced generalisation. Dicom viewers may internally process dicom metadata and pixel arrays into a presentation state for
radiologists. For monochrome 1 photometric interpretation, this is achieved with a standard algorithm:

y = ymax −ymin

1+exp(4x−c
w )

(S1)

where ’ymax’ and ’ymin’ are the maximum and minimum output values, ‘x’ is raw pixel value, ‘c’ is the ‘normal’ window
centre and ‘w’ is the ‘normal’ window width (4, 5). This maps raw pixel values to presentation state output with respect to a)
the pixel intensity relationship b) voxels of Interest (VOI) look-up table (LUT) function and c) four possible tuples of contrast
window centre and width (eg ‘User’ (defined), ‘Bright’, ‘Normal’ or ‘Dark’). BSSA dicoms consisted of a sigmoid VOI LUT
function, log pixel intensity relationship and an inverse presentation LUT shape. We wrote a function to apply this algorithm
so that images were converted to a presentation state. This facilitated both ’sanity checks’ of images and we felt was more
likely to improve generalisability (versus using inverted images). See Figure S4 for visualisation of pixel arrays before and
after conversion.

Unsigned 16-bit integer dicom pixel arrays were converted to 32-bit, necessarily, to match NYU weights. Our images
consisted of a 5355 x 4915 pixel array for both CC and MLO views. After testing the effect of downscaling on the unchanged
NYU model, images were downscaled with bicubic interpolation to match the smallest NYU sample image height (3328) and
width selected to preserve aspect ratio, at the beginning of preprocessing with minor adjustments to original code. Using
code from (6), an ’ideal centre’ of the image is calculated during preprocessing, upon which crop augmentations are based for
training, validation and testing augmentation.

Supplementary Note 3: Histogram Matching
We attempted to remove domain effects and improve unchanged NYU model performance by matching BSSA images to
histograms of sample data openly provided by Wu et al (3, 6). Some authors have used this to account for variation in pixel
values.(8) Scikit-image (7) source code was patched to calculate and match histograms using non-zero values only. NYU sample
data consists of 4 exams (16 images). During preprocessing BSSA images (the source image in Figure S6) were matched with
one of the 8 corresponding sampled images of the same view (CC or MLO) however this resulted in significant degradation of
performance.



BreastScreen South Australia SNOMED* His-
tology Terms

Total Dataset
- n (%)

Training set -
n (%)

Validation
set - n (%)

Testing set -
n (%)

ADENOCARCINOMA - NOS 3 (0.095) 2 (0.09) 0 (0) 1 (0.213)
ADENOSIS - BLUNT DUCT 2 (0.063) 2 (0.09) 0 (0) 0 (0)
ADENOSIS - NOS 2 (0.063) 1 (0.045) 0 (0) 1 (0.213)
ADENOSIS - SCLEROSING 7 (0.222) 6 (0.271) 0 (0) 1 (0.213)
BENIGN CALCIFICATION 6 (0.19) 4 (0.181) 0 (0) 2 (0.426)
BENIGN SOFT TISSUE TUMOUR 2 (0.063) 1 (0.045) 1 (0.211) 0 (0)
CALCIFICATION 9 (0.285) 8 (0.361) 1 (0.211) 0 (0)
CARCINOMA - ADENOID CYSTIC 1 (0.032) 0 (0) 0 (0) 1 (0.213)
CARCINOMA - INFILTRATING DUCT 1702 (53.861) 1195 (53.926) 249 (52.421) 258 (55.011)
CARCINOMA - INFILTRATING LOBULAR 326 (10.316) 225 (10.153) 59 (12.421) 42 (8.955)
CARCINOMA - MEDULLARY 6 (0.19) 5 (0.226) 0 (0) 1 (0.213)
CARCINOMA - MUCINOUS 48 (1.519) 35 (1.579) 8 (1.684) 5 (1.066)
CARCINOMA - NON-INFILTRATING - IN-
TRADUCTAL - NOS**

576 (18.228) 403 (18.186) 88 (18.526) 85 (18.124)

CARCINOMA - PAPILLARY - NOS (ADENO-
CARCINOMA)

26 (0.823) 18 (0.812) 4 (0.842) 4 (0.853)

CARCINOMA - TUBULAR - INVASIVE CRIB-
RIFORM

133 (4.209) 86 (3.881) 22 (4.632) 25 (5.33)

COLUMNAR CELL ALTERATION 14 (0.443) 10 (0.451) 2 (0.421) 2 (0.426)
CYST - NOS 2 (0.063) 0 (0) 1 (0.211) 1 (0.213)
FAT NECROSIS 2 (0.063) 2 (0.09) 0 (0) 0 (0)
FIBROADENOMA - NOS 22 (0.696) 17 (0.767) 4 (0.842) 1 (0.213)
FIBROCYSTIC DISEASE - NOS 37 (1.171) 28 (1.264) 4 (0.842) 5 (1.066)
FIBROSIS OF THE BREAST 2 (0.063) 1 (0.045) 1 (0.211) 0 (0)
FOREIGN BODY GIANT CELL REACTION 2 (0.063) 1 (0.045) 1 (0.211) 0 (0)
GRANULAR CELL TUMOUR 1 (0.032) 0 (0) 0 (0) 1 (0.213)
HAMARTOMA - ADENO - FIBRO - LIPOMA 1 (0.032) 1 (0.045) 0 (0) 0 (0)
HYPERPLASIA - LOBULAR - ATYPICAL 29 (0.918) 21 (0.948) 4 (0.842) 4 (0.853)
HYPERPLASIA DUCTAL 14 (0.443) 9 (0.406) 5 (1.053) 0 (0)
INTRADUCT PAPILLOMATOSIS - ATYPICAL 5 (0.158) 4 (0.181) 0 (0) 1 (0.213)
INVASIVE MICROPAPILLARY CARCINOMA 2 (0.063) 1 (0.045) 0 (0) 1 (0.213)
LOBULAR CARCINOMA IN SITU - LCIS 71 (2.247) 50 (2.256) 6 (1.263) 15 (3.198)
METAPLASTIC CARCINOMA 3 (0.095) 2 (0.09) 0 (0) 1 (0.213)
METAPLASTIC CARCINOMA/PSEUDOSAR-
COMA

3 (0.095) 1 (0.045) 2 (0.421) 0 (0)

METASTATIC ADENOCARCINOMA 3 (0.095) 1 (0.045) 1 (0.211) 1 (0.213)
MUCOCOELE-LIKE LESION 3 (0.095) 3 (0.135) 0 (0) 0 (0)
PAPILLOMA - INTRADUCTAL 71 (2.247) 53 (2.392) 10 (2.105) 8 (1.706)
PAPILLOMATOSIS - INTRADUCTAL - NOS -
MULTIPLE

9 (0.285) 6 (0.271) 1 (0.211) 2 (0.426)

PHYLLODES - BENIGN - NOS 10 (0.316) 9 (0.406) 1 (0.211) 0 (0)
PLEOMORPHIC CARCINOMA IN SITU 2 (0.063) 2 (0.09) 0 (0) 0 (0)
SARCOMA 1 (0.032) 1 (0.045) 0 (0) 0 (0)
SOLID PAPILLARY CARCINOMA - IN SITU 1 (0.032) 1 (0.045) 0 (0) 0 (0)
SPINDLE CELL TUMOURS 1 (0.032) 1 (0.045) 0 (0) 0 (0)

Table S1. All biopsy-proven benign and malignant lesions BSSA Jan 1 2010 through Dec 31 2016 (n=3160) *Systematised Nomencla-
ture of Medicine. **Equivalent to DCIS



Total Dataset Training Validation Testing
Stage n % n % n % n %
unknown 21 0.74 10 0.506 2 0.461 9 2.117
0 (in-situ) 574 20.232 401 20.273 88 20.276 85 20
1 217 7.649 155 7.836 34 7.834 28 6.588
1A 1261 44.448 878 44.388 183 42.166 200 47.059
1B 65 2.291 39 1.972 11 2.535 15 3.529
2A 407 14.346 279 14.105 74 17.051 54 12.706
2B 175 6.168 133 6.724 21 4.839 21 4.941
3A 82 2.89 61 3.084 13 2.995 8 1.882
3B 9 0.317 5 0.253 2 0.461 2 0.471
3C 24 0.846 15 0.758 6 1.382 3 0.706
4 2 0.07 2 0.101 0 0 0 0

Table S2. Tumour Stage for dataset and subsets

BSSA NYU
Total Malignant Breasts 2837 985
Total Benign Breasts 323 3158
Malignant breasts: All biopsied breasts
(%)

0.898 0.238

Benign breasts: All biopsied breasts (%) 0.102 0.762
Ground truth provenance Post-surgical or

biopsy SNOMED
classification

Text extraction,
classification and
grouping from
biopsy pathology
reports

Table S3. Comparing breast biopsies and ground truth labels

BSSA NYU
"ADENOCARCINOMA - NOS" "adenocarcinoma"
"CARCINOMA - ADENOID CYSTIC" "ductal carcinoma"
"CARCINOMA - INFILTRATING DUCT" "ductal carcinoma in situ"
"CARCINOMA - INFILTRATING LOBULAR" "invasive carcinoma"
"CARCINOMA - MEDULLARY" "invasive ductal carcinoma"
"CARCINOMA - MUCINOUS" "invasive lobular carcinoma"
"CARCINOMA - NON-INFILTRATING - INTRADUCTAL - NOS" "invasive mammary carcinoma"
"CARCINOMA - PAPILLARY - NOS (ADENOCARCINOMA)" "metastases"
"CARCINOMA - TUBULAR - INVASIVE CRIBIFORM" "metastatic"
"INVASIVE MICROPAPILLARY CARCINOMA" "metastatic carcinoma"
"METAPLASTIC CARCINOMA"
"METAPLASTIC CARCINOMA/PSEUDOSARCOMA"
"METASTATIC ADENOCARCINOMA"
"PLEOMORPHIC CARCINOMA IN SITU"
"SARCOMA"
"SOLID PAPILLARY CARCINOMA - IN SITU"
"SPINDLE CELL TUMOURS"

Table S4. Malignant pathology terms BSSA versus NYU



BSSA NYU
"ADENOSIS - BLUNT DUCT" "adipose tissue"
"ADENOSIS - FLORID" "benign breast tissue"
"ADENOSIS - NOS" "cyst content"
"ADENOSIS - SCLEROSING" "fibroadenoma"
"BENIGN CALCIFICATION" "fibrocystic change"
"BENIGN SOFT TISSUE TUMOUR" "fibrocystic changes"
"CALCIFICATION’ "fibrosis"
"COLUMNAR CELL ALTERATION" "hyperplasia"
"CYST - NOS"
"FAT NECROSIS"
"FIBROADENOMA - NOS"
"FIBROCYSTIC DISEASE - NOS"
"FIBROSIS OF THE BREAST"
"FOREIGN BODY GIANT CELL REACTION"
"GRANULAR CELL TUMOUR"
"HAMARTOMA - ADENO - FIBRO - LIPOMA"
"HYPERPLASIA - LOBULAR - ATYPICAL"
"HYPERPLASIA DUCTAL"
"INTRADUCT PAPILLOMATOSIS - ATYPICAL"
"LOBULAR CARCINOMA IN SITU - LCIS"
"MUCOCOELE-LIKE LESION"
"PAPILLOMA - INTRADUCTAL"
"PAPILLOMATOSIS - INTRADUCTAL - NOS - MULTIPLE"
"PHYLLODES - BENIGN - NOS"

Table S5. Benign pathology terms BSSA versus NYU

BSSA NYU
"ECTASIA - MAMMARY DUCT - PLASMA CELL MASTITIS" "negative for malignancy"
"GRANULOMATOUS INFLAMMATION" "benign skin"
"INFLAMMATION - CHRONIC - NOS" "breast capsule"
"MASTITIS" "breast implant"
"METAPLASIA - APOCRINE" "dermal scar"
"NON-SPECIFIC REACTIVE PROCESS" "explant"
"NORMAL TISSUE - NOS" "fibrous capsule"
"PHYLLODES - BORDERLINE - NOS" "no benign or malignant epithelial cells seen"
"RADIAL SCAR" "no mammary epithelial cells"
"UNKNOWN" "no mammary epithelium identified"

"non-diagnostic"

Table S6. Exclusion pathology terms BSSA versus NYU



Supplementary Note 4: Model Training
During training, four views for each client were fed to the model (left and right CC and MLO), with random selection from
multiple breast views, if they existed, as in (6). As described by Wu et al., the client-level CNN (Resnet-22) model accepts
a dictionary of four images with separate fully connected layers for CC and MLO. Left and right features for each view are
concatenated before entering the respective fully connected layer.

Each image was normalised to a mean of zero and standard deviation of one during augmentation as in (3, 6). Augmentation
during training was aligned with that used in Wu et al in order to maximise transfer learning. Code from (6) adds gaussian
noise with a standard deviation of 0.01 to all images during training and is removed for validation and testing.

We used distributed data parallelism (where each of 2 GPUs hosts a replica of the model and trains on the entire dataset
with synchronisation of weight updates) as empirically it is more computationally efficient then data parallelism. There are
significant overheads of CPU-GPU communication when using large images. Learning rate was reduced by a factor of 0.1
when it plateaued with a minimum of 1e-12, patience of two epochs and default parameters for base momentum and maximum
momentum (0.8 and 0.9 respectively).

Negative log likelihood loss was used as the objective function, accepting 8 model output log probabilities (one for each
benign and malignant class for each view per breast). This is equivalent to binary cross entropy loss, with a separate loss
calculated for each view for each of benign and malignant findings as in (6). Weight updates were calculated with the Adam
optimiser (9) with L2 regularisation weight decay of 4e-05. Mixed precision was achieved with the python-only build of
NVIDIA’s apex pytorch extension (10), enabling a batch size of 6 (where with 32-bit precision, only 4 would fit on our 12GB
cards). Gradients were accumulated for 6 batches, achieving an effective batch size of 36. Learning curves (training and
validation loss and accuracy) were monitored with tensorboard and training manually terminated.

Supplementary Note 5: Inference
Window cropping during inference may result in slightly different outputs for each iteration, with the average of 10 iterations
per client used, as in (6). Softmax scores for benign and malignant breast are averaged for each view to calculate breast-wise
scores. The maximum score for benign and malignant lesions across both breasts were used for client-wise scores.

We experimented with additional augmentation at test time consisting of horizontal and vertical flips and rotation (of a
random degree 0-360) each with a probability of 0.5, which some have found improves performance (11) however performance
decreased slightly (presumably because this was never part of training augmentations).

The final models for testing were selected based on the nadir of validation loss. Apart from pure code debugging, inference
on the test set was run once. The test set was not used for any form of validation, model training or hyperparameter optimisation.
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Fig. S1. Secondary results by client and radiological strata for NYU2 retrained with transfer learning.



Fig. S2. Left: cumulative effect of NYU heatmaps and weights. Right: AUROC by malignancy incidence

Fig. S3. Age histograms for training, validation, balanced test set 1, and imbalanced test set 2



Fig. S4. Transformation from inverted monochrome 1 to presentation state.

Fig. S5. Different image sizes to scale. Left: NYU image - 4096 x 3328 pixels. Right: BSSA image - 5355 x 4915 pixels



Fig. S6. Histogram matching (7). Columns left to right: source image including BSSA CC example; reference image including NYU
example sample image (6); source imaged matched to non-zero histogram of reference image.
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