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Abstract 
Measuring vital signs plays a key role in both patient care and wellness, but can be challenging outside 
of medical settings due to the lack of specialized equipment. In this study, we prospectively evaluated 
smartphone camera-based techniques for measuring heart rate (HR) and respiratory rate (RR) for 
consumer wellness use. HR was measured by placing the finger over the rear-facing camera, while RR 
was measured via a video of the participants sitting still in front of the front-facing camera. In the HR 
study of 95 participants (with a protocol that included both measurements at rest and post exercise), 
the mean absolute percent error (MAPE) ± standard deviation of the measurement was 1.6% ± 4.3%, 
which was significantly lower than the pre-specified goal of 5%. No significant differences in the MAPE 
were present across colorimeter-measured skin-tone subgroups: 1.8% ± 4.5% for very light to 
intermediate, 1.3% ± 3.3% for tan and brown, and 1.8% ± 4.9% for dark. In the RR study of 50 
participants, the mean absolute error (MAE) was 0.78 ± 0.61 breaths/min, which was significantly lower 
than the pre-specified goal of 3 breath/min. The MAE was low in both healthy participants (0.70 ± 0.67 
breaths/min), and participants with chronic respiratory conditions (0.80 ± 0.60 breaths/min). Our results 
validate that smartphone camera-based techniques can accurately measure HR and RR across a 
range of pre-defined subgroups. 
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Introduction 
Measurement of heart rate (HR) and respiratory rate (RR), two of the four cardinal vital signs—HR, 

RR, body temperature, and blood pressure—is the starting point of physical assessment for both health 

and wellness. However, taking these standard measurements via a physical examination becomes 

challenging in telehealth, remote care, and consumer wellness settings.1–3 In particular, the recent 

COVID-19 pandemic has accelerated trends towards telehealth and remote triage, diagnosis, and 

monitoring.4,5 Although specialized devices are commercially available for consumers and have the 

potential to motivate healthy behaviors,6 their cost and relatively low adoption limit general usage. 

On the other hand, with smartphone penetration exceeding 40% globally and 80% in the US,7 up to 

3.8 billion individuals already have access to a myriad of sensors and hardware (video cameras with 

flash, accelerometers, gyroscope, etc) that are changing the way people interact with each other, and 

their environments. A combination of these same sensors together with novel computer algorithms can 

be used to measure vital signs via consumer-grade smartphones.8–12 Indeed, several such mobile 

applications (“apps”) are available, some with hundreds of thousands of installs.13 However, these apps 

seldom undergo rigorous clinical validation for accuracy and generalizability. Only a limited number of 

apps have undergone clinical evaluation for HR measurement (and/or atrial fibrillation detection),14 and 

the authors are unaware of any RR measurement apps that underwent clinical validation. 

In this work, we present and validate two algorithms that make use of smartphone cameras for vital 

sign measurements. The first algorithm leverages photoplethysmography (PPG) acquired using 

smartphone cameras for HR measurement. PPG signals are recorded by placing a finger over the 

camera lens, and the color changes captured in the video are used to determine the oscillation of blood 

volume after each heart beat.15 In the second algorithm, we leverage upper-torso videos obtained via 

the front-facing smartphone camera to track the physical motion of breathing to measure RR. Herein, 

we describe both details of the algorithms themselves, in addition to reporting the performance of these 

two algorithms in prospective clinical validation studies. The studies sought to demonstrate reliable and 

consistent accuracy on diverse populations (in terms of objectively-measured skin tones, ranging from 

very light to dark skin) for HR and health status (with and without chronic pulmonary conditions) for RR.  

 

Methods 
We conducted two separate prospective studies to validate the performance of smartphone-based 

HR and RR measurements (Figure 1). The user interfaces of the two custom research apps are shown 

in Supplementary Figure 1.  The HR algorithm used PPG signals measured from the study participants 

placing their finger over the rear camera, and the enrollment for the corresponding validation study was 

stratified to ensure diversity across skin tones. The RR algorithm used video captures of the face and 

upper torso, and the enrollment for the corresponding validation study was stratified to capture 
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participants with and without chronic respiratory conditions. The following sections detail each of the 

two studies. 

 

HR measurement 

Algorithm description 

Prior work in computer vision to extract heart rate from RGB (red-green-blue) video signals has 

leveraged manually extracted features in PPG signals from the finger for arrhythmia detection,16  

ballistocardiographic movements from fingertips,17 red-channel PPG from fingertip videos,18 and the 

relationship between RGB channels.19  

Our method estimates HR by optically measuring the PPG waveform from participants’ fingertips 

and then extracting the dominant frequency. First, several rectangular regions of interest (ROI) were 

manually selected from the video frames (linear RGB at 15 frames per second and at a resolution of 

640x480 pixels). The chosen ROIs were the full frame, the left half, the right half, the top half, and the 

bottom half of the frames. Since camera pixels are illuminated non-homogeneously, signal strength can 

have spatial variations across pixels.20 Our method simultaneously analyzes different ROIs to identify 

one with the greatest signal-to-noise ratio (SNR). 

Pixels in each ROI were averaged per-channel to reduce the effects of sensor and quantization 

noise, similar to prior work.19 The pulsatile blood volume changes were present as the AC components 

in these smoothed signals. We then weighted the three RGB waveforms to predict a single PPG 

waveform (weights 0.67, 0.33, and 0 for RGB respectively were empirically determined via grid search) 

for each ROI. 

The resulting PPG waveforms were bandpass filtered to remove low- and high-frequency noise 

unlikely to be valid HR. Filter cut-off frequencies corresponded to a low of 30 beats/min and high of 360 

beats/min. Next, large amplitude changes in PPGs due to motion were suppressed by limiting 

maximum allowed changes in amplitudes as 3x of moving average values. Then, frequency domain 

representations of PPGs were computed using the Fast Fourier Transform (FFT), from which we 

identified the dominant frequencies with maximum power. Because the PPG signals are periodic with 

multiple harmonics, the powers of the base frequencies were computed by summing the powers of their 

first, second, and third harmonics. SNRs were estimated for each ROI by computing the ratio between 

the power of the dominant frequency and the powers of non-dominant frequencies on a logarithmic 

scale. ROIs were filtered to only those with a SNR ≥0 dB, and the dominant frequency of the ROI with 

the highest SNR was reported. If no such ROI existed, no HR was reported. 

 

Study design and participants 
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We performed a prospective observational clinical validation study to assess the accuracy of the 

study algorithm in estimating HR in individuals of diverse skin tones (Supplementary Figure 2A). 

Participants were enrolled at a clinical research site (Meridian, Savannah, GA) from October 2020 to 

December 2020. Study eligibility criteria were limited to excluding participants with significant tremor or 

inability to perform physical activity. The inclusion/exclusion criteria are detailed in Supplementary 

Table 1A. Study enrollment was stratified into 3 skin-tone subgroups (mapped to Fitzpatrick skin 

types;21 see Supplementary Table 2) to ensure broad representation: (1) types 1–3 (very light, light and 

intermediate); (2) types 4–5 (tan and brown), and (3) type 6 (dark). Skin tone was objectively measured 

from the participants’ cheek skin using a Pantone Capsure color matcher colorimeter (X-Rite, Grand 

Rapids, MI). Evidence suggests that darker skin tone is frequently under-represented in medical 

datasets,22 and that medical devices using optical sensors may be less accurate in those individuals.23–

25 Therefore, the darkest skin-tone subgroup was intentionally oversampled to ensure the algorithm’s 

unbiased performance over various skin tones. Informed consent was obtained from all study 

participants in accordance with the tenets of the Declaration of Helsinki. The study protocol was 

approved by Advarra IRB (Columbia, MD; protocol no. Pro00046845). The clinical research site 

followed standard safety precautions  for COVID-19 in accordance with the Centers for Disease Control 

and Prevention guidelines. 

 

Data collection 

Each participant underwent four 30-second data collection episodes with their index finger (of a 

hand of their choice) held directly over the study phone camera. Three of the 30-second episodes were 

collected at rest under various ambient brightness/lighting conditions: (1) with camera flash on and 

under regular ambient light, (2) with flash off and under regular ambient light, and (3) with flash off and 

under dim light. The fourth episode was collected post-exercise. In the original protocol, participants 

were instructed to ride a stationary bicycle for 30 seconds as strenuously as possible against light to 

medium resistance. After enrolling 37 participants, the exercise protocol was modified (with an IRB 

amendment) to achieve higher participant HR: participants were encouraged to achieve 75% of their 

maximal HR, which was calculated by subtracting the participant’s age from 220 beats/min. Exercise 

was completed either when the goal HR was achieved or when the participant asked to stop. The data 

were collected with flash off and under regular ambient light. Lighting conditions were controlled using 2 

overhead and 1 front light emitting diode (LED) lights. The brightness level of the study environment 

was measured by a Lux meter (LT300 Light Meter, Extech, Nashua, NH) prior to each study. Measured 

brightness values were between 160 and 200 Lux for regular ambient light, and between 95 and 110 

Lux for dim light. 

The study was conducted using a mobile app deployed to a Pixel 3 smartphone running Android 10 

(Google LLC, Mountain View, CA). HR estimation using the app was generally completed by the study 
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participants following the in-app instructions, with the coordinators providing feedback on usage when 

needed. The reference HR was measured simultaneously during each data collection episode using a 

Masimo MightySat® (Masimo, Irvine, CA), which is US Food and Drug Administration-cleared for 

fingertip measurement of pulse rate.26 The measurements were conducted in accordance with the 

vendor’s manual and taken at the end of each episode. 

 

Statistical analysis 

Each participant contributed up to 3 HR measurements at rest (with different lighting conditions), 

and up to 1 post-exercise. Measurements were paired observations: the algorithm-estimated HR and 

the reference HR from the pulse oximeter. For each algorithm measurement, up to three tries were 

allowed, and the number of tries required was recorded. The baseline characteristics (e.g., race, 

Fitzpatrick skin type, and skin-tone subgroup) of the participants who did not successfully complete 

algorithm estimation were compared with the rest of the study population using Fisher’s exact test. A 

paired measurement was dropped if either the algorithm estimation or reference measurement failed. 

The absolute error of each paired measurement was calculated as the absolute value of the difference 

between the algorithm-estimated and reference HR values. The mean absolute error (MAE) was the 

mean value of all absolute errors. Similarly, the absolute error from each paired measurement was 

divided by the reference value for that measurement and multiplied by 100 to produce the absolute 

percentage error. The mean absolute percentage error (MAPE) was the mean value for all absolute 

percent error values. The four (three at rest and one post-exercise; fewer if missing data) values from 

each participant were treated as statistically independent as the clustering effects (intra-participant 

correlation) were observed to be minimal.  

The MAPE was the primary study performance criteria, as recommended by the current standards 

for HR monitoring devices.27 We also computed the standard deviation and 95th percentiles. Sign tests 

were used to determine whether the absolute percentage errors were significantly <5%, both for the 

entire group of participants and the 3 skin-tone subgroups. Bland-Altman plots were used to visualize 

the agreement between the estimated values and the reference measurements and assess for any 

proportional bias (trends in the error with increasing values).28  The subgroup analysis across the three 

skin-tone subgroups was pre-specified.  

 

Sample size calculation 

HR data collection was planned for approximately 100 participants. Enrollment up to a maximum of 

150 participants was allowed as we anticipated that some enrolled participants would be excluded prior 

to contributing HR data because they failed to meet the required skin tone distribution or because they 

were not able to exercise. Requirements for participant enrollment termination included ≥60 paired HR 

measurements in the dark skin tone subgroup and ≥20% of the post-exercise reference HR >100 
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beats/min. The study hypothesis was that MAPE was less than 5% in all of the 3 skin-tone subgroups. 

To estimate the sample size required for the study, we first conducted an IRB-approved feasibility study 

with a different set of 55 participants and similar measurements both at rest and post-exercise. In that 

study, the MAPE ± standard deviation was 0.91% ± 3.68%. Assuming double the mean and SD (i.e., 

1.82% and 7.36%, respectively), a minimum of two paired measurements per participant, a skin-tone 

subgroup of ~25 participants, and some dropout from incomplete data, the power to detect a MAPE > 

5% was > 0.8. 

 

RR measurement 

Algorithm description 

Prior work in computer vision and sensors to extract RR from RGB video signals relied on changes 

in color intensities at specific anatomical points,29,30 tracking head motions,31,32 estimating optical flow 

along image gradients,33 or factorizing the vertical motion matrix.34  

Our contactless method estimates RR by performing motion analysis in a ROI of the video stream 

that includes the base of the neck, shoulder line and upper torso of the participant. The main challenge 

was that variations in video due to respiratory motions are hard to distinguish from noise. We build on 

Eulerian, phase-based motion processing35 that is particularly suited for analyzing subtle motions. In 

each video frame, the position at each pixel was represented by the phase of spatially localized 

sinusoids in multiple scales (frequencies). To aggregate the information across scales and to obtain an 

intuitive representation of motion, we then transformed the spatial phases into optical flow by linearly 

approximating the position implied by each phase coefficient and averaging across scales. Using the 

Halide high-performance image library36, we were able to speed up the phase and optical flow 

computation to achieve real-time processing (1-4 ms per frame on Pixel 3a and Pixel 4 mobile devices).  

Ensembling was then used to improve the predictive performance. A spectral-spatial ensemble was 

built in the following way. The respiratory ROI, together with the four quadrants obtained by equally 

subdividing the ROI defined five regions over which the vertical component of the optical flow was 

averaged. This resulted in five respiratory waveforms. Next, frequency-domain representations for each 

of these respiratory waveforms were computed via FFT, from which power spectra were computed. The 

power spectra were then aggregated to obtain a final ensembled power spectrum. Bandpass-filtering 

was performed to remove low and high frequencies unlikely to represent valid RRs. Filter cut-off 

frequencies corresponded to a low of 6 breaths/min and a high of 60 breaths/min. The maximum power 

frequency and the corresponding SNR value were computed from the ensembled power spectrum. The 

waveform corresponding to the entire ROI is used for displaying the breathing pattern to the user in the 

mobile app. 

 Often there was insufficient periodicity in the respiratory waveform (e.g., the participant briefly held 

their breath or changed their respiratory rate within the time window used for analyzing the waveform). 
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To increase the robustness of RR estimation, the algorithm falls back on a time domain estimation 

method based on counting zero crossings of the waveform corresponding to the entire ROI whenever 

the SNR obtained via the FFT-based method was lower than a certain threshold. We tested two 

versions of the algorithm, differing only in terms of this threshold: SNR < -6.0 dB (“version A”) and SNR 

< -4.0 dB (“version B”). The higher value for the threshold in version B invoked the time domain 

estimation method more often, which was hypothesized to improve accuracy by improving robustness 

to irregular breathing. 

 

Study design and participants 

We performed a prospective observational clinical validation study to assess the accuracy of the 

study algorithm in measuring the RR in healthy adults and patients with chronic respiratory conditions 

(Supplementary Figure 2B). Participants were enrolled at a clinical research site (Artemis, San Diego, 

CA) between June 2020 and July 2020. Chronic respiratory conditions included moderate or severe 

chronic obstructive pulmonary disease (COPD) and asthma that was not well-controlled based on 

specific study criteria (Supplementary Table 1B). Also, participants with significant tremor were 

excluded. Further details and criteria are presented in Supplementary Table 1B. Informed consent was 

obtained from all study participants in accordance with the tenets of the Declaration of Helsinki. The 

study protocol was approved by Aspire IRB (now WCG IRB, Puyallup, WA; protocol no. 20201594). 

The clinical research site followed standard safety precautions for COVID-19 in accordance with the 

Centers for Disease Control and Prevention guidelines. 

 

Data collection 

Each participant underwent 30 seconds of data collection using a Pixel 4 smartphone running 

Android 10  (Google LLC, Mountain View, CA). The two algorithm versions (A and B) were tested 

sequentially. The participants followed the study protocol via instructions from the study app, without 

intervention from the study staff. Participants were prompted to prop the study phone on a table using 

provided common household items, such that the upper body was centered in the video capture (Figure 

1). There were no specific requirements on the type of clothing worn during the study or additional 

custom lighting equipment. The in-app instructions guided the participants to wait several minutes after 

any active movement and to stay comfortable and breathe normally during the measurements. 

During the data collection, RR was manually counted and recorded by two research coordinators. 

The two observers counted the number of breaths independently and blinded to the algorithm-

estimated results. The agreement between the two measurements was high (Pearson correlation 

coefficient: 0.962; mean difference: 0.48 ± 0.88 breaths/min; range, 0–4). The mean of the two human-

measured RRs, rounded off to the nearest integer, was taken to be the reference RR. 
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Statistical analysis and sample size calculations 

Each participant contributed a single pair of measurements for each algorithm version, and the 

MAE was used as the primary evaluation metric. The study hypothesis was that MAE would be < 3 

breaths/min. One-sample t-tests were done to determine whether the MAE was statistically significantly 

< 3 breaths/min. A pre-specified subgroup analysis was also performed, stratified by history of chronic 

respiratory conditions. In addition, post-hoc subgroup analyses were performed for age and 

race/ethnicity subgroups. Bland-Altman plots were used to analyze further for any trends in errors. 

Differences between the two algorithm versions were compared using a paired t-test. 

To estimate the sample size required for the study, we first conducted an IRB-approved feasibility 

study with 80 healthy adults. Based on that MAE ± standard deviation (0.96 ± 0.72 breaths/min), a 

sample size of 50 participants was estimated to provide a power of > 0.99 to detect an MAE < 3. The 

power was also >0.99 for both the subgroup of 10 healthy participants and the subgroup of 40 with 

chronic respiratory conditions. If the MAE and standard deviation were doubled, the power would be 

>0.99, 0.71, and >0.99, respectively, for the full sample, healthy participants, and those with chronic 

respiratory conditions. 

 

User experience survey 

The participants were surveyed about their experience using the app. The questions covered their 

ease of setting up the phone at the desired angle to capture their face/torso; the clarity of the 

instructions; their comfort in using the app to assess their general wellness; their comfort in teaching 

someone else how to use the app; and their expected comfort in using the app several times a day 

(Supplementary Table 3). 

 

Results 

Heart rate measurement 

A total of 101 participants were enrolled. After excluding one participant who was found to meet 

exclusion criteria (pregnancy), there were 100 valid enrollees. Among these, 3 were withdrawn due to 

skin tone distribution requirements, and 2 were withdrawn during data collection due to difficulty in data 

collection (such as inability to hold a phone properly or to obtain reference HR data). Thus, 95 

participants completed data collection (Supplementary Figure 2). The participants had a mean age of 

41.8 years, 75% were female, and skin-tone subgroups were evenly distributed as planned: 33% were 

subgroup 1 (very light, light and intermediate), 34% were subgroup 2 (tan and brown), and 34% were 

subgroup 3 (dark) (Table 1). 

From these participants, 379 total recordings were attempted. A valid HR was successfully obtained 

(see details on SNR in Methods) in 361 cases (95.3%). The success rate increased with retries up to 3 
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times: 316 measurements (83.4%) were successful on the first try, another 31 measurements 

(cumulative 91.6%) on the second try, and another 14 measurements (cumulative 95.3%) on the third 

try. The baseline characteristics of the 14 participants for whom HR values were not successfully 

reported by the study app for at least one measurement (due to low SNR) did not differ significantly 

from the remaining participants (Supplementary Table 4). In addition, a corresponding valid reference 

HR was not obtained for 9 recordings from 4 participants. The remaining 352 recordings with paired 

valid reference HR contributed to the final analysis (Supplementary Figure 2A). The average reference 

HR was 79.8 ± 14.6 beats/min overall, 75.5 ± 11.2 beats/min at rest, and 92.9 ± 16.6 beats/min post-

exercise (Supplementary Table 5). 

Compared to the reference HR, the MAPE of the overall study population was 1.63%, which was 

significantly lower than the pre-specified study target of 5% (p<0.001). The MAPE of 1.45% at rest and 

2.39% post-exercise were also lower than the 5% target (p<0.001 for both). The MAPE showed a left-

skewed distribution with a long tail (median, 1.14%; range, 0.0–50.6%). The MAPE by skin-tone 

subgroup was 1.77% for subgroup 1, 1.32% for subgroup 2, and 1.77% for subgroup 3, all of which met 

the study target of <5% (p<0.001 for all subgroups) (Figure 1 and Supplementary Table 5). We found 

no significant variation in MAPE across the three different lighting conditions. 

Figure 2 shows the Bland-Altman plots for comparing the algorithm-estimated HR with the 

reference HR for the overall population and the three subgroups. Most observations (344/352, 97.8%) 

were within ±5 beats/min. Supplementary Figure 3 shows the Bland-Altman plots for HR stratified by at-

rest versus post-exercise. 

 

Respiratory rate measurement 

A total of 50 participants were enrolled in the RR study, including 10 healthy participants and 40 

participants with chronic respiratory conditions (Supplementary Figure 2B). Self-identified baseline 

characteristics are presented in Table 1. The mean age was 50 years old; 80% were White, 14% were 

African American, and 46% were Hispanic. The average reference RR was 15.3 ± 3.7 breaths/min 

(Supplementary Table 6). 

Both versions of the algorithm successfully estimated RR in all of the study subjects; thus, all of the 

50 study participants contributed to the final analysis. The MAE in the overall study population was 0.84 

± 0.97 and 0.78 ± 0.61 breaths/min for algorithm versions A and B, respectively (Figure 1 and 

Supplementary Table 6), which were significantly lower than the pre-specified threshold of 3 

breaths/min (p<0.001 for both). Each subgroup also showed MAE values significantly lower than the 

threshold: algorithm version A, 0.60 ± 0.52 breaths/min (p<0.001) for the healthy cohort and 0.90 ± 1.05 

breaths/min (p<0.001) for the cohort with chronic respiratory conditions; algorithm version B, 0.70 ± 

0.67 breaths/min (p<0.001) and 0.80 ± 0.60 breaths/min (p<0.001), respectively. No significant 

variations across age and race subgroups were seen (Supplementary Table 7). 
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Figure 3 shows the Bland-Altman plots for comparing the algorithm-estimated RR with the 

reference RR for the overall population and the two subgroups. All observations were within ±2 

breaths/min of the reference RR for algorithm version B, while one observation was out of ±2 

breaths/min for version A. The accuracy of the two algorithm versions did not differ significantly 

(p=0.70). 

Supplementary Figure 4 shows the user experience survey results from the study participants. More 

than 90% of responses were positive, with participants reporting anticipated ease in setting up within a 

home environment, ease in following the instructions in the app, and comfort using the app to assess 

general wellness. 

 

Discussion 
We report the results of two prospective clinical studies validating the performance of smartphone 

algorithms to estimate HR and RR. Both algorithms showed high accuracy compared to the reference 

standard vital sign measurements, with HR within 5% and RR within 3 breaths/min (the pre-specified 

targets). In addition, the HR estimation was robust across skin tones, and the RR estimation 

generalized to participants with common chronic respiratory conditions, COPD and asthma. 

The accuracy of the HR algorithm is especially notable. A MAE less than 5 beats/min or a MAPE 

less than 10% are standard accuracy thresholds for HR monitors.37,38 The MAE of 1.32 beats/min in HR 

is lower than that reported for contemporary wearable devices (4.4 to 10.2 beats/min at rest), albeit with 

several differences in study design and population.39 The MAPE of 1.63% is comparable to the 

performance of current wearable devices. Shcherbina et al. tested six wrist worn devices to show a 

median error <5% for all across various activities and a median error of 2.0% for the best-performing 

device.40 Because skin tone can be a potential source of bias in medical devices,23–25 and the accuracy 

of PPG-based HR estimation can be affected by melanin’s light-absorbing property,39,41 we enrolled 

participants with diverse skin tones to validate the robustness of our HR estimation algorithm across 

skin tones. 

For consumer-grade RR monitoring devices, there is no well-accepted accuracy standard.27 Our 

MAE of 0.78 breaths/min is comparable to that of professional healthcare devices, which have reported 

accuracy of ± 2–3 breaths/min.42–45 This could be a helpful reference point for future studies. In this 

study, we tested two algorithm versions for RR estimation that differed only in the SNR threshold. Our 

results suggest that this parameter had little impact on the accuracy or error rates. 

This work supports the use of consumer-grade smartphones for measuring HR and RR. One 

application of these measurements is in fitness and wellness for the general consumer user. 

Specifically, an elevated resting HR or slower heart rate recovery after exercise has been linked to 

lower physical fitness and higher risk of all-cause mortality.46,47 Evidence suggests use of direct-to-
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consumer mobile health technologies may enhance positive lifestyle modification such as increased 

physical activity, more weight loss, and better diabetes control.48–50 Tracking one’s own health-related 

parameters over time by the general public can potentially increase motivation for a healthier lifestyle 

by providing an objective, quantifiable metric.6 Additionally, there exists strong evidence that regular 

physical activity is key to improving one’s health independent of age, sex, race, ethnicity, or current 

fitness level for maintaining cardiovascular health.51 Monitoring one’s HR is also an easy and effective 

way to assess and adjust exercise intensity, or enable smartphone-based measurement of 

cardiorespiratory fitness.52–54 

With further clinical validation across broad populations, such smartphone-based measurement 

could also be useful in various settings, most notably telehealth where vital sign measurement is 

challenging due to the remote nature of the patient encounter.55,56 Though patients can in principle 

count their own HR or RR, this can be error prone due to factors such as biases that acute awareness 

of the self-examination can cause.57,58 Because the demand for remote triage, diagnosis and monitoring 

is burgeoning in the wake of the COVID-19 pandemic, there is increased attention being paid to 

accurate remote physical examination.3,23,24  

There are several limitations in this work. First, our quantitative results focused on specific study 

devices (Pixel 3 and 4) and quantitative data on generalization to other devices will be needed. The 

current studies were also conducted in a controlled setting with structured study protocols. Though the 

participants used these features without significant study staff assistance, their ease of use in a general 

population will need further study. Next, our reference HR comes from a clinical PPG device instead of 

an electrocardiogram. There may be infrequent instances of electromechanical dissociation (such as 

various heart blocks, ventricular tachycardia, etc), in which a pulse rate measured at the periphery may 

not be the same with the reference electrical “heart” rate. Our HR algorithm is similarly subject to such 

errors because it relies on the pulsatile movement of blood in the fingertips. Further, awareness of self-

measurement may affect users’ RR. A study demonstrated that people may have lower RR when they 

are aware that they are monitored by observers.59 It is yet unclear how awareness would affect RR 

measurements using apps in the absence of human-to-human interaction. In addition, though the study 

enrollment was optimized for diversity, this impacted the sample size in each subpopulation and the 

number of covariates that can be analyzed. Larger real-world validation that also controls for additional 

factors such as body-mass index will be helpful. Also, these clinical validation studies aimed to evaluate 

the algorithms at a “steady state” and further work will be needed to investigate acute clinical scenarios 

such as elevated or depressed HR or RR in urgent medical situations. Last but not least, although both 

HR and RR estimation algorithms met the predefined goals, observations with high deviation from the 

reference values were still produced by the algorithms (albeit infrequently). Future work to reduce 

errors is needed. 
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In addition to the clinical validation studies reported in this work, these HR and RR algorithms are 

currently undergoing additional broad usability testing across users, different Android devices, and 

different environments as we prepare to make the algorithms more widely accessible for consumers, 

beginning with Google Fit.   

 

Conclusion 

We developed HR- and RR-measurement algorithms for smartphones, and conducted two clinical 

studies to validate their accuracy in various study populations. Both algorithm versions showed 

acceptable error ranges with a MAPE under 2% for HR and MAE under 1 breath/min for RR. These 

algorithms may prove useful in wellness settings such as fitness monitoring. Additional research is 

warranted before consideration for any future use in clinical settings, such as remote physical 

examination. 
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Figures 

 

Figure 1. Smartphone-based monitoring of two key vital signs: (A) heart rate (HR) and (B) 
respiratory rate (RR). Left: the “setup” of how measurements are taken — with the finger over the 
rear-facing camera for HR, and using a video of the participant via the front-facing camera for RR. 
Middle: the study was designed to ensure generalization across skin tones for HR, and to participants 
with chronic respiratory conditions (chronic obstructive pulmonary disease and asthma) for RR. Skin-
tone subgroup 1 corresponds to Fitzpatrick skin types 1–3 (very light, light and intermediate); subgroup 
2 corresponds to types 4–5 (tan and brown); and subgroup 3 corresponds to type 6 (dark). Right: the 
main measurements were mean absolute percent error (MAPE) for HR, and mean absolute error 
(MAE) for RR. 
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Figure 2. Bland-Altman plots for the heart rate (HR) study. Top to bottom and left to right: plots from 
the full study followed by subgroups based on skin type (see Figure 1). The reference HR was obtained 
from a pulse oximeter (see Methods). Dots represent individual participants; blue lines indicate the 
mean difference; red lines indicate the 95% limits of agreement (mean difference ± 1.96 standard 
deviations). 
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A 

 
 

B 

 

Figure 3. Bland-Altman plots for the respiratory rate (RR) study, for (A) algorithm version A and 
(B) algorithm version B. Left to right: plots from the full study followed by subgroups based on 
presence vs. absence of chronic respiratory conditions (see Figure 1). The reference RR was obtained 
by research coordinators manually counting breaths (see Methods). Dots represent individual 
participants; blue lines indicate the mean difference; red lines indicate the 95% limits of agreement 
(mean difference ± 1.96 standard deviations). 
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Tables 
Table 1. Baseline characteristics of the study participants. 

 Heart rate (HR) study Respiratory rate (RR) study 

No. participants analyzed 95 50 

No. recordings 352 50 (for each algorithm version*) 

Age (mean ± standard deviation) 41.8 ± 15.0 50.0 ± 16.0 

Age groups 
   < 40 years 
   40–59 years 
   ≥ 60 years 

 
41 (43%) 
39 (41%) 
15 (16%) 

 
17 (34%) 
21 (42%) 
12 (24%) 

No. female (%) 71 (75%) 26 (52%) 

No. male (%) 24 (25%) 24 (48%) 

Race/ethnicity: n, % 
   White, non-Hispanic 
   White, Hispanic 
   Black, non-Hispanic 
   Black, Hispanic 
   Asian / pacific islander 
   Multiple races, non-Hispanic 
   Multiple races, Hispanic 

 
25 (26%) 

0 (0%) 
61 (64%) 

0 (0%) 
7 (7%) 
1 (1%) 
1 (1%) 

 
18 (36%) 
22 (44%) 
6 (12%) 
1 (2%) 
3 (6%) 
0 (0%) 
0 (0%) 

Measured skin tone**: n (%) 
   1 (Fitzpatrick types 1-3) 
   2 (Fitzpatrick types 4-5) 
   3 (Fitzpatrick type 6) 

 
31 (33%) 
32 (34%) 
32 (34%) 

 
N/A 

Chronic respiratory conditions: n (%) 
   None 
   Asthma 
   COPD 
   Both 

 
 

N/A 

 
10 (20%) 
33 (66%) 

4 (8%) 
3 (6%) 

*RR was measured twice, once for each one of two algorithm versions (see Methods). 

**Measurements were done on the cheek using a Pantone CAPSURE color matcher (see Methods). 

Abbreviations: COPD=chronic obstructive pulmonary disease. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.08.21252408doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.08.21252408
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

References 

1.  Tuckson RV, Edmunds M, Hodgkins ML. Telehealth. N Engl J Med. 2017;377(16):1585-
1592. 

2.  Benziger CP, Huffman MD, Sweis RN, Stone NJ. The Telehealth Ten: A Guide for a 
Patient-Assisted Virtual Physical Examination. Am J Med. 2021;134(1):48-51. 

3.  Hyman P. The Disappearance of the Primary Care Physical Examination-Losing Touch. 
JAMA Intern Med. Published online August 24, 2020. 
doi:10.1001/jamainternmed.2020.3546 

4.  Hollander JE, Carr BG. Virtually Perfect? Telemedicine for Covid-19. N Engl J Med. 
2020;382(18):1679-1681. 

5.  Cutler DM, Nikpay S, Huckman RS. The Business of Medicine in the Era of COVID-19. 
JAMA. 2020;323(20):2003-2004. 

6.  Rowland SP, Fitzgerald JE, Holme T, Powell J, McGregor A. What is the clinical value of 
mHealth for patients? NPJ Digit Med. 2020;3(1):4. 

7.  Contributors to Wikimedia projects. List of countries by smartphone penetration. Published 
April 29, 2014. Accessed January 12, 2021. 
https://en.wikipedia.org/wiki/List_of_countries_by_smartphone_penetration 

8.  Shao D, Liu C, Tsow F. Noncontact Physiological Measurement Using a Camera: A 
Technical Review and Future Directions. ACS Sensors. Published online 2020. 
doi:10.1021/acssensors.0c02042 

9.  De Ridder B, Van Rompaey B, Kampen JK, Haine S, Dilles T. Smartphone Apps Using 
Photoplethysmography for Heart Rate Monitoring: Meta-Analysis. JMIR Cardio. 
2018;2(1):e4. 

10.  Sun Y, Thakor N. Photoplethysmography Revisited: From Contact to Noncontact, From 
Point to Imaging. IEEE Trans Biomed Eng. 2016;63(3):463-477. 

11.  Allen J. Photoplethysmography and its application in clinical physiological measurement. 
Physiol Meas. 2007;28(3):R1-R39. 

12.  Poh M-Z, McDuff DJ, Picard RW. Advancements in noncontact, multiparameter 
physiological measurements using a webcam. IEEE Trans Biomed Eng. 2011;58(1):7-11. 

13.  Koetsier J. The Top 10 Health & Fitness Apps Of 2020 Have One Thing In Common 
(Mostly). Forbes. Published October 5, 2020. Accessed January 20, 2021. 
https://www.forbes.com/sites/johnkoetsier/2020/10/05/the-top-10-health--fitness-apps-of-
2020-have-one-thing-in-common-mostly/ 

14.  O’Sullivan JW, Grigg S, Crawford W, et al. Accuracy of Smartphone Camera Applications 
for Detecting Atrial Fibrillation: A Systematic Review and Meta-analysis. JAMA Netw 
Open. 2020;3(4):e202064. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.08.21252408doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.08.21252408
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

15.  Hertzman AB. The Blood Supply of Various Skin Areas as Estimated by the Photoelectric 
Plethysmograph.; 1938. 

16.  Chong JW, Esa N, McManus DD, Chon KH. Arrhythmia discrimination using a smart 
phone. IEEE J Biomed Health Inform. 2015;19(3):815-824. 

17.  Zaman R, Cho CH, Hartmann-Vaccarezza K, Phan TN, Yoon G, Chong JW. Novel 
Fingertip Image-Based Heart Rate Detection Methods for a Smartphone. Sensors . 
2017;17(2). doi:10.3390/s17020358 

18.  Chatterjee A, Prinz A. Image Analysis on Fingertip Video to Obtain PPG. Biomedical and 
Pharmacology Journal. 2018;11(4):1811-1827. 

19.  Wang W, den Brinker AC, Stuijk S, de Haan G. Algorithmic Principles of Remote PPG. 
IEEE Trans Biomed Eng. 2017;64(7):1479-1491. 

20.  Karlen W, Ansermino JM, Dumont GA, Scheffer C. Detection of the optimal region of 
interest for camera oximetry. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:2263-2266. 

21.  Del Bino S, Bernerd F. Variations in skin colour and the biological consequences of 
ultraviolet radiation exposure. Br J Dermatol. 2013;169 Suppl 3:33-40. 

22.  Kinyanjui NM, Odonga T, Cintas C, et al. Estimating Skin Tone and Effects on 
Classification Performance in Dermatology Datasets. Published online October 29, 2019. 
Accessed February 17, 2021. http://arxiv.org/abs/1910.13268 

23.  Bickler PE, Feiner JR, Severinghaus JW. Effects of skin pigmentation on pulse oximeter 
accuracy at low saturation. Anesthesiology. 2005;102(4):715-719. 

24.  Sjoding MW, Dickson RP, Iwashyna TJ, Gay SE, Valley TS. Racial Bias in Pulse Oximetry 
Measurement. N Engl J Med. 2020;383(25):2477-2478. 

25.  Ries AL, Prewitt LM, Johnson JJ. Skin color and ear oximetry. Chest. 1989;96(2):287-290. 

26.  Bohnhorst B, Peter CS, Poets CF. Pulse oximeters’ reliability in detecting hypoxemia and 
bradycardia: comparison between a conventional and two new generation oximeters. Crit 
Care Med. 2000;28(5):1565-1568. 

27.  Consumer Technology Association: CTA Committees, Subcommittees and Working 
Groups. Accessed February 2, 2021. 
https://standards.cta.tech/kwspub/home/Committees/ 

28.  Altman DG, Bland JM. Measurement in Medicine: The Analysis of Method Comparison 
Studies. The Statistician. 1983;32(3):307. doi:10.2307/2987937 

29.  Jorge J, Villarroel M, Chaichulee S, et al. Non-Contact Monitoring of Respiration in the 
Neonatal Intensive Care Unit. 2017 12th IEEE International Conference on Automatic 
Face & Gesture Recognition (FG 2017). Published online 2017. doi:10.1109/fg.2017.44 

30.  Massaroni C, Lopes DS, Lo Presti D, Schena E, Silvestri S. Contactless Monitoring of 
Breathing Patterns and Respiratory Rate at the Pit of the Neck: A Single Camera 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.08.21252408doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.08.21252408
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

Approach. Journal of Sensors. 2018;2018:1-13. doi:10.1155/2018/4567213 

31.  Al-Naji A, Chahl J. Simultaneous Tracking of Cardiorespiratory Signals for Multiple 
Persons Using a Machine Vision System With Noise Artifact Removal. IEEE J Transl Eng 
Health Med. 2017;5:1900510. 

32.  Yang Q, Shen Y, Yang F, Zhang J, Xue W, Wen H. HealCam: Energy-efficient and 
privacy-preserving human vital cycles monitoring on camera-enabled smart devices. 
Computer Networks. 2018;138:192-200. doi:10.1016/j.comnet.2018.03.033 

33.  Chatterjee A, Prathosh AP, Praveena P. Real-time respiration rate measurement from 
thoracoabdominal movement with a consumer grade camera. Conf Proc IEEE Eng Med 
Biol Soc. 2016;2016:2708-2711. 

34.  Janssen R, Wang W, Moço A, de Haan G. Video-based respiration monitoring with 
automatic region of interest detection. Physiol Meas. 2016;37(1):100-114. 

35.  Wadhwa N, Rubinstein M, Durand F, Freeman WT. Riesz pyramids for fast phase-based 
video magnification. 2014 IEEE International Conference on Computational Photography 
(ICCP). Published online 2014. doi:10.1109/iccphot.2014.6831820 

36.  Ragan-Kelley J, Barnes C, Adams A, Paris S, Durand F, Amarasinghe S. Halide: a 
language and compiler for optimizing parallelism, locality, and recomputation in image 
processing pipelines. In: Proceedings of the 34th ACM SIGPLAN Conference on 
Programming Language Design and Implementation. PLDI ’13. Association for Computing 
Machinery; 2013:519-530. 

37.  American National Standards Institute., Association for the Advancement of Medical 
Instrumentation. Cardiac Monitors, Heart Rate Meters, and Alarms. Arlington, Va. : 
Association for the Advancement of Medical Instrumentation, ©2002.; 2002. 

38.  CONSUMER TECHNOLOGY ASSOCIATION. Physical Activity Monitoring for Heart Rate 
(ANSI/CTA-2065). Accessed February 4, 2021. https://shop.cta.tech/products/physical-
activity-monitoring-for-heart-rate 

39.  Bent B, Goldstein BA, Kibbe WA, Dunn JP. Investigating sources of inaccuracy in 
wearable optical heart rate sensors. NPJ Digit Med. 2020;3:18. 

40.  Shcherbina A, Mattsson CM, Waggott D, et al. Accuracy in Wrist-Worn, Sensor-Based 
Measurements of Heart Rate and Energy Expenditure in a Diverse Cohort. J Pers Med. 
2017;7(2). doi:10.3390/jpm7020003 

41.  Fallow BA, Tarumi T, Tanaka H. Influence of skin type and wavelength on light wave 
reflectance. J Clin Monit Comput. 2013;27(3):313-317. 

42.  U.S. Food & Drug Administration. 510(k) Premarket Notification: Philips Biosensor BX100. 
Accessed February 25, 2021. 
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K192875 

43.  U.S. Food and Drug Administration. The C100 Contactless Breathing Monitor: 510(k) 
Premarket Notification. Accessed February 25, 2021. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.08.21252408doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.08.21252408
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K200445 

44.  MightySatTM Rx Fingertip Pulse Oximeter. Accessed February 2, 2021. 
https://techdocs.masimo.com/globalassets/techdocs/pdf/lab-10169a_master.pdf 

45.  Li T, Divatia S, McKittrick J, Moss J, Hijnen NM, Becker LB. A pilot study of respiratory 
rate derived from a wearable biosensor compared with capnography in emergency 
department patients. Open Access Emerg Med. 2019;11:103-108. 

46.  Jensen MT, Suadicani P, Hein HO, Gyntelberg F. Elevated resting heart rate, physical 
fitness and all-cause mortality: a 16-year follow-up in the Copenhagen Male Study. Heart. 
2013;99(12):882-887. 

47.  Cole CR, Blackstone EH, Pashkow FJ, Snader CE, Lauer MS. Heart-rate recovery 
immediately after exercise as a predictor of mortality. N Engl J Med. 1999;341(18):1351-
1357. 

48.  Flores Mateo G, Granado-Font E, Ferré-Grau C, Montaña-Carreras X. Mobile Phone Apps 
to Promote Weight Loss and Increase Physical Activity: A Systematic Review and Meta-
Analysis. J Med Internet Res. 2015;17(11):e253. 

49.  Wu Y, Yao X, Vespasiani G, et al. Mobile App-Based Interventions to Support Diabetes 
Self-Management: A Systematic Review of Randomized Controlled Trials to Identify 
Functions Associated with Glycemic Efficacy. JMIR Mhealth Uhealth. 2017;5(3):e35. 

50.  Cadmus-Bertram LA, Marcus BH, Patterson RE, Parker BA, Morey BL. Randomized Trial 
of a Fitbit-Based Physical Activity Intervention for Women. Am J Prev Med. 
2015;49(3):414-418. 

51.  U.S. Department of Health and Human Services. Physical Activity Guidelines for 
Americans, 2nd edition. Accessed January 15, 2021. 
https://health.gov/sites/default/files/2019-09/Physical_Activity_Guidelines_2nd_edition.pdf 

52.  Centers for Disease Control and Prevention. Target Heart Rate and Estimated Maximum 
Heart Rate. Centers for Disease Control and Prevention. Published October 14, 2020. 
Accessed January 15, 2021. 
https://www.cdc.gov/physicalactivity/basics/measuring/heartrate.htm 

53.  Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA Guideline on the Primary 
Prevention of Cardiovascular Disease: A Report of the American College of 
Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. 
Circulation. 2019;140(11):e596-e646. 

54.  Webster DE, Tummalacherla M, Higgins M, et al. Heart Snapshot: a broadly validated 
smartphone measure of VO2max for collection of real world data. bioRxiv. Published 
online July 4, 2020. doi:10.1101/2020.07.02.185314 

55.  Reilly BM. Physical examination in the care of medical inpatients: an observational study. 
Lancet. 2003;362(9390):1100-1105. 

56.  Verghese A, Charlton B, Kassirer JP, Ramsey M, Ioannidis JPA. Inadequacies of Physical 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.08.21252408doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.08.21252408
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

Examination as a Cause of Medical Errors and Adverse Events: A Collection of Vignettes. 
Am J Med. 2015;128(12):1322-1324.e3. 

57.  Bickley LS. Bates’ Guide to Physical Examination and History Taking. Lippincott Raven; 
2007. 

58.  Bickley L, Szilagyi PG. Bates’ Guide to Physical Examination and History-Taking. 
Lippincott Williams & Wilkins; 2012. 

59.  Hill A, Kelly E, Horswill MS, Watson MO. The effects of awareness and count duration on 
adult respiratory rate measurements: An experimental study. J Clin Nurs. 2018;27(3-
4):546-554. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.08.21252408doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.08.21252408
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

Supplementary Information 

 

Supplementary Figures 

A 

 

B 

 

Supplementary Figure 1. Detailed user interface for both heart rate (HR) and respiratory rate 
(RR) measurements. 
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Supplementary Figure 2. Number of participants enrolled and data analyzed in (A) the heart rate 
(HR) study and (B) the respiratory rate (RR) study. *Failed study application data collection due to 
signal-to-noise ratio <0; **Failed reference HR collection.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.08.21252408doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.08.21252408
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

 

A 

 

B 

 

Supplementary Figure 3. Additional Bland-Altman plots for the heart rate (HR) study (see Figure 
2), for participants (A) at rest and (B) post-exercise. Left to right: plots from the full study followed by 
subgroups based on skin type (see Figure 1). The reference HR was obtained from a pulse oximeter 
(see Methods). Dots represent individual participants; blue lines indicate the mean difference; red lines 
indicate the 95% limits of agreement (mean difference ± 1.96 standard deviations). 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.08.21252408doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.08.21252408
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

 
Supplementary Figure 4. Participants’ survey results after the respiratory rate (RR) study. The 
exact survey questions are provided in Supplementary Table 3. 
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Supplementary Tables 
 

Supplementary Table 1A. Eligibility criteria of the heart rate (HR) study. 

Inclusion 
criteria 

● Age > 18 years 
● Participant is able and willing to provide written informed consent (Attached 

document: GH-VV-002 [ICF Heart Rate Study]) 
● Reads and speaks English. (Spanish speaking participants may be enrolled 

based on IRB requirements and/or availability of bilingual clinical study staff) 

Exclusion 
criteria 

● Unwilling or unable to remove makeup or face covering for study participation 
● Pregnancy - Women who are, or believe they might be, pregnant 
● Inability to understand study procedures and/or the informed consent process 
● Other medical complications that preclude completion of the study as 

determined by the principal investigator at each study site 
● Significant tremor that is present while seated at time of study as determined 

by the study coordinator (upper chest or face) 
● Ineligibility for physical activity based on interpretation of PAR-Q by the site’s 

principal investigator. Study participants who answer yes to one or more of 
the PAR-Q questions should be further assessed for eligibility by the site’s 
principal investigator. 

Enrollment 
requirements 

Age 
● ≥25% between 20–39 years old 
● ≥25% between 40–59 years old 
● ≥25% greater than 60 years old 

 
Skin Tones 
Measured by Pantone Device; see supplementary table 2 for details 

● ≥30% Very light, light, intermediate (minimum 10 participants from each 
group, maximum 40 participants in total) 

● ≥20% Tan, brown (minimum 10 participants from each group, maximum 
30 participants in total) 

● ≥30% Dark (minimum 30 participants) 
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Supplementary Table 1B. Eligibility criteria of the respiratory rate (RR) study. 

Inclusion 
criteria 

● Age > 18 years 
● Participant is able and willing to provide written informed consent 
● Reads and speaks English. (Spanish speaking participants may be enrolled 

based on IRB requirements and/or availability of bilingual clinical study staff) 

Healthy cohort 
(n=10) 

● No respiratory symptoms at time of study and no history 
of chronic respiratory conditions. 

Cohort of chronic 
respiratory 
conditions (n=40) 

● COPD of moderate severity as defined by at least  one 
of the following: 
○ hospitalized for exacerbation within 1 year  
○ received oral steroids for COPD within 3 months 
○ Current use of supplemental oxygen at home.  

     AND 
○ A Modified Medical Research Council (mMRC) 

breathlessness scale score of > 26 
● Asthma that is not currently well-controlled, as 

determined by by one or more of the following; 
○ Emergency department visit and/or hospital 

admission for asthma within the preceding 3 months 
○ Use of oral corticosteroids for > 3 days for treatment 

of asthma within the preceding 3 months 
○ Use of a short acting beta agonist (SABA) for > 2 

days during the preceding 7 days 

Exclusion 
criteria 

● Pregnancy - Women who are, or believe they might be, pregnant 
● Inability to understand study procedures and/or the informed consent process 
● Medical or other complications that preclude completion of the study as 

determined by the principal investigator at each study site 
● Significant tremor that is present while seated at time of study as determined 

by the study coordinator (upper chest or face) 

Enrollment 
requirements 

Age 
● > 20% between 20–39 years old 
● > 20% between 40–59 years old 
● > 40% greater than 60 years old 
Race/Ethnicity 
● > 20% self-identifying as of Hispanic/Latino ethnicity 
● > 20% self-identifying as white 
● > 20% self-identifying as African American/black 
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Supplementary Table 2. Objective skin tone information was objectively measured by applying a 
Pantone CAPSURE color matcher to each participant’s cheek and mapping the parameters to a 
Fitzpatrick skin type. The numerical parameters were in the CIELAB color space, and the L* and b* 
parameters were converted to an individual typology angle (°ITA) as defined by the function [arctan(L* - 
50)/b*] x 180/3.14159. 

 °ITA Skin Tone Classification Mapped to Fitzpatrick Skin 
Type 

 °ITA > 55° Very Light 1 

41° < °ITA < 55° Light 2 

28° < °ITA < 41° Intermediate 3 

10° < °ITA < 28° Tan 4 

-30° < °ITA < 10° Brown 5 

°ITA < -30° Dark 6 
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Supplementary Table 3. Participant experience survey on the respiratory rate (RR) measurement 
algorithm.  
 

How easy do you believe it would be to 
find a place to prop the phone up at 
home? 

☐ 
Easy 

☐ 
Somewhat 

Easy 

☐ 
Neither 

easy nor 
difficult 

☐ 
Somewhat 

difficult  

☐ 
Difficult 

How would you rate the experience of 
following instructions in this application? 

☐ 
Easy 

☐ 
Somewhat 

Easy 

☐ 
Neither 

easy nor 
difficult 

☐ 
Somewhat 

difficult  

☐ 
Difficult 

How much do you agree with the 
following statement, I would feel 
comfortable using this application to 
assess my general wellness? 

☐ 
Strongly 

agree 

☐ 
Agree 

☐ 
Neither 
agree 
nor 

disagree 

☐ 
Disagree 

☐ 
Strongly 
disagree 

How well do you feel you could teach 
another person to use this application?  

☐ 
Easy 

☐ 
Somewhat 

Easy 

☐ 
Neither 

easy nor 
difficult 

☐ 
Somewhat 

difficult  

☐ 
Difficult 

If you needed to use this app several 
times per day do you think there would 
be any problems? 

☐ 
Yes 

☐ 
No 

   

(Optional) Do you have any other 
feedback you’d like to give on this 
application? 

(Free description) 
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Supplementary Table 4. Participant race and skin tone group stratified by signal-to-noise ratio 
(SNR) readings < 0 for the heart rate (HR) study. 
 

 No. of 
participants 
with SNR<0 

No. of 
participants 
with SNR≥0 

P value* 

Race/ethnicity 
   White, non-Hispanic 
   Black, non-Hispanic 
   Asian / pacific islander 
   Multiple races, non-Hispanic 
   Multiple races, Hispanic 

 
5 (20.0%) 
8 (13.1%) 
1 (14.3%) 
0 (0.0%) 
0 (0.0%) 

 
20 (80.0%) 
53 (86.9%) 
6 (85.7%) 
1 (100%) 
1 (100%) 

 
0.798 

Measured skin tone** 
   1 (Fitzpatrick types 1-3) 
   2 (Fitzpatrick types 4-5) 
   3 (Fitzpatrick type 6) 

 
5 (16.1%) 
4 (12.5%) 
5 (15.6%) 

 
26 (83.9%) 
28 (87.5%) 
27 (84.4%) 

 
0.938 

Fitzpatrick type 
   1 (Very light) 
   2 (Light) 
   3 (Intermediate) 
   4 (Tan) 
   5 (Brown) 
   6 (Dark) 

 
0 (0.0%) 
1 (6.3%) 
4 (28.6%) 
2 (40.0%) 
2 (7.4%) 
5 (15.6%) 

 
1 (100%) 

15 (93.8%) 
10 (71.4%) 
3 (60.0%) 
25 (92.6%) 
27 (84.4%) 

 
0.194 

 
* P values were calculated by Fisher’s exact test comparing participants with SNR<0 and those with 
SNR≥0 

**  Fitzpatrick determination based on measurement with Pantone device and conversion to Fitzpatrick 
scale 
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Supplementary Table 5. Detailed results of the heart rate (HR) study. 

Session Number of 
participants 

Number of 
data points 

Reference HR 
(beats/min) 

MAE 
(beats/min) 

MAPE (%) 

Mean ± SD Range Mean ± SD Mean ± SD Median (IQR) 95th 
percentile 

Total population 95 352 79.8 ± 14.6 54–134 1.32 ± 3.92 1.63 ± 4.27 1.14 (0.0–1.64) 4.84 

   At rest 95 266 75.3 ± 11.1 54–113 1.02 ± 2.00 1.38 ± 2.47 1.20 (0.0–1.61) 4.81 

   Post-exercise 94 86 93.9 ± 15.4 59–134 2.23 ± 7.05 2.39 ± 7.45 1.02 (0.0–1.75) 5.42 

Subgroup 1: very light, light, 
and intermediate skin tone 

31 119 81.0 ± 17.4 56–129 1.53 ± 4.73 1.77 ± 4.46 1.27 (0.0–1.83) 4.84 

   At rest 31 89 74.2 ± 11.8 56–113 1.02 ± 1.17 1.40 ± 1.60 1.28 (0.0–1.72) 4.86 

   Post-exercise 31 30 101.0 ± 15.9 63–129 3.03 ± 9.15 2.90 ± 8.46 1.09 (0.82–2.09) 4.36 

Subgroup 2: tan and brown 
skin tone 

32 113 78.8 ± 12.7 54–107 1.04 ± 2.87 1.32 ± 3.30 0.98 (0.0–1.37) 4.86 

   At rest 32 86 75.4 ± 11.2 54–97 1.10 ± 3.04 1.44 ± 3.53 1.20 (0.0–1.43) 4.99 

   Post-exercise 32 27 89.5 ± 11.3 59–107 0.85 ± 2.28 0.93 ± 2.43 0.0 (0.0–1.10) 1.35 

Subgroup 3: dark skin tone  32 120 79.7 ± 13.3 58–134 1.37 ± 3.89 1.77 ± 4.87 1.15 (0.0–1.64) 4.48 

   At rest 32 91 76.3 ± 10.2 58–110 0.95 ± 1.32 1.31 ± 1.93 1.18 (0.0–1.56) 3.94 

   Post-exercise 31 29 90.6 ± 15.9 61–134 2.69 ± 7.51 3.22 ± 9.27 1.12 (0.0–2.17) 6.27 

Abbreviations: HR, heart rate; MAE, mean absolute error;  MAPE, mean absolute percentage error; SD, standard deviation; IQR, 
interquartile ranges  
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Supplementary Table 6. Detailed results of the respiratory rate (RR) study. 

Subgroups N Reference RR 
(breaths/min) 

MAE (breaths/min) 

Mean ± SD Range Mean ± SD Range P value 

Algorithm version A 50 15.5 ± 3.6 8–22 0.84 ± 0.97 0–6 <0.001 

   Healthy 10 16.0 ± 3.7 10–20 0.60 ± 0.52 0–1 0.001 

   Chronic respiratory conditions 40 15.4 ± 3.6 8–22 0.90 ± 1.05 0–6 <0.001 

Algorithm version B 50 15.3 ± 3.7 8–26 0.78 ± 0.61 0–2 <0.001 

   Healthy 10 16.4 ± 3.7 12–22 0.70 ± 0.67 0–2 <0.001 

   Chronic respiratory conditions 40 15.1 ± 3.7 8–26 0.80 ± 0.60 0–2 0.001 

Abbreviations: RR, respiratory rate; MAE, mean absolute error; SD, standard deviation 
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Supplementary Table 7. Subgroup analysis for algorithm version B of the respiratory rate (RR) study. 

Subgroups N Reference RR 
(breaths/min) 

MAE (breaths/min) 

Mean ± SD Range Mean ± SD Range P value 

Age subgroups       

   <40 years old 17 15.8 ± 4.4 10–26 0.79 ± 0.64 0–2 <0.001 

   40–59 years old 21 15.3 ± 3.1 10–22 0.79 ± 0.60 0–2 <0.001 

   ≥60 years old 12 14.8 ± 3.8 8–22 0.75 ± 0.62 0–2 <0.001 

Race/ethnicity       

   White, non-Hispanic 18 15.4 + 4.1 8–26 0.72 + 0.67 0–2 <0.001 

   Black, non-Hispanic 6 18.0 + 4.0 12–22 0.83 + 0.41 0–1 <0.001 

   Hispanic/Latino ethnicity 23 14.5 + 2.6 10–19 0.83 + 0.63 0–2 <0.001 

   Other  3 16.3 + 6.8 12–24 0.67+ 0.58 0–1 0.010 
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