
WHITE PAPER
Intel® Enterprise Edition for Lustre* Software
High Performance Data Division

Architecting a High Performance
Storage System
January 2014

Contents
Introduction ... 1
A Systematic Approach to Storage System Design .. 2

Evaluating Components - the Pipeline Approach ... 3
Using an Iterative Design Process 4

A Case Study Using the Lustre File System 5
Analyzing the Requirements... 5
Designing and Building the Pipeline 6
Disks and Disk Enclosures ... 6
Configuring Object Data Storage 7
Configuring Metadata Storage ... 9
Storage Controllers ... 10
Network-Attached Storage Servers 11
Designing the Lustre Metadata Server 11
Designing the Object Storage Servers 12
Determining OSS Memory Requirements 13
Selecting IO Cards for the Interface to Clients 14
Cluster Network .. 15
Reviewing the Storage System 15

Conclusion .. 17
More information ... 17
References .. 17

Summary
Designing a large-scale, high-performance data storage

system presents significant challenges. This paper

describes a step-by-step approach to designing such a

system and presents an iterative methodology that

applies at both the component level and the system

level. A detailed case study using the methodology

described to design a Lustre storage system is

presented.

Introduction
A good data storage system is a well-balanced: each

individual component is suited for its purpose and all

the components fit together to achieve optimal

performance. Designing such a system is not

straightforward. A typical storage system consists of a

variety of components, including disks, storage

controllers, IO cards, storage servers, storage area

network switches, and related management software.

Fitting all these components together and tuning them

to achieve optimal performance presents significant

challenges.

Experienced storage designers may employ a collection

of practical rules and guidelines to design a storage

system. Such rules are usually based on individual

experience; however they may not be generally

 Architecting a High-Performance Storage System

applicable, and may even be outdated due to recent

advances in storage technology. For example, some

designers consider it a poor practice to mix different

manufacturer’s hard disks in one RAID group, and that

continues to be true. Another common rule says to fill

only 80 percent of the available space in a disk

enclosure, since the extra space may not be needed

and the controller may not have the bandwidth to

support the added capability. This latter rule may only

apply in specific circumstances.

It is not always possible to design one system to

perfectly meet all requirements. However, if we

choose to start with one aspect of the design and

gradually incorporate more aspects, it is possible to

find the best balance between performance,

availability, and cost for a particular installation.

A typical design process starts with a requirements

analysis. The designer determines requirements in a

top-down process that creates a complete view of the

system. Once the design constraints are understood,

the performance requirements can be determined at

the component level. The design can then be built, one

component at a time.

A Systematic Approach to Storage
System Design
A high-performance storage system is part of a larger

compute resource. Such a compute resource is

generally a cluster of computers (compute nodes - CNs)

connected by a high-speed network (HSN) to a group

of disks that provide long-term storage for data.

Applications running on the CNs either consume data

(input) or produce data (output). The disks storing this

data are generally organized in groups and served by

one or more servers. Various architectures connect the

hardware components in different ways and provide

different software mechanisms for managing the data

and access to it.

The designer planning the storage system for such a

compute resource has the task of identifying the

general structure of the storage system, specifying

the components that will go into that general

structure, and determining how those components will

interact with the compute and network components.

Storage system design begins with creating a list of

requirements that the system is to fulfill. This list may

have several diverse requirements, such as:

• a fixed budget, with prioritizations on
requirements, such as performance or capacity

• limits on power or space

• minimum acceptable performance (aggregate
data rate)

• minimum aggregate storage space

• fault tolerance

• The ability to support a specific application
workload

This will be a list of fixed and more flexible

requirements, and many others are possible. One fixed

requirement might set the specific minimum bandwidth

that the design must meet. Then other, more flexible

requirements may be adjusted in order to meet fixed

requirements and meet the overall performance and

cost goals.

The overall storage system design will specify the

kinds of components to be employed and how they will

be connected. Creating this design can be a challenging

task. Design choices may be constrained by practical

considerations respecting the needs of the customer

or vendor partner.

This paper begins by selecting an overall design

structure, although other structures are possible. How

one chooses among these basic design structures is

beyond the scope of this paper, but here are a few

ways one might do so:

2

 Architecting a High-Performance Storage System

• An experienced designer may have guidance
about the best structure to meet the primary
requirements.

• A reference system may have already been
deployed and found to meet a set of similar
requirements.

• A review of case studies such as the study in the
second half of this paper may provide guidance to
the novice designer.

For this paper, we’ve selected a relatively common

reference design structure for our storage system. Our

task is to create from that reference design, a

complete design for our target storage system. Figure

1 depicts our selected reference design structure.

Other structures are possible.

Figure 1. A General Storage Architecture.

Before the design is complete, it needs to specify the

number and type of every component, and identify to

what extent the design meets the requirements. As

design choices are made, a choice may lead to a design

that does not meet the requirements and/or impacts

other choices. In such a case, one will need to iterate

over the choices to improve the design. The following

design methodology uses a step-by-step "pipeline"

approach for examining and selecting each component.

Evaluating Components - the Pipeline
Approach
Our design methodology uses a "pipeline" approach for

examining each component. This approach evaluates

components in order, by following the path of a byte of

data as it flows from a disk, through the intervening

components, to the application. Other orderings are

possible, but this paper confines itself to this read

pipeline.

The entire pipeline’s performance is governed by the

performance of its individual components, and system

performance is limited by the slowest component.

Exceptions will only be brief, transient departures from

what is otherwise a steady flow of data, limited by the

slowest component. Thus, we need to consider each

component individually.

First, we examine the storage media. Next, the storage

controller is examined together with the disks as a

composite. The performance of these two components

taken together will not be better than the

performance of the individual components, and

generally will be worse due to inevitable inefficiencies

in their operation.

We continue this process, adding one component at a

time to the composite, until the pipeline is complete.

3

 Architecting a High-Performance Storage System

Figure 2. A storage pipeline

Figure 2 arranges the components from Figure 1 in

order, from left to right, following the read pipeline.

The performance line, beginning on the left, represents

the performance as each successive component is

added to the pipeline. For example, when the storage

controller is added, some small inefficiency may cause

the two components (disks and controller) to perform a

little below the value for the disks alone. This is

represented by the small step down for the line below

the controller. The line shows a decrease in

performance (or ideally, stays about the same) with

the addition of each new component to the design.

One caveat to this approach is that the introduction of

a new component may cause us to rethink the design

of a previous component. For example, if the number

of disks just satisfies the performance and capacity

requirements, but together with the controller the

performance drops below the requirement, we may

need to backtrack and redesign the disk portion.

Further if, we know that the controller can easily

handle more disks, this may motivate us to consider

provisioning more disks, in anticipation of performance

bottlenecks that may occur later in the design. For the

designer new to this activity, this may lead to

significant backtracking to get the end-to-end design

just right. An experienced designer may modify the

design in anticipation of such backtracking, and the

case study in the second half of this paper shows an

example of that.

This paper does not address performance

benchmarking. Possible targets for benchmarking and

relevant applications are mentioned in passing. Some

individual components cannot be tested in isolation,

but a systematic approach to benchmarking

methodology can allow the designer to infer the

capability of an individual component. A component’s

performance can be acquired by testing, or by finding

such results documented by others.

Using an Iterative Design Process
There are many components that go into a storage

system. Accordingly, the design process needs to be

methodical. Breaking the process into discreet steps

makes it a straightforward activity of iterating a simple

procedure that incorporates successively more

components to best meet requirements.

This design process introduces a component, selects

4

 Architecting a High-Performance Storage System

its properties, combines it with the previously designed

pipeline of components, and evaluates to what extent,

the new pipeline meets the system requirements.

Several cycles of selection, combination, and

evaluation (S-C-E) will be needed before the design is

complete.

Figure 3. The iterative design approach

Figure 3 depicts the S-C-E cycle. At the Add next

component step, we introduce the next component in

the pipeline. Next, we select properties of the

component that may satisfy the requirements. The

third step for the component is to add it to the pipeline

(Combine with pipeline design). Finally, we evaluate

the requirement to see if the design thus far meets

that requirement.

It may be that choices in previous iterations locked the

pipeline into a design that cannot meet the

requirements. At such a point it is usually apparent

where the faulty choice was, so the process can

backtrack to select a better component that will meet

system requirements. This will come up in the case

study presented next.

A Case Study Using the Lustre File
System
In the following case study, we’ll design a storage

system for a high performance compute cluster.

Analyzing the Requirements
Analysis of this hypothetical storage system identified

the following requirements:

• A single namespace

• 10 PB (10 X 10245 bytes) of usable space

• 100 GB/s (100 X 10243 bytes per second)
aggregate bandwidth

• Ability to support access by 2000 clients in
parallel

• No single point of failure

Table 1 summarizes the capabilities offered by Lustre.

5

 Architecting a High-Performance Storage System

The requirements fall well within the capabilities of

Lustre, so Lustre is a good choice for this system.

Table 1. Suitable Use Cases for Lustre*

Storage System Requirements Lustre File System Capabilities

Large file system Up to 512 PB for one file system.

Large files Up to 32 PB for one file.

Global name space A consistent abstraction of all files allows users to access
file system information heterogeneously.

High throughput 2 TB/s in a production system. Higher throughput being
tested.

Many files Up to 10 million files in one directory and 2 billion files in
the file system. Virtually unlimited with Distributed Name
Space.

Large number of clients accessing
the file system in parallel

Up to 25,000+ clients in a production system.

High metadata operation rate Support for 80,000/s create operations and 200,000/s
metadata stat operations.

High Availability Works with a variety of high availability (HA) managers to
support automated failover to meet no-single-point-of-
failure (NSPF) requirements.

Designing and Building the Pipeline
Starting at the storage end of the pipeline shown in

Figure 2, the disks and disk enclosures are designed to

meet system requirements. Then the next component,

the storage controller, is added to the design and

adjustments made to ensure the two components

together meet requirements. Then the next

component is added, adjustments are made again, and

so on, until the pipeline is complete.

Disks and Disk Enclosures
Our example storage system requires a disk

configuration that delivers 10 PB of usable storage

and 100 GB/s of aggregate bandwidth. Usable storage

means the storage that the client sees when the file

system is mounted. The usable storage capacity of a

disk is less than its physical capacity, which is reduced

by such factors such as RAID, hot spares, etc. In a

Lustre file system, an IO operation may access

metadata storage or object storage. Each storage type

has its own characteristic workload, which must be

taken into account in the design for that storage.

Metadata storage stores information about data files

such as filenames, directories, permissions, and file

layouts. Metadata operations are generally small IOs

that occur randomly. Metadata requires a relatively

small proportion, typically only 1-2 percent, of file

system capacity.

6

 Architecting a High-Performance Storage System

Object storage stores the actual data. Object storage

operations can be large IOs that are often sequential.

A reasonable starting point for designing metadata

storage or object storage is to consider the capacity

and performance characteristics of the available

storage devices. For this example, we consider the

Seagate* hard disk drives shown in Table 2.

Table 2. Comparing Hard Disks

Specifications Seagate 15K.7 HDD
(600 GB, 15,000 RPM)

Seagate ES.2 HDD
(3 TB, 7200 RPM)

Seagate ES HDD
(1 TB, 7200 RPM)

Average IO/s 178 76 76

Sustained data
transfer rate (MB/s)

208 155 147

As shown, the rotational speed makes a significant

difference in disk performance. The 15,000-RPM hard

disk offers twice the input/output operations per

second (IO/s) and about 30 percent more bandwidth

than the 7,200-RPM hard disk. The 7,200-RPM 3 TB

hard disk and the 7,200-RPM 1 TB hard disk have

roughly similar performance characteristics.

The number of spindles can also affect performance.

For example, although three 1-TB disks and one 3-TB

disk offer the same capacity, three 1-TB disks have

three times the bandwidth and support three times

the IO/s compared to one 3-TB disk.

For the example in this paper, two types of disk

enclosures are considered, a 12-disk enclosure and 60-

disk enclosure. Both disk enclosures use the same type

of SAS-2 interface for connecting to the storage

controller. Because the metadata storage requires

smaller space but high IO/s, the 12-disk enclosure will

be considered for the metadata storage. The 60-disk

enclosure appears more appropriate for the object

storage if it provides enough bandwidth.

To address the fault tolerance requirement, both the

metadata storage and the object storage will be

configured into appropriate RAID groups. Capacity and

performance are the two primary determining factors

when selecting a RAID level.

In this example, the object storage will be designed to

provide usable space for data storage, and then the

metadata storage will be designed to support the

object storage.

Configuring Object Data Storage
For the object storage, capacity is of primary interest

because the capacity of the object storage determines

the usable space for storing data. However,

performance is also an important consideration

because the IO throughput directly impacts the

performance of the file system. This study prioritizes

capacity over performance; however in other cases,

performance may be the driving factor.

For object data storage, we’ll consider HDD disks (4-TB,

7200-RPM) that will be located inside enclosures

capable of holding sixty disk drives (see Table 2). First,

the RAID configuration for the disks must be

determined. The configuration must be designed for

high disk utilization first, and then optimized for

performance. A ten-disk, RAID-6 group (eight data

disks + two parity disks) allows 80 percent disk

utilization while accommodating two disk failures.
7

 Architecting a High-Performance Storage System

The RAID-6 configuration can result in a write

performance penalty when the data size does not

match the stripe size. In this case, the controller must

read old parity and old data from the disk and then use

that information in combination with the new data to

calculate the new parity. This is operation is known as

“read-modify-write”.

To mitigate this performance penalty, “full stripe write”

is often used, in which the data size matches the stripe

size so that parity can be calculated directly without

reading information from the disk first. Because Lustre

reads and writes data in 1-MB segments, the RAID

segment size is set to 128 KB, so that 1 MB of data is

striped across all the data disks.

The disks in each 60-disk enclosure can be configured

into six, 10-disk, RAID-6 groups. Each RAID-6 group

provides approximately 32 TB of storage, so each

enclosure provides approximately 192 TB of storage.

Note that disk capacity is stated in decimal GB (where

1 GB = 1,000,000,000 bytes) while file system

capacity is stated in binary GB (where 1 GiB =

1,073,741,824 bytes). This needs to be taken into

account in these calculations.

𝑇𝐵
𝑇𝐵

= 1012 𝐵
240𝐵

≅ 0.91

Plus, the root file system will reserve 5%. Therefore,

each enclosure can provide 164 TB of usable space.

192 × 0.9 × 0.95 ≅ 164 𝑇𝐵

The number of enclosures needed for 10 PB of usable

space is:

10 × 1024 𝑇𝐵
164 𝑇𝐵 /𝑒𝑛𝑐𝑙𝑜𝑠𝑢𝑟𝑒

= 62.43

To satisfy the requirement for 10 PB of usable space,

63 disk enclosures will be used for this design.

The next step is to consider performance

requirements starting with this initial design. To reach

100 GB/s aggregated bandwidth, the bandwidth each

disk enclosure must contribute is:

100 𝐺𝐵/𝑠𝑒𝑐
63 𝑒𝑛𝑐𝑙𝑜𝑠𝑢𝑟𝑒𝑠

≅ 1.6 𝐺𝐵/𝑠𝑒𝑐

Since each enclosure has six RAID-6 groups, with each

containing eight data disks, and the Seagate ES.2 disks

in the enclosure support a theoretical sustained data

transfer rate of 155 MB/s, the total theoretical

bandwidth of the 48 data disks is:

155 MB/s x 48 = 7.4 GB/s

However, the theoretical bandwidth is difficult to

achieve in actual use because the efficiency of the

RAID controller and the bandwidth of the disk

controller must also be taken into account. The actual

throughput of a RAID-6 storage enclosure may be less

than half of the theoretical throughput per disk. For

example, 3 GB/s per enclosure if the SAS expander is

the limiting factor, which is enough to exceed the 1.6

GB/s minimum requirement.

As most disk enclosures connect to the storage

controller via a 4-lane Serial Attached SCSI-2 (SAS-2)

cable with a performance of 6.0 Gb/s per lane, the

maximum possible bandwidth out of a single disk

enclosure is calculated as follows:

6 𝐺𝐵/𝑠 × 4 𝑙𝑎𝑛𝑒𝑠 ×
1 𝐵
8 𝑏

 = 3 𝐺𝐵/𝑠

Thus, the connection between the disk enclosure and

the storage controller determines the aggregate

bandwidth that can be achieved in this design. This

bandwidth exceeds the bandwidth contribution of

1.6 GB/s required by each of the 62 enclosures to

achieve the 100 GB/s aggregate bandwidth for the

system.

The bandwidth of the disks themselves is twice that of

the enclosure connection to the storage controller, so

disk performance is not a limiting factor in this design.

8

 Architecting a High-Performance Storage System

The number of disk enclosures is also not a limiting

factor.

Note, however, that if the system bandwidth

requirement were tripled to 300 GB/s, each of the 63

disk enclosures would need to provide 4.76 GB/s

bandwidth, which is higher than what the 3 GB/s disk

enclosures used in this design can support. In that

case, the disk layout would need to be redesigned to

add more disk enclosures. For example, 2-TB, 7200-

RPM disks could be substituted for the 4-TB disks used

in this design to achieve better performance. Doing so

would spread the same storage capacity over more

enclosures.

Configuring Metadata Storage
For metadata storage, performance is of primary

interest. This is because for each IO operation, file

attributes must be obtained from the inode for the file

in the metadata storage before the file can be

accessed in the object storage. Thus, metadata access

time affects every IO operation. However, metadata

storage capacity requirements are typically small

relative to capacity requirements for object storage, so

capacity is unlikely to be a significant concern.

Since the majority of metadata operations are queries

(reads), a RAID-10 configuration is best suited for

metadata storage. RAID-10 combines features of

RAID-1 and RAID-0. RAID-1 provides data mirroring by

configuring disks in pairs to mirror each other. RAID-0

enhances performance by striping data across two

RAID-1 pairs. Because two disks in the RAID-10 set

contain the same content, data can be alternately read

from both of disks, effectively doubling read

performance, which significantly contributes to overall

system performance. Unlike RAID-5 or RAID-6, RAID-10

has no parity drives and, thus, no “read-modify-write”

penalty. The segment size of the metadata storage

can be set to 4 KB, which matches the metadata IO

size.

To properly determine the size of the metadata

storage, it is important to understand what the

average file size will be. For this example, the average

file size is assumed to be 5 MB. The minimum number

of inodes that will be stored can be calculated by

dividing the required object storage capacity by the

average file size:

10 PB / 5 MB per inode = 2x109 inodes

For future expansion, space should be reserved for

twice the minimum number of inodes. Since each file’s

metadata in Lustre 2.1 or a newer release can need up

to 2 KB of space, metadata storage must be at least:

2 𝐾𝑖𝐵
𝑖𝑛𝑜𝑑𝑒

 𝑥 2𝑥10
9 𝑖𝑛𝑜𝑑𝑒𝑠
230

 𝑥 2 ≅ 7.5 𝑇B

For this design, Seagate 15000–RPM, 600-GB disks will

be used for the metadata storage. See Table 2. The

required number of disks can be determined by

dividing the required metadata storage by the disk

capacity, and multiplying by two (because the disks will

be configured as RAID-10 mirrored pairs):

2 × 7.5𝑇𝐵

600 𝐺𝐵 × 109
230 × 0.95

≅ 29 𝑑𝑖𝑠𝑘𝑠

Recall that disk capacity is measured in decimal GB

(109 bytes) while file system capacity is measured in

binary GB (230 bytes).

As 4 billion inodes was the estimate based on assumed

average file size (2 billion inodes X 2), for the sake of

architecture simplicity, 30 disks are used for the rest

of this discussion. If there were the exact file count

requirements, the same calculation applies.

Three, 12-disk enclosures will be needed to make 30

disks available for inode storage, leaving the remaining

six disks slots for hot spare devices (two per

enclosure).

Figure 4 shows the storage configuration for the

metadata storage.

9

 Architecting a High-Performance Storage System

Figure 4. Metadata storage system

Storage Controllers
A storage controller manages disks and disk

enclosures. Its basic function is to make disk space

available as block devices to the storage area network

(SAN). The storage controller serves as a gateway,

connecting to the disk enclosures via SAS-2 cables.

The controller provides one or more types of storage

network interfaces to the SAN, such as Fiber Channel

(FC), 10GbE, or InfiniBand (IB). As a gateway, a storage

controller aggregates the bandwidth of the backend

disks/enclosures as it passes data between the

backend disks and the storage servers. Therefore, it is

important to understand the performance

characteristics of the storage controller to be used.

For this example, a general-purpose storage controller

is used. The controller has eight SAS-2 ports to

connect the backend disk enclosures. It also has eight

8-Gbps Fibre Channel ports and four SAS-2 ports, one

or the other of these two port types can be used at a

time, to connect the storage servers.

To calculate the number of storage controllers needed

to support the backend disk enclosures, use these

considerations:

• Each of the 63 object storage enclosures must
provide a bandwidth of at least 1.6 GB/s.

• One 4-lane, SAS-2 cable can support 3 GB/s.

Controller hardware or software can fail due to

external or internal causes. Thus, it is common for a

controller to be composed of two sub-controller

modules that serve as backups for each other, as

shown in Figure 5.

Figure 5. Cache mirroring between sub-controller
modules

To optimize performance, the two sub-controller

modules are normally in an Active-Active configuration.

Many controllers have built-in cache mechanisms to

improve performance. Caches must be coherent

between sub-controller modules so that either sub-

controller module can transparently take over the I/O

from the other sub-controller module. A cache-

mirroring link often exists between sub-controllers for

this purpose.

This cache-mirroring link can be a limiting factor

because data must be mirrored to the cache of the

second sub-controller module before the first sub-

controller can return an acknowledgement indicating a

successful IO operation.

Cache-mirroring links are implemented using a variety

of means, from gigabit Ethernet cables to a dedicated

PCIe bus. Because the performance degradation due to

cache mirroring has become more widely

10

 Architecting a High-Performance Storage System

acknowledged, many vendors have enhanced the

cache-mirroring link to support a bandwidth that is at

least equivalent to that of a quad-data-rate Infiniband

cable. Nevertheless, it is important to examine the

storage controller architecture as part of the design

process.

Note that in the case where there is no cache-

mirroring link between the controllers, the cache on

the controllers must be disabled entirely to ensure that

the file system does not become corrupted in the

event of a controller failure.

Our example assumes that the cache-mirroring link

between the sub-controllers in the selected storage

controller limits the overall bandwidth of the storage

controller to 6 GB/s.

Each enclosure can support 1.6 GB/s bandwidth. Three

enclosures will deliver 4.8 GB/s bandwidth, while four

enclosures will deliver 6.4 GB/s, which exceeds the

limit of 6 GB/s. So in this case, the bandwidth provided

by three enclosures will best match each storage

controller’s bandwidth. The number of storage

controllers required is 21.

Storage Servers
A storage server serves files for access by clients. A

storage server differs from a storage controller in that

the storage server exports file system space rather

than block devices. The content in the shared file

system space on a storage server is visible to all clients

and the storage server coordinates parallel, concurrent

access by different clients to the files. In contrast, a

storage controller cannot coordinate access by multiple

clients to the block devices it exports due to limitations

of the block device protocols. Potential conflicts must

be managed at the client level, making parallel access

by clients to stored data more complex.

Many storage servers consolidate the functions of a

storage server and a storage controller into one

physical machine. This section discusses the limitations

that storage servers can introduce, regardless of

whether they reside on physically separate hardware

or not.

Designing the Lustre Metadata Server
A Lustre file system includes two types of servers, a

metadata server (MDS) and one or more object storage

servers (OSSs). The metadata server must be able to

quickly handle many remote procedure calls (RPCs)

because the MDS is the starting point for all POSIX file

system operations, such as open, close, read, write,

and unlink. Whenever a Lustre client needs to access a

file from a Lustre file system, it queries the metadata

target (MDT) via the MDS to obtain the POSIX

attributes for that file (e.g., owner, file type, access

permission) and the file data layout (e.g.: how many

OSTs the file is striped over and the specific objects

that make up this file).

Therefore, the MDS needs powerful CPUs to handle

simultaneous inquiries, and a large amount of RAM to

cache the working set of files and avoid high-latency

disk operations.

Because IO operations on the MDT are mostly small

and random, the more data that can be cached into

memory, the faster the MDS will respond to client

queries. As a result, the number of clients and the

number of files the clients are accessing in their

working set, determine the amount of memory

required by the MDS [5].

Apart from 1 GB required by the operating system and

4 GB required for the file system journal, about 0.1%

of the MDT size is needed for the MDT file system’s

metadata cache. The remaining RAM is available for

caching the file data for the user/application file

working set. The working set cached in RAM is not

always actively in use by clients, but should be kept

"hot" to reduce file access latency and avoid adding

extra read IO/s to the MDT under load.

11

 Architecting a High-Performance Storage System

Approximately 2 KB of RAM is needed on the MDS for

the kernel data structures, to keep a file in cache

without a lock. Every client that accesses a file also

needs approximately 1 KB of RAM for the Lustre

Distributed Lock Manager (LDLM) lock, resulting in

about 3 KB of RAM required for each file in cache. A

typical HPC working set might be 100 files per CPU

core.

Table 3 shows how required MDS memory is calculated

for the Lustre file system in this example. This file

system has:

• one MDT on an active MDS

• 2,000 8-core compute clients

• 64 user-interactive clients (with a considerably
larger working set)

• a hot cache supporting an additional working set
of 1.5 million files.

Table 3: MDS RAM Calculation

Memory Consumer Required
Memory

Operating system overhead 1,024 MB

File system journal 4,096 MB

MDT file system metadata
(0.1% of 8192 GB)

 8,192 MB

2000, 8-core clients X 100 files
per core X 3 KB/file

 4,687 MB

64 interactive clients X 10,000
files X 3 KB/file

 1,875 MB

2-million-file working set X 1.5
KB/file

 2,929 MB

Total 22,803 MB

The minimum memory for the MDS server for a file

system with this configuration is 24 GB RAM. However,

the example shows that with larger numbers of

interactive clients and larger working sets of files,

additional RAM will be required for optimal

performance. 128 GB RAM or more is often used for

better performance.

Designing the Object Storage Servers
Storage servers are usually equipped with IO cards

that either communicate with the back end storage

controllers or with clients at the front end. Commonly-

used storage protocols are SAS, FC, and iSCSI, while

client network protocols are usually IB or 10GigE.

Typically, a SAS or FC host bus adapter (HBA), and an

IB host channel adapter (HCA) or 10GbE NIC are

installed on storage servers. Even if both the storage

and client networks are run over Infiniband, separate

physical networks should be used to avoid contention

during IO, when both channels will be used at the same

time.

For the example in this case study, to calculate how

many OSS nodes are required and how the object

storage targets (OSTs) will be distributed among them,

consider that the storage controller needs to

aggregate at least 4.8 GB/s from the backend disks. To

accommodate this bandwidth, two SAS-2 ports on each

storage server can be used to connect the storage

server to the storage controller.

Because the OSS requires a high-availability design, the

number of IO cards at the backend must be doubled to

be able to support failover. The SAS cards are more

efficient than the FC cards in terms of PCIe slot

utilization, so they will be used for this design.

Figure 6 shows how active-active pairs of OSSs are

connected to two each of the 21 storage controllers.

Here, 21 OSSs will be needed at a minimum.

However, because we should also consider failover

between each two OSS nodes, 22 OSSs are required.

12

 Architecting a High-Performance Storage System

Figure 6. Lustre OSS high availability configuration

Determining OSS Memory Requirements
Like the MDS, the OSS uses memory to cache file

system metadata and for LDLM locks held by the

clients. In addition to the metadata memory

requirements described for the MDS above, the OSS

needs additional memory for the 1-MB RDMA I/O

buffer needed for each object storage target (OST) IO

service thread. The same calculation applies for files

accessed from the OSS as for those accessed from the

MDS (see Table 4), but the load is spread over 22 OSS

nodes in this case, so the amount of RAM required for

inode cache, locks, etc., is spread out over the OSS

nodes [4].

While an OST has less file system metadata than the

MDT (due to smaller inodes, few directories, and no

extended attributes), there is considerably more OST

storage space per OSS in this configuration (492 TB vs.

8 TB). This means an adequate amount of RAM must

be reserved for the OST metadata.

Table 4 calculates the absolute minimum RAM required

in an OSS node. These calculations take into account a

failover configuration with 18 primary OSTs on each

OSS node, and 18 backup OSTs on each OSS node.

When an OSS is not handling any failed-over OSTs, the

extra RAM is used as read-cache. The OST thread

count defaults to 512, which is close to the 32 IO

threads per OST that have been found to work well in

practice. In this case, 64 GB RAM is minimal and 128

GB RAM is recommended for better performance.

13

 Architecting a High-Performance Storage System

Table 4: OSS RAM Calculation

Memory Consumer Required Memory

Operating system overhead 1,024 MB

Ethernet/TCP send/receive buffers (1 MB X 512 threads) 512 MB

400 MB journal X (18 + 18) OST devices 14,400 MB

1.5 MB RDMA per OST IO thread X 512 threads 768 MB

OST file system metadata cache (0.05% of 492 TB) 25,190 MB

800 MB data read cache X 18 OSTs 14,400 MB

2000 8-core clients X 100 files per core X 3 KB/file 4,687 MB / 40 118 MB

64 interactive clients X 10,000 files X 3 KB/file 1,875 MB / 40 47 MB

2 million file working set X 1.5 KB/file 2,929 MB / 40 74 MB

Total 56,533 MB

Selecting IO Cards for the Interface to
Clients
An Infiniband host channel adapter (HCA), or a 10 Gb or

1 Gb Ethernet NIC is typically provided on the storage

server, and this provides connection to the network on

the front end, depending on the type of storage area

network.

For example, if the OSTs on an OSS only need to

deliver 1 GB/s bandwidth, one 10 Gb Ethernet card is

sufficient to relay the bandwidth to Lustre clients.

However, if the OSTs on an OSS can deliver 5 GB/s

bandwidth, one fourteen data rate (FDR) Infiniband

HCA would be needed to make the bandwidth available

to Lustre clients. The numbers in Table 5 can be used

as a guide.

Table 5: IO Card Bandwidth

IO Card Bit Rate Theoretical Peak
Bandwidth

Peak Bandwidth as
Measured by Author

1 FDR Infiniband 54 Gbps 6.75 GB/s 6,000 MB/s

1 10 Gb Ethernet 10 Gbps 1.25 GB/s 1.1 GB/s

14

 Architecting a High-Performance Storage System

Because each OSS needs to provide at least 4.8 GB/s

from the storage controller, an FDR Infiniband port

would be the best match.

Cluster Network
Lustre clients connect to the Lustre file system via a

network protocol. Popular choices are InfiniBand and

10 Gb Ethernet. A network architecture that has not

been optimized can be a limiting factor. The most

common issue encountered is that the network

switches do not support interconnections of sufficient

bandwidth between storage servers and clients, due to

oversubscription, as shown in Figure 7.

In Figure 7, twelve ports from each of two 36-port IB

switches are used to bridge two IB fabrics, while the

other 24 ports on each switch support 24 internal

nodes on the IB fabric. The aggregated bandwidth of

the 12 IB links is not sufficient to support optimal

communication between the 24 nodes on each of the

switches.

Figure 7. Oversubscribed IB fabric

Figure 8. Non-oversubscribed IB fabric

Conversely, Figure 8 is an example of a non-

oversubscribed IB fabric. The bandwidth between any

of the nodes on either IB switch is the same.

The Lustre file system in this example has 22 OSS

nodes and two MDS nodes. Each OSS requires one port

on the FDR IB switch. The backend storage can be

connected to these nodes directly with cables because

only block devices are presented to the Lustre servers.

Thus, 24 ports are required on the Lustre storage side

of the OSS servers.

However, 2,000 client nodes will be accessing the

Lustre file system and all of these clients need to be

connected to the same IB fabric. To the best of our

knowledge, an IB switch does not exist that supports

2,040 ports. Multiple IB switches must be bridged to

satisfy the capacity requirements. It is important for

optimal performance that these IB switches be bridged

without oversubscription.

Another consideration is that, although Lustre servers

and Lustre clients are often both on a high speed

network such as InfiniBand, some Lustre clients may

be on a slower network such as 1 Gb Ethernet. Clients

on a slower network can access the Lustre file system

using Lustre LNET routers. A Lustre LNET router is a

special Lustre client with multiple network interfaces,

for example, one InfiniBand interface and one 1 Gb

Ethernet interface. The Lustre LNET router bridges

these interfaces, offering flexibility when designing

the network configuration.

Reviewing the Storage System
The iterative design process is now applied to all the

aggregated building blocks comprising the complete

storage system.

15

 Architecting a High-Performance Storage System

As Figure 9 shows, the storage system consists of:

• 3 12-disk enclosures

• 1 storage controller for the MDT

• 2 MDS servers

• 63 enclosures, each containing 60 disks

• 21 storage controllers for OSTs

• 22 OSSs

Figure 9. The complete Lustre storage system

Each of the 63 disk enclosures contains 60, 4-TB,

7,200 RPM disks. The disks in each enclosure are

structured into six RAID-6 groups of ten disks each,

with eight of the ten disks available for data. Each

RAID-6 group presents as a LUN, which is formatted by

the Lustre OSS as an OST. Thus, each disk enclosure

contains 6 OSTs.

The capacity of the designed system is calculated as:

4 x 1012 x 10 x 8/10 x 0.9 x 0.95 x 6 x 63 ≅

10.1 PB

Thus, this configuration meets the requirement for 10

PB of usable space.

Each backend disk enclosure offers approximately 3

GB/s bandwidth; the bandwidth of the storage pipeline

is limited to 6 GB/s by the storage controller. Because

Lustre aggregates all the OSS bandwidths linearly and

can achieve up to 90% of hardware bandwidth, the

performance of the designed system is calculated as:

6 GB/s x 90% x 21 storage controllers =

113.4 GB/s

16

 Architecting a High-Performance Storage System

Thus, the total bandwidth supported by this Lustre file

system is 113.4 GB/s. This performance meets the

aggregate bandwidth requirement of 100 GB/s.

Conclusion
The process of designing a storage system is not

straightforward, as many different aspects must be

considered. The step-by-step approach to designing a

high-performance storage system, and resolving the

common issues that were described in this paper, is

based on two general design methods:

• Design the backend disk storage first, and then
gradually work up the storage “pipeline” to the
client.

• Iteratively review the design and incrementally
factor in more requirements.

We demonstrated our approach with a case study

showing the design of a Lustre file system. Starting

with selecting disks and ending with designing the

storage area network, we applied the pipeline

approach and iterative design method to gradually

arrive at a storage architecture that met the system

requirements.

More information
For more information, contact your Intel® Lustre
reseller, or email the Lustre team at Intel® at:
hpdd-info@intel.com.

References
1. Intel® Corp., Lustre Product Brief (2010).

URL: https://wiki.hpdd.intel.com/display/PUB/Why+Use+Lustre

2. DataDirectNetworks, SFA10K-X and SFA10K-E: Breaking Down Storage Barriers by Providing Extreme

Performance in Both Bandwidth and IOPS. White Paper (2010).

URL: http://www.ddn.com/pdfs/SFA10K-X10K-E.pdf

3. Z. Liang. Lustre SMP Scaling Improvements. Lustre User Group presentation (2010).

URL: http://wiki.lustre.org/images/6/66/Lustre_smp_scaling_LUG_2010.pdf

4. Y. Fan, Z. Liang. Lustre Metadata Performance Improvements. Lustre User Group presentation (2011).

URL: http://www.opensfs.org/wp-content/uploads/2012/12/200-230_Fan_Yong_LUG11_Lustre-MDPI_v2.pdf

5. Lustre Software Release 2.X Operations Manual.

URL: http://build.whamcloud.com/job/lustre-manual/lastSuccessfulBuild/artifact/lustre_manual.pdf

Disclaimer and legal information
Copyright 2014 Intel Corporation. All Rights Reserved.

The document is protected by worldwide copyright laws and treaty provisions. No part of this document may be used, copied,

reproduced, modified, published, uploaded, posted, transmitted, distributed, or disclosed in any way without Intel’s prior express

written permission. No license under any patent, copyright, trade secret or other intellectual property right is granted to or

conferred upon you by disclosure of information in this document, either expressly, by implication, inducement, estoppel or

otherwise. Any license under such intellectual property rights must be express and approved by Intel in writing.

17

https://wiki.hpdd.intel.com/display/PUB/Why+Use+Lustre
http://www.ddn.com/pdfs/SFA10K-X10K-E.pdf
http://wiki.lustre.org/images/6/66/Lustre_smp_scaling_LUG_2010.pdf
http://www.opensfs.org/wp-content/uploads/2012/12/200-230_Fan_Yong_LUG11_Lustre-MDPI_v2.pdf
http://build.whamcloud.com/job/lustre-manual/lastSuccessfulBuild/artifact/lustre_manual.pdf

 Architecting a High-Performance Storage System

NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS

GRANTED BY THIS DOCUMENT.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may

be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

18

 Architecting a High-Performance Storage System

19

	Introduction
	A Systematic Approach to Storage System Design
	Evaluating Components - the Pipeline Approach
	Using an Iterative Design Process

	A Case Study Using the Lustre File System
	Analyzing the Requirements
	Designing and Building the Pipeline
	Disks and Disk Enclosures
	Configuring Object Data Storage
	Configuring Metadata Storage
	Storage Controllers
	Storage Servers
	Designing the Lustre Metadata Server
	Designing the Object Storage Servers
	Determining OSS Memory Requirements
	Selecting IO Cards for the Interface to Clients
	Cluster Network
	Reviewing the Storage System

	Conclusion
	More information
	References
	Disclaimer and legal information

