

Document Number: 333742-001US

Increasing Platform Determinism with
Platform Quality of Service for the
Data Plane Development Kit

White Paper

February 2016

Increasing Platform Determinism with Platform Quality
of Service for the Data Plane Development Kit
White Paper February 2016
2 Document Number: 333742 -001US

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel
products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted
which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel
product specifications and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725
or by visiting: http://www.intel.com/design/literature.htm

Intel, Xeon, Intel Architecture-Based Platforms, and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other
countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2016, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

 Increasing Platform Determinism with Platform Quality
of Service for the Data Plane Development Kit

February 2016 White Paper
Document Number: 333742-001US 3

Contents

1.0 Introduction .. 6
1.1 Abstract .. 6
1.2 Dependencies ... 6

1.2.1 Acronyms and Abbreviations .. 7
1.2.2 Problem Statement ... 8
1.2.3 CMT, MBM, and CAT Hardware Requirements ... 8

1.2.3.1 Compatible CPU Models ... 9

2.0 CMT, MBM, and CAT Software Support and Tools ... 10
2.1.1 CMT, MBM, and CAT Software Requirements ... 10

2.1.1.1 CMT, MBM, and CAT Library and Utility Software Support . 10
2.1.1.2 CMT and CAT Kernel Support .. 11
2.1.1.3 CAT Kernel Patch Details .. 13
2.1.1.4 Steps to Build a Patched Kernel .. 13
2.1.1.5 Shell Command to Check CAT Status ... 14

2.1.2 Software Requirements DPDK with PQoS Usage .. 14

3.0 Measurement and Analysis .. 15
3.1 DPDK IP-pipeline and Noisy Neighbor Overview ... 15

3.1.1 Stress-ng Tool ... 15
3.1.2 DPDK IP-pipeline Application .. 15
3.1.3 Test Environment Configuration .. 16
3.1.4 System Configuration .. 18
3.1.5 DPDK IP-pipeline Idle Platform ... 18
3.1.6 DPDK IP-pipeline VM with Aggressor (stress-ng) VM without CAT 18
3.1.7 DPDK IP-pipeline VM with Aggressor (stress-ng) VM with CAT 19
3.1.8 Performance Improvement .. 21

4.0 Platform/Software Details ... 22
4.1 Software Packages ... 22
4.2 Hardware Requirements ... 22
4.3 Default BIOS Settings .. 23

5.0 Conclusion .. 24

6.0 References ... 25

Increasing Platform Determinism with Platform Quality
of Service for the Data Plane Development Kit
White Paper February 2016
4 Document Number: 333742 -001US

Figures

Figure 1. CMT, MBM, and CAT Library and Utility ... 11
Figure 2. CMT/CAT Kernel Implementation ... 12
Figure 3. Four Stage IP Pipeline Application ... 16
Figure 4. DPDK Performance Scaling using CMT and CAT .. 17
Figure 5. Standalone Model Feedback Loop .. 20
Figure 6. IP Pipeline Performance Improvement using CMT and CAT .. 21

Tables

Table 1. Acronyms and Abbreviations ... 7
Table 2. CAT-compatible CPU Models .. 9
Table 3. DPDK IP-pipeline Packet Performance and LLC Occupancy Idle Platform 18
Table 4. DPDK IP-pipeline Packet Performance and LLC Occupancy without CAT 19
Table 5. DPDK IP Pipeline Packet Performance and LLC Occupancy with CAT 20
Table 6. Table of Software Packages ... 22
Table 7. Table of Hardware Requirements ... 22
Table 8. BIOS Settings ... 23

 Increasing Platform Determinism with Platform Quality
of Service for the Data Plane Development Kit

February 2016 White Paper
Document Number: 333742-001US 5

Revision History

Date Revision Description

February 2016 1.0 Initial release.

§

Introduction

Increasing Platform Determinism with Platform Quality
of Service for the Data Plane Development Kit
White Paper February 2016
6 Document Number: 333742 -001US

1.0 Introduction

1.1 Abstract

Network Functions Virtualization (NFV) enables the consolidation of a wide variety of
communication appliances. In order to meet the NFV input/output (I/O) performance
requirements, it is likely that these virtual machines will utilize the Data Plane
Development Kit (DPDK). With core count growth and increased number of (I/O)
devices being integrated in Intel's processors, shared resource contention could lead to
performance degradation.

For this reason, Intel has introduced Platform Quality of Service (PQoS) consisting of
both Monitoring and Allocation capabilities focusing on shared platform resources
enabling system administrators and developers to regain control over the platform. The
purpose of this paper is to cover the new capabilities that Intel processors integrate to
deal with potential resource contention issues associated with NFV.

• The motivation for Cache Monitoring Technology (CMT), Cache Allocation
Technology (CAT) and Memory Bandwidth will be covered in Section 1.0.

• For DPDK to take advantage of the PQoS capabilities certain libraries and Linux*
kernel infrastructure has been developed, these are covered in Section 2.0.

• In Section 3.0, the paper reviews the usage of a DPDK based packet processing
pipeline in both a contested and non-contested configuration to demonstrate the
potential performance impact of shared resource contention.

• Section 4.0 covers the platform requirements to take advantage of PQoS and
provides links to the various tools covered in this paper.

• Section 5.0 provides closing statements and the need for PQoS to provide both
insight into and the ability to reconfigure the platform to eliminate the impact of
shared resource contention.

1.2 Dependencies

All software tools, patches, and components referenced in this document should be the
latest stable release, unless a specific version is provided. In rare cases, some
modifications of the baseline versions are needed. Scope and description of such
modifications are detailed in this document.

Introduction

 Increasing Platform Determinism with Platform Quality
of Service for the Data Plane Development Kit

February 2016 White Paper
Document Number: 333742-001US 7

1.2.1 Acronyms and Abbreviations

Table 1 lists acronyms and abbreviations used in this document.

Table 1. Acronyms and Abbreviations

Name Description

CAT Cache Allocation Technology

CDP Code Date Prioritization

cgroup Control Group

CLI Command Line Interface

CMT Cache Monitoring Technology

COS Class of Service

CPU Central Processing Unit

DPDK Data Plane Development Kit

DRAM Dynamic Random Access Memory

I/O Input/Output

IP Internet Protocol

LLC Last Level Cache

MBM Memory Bandwidth Monitoring

Mpps Million packets per second

NAT Network Address Translation

NFV Network Functions Virtualization

PID Process Identifier

PQoS Platform Quality of Service

QoS Quality of Service

RMID Resource Monitoring ID

SDN Software-Defined networking

SKU Stock Keeping Unit

TID Task Identifier

VM Virtual Machine

VNF Virtual Network Function

Introduction

Increasing Platform Determinism with Platform Quality
of Service for the Data Plane Development Kit
White Paper February 2016
8 Document Number: 333742 -001US

1.2.2 Problem Statement

The next-generation networking and communications equipment industry is beginning
to embrace NFV. NFV is an emerging approach which enables consolidation of network
functions that typically reside on a fixed function platform using Virtualization and
other technologies. NFVs’ promise is to utilize off-the-shelf servers with general-
purpose processors and maintain performance expectations.

Traditionally Intel® Architecture-Based Platforms have shared resources such as Last
Level Cache (LLC) (L3), memory, and I/O controllers. VNFs competing for shared
resources such as the LLC and Memory Bandwidth Monitoring (MBM) could lead to
increased packet processing latency and jitter, resulting in non-deterministic platform
performance. NFV simplifies consolidation of Virtual Network Function (VNFs) such as
firewalls, network address translation (NAT), etc. These VNFs contend for shared
resources and if any one of them utilizes more than its fair share of L3 cache, memory
bandwidth, and more; the latency, jitter, and performance of the entire system may
become unpredictable.

To avoid this situation and boost performance further while making NFV more reliable,
Intel introduced Cache Monitoring Technology (CMT), Memory Bandwidth Monitoring
(MBM), and Cache Allocation Technology (CAT). CAT provides a hardware framework to
manage LLC shared resource. CMT enables tracking of the LLC occupancy, enabling
detailed profiling and tracking of threads and applications or virtual machines (VMs).
The MBM feature reports two type of events: local memory bandwidth and remote
memory bandwidth. Local memory bandwidth reports bandwidth of a thread accessing
memory associated with the local socket. In a dual socket system, the remote memory
bandwidth reports the bandwidth of a thread accessing the remote socket. CAT allows
an OS, hypervisor, or VMM to control allocation of a Central Processing Unit (CPU)
shared LLC. A Class of Service (COS) constitutes LLC ways that the CPU can populate
with data from RAM. Therefore a resource such as cores/logical threads associated with
a COS can only populate its own cache ways and will only fill data from DRAM into
cache ways specified in the COS.

1.2.3 CMT, MBM, and CAT Hardware Requirements

In order to run the DPDK use case with CMT, MBM, and CAT, these features must be
supported in the hardware. There are currently a number of CPUs which have these
features enabled.

Introduction

 Increasing Platform Determinism with Platform Quality
of Service for the Data Plane Development Kit

February 2016 White Paper
Document Number: 333742-001US 9

1.2.3.1 Compatible CPU Models

The Intel® Xeon® processor E5 v3 generation supports four classes of service and a set
of predefined classes of service that should not be changed at run time. Intel® Xeon®
processor D generation supports 16 classes of service. There are no pre-defined
classes of service and they can be changed at run time. Intel® Xeon® processor E5 v3
and Intel® Xeon® processor D generations support Core/Logical thread association with
a COS that can be changed dynamically. CMT is supported on all Intel® Xeon® processor
E5 v3 and Intel® Xeon® Processor D stock keeping units (SKUs). CAT is supported on the
following six SKUs for Intel® Xeon® Processor E5 v3 Family shown in Table 2 and all
Intel® Xeon® Processor D SKUs.

Table 2. CAT-compatible CPU Models

Model Name

Intel® Xeon® E5-2658 V3

Intel® Xeon® E5-2648L V3

Intel® Xeon® E5-2628L V3

Intel® Xeon® E5-2618L V3

Intel® Xeon® E5-2608L V3

Intel® Xeon® E5-2658A v3

Intel® Xeon® E3-1258L v4

Intel® Xeon® E3-1278L v4

all Intel® Xeon® processor D SKUs

Further compatibility information is available on the following website:

https://www-ssl.intel.com/content/www/us/en/communications/cache-monitoring-
cache-allocation-technologies.html

§

https://www-ssl.intel.com/content/www/us/en/communications/cache-monitoring-cache-allocation-technologies.html
https://www-ssl.intel.com/content/www/us/en/communications/cache-monitoring-cache-allocation-technologies.html

CMT, MBM, and CAT Software Support and Tools

Increasing Platform Determinism with Platform Quality
of Service for the Data Plane Development Kit
White Paper February 2016
10 Document Number: 333742 -001US

2.0 CMT, MBM, and CAT Software Support and

Tools

2.1.1 CMT, MBM, and CAT Software Requirements

The CMT, CAT, and MBM functionalities are programmed through Model Specific
Register (MSR) interface. The detection process is carried out using the CPUID
instruction.

2.1.1.1 CMT, MBM, and CAT Library and Utility Software Support

Standalone Approach (CMT, MBM, and CAT library) looks at the LLC usage from a Core
or Logical Thread (referred to as CPU hereafter) perspective, regardless of what task is
executing. For CMT, a Resource Monitoring ID (RMID) is statically assigned to a CPU and
periodically the occupancy is read back. For CAT, the command line utility provides the
necessary functionality to set up the CAT capabilities. The software provides flags to
configure and associate cores/logical threads with a COS. If the platform has been
statically configured and applications have been pinned to resources then this method
will yield appropriate results. If system administrators are interested in whether the
platform is suitably balanced and there are no misbehaving applications, this approach
is quite reasonable.

CMT, MBM, and CAT user space software enables access to CMT, MBM, and CAT CPU
hardware technologies on Linux*. The software consists of two components:

• Software library

• Utility that links against the library

The software library provides simple C API to access CMT, MBM, and CAT technologies.
It only relies on C and pthread libraries and uses MSR and CPUID Linux* kernel drivers
through their standard interfaces. Consequently an application using the library needs
an adequate privilege level to operate. Scheduler-integrated performance (Kernel
Version 4.1 or later) LLC occupancy monitoring per application process identifier (PID)
and all associated task identifiers (TIDs) is integrated in the standalone library/utility.

The utility provides a simple command line interface to library features. The aim is to
quickly enable customers to evaluate the technologies.

CMT, MBM, and CAT Software Support and Tools

 Increasing Platform Determinism with Platform Quality
of Service for the Data Plane Development Kit

February 2016 White Paper
Document Number: 333742-001US 11

Figure 1 shows CMT, MBM, and CAT library implementation.

Figure 1. CMT, MBM, and CAT Library and Utility

This CMT, MBM, and CAT library/Utility is available for download on http://01.org
which supports the CMT, MBM, CAT, and Code Date Prioritization (CDP).

https://01.org/packet-processing/cache-monitoring-technology-memory-
bandwidth-monitoring-cache-allocation-technology

For additional CMT, MBM, CAT, and CDP details see the Intel® Architecture Software
Development Manuals available at:

http://www.intel.com/content/www/us/en/processors/architectures-software-
developer-manuals.html

Specific information with regard to CMT, MBM, CAT and CDP can be found in chapters
17.14 and 17.15 of the Intel® 64 and IA-32 Architectures Software Developer’s Manuals.

2.1.1.2 CMT and CAT Kernel Support

The scheduler-based approach extends the operating system task scheduler with CMT
and CAT support, in this case via Linux* perf and cgroup frameworks. This results in the
ability to monitor and manage LLC resources on task basis as opposed to the
previously described CPU granularity method. The scheduler-based approach is the
preferred method in cases when the CPU is shared by multiple applications or an
application migrates between CPUs.

To enable standalone and scheduler based monitoring, several software development
initiatives are in progress that are described in subsequent sections.

http://01.org/
https://01.org/packet-processing/cache-monitoring-technology-memory-bandwidth-monitoring-cache-allocation-technology
https://01.org/packet-processing/cache-monitoring-technology-memory-bandwidth-monitoring-cache-allocation-technology
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

CMT, MBM, and CAT Software Support and Tools

Increasing Platform Determinism with Platform Quality
of Service for the Data Plane Development Kit
White Paper February 2016
12 Document Number: 333742 -001US

Scheduler-based Cache Monitoring ensures that the application of interest is tracked
with the appropriate core and RMID association. Likewise, scheduler-based Cache
Allocation ensures that the application of interest is associated with appropriate cache
partition. Scheduler-based Cache Monitoring ensures monitoring of the application LLC
occupancy. Under Linux* this is achieved by integrating CMT into perf and integrating
CAT into a control group (cgroup). Kernel support for both CMT and CAT are tightly
bound to the Linux* scheduler's functionality.

Figure 2 shows a brief diagram of the CMT/CAT kernel implementation.

Figure 2. CMT/CAT Kernel Implementation

cgroup CAT Usage involves two steps:

1. Assigning cache bitmask to cgroup
/bin/echo 0x0000f >
/sys/fs/cgroup/intel_rdt/cat_cgroup1/intel_rdt.cache_mask

2. Allocating cache per thread through cache bitmask to cgroup
/bin/echo 3530 > /sys/fs/cgroup/intel_rdt/cat_cgroup1/tasks

CMT, MBM, and CAT Software Support and Tools

 Increasing Platform Determinism with Platform Quality
of Service for the Data Plane Development Kit

February 2016 White Paper
Document Number: 333742-001US 13

perf CMT Usage for monitoring per thread cache occupancy in bytes:

perf stat –e intel_cqm/llc_occupancy/ -p <pid>
perf stat –e intel_cqm/llc_occupancy/ -t <tid>

Output:

Performance counter stats for process id ‘120673’:
30,867,456.00 Bytes intel_cqm/llc_occupancy/
1.355717105 seconds time elapsed

2.1.1.3 CAT Kernel Patch Details

Download the two sets of patches from:

http://marc.info/?l=linux-kernel&m=142620227328406

http://marc.info/?l=linux-kernel&m=142203876105241

2.1.1.4 Steps to Build a Patched Kernel
1. Get Kernel sources:

a. Kernel version 4.1.0, stable version

b. Fedora 21 (cat /etc/issue to see)

2. Configuration: Old:

a. Check the number of cores (cat /proc/cpuinfo)

b. Type Make oldconfig

c. Use defaults, EXCEPT when prompted on number of cores: enter the
correct value (not the default)

3. Patch the kernel:

a. Download and apply these nine patches:

http://marc.info/?l=linux-kernel&m=142203876105241

b. Download and apply these seven patches:

http://marc.info/?l=linux-kernel&m=142620227328406

4. Configuration: RDT cgroup:

a. Type Make menuconfig

b. Enable the following:

General setup -> Control Group Support -> Resource
Director Technology cgroup subsystem

5. Build the kernel:

Edit the Makefile, and set custom EXTRAVERSION. For example:
EXTRAVERSION = -mybuildDDMMYYYwithCAT

a. Type Make.

http://marc.info/?l=linux-kernel&m=142620227328406

CMT, MBM, and CAT Software Support and Tools

Increasing Platform Determinism with Platform Quality
of Service for the Data Plane Development Kit
White Paper February 2016
14 Document Number: 333742 -001US

6. Install the kernel:
a. Type sudo make modules_install

b. Type sudo make install

c. Type sudo reboot

Also see:

• Uninstall or remove old kernels in Fedora*:
http://fsdportal.com/remove-old-kernel-fedora/

• Build the Linux* kernel:
http://kernelnewbies.org/KernelBuild

• Obtain the kernel config from the current system:
http://superuser.com/questions/287371/obtain-kernel-config-from-currently-
running-linux-system

• Update options in the boot menu:
https://ask.fedoraproject.org/en/question/8885/how-can-i-change-default-
operating-system-in-start-up-boot-menu/

2.1.1.5 Shell Command to Check CAT Status

In order to check if CAT was enabled on the system, you must be able to see the
following messages:

$ dmesg | egrep -i 'rdt'
[2.587504] intel_rdt: cbmlength:20,Closs: 4
[0.134496] Initializing cgroup subsys rdt

The cbmlength shown above represents your bitmask size (20 bits). Your LLC can be
split (a granularity of up to 20 partitions).

2.1.2 Software Requirements DPDK with PQoS Usage

• DPDK 2.0.0

• CMT, MBM, and CAT software support

Refer to Section 4.1.

§

http://fsdportal.com/remove-old-kernel-fedora/
http://kernelnewbies.org/KernelBuild
http://superuser.com/questions/287371/obtain-kernel-config-from-currently-running-linux-system
http://superuser.com/questions/287371/obtain-kernel-config-from-currently-running-linux-system
https://ask.fedoraproject.org/en/question/8885/how-can-i-change-default-operating-system-in-start-up-boot-menu/
https://ask.fedoraproject.org/en/question/8885/how-can-i-change-default-operating-system-in-start-up-boot-menu/

Measurement and Analysis

 Increasing Platform Determinism with Platform Quality
of Service for the Data Plane Development Kit

February 2016 White Paper
Document Number: 333742-001US 15

3.0 Measurement and Analysis

3.1 DPDK IP-pipeline and Noisy Neighbor Overview

3.1.1 Stress-ng Tool

The following command to start the stress-ng tool is aimed at utilizing the cache as
aggressively as possible. When three such instances are running in parallel, they
effectively act on one another as a cache-intensive noisy neighbor.

stress-ng-0.03.20/stress-ng \
--cache 90 \
--cache-flush \
--cache-prefetch \
--aggressive \
--cpu 2 \
--cpu-method matrixprod \
--timeout ${timeout}

The timeout on the tests ranges from 10 seconds up to 12 hours (10 s – 12 h).

For testing purposes three stress-ng instances were run with this cache configuration
for various periods of time.

Refer to http://kernel.ubuntu.com/~cking/stress-ng/stress-ng.pdf

3.1.2 DPDK IP-pipeline Application

The benefits of CMT and CAT can be seen in a native as well as a virtualized packet
processing application. The sample application used in this example is the Internet
Protocol (IP) pipeline included in the DPDK. The IP pipeline application is intended to
be a vehicle for rapid development of packet processing applications running on multi-
core CPUs.

The application provides a library of reusable functional blocks called pipelines. These
pipelines can be seen as prefabricated blocks that can be instantiated and inter-
connected through packet queues (rings) to create complete applications (super-
pipelines).

Pipelines are created and inter-connected through the application configuration file. By
using different configuration files, different applications are effectively created,
therefore this application can be seen as an application generator. The configuration of
each pipeline can be updated at run-time through the application’s Command Line
Interface (CLI).

http://kernel.ubuntu.com/~cking/stress-ng/stress-ng.pdf

Measurement and Analysis

Increasing Platform Determinism with Platform Quality
of Service for the Data Plane Development Kit
White Paper February 2016
16 Document Number: 333742 -001US

The application uses six CPU cores:

• Core 1 (RX core) receives traffic from the NIC ports and feeds core 2 with traffic
through software queues.

• Core 2 (Flow Classification core) searches through the current set of flows (for
example, list all flows with a specific source IP address). This pipeline functional
block performs exact matching based on five tuples (source IP address, destination
IP address, source port number, destination port number, and protocol). Core 2
receives traffic from Core 1 through software queues, processes it according to the
actions configured in the table entries that are hit by the input packets and feeds it to
Core 3 through another set of software queues.

• Core 3 (Routing core) receives traffic from Core 2 through software queues and
routes it to the ports based on routing table rules/configuration.

• Core 4 (TX core) receives traffic from Core 3 through software queues and sends it to
the NIC ports for transmission.

• Core 0 and Core 5 are unused by the IP Pipeline application. They are left to run OS
and monitoring tasks.

Figure 3 shows the four-stage IP pipeline function block diagram. Core 0 and Core 5 are
unused by the IP Pipeline application; they are left to run the OS and to monitor tasks.

Figure 3. Four Stage IP Pipeline Application

Refer to http://dpdk.org/doc/guides/sample_app_ug/ip_pipeline.html for specific information
with regard to IP pipeline app details, packet profile configuration, etc.

3.1.3 Test Environment Configuration

The four stage IP pipeline above has been implemented in a guest VM. Figure 4 shows
an example of a setup with noisy neighbor detection as well as a mechanism to tune
the DPDK-IP pipeline VM for a performance boost using CMT and CAT.

http://dpdk.org/doc/guides/sample_app_ug/ip_pipeline.html

Measurement and Analysis

 Increasing Platform Determinism with Platform Quality
of Service for the Data Plane Development Kit

February 2016 White Paper
Document Number: 333742-001US 17

DPDK IP Pipeline VM Configuration:

1. DPDK VM is brought up and connected to the NIC with PCI passthrough.

2. Data Path:

o The packet generator creates flows based on RFC 2544.

o Flows arrived at the first vPort of the VM.

o The VM receives the 16 million flows and the IP pipeline functional blocks
does packet processing and forwards them out though the vPort.

o The flow is sent back to the packet generator.

3. VM is pinned to hardware threads (i.e., cores) 2, 3, 4, 5, 6, and 7.

4. DPDK IP pipeline command line example:

./build/ip-pipeline –c 7e –n 4 -- -p 3 –f ip_pipeline.cfg

5. Throughput reported is bidirectional.

Noisy Neighbor (Stress-ng) VM Configuration:

1. VM image with stress-ng tool. For details about the stress-ng command line,
see Section 3.1.1.

2. VM is pinned to hardware threads (i.e., cores) 8, 9, and 10.

Figure 4. DPDK Performance Scaling using CMT and CAT

Measurement and Analysis

Increasing Platform Determinism with Platform Quality
of Service for the Data Plane Development Kit
White Paper February 2016
18 Document Number: 333742 -001US

3.1.4 System Configuration

There are three test cases to compare the packet performance of DPDK IP-pipeline
when run with and without CAT enabled and configured to prioritize the LLC for a
sensitive IP-pipeline application.

• Running IP-pipeline in a VM (see Section 3.1.5).

• Running IP-pipeline in a VM with and three instances of stress-ng in a VM without
CAT (see Section 3.1.6).

• Running IP pipeline in a VM with three instances of stress-ng in a VM with CAT (refer
to Section 3.1.7.)

Refer to Section 4.0.

3.1.5 DPDK IP-pipeline Idle Platform

The purpose of running this test is to see what the “default” or “idle” packet
performance of the system really is. It provides a reference packet performance to see
if it degrades or improves compared to Step 2 and 3. This will be called the “ideal”
packet performance.

In this 2 x 10 Gbps port configuration, the platform delivers 16 million packets per
second (Mpps) of 64-byte packets. LLC occupancy to sustain this performance is 23 MB
(out of 25 MB available in this CPU model) as shown in Table 3.

Table 3. DPDK IP-pipeline Packet Performance and LLC Occupancy Idle Platform

CAT Noisy
Neighbor

DPDK IP Pipeline Application

Packet Size
(Bytes)

Flows
(Millions)

Throughput
(Mpps)

LLC Occupancy
(MB)

Not Present Not Present 64 16 16 23

Note: LLC occupancy can be determined via Linux* perf utility, when using the scheduler-
based approach (see Section 2.1.1.2 for information about Linux* perf usage
monitoring LLC occupancy). The CMT, MBM, and CAT user space utility (pqos) can be
used in CPU based approach. A simple "./pqos" command can be used to monitor LLC
occupancy on the CPU core basis. Refer to the utility help page for more information
about tool functions and usage.

3.1.6 DPDK IP-pipeline VM with Aggressor (stress-ng) VM without CAT

In this system there are two VMs set up: one VM runs the DPDK IP Pipeline application
and the other VM runs the stress-ng aggressor application concurrently.

Measurement and Analysis

 Increasing Platform Determinism with Platform Quality
of Service for the Data Plane Development Kit

February 2016 White Paper
Document Number: 333742-001US 19

In this 2 x 10 Gbps port configuration, the platform delivers 9.8 million packets per
second (Mpps) of 64 byte packet. DPDK IP pipeline application performance drops by
6 Mpps because of noisy neighbor (stress-ng) occupying substantial LLC. Table 4 shows
LLC occupancy of the IP Pipeline as reported by CMT is 4.5 MB.

Table 4. DPDK IP-pipeline Packet Performance and LLC Occupancy without CAT

CAT Noisy
Neighbor

DPDK IP Pipeline Application

Packet Size
(Bytes)

Flows
(Millions)

Throughput
(Mpps)

LLC Occupancy
(MB)

Not Present Present 64 16 9.8 4.5

3.1.7 DPDK IP-pipeline VM with Aggressor (stress-ng) VM with CAT

This is the most important part of the testing: running the same DPDK IP pipeline with
an aggressor workload (stress-ng). We are creating two COS as shown below.

Note: All commands are executed in a host shell.

• For DPDK IP pipeline VM:
− CAT using cgroup (scheduler model):

1. Create cgroup for DPDK IP pipeline VM: (Size 13.75 MB)
/bin/echo 0xffe00>
/sys/fs/cgroup/intel_rdt/cat_cgroup1/intel_rdt.cache_mask

2. Allocating cache per thread through cache bitmask to cgroup:
/bin/echo "PID of DPDK VM " >
/sys/fs/cgroup/intel_rdt/cat_cgroup1/tasks

− CAT using CMT, MBM, and CAT library/utility (standalone model):

1. Set COS 1 to bitmask (13.75 MB of 25 MB with 20 ways, 1.25 MB per way)
./pqos –e "llc:1=0xffe00"

2. Associate DPDK VM logical cores to COS 1
./pqos –a "llc:1=2,3,4,5,6,7"

• For stress-ng VM:

1. Create cgroup for stress-ng VM: (Size 2.5 MB)
/bin/echo 0x00003>
/sys/fs/cgroup/intel_rdt/cat_cgroup2/intel_rdt.cache_mask

a. Allocating cache per thread through cache bitmask to cgroup
/bin/echo "PID of stress-ng VM" >
/sys/fs/cgroup/intel_rdt/cat_cgroup2/tasks

2. CAT using CMT, MBM, and CAT library/utility:

a. Set COS2 to bitmask value 3 (2.5 MB, 25 MB LLC, 20 cache ways,
1.25 MB per cache way):
./pqos –e "llc:2=0x00003"

Measurement and Analysis

Increasing Platform Determinism with Platform Quality
of Service for the Data Plane Development Kit
White Paper February 2016
20 Document Number: 333742 -001US

b. Associate stress-ng VM logical cores to COS 2:
./pqos –a "llc:2=8,9,10"

Stress-ng VM: should no longer be cache hungry, by allocating this limit, and noisy
neighbor behavior should not occur. The performance improvement should be
clearly visible by seeing increased packet performance. Figure 5 shows a general
flowchart for this test run.

Figure 5. Standalone Model Feedback Loop

Table 5. DPDK IP Pipeline Packet Performance and LLC Occupancy with CAT

CAT Noisy
Neighbor

DPDK IP Pipeline Application

Packet Size
(Bytes)

Flows
(Millions)

Throughput (Mpps) LLC Occupancy
(MB)

Present Present 64 16 15 13.75

Measurement and Analysis

 Increasing Platform Determinism with Platform Quality
of Service for the Data Plane Development Kit

February 2016 White Paper
Document Number: 333742-001US 21

3.1.8 Performance Improvement

In this 2 x 10 Gbps port configuration, the platform delivers 16 million packets per
second (Mpps) of 64 byte packet throughput as depicted in the leftmost pane of
Figure 6 . In this scenario, there is only one active application in the system and it is the
DPDK IP pipeline. Consequently, the application's cache occupancy reaches 23 MB out
of 25 MB available in this CPU model. The middle pane depicts performance of the
DPDK application with active aggressor VM. The noisy neighbor application occupies
about 20 MB of cache leaving only 4 MB to the DPDK VM. As the result, DPDK IP
pipeline performance drops by 6 Mpps. The pane on the right depicts performance
after applying CAT settings to limit the aggressor VM access to last level cache and
isolate it from the DPDK VM. This results in an almost complete recovery of DPDK IP
pipeline performance to 15 Mpps with the aggressor VM being active at the same time.
In this case, the DPDK VM needs only 13 MB of exclusive cache in order to sustain 15
Mpps DPDK IP pipeline performance. This is far less than 23 MB occupied on the
leftmost pane but in that case the aggressor VM was not present and the default CAT
configuration was in place. Consequently, the DPDK VM occupied almost all of the last
level cache.

Figure 6. IP Pipeline Performance Improvement using CMT and CAT

§

16 Mpps

9 Mpps

15 Mpps

23 MB

4 MB

13 MB

IP pipeline performance
(no noisy neighbor VM)

(without CAT)

IP pipeline performance
(noisy neighbor VM)

(without CAT)

IP pipeline performance
(noisy neighbor VM)

(with CAT)

Received Packet as Traffic Generator LLC Occupancy reported by CMT

Platform/Software Details

Increasing Platform Determinism with Platform Quality
of Service for the Data Plane Development Kit
White Paper February 2016
22 Document Number: 333742 -001US

4.0 Platform/Software Details

4.1 Software Packages

Table 6 lists the software packages that were used.

Table 6. Table of Software Packages

Name Version Link Comments

Host Kernel 4.1.0 https://www.kernel.org/pub/linux/kernel/v4.x
/linux-4.1.1.tar.gz

Refer to:

CAT required Kernel
patches

Steps to build a
patched Kernel

Kernel patch
for CAT

v7 http://marc.info/?l=linux-
kernel&m=142620227328406&w=2
http://marc.info/?l=linux-
kernel&m=142203876105241

CMT,MBM, and
CAT library/
utility

 https://01.org/packet-processing/cache-
monitoring-technology-memory-
bandwidth-monitoring-cache-allocation-
technology-code-and-data

DPDK 2.0.0 http://dpdk.org/browse/dpdk/snapshot/
dpdk-2.0.0.tar.gz

Stress-ng
Benchmark

 http://kernel.ubuntu.com/~cking/stress-
ng/

4.2 Hardware Requirements

Table 7 lists the hardware packages that were used.

Table 7. Table of Hardware Requirements

Name Version Link Comments

Wildcat
Pass

Intel® Xeon® CPU
E5-2628 L v3 @
2.00 GHz

http://mark.intel.com/products/81704/Intel-
Xeon-Processor-E5-2628L-v3-25M-Cache-2_00-
GHz?q=Intel%C2%AE%20Xeon%C2%AE%20Pro
cessor%20E5-
2628L%20v3%20(25M%20Cache,%202.00%20
GHz)

Refer to:
CAT Hardware
requirements

Ethernet
Adapter

Intel® Ethernet
Converged
Network Adapter
X520

http://ark.intel.com/products/codename/32659/
Niantic

Memory DDR4 RAM Size: 68 GB

https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.1.1.tar.gz
http://marc.info/?l=linux-kernel&m=142620227328406&w=2
http://marc.info/?l=linux-kernel&m=142620227328406&w=2
https://01.org/packet-processing/cache-monitoring-technology-memory-bandwidth-monitoring-cache-allocation-technology-code-and-data
https://01.org/packet-processing/cache-monitoring-technology-memory-bandwidth-monitoring-cache-allocation-technology-code-and-data
https://01.org/packet-processing/cache-monitoring-technology-memory-bandwidth-monitoring-cache-allocation-technology-code-and-data
https://01.org/packet-processing/cache-monitoring-technology-memory-bandwidth-monitoring-cache-allocation-technology-code-and-data
http://dpdk.org/browse/dpdk/snapshot/dpdk-2.0.0.tar.gz
http://dpdk.org/browse/dpdk/snapshot/dpdk-2.0.0.tar.gz
http://kernel.ubuntu.com/~cking/stress-ng/
http://kernel.ubuntu.com/~cking/stress-ng/
http://mark.intel.com/products/81704/Intel-Xeon-Processor-E5-2628L-v3-25M-Cache-2_00-GHz?q=Intel%C2%AE%20Xeon%C2%AE%20Processor%20E5-2628L%20v3%20(25M%20Cache,%202.00%20GHz)
http://mark.intel.com/products/81704/Intel-Xeon-Processor-E5-2628L-v3-25M-Cache-2_00-GHz?q=Intel%C2%AE%20Xeon%C2%AE%20Processor%20E5-2628L%20v3%20(25M%20Cache,%202.00%20GHz)
http://mark.intel.com/products/81704/Intel-Xeon-Processor-E5-2628L-v3-25M-Cache-2_00-GHz?q=Intel%C2%AE%20Xeon%C2%AE%20Processor%20E5-2628L%20v3%20(25M%20Cache,%202.00%20GHz)
http://mark.intel.com/products/81704/Intel-Xeon-Processor-E5-2628L-v3-25M-Cache-2_00-GHz?q=Intel%C2%AE%20Xeon%C2%AE%20Processor%20E5-2628L%20v3%20(25M%20Cache,%202.00%20GHz)
http://mark.intel.com/products/81704/Intel-Xeon-Processor-E5-2628L-v3-25M-Cache-2_00-GHz?q=Intel%C2%AE%20Xeon%C2%AE%20Processor%20E5-2628L%20v3%20(25M%20Cache,%202.00%20GHz)
http://mark.intel.com/products/81704/Intel-Xeon-Processor-E5-2628L-v3-25M-Cache-2_00-GHz?q=Intel%C2%AE%20Xeon%C2%AE%20Processor%20E5-2628L%20v3%20(25M%20Cache,%202.00%20GHz)
http://ark.intel.com/products/codename/32659/Niantic
http://ark.intel.com/products/codename/32659/Niantic

Platform/Software Details

 Increasing Platform Determinism with Platform Quality
of Service for the Data Plane Development Kit

February 2016 White Paper
Document Number: 333742-001US 23

4.3 Default BIOS Settings

BIOS settings unchanged, however, noticed that Hyper-Threading was enabled.

Table 8. BIOS Settings

Setting State

Hyper-Threading ENABLED

VT-d ENABLED

§

Conclusion

Increasing Platform Determinism with Platform Quality
of Service for the Data Plane Development Kit
White Paper February 2016
24 Document Number: 333742 -001US

5.0 Conclusion

Shared resource contention can cause performance degradation. For example, the
performance of the DPDK-based packet processing pipeline introduced in Section 3.0
is impacted by 44% as a result of the execution of a cache-intensive application
executing on a different core. With CMT we can detect subscription of the LLC, with CAT
we can isolate the noisy neighbor and restore the performance up to 94%. The
remaining 6% performance degradation is very likely due to resource contention at the
memory controller level.

Various tools are introduced to take advantage of these new PQoS capabilities.
Developers or system administrators can utilize a user library available on http://01.org
that does not have kernel scheduler requirements to monitor Cache and/or Memory
Bandwidth Monitoring, with the limitation that it provides data on a per core or thread
basis. In addition, the user space tool provides the ability to setup the Cache Allocation
functionality as well.

CMT and MBM scheduler integrated support is available as of Linux* kernel 4.1, the perf
tool and the Linux* scheduler have been enhanced to track PID/TID occupancy. The
CAT scheduler integrated support is available through a new cgroup introduced in
Section 4.0.

To develop next generation virtual appliances based on DPDK to support both network
functions virtualization (NFV) and Software-Defined Networking (SDN), it is crucial to
provide PQoS. The new shared resource monitoring and allocation capabilities provide
developers with the ability to regain control over the platform while executing in a
consolidated environment. Stay tuned for further optimizations in the field of DPDK
and PQoS.

§

http://01.org/

References

 Increasing Platform Determinism with Platform Quality
of Service for the Data Plane Development Kit

February 2016 White Paper
Document Number: 333742-001US 25

6.0 References

Reference URL

Intel® 64 and IA-32 Architectures Software
Developer’s Manuals

http://www.intel.com/content/www/us/en/processors/archit
ectures-software-developer-manuals.html (v055, Vol 3b.
Chapter 17.15 and 17.16, covers CMT, CAT, MBM and CDP)

Intel, Cache Monitoring and Cache
Allocation Technologies landing page

http://www.intel.com/content/www/us/en/communications/
cache-monitoring-cache-allocation-technologies.html

CMT, MBM, CAT and CDP public software
library/utility

https://01.org/packet-processing/cache-monitoring-
technology-memory-bandwidth-monitoring-cache-
allocation-technology-code-and-data

CMT, MBM, CAT and CDP public software
library/utility GitHub Project

https://github.com/01org/intel-cmt-cat

Intel, “Enabling NFV to Deliver on its
Promise”

http://www.intel.com/content/www/us/en/communications/
nfv-packet-processing-brief.html

CAT cgroup kernel patches http://marc.info/?l=linux-
kernel&m=142620227328406&w=2

Christos Kozyrakis et al, “Heracles:
Improving Resource Efficiency at Scale”

http://csl.stanford.edu/~christos/publications/2015.heracles
.isca.pdf, 2015

Introduction to CMT Blog https://software.intel.com/en-us/blogs/2014/06/18/benefit-
of-cache-monitoring

Discussion of RMIDs and CMT Software
Interfaces Blog

https://software.intel.com/en-us/blogs/2014/12/11/intel-s-
cache-monitoring-technology-software-visible-interfaces

Use Models and Example Data using CMT
Blog

https://software.intel.com/en-us/blogs/2014/12/11/intels-
cache-monitoring-technology-use-models-and-data

Software Supports and Tools: Intel's CMT:
Software Support and Tools

https://software.intel.com/en-us/blogs/2014/12/11/intels-
cache-monitoring-technology-software-support-and-tools

Intel Platform Shared Resource Monitoring
and CAT

http://smackerelofopinion.blogspot.com/2015/11/intel-
platform-shared-resource.html

§

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/communications/cache-monitoring-cache-allocation-technologies.html
http://www.intel.com/content/www/us/en/communications/cache-monitoring-cache-allocation-technologies.html
https://01.org/packet-processing/cache-monitoring-technology-memory-bandwidth-monitoring-cache-allocation-technology-code-and-data
https://01.org/packet-processing/cache-monitoring-technology-memory-bandwidth-monitoring-cache-allocation-technology-code-and-data
https://01.org/packet-processing/cache-monitoring-technology-memory-bandwidth-monitoring-cache-allocation-technology-code-and-data
https://github.com/01org/intel-cmt-cat
http://www.intel.com/content/www/us/en/communications/nfv-packet-processing-brief.html
http://www.intel.com/content/www/us/en/communications/nfv-packet-processing-brief.html
http://marc.info/?l=linux-kernel&m=142620227328406&w=2
http://marc.info/?l=linux-kernel&m=142620227328406&w=2
http://csl.stanford.edu/~christos/publications/2015.heracles.isca.pdf
http://csl.stanford.edu/~christos/publications/2015.heracles.isca.pdf
https://software.intel.com/en-us/blogs/2014/06/18/benefit-of-cache-monitoring
https://software.intel.com/en-us/blogs/2014/06/18/benefit-of-cache-monitoring
https://software.intel.com/en-us/blogs/2014/12/11/intel-s-cache-monitoring-technology-software-visible-interfaces
https://software.intel.com/en-us/blogs/2014/12/11/intel-s-cache-monitoring-technology-software-visible-interfaces
https://software.intel.com/en-us/blogs/2014/12/11/intels-cache-monitoring-technology-use-models-and-data
https://software.intel.com/en-us/blogs/2014/12/11/intels-cache-monitoring-technology-use-models-and-data
https://software.intel.com/en-us/blogs/2014/12/11/intels-cache-monitoring-technology-software-support-and-tools
https://software.intel.com/en-us/blogs/2014/12/11/intels-cache-monitoring-technology-software-support-and-tools
http://smackerelofopinion.blogspot.com/2015/11/intel-platform-shared-resource.html
http://smackerelofopinion.blogspot.com/2015/11/intel-platform-shared-resource.html

	1.0 Introduction
	1.1 Abstract
	1.2 Dependencies
	1.2.1 Acronyms and Abbreviations
	1.2.2 Problem Statement
	1.2.3 CMT, MBM, and CAT Hardware Requirements
	1.2.3.1 Compatible CPU Models

	2.0 CMT, MBM, and CAT Software Support and Tools
	2.1.1 CMT, MBM, and CAT Software Requirements
	2.1.1.1 CMT, MBM, and CAT Library and Utility Software Support
	2.1.1.2 CMT and CAT Kernel Support
	2.1.1.3 CAT Kernel Patch Details
	2.1.1.4 Steps to Build a Patched Kernel
	2.1.1.5 Shell Command to Check CAT Status

	2.1.2 Software Requirements DPDK with PQoS Usage

	3.0 Measurement and Analysis
	3.1 DPDK IP-pipeline and Noisy Neighbor Overview
	3.1.1 Stress-ng Tool
	3.1.2 DPDK IP-pipeline Application
	3.1.3 Test Environment Configuration
	3.1.4 System Configuration
	3.1.5 DPDK IP-pipeline Idle Platform
	3.1.6 DPDK IP-pipeline VM with Aggressor (stress-ng) VM without CAT
	3.1.7 DPDK IP-pipeline VM with Aggressor (stress-ng) VM with CAT
	3.1.8 Performance Improvement

	4.0 Platform/Software Details
	4.1 Software Packages
	4.2 Hardware Requirements
	4.3 Default BIOS Settings

	5.0 Conclusion
	6.0 References

