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Abstract
We present the first large-scale characterization of lateral

phishing attacks, based on a dataset of 113 million employee-
sent emails from 92 enterprise organizations. In a lateral
phishing attack, adversaries leverage a compromised enter-
prise account to send phishing emails to other users, benefit-
ting from both the implicit trust and the information in the
hijacked user’s account. We develop a classifier that finds hun-
dreds of real-world lateral phishing emails, while generating
under four false positives per every one-million employee-
sent emails. Drawing on the attacks we detect, as well as a
corpus of user-reported incidents, we quantify the scale of lat-
eral phishing, identify several thematic content and recipient
targeting strategies that attackers follow, illuminate two types
of sophisticated behaviors that attackers exhibit, and estimate
the success rate of these attacks. Collectively, these results
expand our mental models of the ‘enterprise attacker’ and
shed light on the current state of enterprise phishing attacks.

1 Introduction

For over a decade, the security community has explored a
myriad of defenses against phishing attacks. Yet despite this
long line of work, modern-day attackers routinely and suc-
cessfully use phishing attacks to compromise government
systems, political figures, and companies spanning every eco-
nomic sector. Growing in prominence each year, this genre
of attacks has risen to the level of government attention, with
the FBI estimating $12.5 billion in financial losses worldwide
from 78,617 reported incidents between October 2013 to May
2018 [12], and the US Secretary of Homeland Security declar-
ing that phishing represents “the most devastating attacks by
the most sophisticated attackers” [39].

By and large, the high-profile coverage around targeted
spearphishing attacks against major entities, such as Google,
RSA, and the Democratic National Committee, has captured
and shaped our mental models of enterprise phishing at-
tacks [35, 43, 46]. In these newsworthy instances, as well
as many of the targeted spearphishing incidents discussed in
the academic literature [25, 26, 28], the attacks come from
external accounts, created by nation-state adversaries who
cleverly craft or spoof the phishing account’s name and email
address to resemble a known and legitimate user. However,
in recent years, work from both industry [7, 24, 36] and
academia [6, 18, 32, 41] has pointed to the emergence and

growth of lateral phishing attacks: a new form of phishing
that targets a diverse range of organizations and has already
incurred billions of dollars in financial harm [12]. In a lateral
phishing attack, an adversary uses a compromised enterprise
account to send phishing emails to a new set of recipients.
This attack proves particularly insidious because the attacker
automatically benefits from the implicit trust in the hijacked
account: trust from both human recipients and conventional
email protection systems.

Although recent work [10, 15, 18, 19, 41] presents several
ideas for detecting lateral phishing, these prior methods either
require that organizations possess sophisticated network mon-
itoring infrastructure, or they produce too many false positives
for practical usage. Moreover, no prior work has characterized
this attack at a large, generalizable scale. For example, one
of the most comprehensive related work uses a multi-year
dataset from one organization, which only contains two lat-
eral phishing attacks [18]. This state of affairs leaves many
important questions unanswered: How should we think about
this class of phishing with respect to its scale, sophistication,
and success? Do attackers follow thematic strategies, and
can these common behaviors fuel new or improved defenses?
How are attackers capitalizing on the information within the
hijacked accounts, and what does their behavior say about the
state and trajectory of enterprise phishing attacks?

In this joint work between academia and Barracuda Net-
works we take a first step towards answering these open ques-
tions and understanding lateral phishing at scale. This paper
seeks to both explore avenues for practical defenses against
this burgeoning threat and develop accurate mental models
for the state of these phishing attacks in the wild.

First, we present a new classifier for detecting URL-based
lateral phishing emails and evaluate our approach on a dataset
of 113 million emails, spanning 92 enterprise organizations.
While the dynamic churn and dissimilarity in content across
phishing emails proves challenging, our approach can detect
87.3% of attacks in our dataset, while generating less than 4
false positives per every 1,000,000 employee-sent emails.

Second, combining the attacks we detect with a corpus of
user-reported lateral phishing attacks, we conduct the first
large-scale characterization of lateral phishing in real-world
organizations. Our analysis shows that this attack is potent
and widespread: dozens of organizations, ranging from ones
with fewer than 100 employees to ones with over 1,000 em-
ployees, experience lateral phishing attacks within the span



of several months; in total, 14% of a set of randomly sam-
pled organizations experienced at least one lateral phishing
incident within a seven-month timespan. Furthermore, we
estimate that over 11% of attackers successfully compromise
at least one additional employee. Even though our ground
truth sources and detector face limitations that restrict their
ability to uncover stealthy or narrowly targeted attacks, our re-
sults nonetheless illuminate a prominent threat that currently
affects many real-world organizations.

Examining the behavior of lateral phishers, we explore and
quantify the popularity of four recipient (victim) selection
strategies. Although our dataset’s attackers target dozens to
hundreds of recipients, these recipients often include a sub-
set of users with some relationship to the hijacked account
(e.g., fellow employees or recent contacts). Additionally, we
develop a categorization for the different levels of content
tailoring displayed by our dataset’s phishing messages. Our
categorization shows that while 7% of attacks deploy targeted
messages, most attacks opt for generic content that a phisher
could easily reuse across multiple organizations. In particular,
we observe that lateral phishers rely predominantly on two
common lures: a pretext of a shared document and a fake
warning message about a problem with the recipient’s ac-
count. Despite the popularity of non-targeted content, nearly
one-third of our dataset’s attackers invest additional time and
effort to make their attacks more convincing and/or to evade
detection; and, over 80% of attacks occur during the normal
working hours of the hijacked account.

Ultimately, this work yields two contributions that ex-
pand our understanding of enterprise phishing and potential
defenses against it. First, we present a novel detector that
achieves an order-of-magnitude better performance than prior
work, while operating on a minimal data requirement (only
leveraging historical emails). Second, through the first large-
scale characterization of lateral phishing, we uncover the scale
and success of this emerging class of attacks and shed light on
common strategies that lateral phishers employ. Our analysis
illuminates a prevalent class of enterprise attackers whose
behavior does not fully match the tactics of targeted nation-
state attacks or industrial espionage. Nonetheless, these lateral
phishers still achieve success in the absence of new defenses,
and many of our dataset’s attackers do exhibit some signs of
sophistication and focused effort.

2 Background

In a lateral phishing attack, attackers use a compromised,
but legitimate, email account to send a phishing email to
their victim(s). The attacker’s goals and choice of malicious
payload can take a number of different forms, from a malware-
infected attachment, to a phishing URL, to a fake payment
request. Our work focuses on lateral phishing attacks that
employ a malicious URL embedded in the email, which is the
most common exploit method identified in our dataset.

Listing 1: An anonymized example of a lateral phishing message
that uses the lure of a fake contract document.

From: "Alice" <alice@company.com>
To: "Bob" <bob@company.com>
Subject: Company X (New Contract)

New Contract

View Document [this text linked to a phishing website]

Regards,
Alice [signature]

Listing 1 shows an anonymized example of a lateral phish-
ing attack from our study. In this attack, the phisher tried to
lure the recipient into clicking on a link under the false pre-
tense of a new contract. Additionally, the attacker also tried to
make the deception more credible by responding to recipients
who inquired about the email’s authenticity; and they also
actively hid their presence in the compromised user’s mailbox
by deleting all traces of their phishing email.

Lateral phishing represents a dangerous but understudied
attack at the intersection of phishing and account hijacking.
Phishing attacks, broadly construed, involve an attacker craft-
ing a deceptive email from any account (compromised or
spoofed) to trick their victim into performing some action.
Account hijacking, also known as account takeover (ATO)
in industry parlance, involves the use of a compromised ac-
count for any kind of malicious means (e.g., including spam).
While prior work primarily examines each of these attacks at a
smaller scale and with respect to personal accounts, our work
studies the intersection of both of these at a large scale and
from the perspective of enterprise organizations. In doing so,
we expand our understanding of important enterprise threats,
avenues for defending against them, and strategies used by
the attackers who perpetrate them.

2.1 Related Work

Detection: An extensive body of prior literature proposes
numerous techniques for detecting traditional phishing at-
tacks [1,3,13,14,44], as well as more sophisticated spearphish-
ing attacks [8, 10, 23, 41, 47]. Hu et al. studied how to use
social graph metrics to detect malicious emails sent from
compromised accounts [19]. Their approach detects hijacked
accounts with false positive rates between 20–40%. Unfortu-
nately, in practice, many organizations handle tens of thou-
sands of employee-sent emails per day, so a false positive
rate of 20% would lead to thousands of false alerts each day.
IdentityMailer, proposed by Stringhini et al. [41], detects lat-
eral phishing attacks by training behavior models based on
timing patterns, metadata, and stylometry for each user. If a
new email deviates from an employee’s behavioral model,



their system flags it as an attack. While promising, their ap-
proach produces false positive rates in the range of 1–10%,
which is untenable in practice given the high volume of benign
emails and low base rate of phishing. Additionally, their sys-
tem requires training a behavioral model for each employee,
incurring expensive technical debt to operate at scale.

Ho et al. developed methods for detecting lateral
spearphishing by applying a novel anomaly detection algo-
rithm on a set of features derived from historical user login
data and enterprise network traffic logs [18]. Their approach
detects both known and newly discovered attacks, with a false
positive rate of 0.004%. However, organizations with less
technical expertise often lack the infrastructure to compre-
hensively capture the enterprise’s network traffic, which this
prior approach requires. This technical prerequisite begs the
question, can we practically detect lateral phishing attacks
with a more minimalist dataset: only the enterprise’s historical
emails? Furthermore, their dataset reflects a single enterprise
that experienced only two lateral phishing attacks across a
3.5-year timespan, which prevents them from characterizing
the nature of lateral phishing at a general scale.

Characterization: While prior work shows that attackers
frequently use phishing to compromise accounts, and that
attackers occasionally conduct (lateral) phishing from these
hijacked accounts, few efforts have studied the nature of lat-
eral phishing in depth and at scale. Examining a sample of
phishing emails, webpages, and compromised accounts from
Google data sources, one prior study of account hijacking
discovered that attackers often use these accounts to send
phishing emails to the account’s contacts [6]. However, they
concluded that automatically detecting such attacks proves
challenging. Onaolapo et al. studied what attackers do with
hijacked accounts [32], but they did not examine lateral phish-
ing. Separate from email accounts, a study of compromised
Twitter accounts found that infections appear to spread later-
ally through the social network. However their dataset did not
allow direct observation of the lateral attack vector itself [42],
nor did it provide insights into the domain of compromised
enterprise accounts (given the nature of social media).

Open Questions and Challenges: Prior work makes clear
that account compromise poses a significant and widespread
problem. This literature also presents promising defenses for
enterprises that have sophisticated monitoring in place. Yet
despite these advances, several key questions remain unre-
solved. Do organizations without comprehensive monitoring
and technical expertise have a practical way to defend against
lateral phishing attacks? What common strategies and trade-
craft do lateral phishers employ? How are lateral phishers
capitalizing on their control of legitimate accounts, and what
does their tactical sophistication say about the state of enter-
prise phishing? This paper takes a step towards answering
these open questions by presenting a new detection strategy
and a large-scale characterization of lateral phishing attacks.

ag
ric

ul
tu

re

co
ns

um
er

ed
uc

at
io

n

en
er

gy

en
te

rta
in

m
en

t

fin
an

cia
l

fo
od

go
ve

rn
m

en
t

he
al

th

in
du

st
ria

ls

no
n-

pr
of

it

pe
op

le
 se

rv
ice

s

re
al

-e
st

at
e

te
ch

no
lo

gy

to
ur

ism

tra
ns

po
rta

tio
n0

2

4

6

8

10

12

14

# 
of

 o
rg

an
iza

tio
ns

Exploratory orgs
Test orgs

Figure 1: Breakdown of the economic sectors across our dataset’s
52 exploratory organizations versus the 40 test organizations.

2.2 Ethics

In this work, our team, consisting of researchers from
academia and a large security company, developed detection
techniques using a dataset of historical emails and reported
incidents from 92 organizations who are active customers of
Barracuda Networks. These organizations granted Barracuda
permission to access their Office 365 employee mailboxes for
the purpose of researching and developing defenses against
lateral phishing. Per Barracuda’s policies, all fetched emails
are stored encrypted, and customers have the option of revok-
ing access to their data at any time.

Due to the sensitivity of the data, only authorized em-
ployees at Barracuda were allowed to access the data (un-
der standard, strict access control policies). No personally
identifying information or sensitive data was shared with any
non-employee of Barracuda. Our project also received legal
approval from Barracuda, who had permission from their
customers to analyze and operate on the data.

Once Barracuda deployed a set of lateral phishing detectors
to production, any detected attacks were reported to customers
in real time to prevent financial loss and harm.

3 Data

Our dataset consists of employee-sent emails from 92 English-
language organizations; 23 organizations came from ran-
domly sampling enterprises that had reports of lateral phish-
ing, and 69 were randomly sampled from all organizations.
Across these enterprises, 25 organizations have 100 or fewer
user accounts, 34 have between 101–1000 accounts, and 33
have over 1000 accounts. Real-estate, technology, and edu-
cation constitute the three most common industries in our
dataset, with 15, 13, and 13 enterprises respectively; Figures 1
and 2 show the distribution of the economic sectors and sizes
of our dataset’s organizations, broken down by exploratory
organizations versus test organizations (§ 3.2).
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Figure 2: Breakdown of the organization sizes across our dataset’s
52 exploratory organizations versus the 40 test organizations.

3.1 Schema

The organizations in our dataset use Office 365 as their email
provider. At a high level, each email object contains: a unique
Office 365 identifier; the email’s metadata (SMTP header
information), which describes properties such as the email’s
sent timestamp, recipients, purported sender, and subject; and
the email’s body, the contents of the email message in full
HTML formatting. Office 365’s documentation describes the
full schema of each email object [29]. Additionally, for each
organization, we have a set of verified domains: domains
which the organization has declared that it owns.

3.2 Dataset Size

Our dataset consists of 113,083,695 unique, employee-sent
emails. To ensure our detection techniques generalized (Sec-
tion 5.1), we split our data into a training dataset of emails
from 52 ‘exploratory organizations’ during April–June 2018,
and a test dataset covering July–October 2018 from 92 or-
ganizations. Our test dataset consists of emails from the 52
exploratory organizations (but from a later, disjoint time pe-
riod than our training dataset), plus data from an additional,
held-out set of 40 ‘test organizations’. We selected the 40 test
organizations via a random sample that we performed prior
to analyzing any data. Our training dataset has 25,670,264
emails, and our test dataset has 87,413,431 emails. Both sets
of organizations cover a diverse range of industries and sizes
as shown in Figures 1 and 2. The exploratory organizations
span a total of 89,267 user mailboxes that sent or received
email, and the test organizations have 138,752 mailboxes
(based on the data from October 2018).1

3.3 Ground truth

Our set of lateral phishing emails comes from two sources:
(1) attack emails reported to Barracuda by an organization’s
security administrators, as well as attacks reported by users
to their organization or directly to Barracuda, and (2) emails

1The number of mailboxes is an upper bound on the number of employees
due to the use of mailing lists and aliases.

Figure 3: An anonymized screenshot of the web page that a phishing
URL in a lateral phishing email led to.

flagged by our detector (§4), which we manually reviewed
and labeled before including.

At a high-level, to manually label an email as phishing, or
not, we examined its message content, Office 365 metadata,
and Internet Message Headers [33] to determine whether the
email contained phishing content, and whether the email came
from a compromised account (versus an external account,
which we do not treat as lateral phishing). For example, if the
Office 365 metadata showed that a copy of the email resided
in the employee’s Sent Items folder, or if its headers showed
that the email passed the corresponding SPF or DKIM [9]
checks, then we considered the email to be lateral phishing.
Appendix §A.1 describes our labeling procedure in detail.

Additionally, for a small sample of URLs in these lateral
phishing emails, employees at Barracuda accessed the phish-
ing URL in a VM-contained browser to better understand
the end goals of the attack. To minimize potential harm and
side effects, these employees only visited phishing URLs
which contained no unique identifiers (i.e., no random strings
or user/organization information in the URL path). To han-
dle any phishing URLs that resided on URL-shortening do-
mains, we used one of Barracuda’s URL-expansion APIs
that their production services already apply to email URLs,
and only visited suspected phishing links that expanded to a
non-side-effect URL. Most phishing URLs we explored led
to a SafeBrowsing interstitial webpage, likely reflecting our
use of historical emails, rather than what users would have
encountered contemporaneously. However, more recent mali-
cious URLs consistently led to credential phishing websites
designed to look like a legitimate Office 365 login page (the
email service provider used by our study’s organizations); Fig-
ure 3 shows an anonymized example of one phishing website.

In total, our dataset contains 1,902 lateral phishing emails
(unique by subject, sender, and sent-time), sent by 154 hi-
jacked employee accounts from 33 organizations. 1,694 of
these emails were reported by users, with the remainder found
solely by our detector (§ 4); our detector also finds many of the



user-reported attacks as well (§ 5). Among the user-reported
attacks, 40 emails (from 12 hijacked accounts) contained a
fake wire transfer or malicious attachment, while the remain-
ing 1,862 emails used a malicious URL.

We focus our detection strategy on URL-based phishing,
given the prevalence of this attack vector. This focus means
that our analysis and detection techniques do not reflect the
full space of lateral phishing attacks. Despite this limitation,
our dataset’s attacks span dozens of organizations, enabling
us to study a prevalent class of enterprise phishing that poses
an important threat in its own right.

4 Detecting Lateral Phishing

Adopting the lateral attacker threat model defined by Ho et
al. [18], we focus on phishing emails sent by a compromised
employee account, where the attack embeds a malicious URL
as the exploit (e.g., leading the user to a phishing webpage).

We explored three strategies for detecting lateral phishing
attacks, but ultimately found that one of the strategies detected
nearly all of the attacks identified by all three approaches. At
a high level, the two less fruitful strategies detected attacks
by looking for emails that contained (1) a rare URL and (2)
a message whose text seemed likely to be used for phishing
(e.g., similar text to a known phishing attack). Because our
primary detection strategy detected all-but-two of the attacks
found by the other strategies, while finding over ten times as
many attacks, we defer discussion of the two less successful
approaches to our extended technical report [17]; below, we
focus on exploring the more effective strategy in detail. In our
evaluation, we include the two additional attacks found by the
alternative approaches as false negatives for our detector.

Overview: We examined the user-reported lateral phishing
incidents in our training dataset (April–June 2018) to iden-
tify widespread themes and behaviors that we could leverage
in our detector. Grouping this set of attacks by the hijacked
account (ATO) that sent them, we found that 95% of these
ATOs sent phishing emails to 25 or more distinct recipients.2

This prevalent behavior, along with additional feature ideas
inspired by the lure-exploit detection framework [18], pro-
vide the basis for our detection strategy. In the remainder of
this section, we describe the features our detector uses, the
intuition behind these features, and our detector’s machine
learning procedure for classifying emails.

Our techniques provide neither an all-encompassing ap-
proach to finding every attack, nor guaranteed robustness
against motivated adversaries trying to evade detection. How-
ever, we show in Section 5 that our approach finds hundreds
of lateral phishing emails across dozens of real-world organi-
zations, while incurring a low volume of false positives.

2To assess the generalizability of our approach, our evaluation uses a
withheld dataset, from a later timeframe and with new organizations (§ 5).

Features: Our detector extracts three sets of features. The first
set consists of two features that target the popular behavior we
observed earlier: contacting many recipients. Given an email,
we first extract the number of unique recipients across the
email’s To, CC, and BCC headers. Additionally, we compute
the Jaccard similarity of this email’s recipient set to the closest
set of historical recipients seen in any employee-sent email
from the preceding month. We refer to this latter (similarity)
feature as the email’s recipient likelihood score.

The next two sets of features draw upon the lure-exploit
phishing framework proposed by Ho et al. [18]. This frame-
work posits that phishing emails contain two necessary com-
ponents: a ‘lure’, which convinces the victim to believe the
phishing email and perform some action; and an ‘exploit’: the
malicious action the victim should execute. Their work finds
that using features that target both of these two components
significantly improves a detector’s performance.

To characterize whether a new email contains a poten-
tial phishing lure, our detector extracts a single, lightweight
boolean feature based on the email’s text. Specifically, Bar-
racuda provided us with a set of roughly 150 keywords and
phrases that frequently occur in phishing attacks. They de-
veloped this set of ‘phishy’ keywords by extracting the link
text from several hundred real-world phishing emails (both
external and lateral phishing) and selecting the (normalized)
text that occurred most frequently among these attacks. The-
matically, these suspicious keywords convey a call to action
that entices the recipient to click a link. For our ‘lure’ feature,
we extract a boolean value that indicates whether an email
contains any of these phishy keywords.

Finally, we complete our detector’s feature set by extracting
two features that capture whether an email might contain an
exploit. Since our work focuses on URL-based attacks, this
set of features reflects whether the email contains a potentially
dangerous URL.

First, for each email, we extract a global URL reputation
feature that quantifies the rarest URL an email contains. Given
an email, we extract all URLs from the email’s body and ig-
nore URLs if they fall under two categories: we exclude all
URLs whose domain is listed on the organization’s verified
domain list (§ 3.1), and we also exclude all URLs whose
displayed, hyperlinked text exactly matches the URL of the
hyperlink’s underlying destination. For example, in Listing 1’s
attack, the displayed text of the phishing hyperlink was “Click
Here”, which does not match the hyperlink’s destination (the
phishing site), so our procedure would keep this URL. In
contrast, Alice’s signature from Listing 1 might contain a
link to her personal website, e.g., www.alice.com; our pro-
cedure would ignore this URL, since the displayed text of
www.alice.com matches the hyperlink’s destination.

This latter filtering criteria makes the assumption that a
phishing URL will attempt to obfuscate itself, and will not
display the true underlying destination directly to the user.
After these filtering steps, we extract a numerical feature by



mapping each remaining URL to its registered domain, and
then looking up each domain’s ranking on the Cisco Um-
brella Top 1 Million sites [20];3 for any unlisted domain, we
assign it a default ranking of 10 million. We treat two spe-
cial cases differently. For URLs on shortener domains, our
detector attempts to recursively resolve the shortlink to its
final destination. If this resolution succeeds, we use the global
ranking of the final URL’s domain; otherwise, we treat the
URL as coming from an unranked domain (10 million). For
URLs on content hosting sites (e.g., Google Drive or Share-
point), we have no good way to determine its suspiciousness
without fetching the content and analyzing it (an action that
has several practical hurdles). As a result, we treat all URLs
on content hosting sites as if they reside on unranked domains.

After ranking each URL’s domain, we set the email’s global
URL reputation feature to be the worst (highest) domain rank-
ing among its URLs. Intuitively, we expect that phishers will
rarely host phishing pages on popular sites, so a higher global
URL reputation indicates a more suspicious email. In prin-
ciple a motivated adversary could evade this feature; e.g., if
an adversary can compromise one of the organization’s ver-
ified domains, they can host their phishing URL from this
compromised site and avoid an accurate ranking. However,
we found no such instances in our set of user-reported lateral
phishing. Additionally, since the goal of this paper is to begin
exploring practical detection techniques, and develop a large
set of lateral phishing incidents for our analysis, this feature
suffices for our needs.

In addition to this global reputation metric, we extract a
local metric that characterizes the rareness of a URL with
respect to the domains of URLs that an organization’s em-
ployees typically send. Given a set of URLs embedded within
an email, we map each URL to its fully-qualified domain
name (FQDN) and count the number of days from the preced-
ing month where at least one employee-sent email included a
URL on the FQDN. We then take the minimum value across
all of an email’s URLs; we call this minimum value the lo-
cal URL reputation feature. Intuitively, suspicious URLs will
have both a low global reputation and a low local reputation.
However, our evaluation (§ 5.2) finds that this local URL
reputation feature adds little value: URLs with a low local
URL reputation value almost always have a low global URL
reputation value, and vice versa.

Classification: To label an email as phishing or not, we
trained a Random Forest classifier [45] with the aforemen-
tioned features. To train our classifier, we take all user-
reported lateral phishing emails in our training dataset, and
combine them with a set of likely-benign emails. We generate
this set of “benign” emails by randomly sampling a subset
of the training window’s emails that have not been reported
as phishing; we sample 200 of these benign emails for each

3We use a list fetched in early March 2018 for our feature extraction, but
in practice, one could use a continuously updated list.

attack email to form our set of benign emails for training. Fol-
lowing standard machine learning practices, we selected both
the hyperparameters for our classifier and the exact downsam-
pling ratio (200:1) using cross-validation on this training data.
Appendix A.2 describes our training procedure in more detail.

Once we have a trained classifier, given a new email, our
detector extracts its features, feeds the features into this clas-
sifier, and outputs the classifier’s decision.

5 Evaluation

In this section we evaluate our lateral phishing detector. We
first describe our testing methodology, and then show how
well the detector performs on millions of emails from over 90
organizations. Overall, our detector has a high detection rate,
generates few false positives, and detects many new attacks.

5.1 Methodology

Establishing Generalizability: As described earlier in Sec-
tion 3.2, we split our dataset into two disjoint segments: a
training dataset consisting of emails from the 52 exploratory
organizations during April–June 2018 and a test dataset from
92 enterprises during July–October 2018; in § 5.2, we show
that our detector’s performance remains the same if our test
dataset contains only the emails from the 40 withheld test
organizations. Given these two datasets, we first trained our
classifier and tuned its hyperparameters via cross validation
on our training dataset (Appendix A.2). Next, to compute our
evaluation results, we ran our detector on each month of the
held-out test dataset. To simulate a classifier in production,
we followed standard machine learning practices and used
a continuous learning procedure to update our detector each
month [38]. Namely, at the end of each month, we aggregated
the user-reported and detector-discovered phishing emails
from all previous months into a new set of phishing ‘training’
data; and, we aggregated our original set of randomly sampled
benign emails with our detector’s false positives from all pre-
vious months to form a new benign ‘training’ dataset. We then
trained a new model on this aggregated training dataset and
used this updated model to classify the subsequent month’s
data. However, to ensure that any tuning or knowledge we
derived from the training dataset did not bias or overfit our
classifier, we did not alter any of the model’s hyperparameters
or features during our evaluation on the test dataset.

Our evaluation’s temporal-split between the training and
test datasets, along with the introduction of new data from
randomly withheld organizations into the test dataset, follows
best practices that recommend this approach over a random-
ized cross-validation evaluation [2, 31, 34]. A completely ran-
domized evaluation (e.g., cross-validation) risks training on
data from the future and testing on the past, which might lead
us to overestimate the detector’s effectiveness. In contrast,



Training Testing
Metric April – June 2018 July – October 2018

Organizations 52 Exploratory 52 Exploratory
+ 40 Test

Detected Known Attacks 34 47
Detected New Attacks 28 49
Missed Attacks (FN) 8 14
Detection Rate 88.6% 87.3%

Total Emails 25,670,264 87,413,431
False Positives (FP) 136 316
False Positive Rate 0.00053% 0.00036%
Precision 31.3% 23.3%

Table 1: Evaluation results of our detector. ‘Detected Known At-
tacks’ shows the number of incidents that our detector identified, and
were also reported by an employee at an organization. ‘Detected New
Attacks’ shows the number of incidents that our detector identified,
but were not reported by anyone. ‘Missed Attacks (FN)’ shows all
incidents either reported by a user or found by any of our detection
strategies, but our detector marked it as benign (false negative). Of
the 22 incidents our detector misses, 12 are attachment-based attacks,
a threat model which our detector explicitly does not target but which
we include in our FN and Detection Rate results for completeness.

our methodology evaluates our detector with fresh data from
a “future” time period and introduces 40 new organizations,
neither of which our detector saw during training time; this
also reflects how a detector operates in practice.

Alert Metric (Incidents): We have several choices for mod-
eling our detector’s alert generation process (i.e., how we
count distinct attacks). For example, we could evaluate our
detector’s performance in terms of how many unique emails
it correctly labels. Or, we could measure our detector’s per-
formance in terms of how many distinct employee accounts it
marks as compromised (modeling a detector that generates
one alert per account and suppresses the rest). Ultimately, we
select a notion commonly used in practice, that of an incident,
which corresponds to a unique (subject, sender email address)
pair. At this granularity, our detector’s alert generation model
produces a single alert per unique (subject, sender) pair. This
metric avoids biased evaluation numbers that overemphasize
compromise incidents that generate many identical emails
during a single attack. For example, if there are two incidents,
one which generates one hundred emails to one recipient each,
and another which generates one email to 100 recipients, a
detector’s performance on the hundred-email incident will
dominate the result if we count attacks at the email level.

In total, our training dataset contains 40 lateral phishing
incidents from our user-reported ground truth sources, and our
test dataset contains 61 user-reported incidents. Our detector
finds an additional 77 unreported incidents (row 2 of Table 1).

5.2 Detection Results
Table 1 summarizes the performance metrics for our detector.
We use the term Detection Rate to refer to the percentage of

lateral phishing incidents that our detector finds, divided by all
known attack incidents in our dataset (i.e., any user-reported
incident and any incident found by any detection technique
we tried). For completeness, we include the 12 attachment-
based incidents in our False Negative and Detection Rate
computations, which our detector obviously misses since we
designed it to catch URL-based lateral phishing. Additionally,
we also include, as false negatives, 2 training incidents that our
less successful detectors identified [17]; these two alternative
strategies did not find any new attacks in the test dataset.
Thus, the Detection Rate reflects a best-effort assessment
that potentially overestimates the true positive rate of our
detector, since we have an imperfect ground truth that cannot
account for narrowly targeted attacks that go unreported by
users. Precision equals the percent of attack alerts (incidents)
produced by our detector divided by the total number of alerts
our detector generated (attacks plus false positives).

Training and Tuning: On the training dataset, our detector
correctly identified 62 out of 70 lateral phishing incidents
(88.6%), while generating a total of 62 false positives (on
25.7 million employee-sent emails).

Our PySpark Random Forest classifier exposes a built-in
estimate of each feature’s relative importance [40], where each
feature receives a score between 0.0–1.0 and the sum of all
the scores adds up to 1.0. Based on these feature weights, our
model places the most emphasis on the global URL reputation
feature, giving it a weight of 0.42, and the email’s ‘number of
recipients’ feature (0.34). In contrast, our model essentially
ignores our local URL reputation, assigning it a score of 0.01,
likely because most globally rare domains tend to also be
locally rare. Of the remaining features, the recipient likelihood
feature has a weight of 0.17 and the ‘phishy’ keyword feature
has a weight of 0.06.

Test Dataset: Our detector correctly identified 96 lateral
phishing incidents out of the 110 test incidents (87.3%) across
our ground truth dataset. Additionally, our detector discov-
ered 49 incidents that, according to our ground truth, were not
reported by a user as phishing. With respect to its cost, our de-
tector generated 312 total false positives across the entire test
dataset (a false positive rate of less than 0.00035%, assuming
that emails not identified as an attack by our ground truth are
benign). Across our test dataset, 82 out of the 92 organiza-
tions accumulated 10 or fewer false positives across the entire
four month window, with 44 organizations encountering zero
false positives across this timespan. In contrast, only three
organizations had more than 40 total false positives across
all four months (encountering 44, 66, and 83 false positives,
respectively). Our detector achieves similar results if we eval-
uate on just the data from our 40 withheld test organizations,
with a Detection Rate of 91.0%, a precision of 23.1%, and a
false positive rate of 0.00038%.

Bias and Evasion: We base our evaluation numbers on the
best ground truth we have: a combination of all user-reported



lateral phishing incidents (including some attacks outside our
threat model), and all incidents discovered by any detection
technique we tried (which includes two approaches orthogo-
nal to our detector’s strategy). This ground truth suffers from
a bias towards phishing emails that contact many potential
victims, and attacks that users can more easily recognize. Ad-
ditionally, since our detector focuses on URL-based exploits,
our dataset of attacks likely underestimates the prevalence of
non-URL-based phishing attacks, which come solely from
user-reported instances in our dataset. As a result, our work
does not capture the full space of lateral phishing attacks,
such as ones where the attacker targets a narrow, select set of
victims with stealthily deceptive content. Rather, given that
our detector identifies many known and unreported attacks,
while generating only a few false positives per month, we pro-
vide a starting point for practical detection that future work
can extend. Moreover, even if our detector does not capture
every possible attack, the fact that the attacks in our dataset
span dozens of different organizations, across a multi-month
timeframe, allows us to illuminate a class of understudied
attacks that many enterprises currently face.

Aside from obtaining more comprehensive ground truth,
more work is needed to explore defenses against potential
evasion attacks. Attackers could attempt to evade our detector
by targeting different features we draw upon, such as the com-
position or number of recipients they target. Against many of
these evasion attacks, future work could leverage additional
features and data, such as the actions a user takes within an
email account (e.g., reconnaissance actions, such as unusual
searches, that indicate an attacker mining the account for
targeted recipients to attack) or information from the user’s
account log-on (e.g., the detector proposed by Ho et al. used
an account’s login IP address [18] to detect lateral phishing).
At the same time, future work should study which evasion
attacks remain economically feasible for attackers to conduct.
For example, an attacker could choose to only target a small
number of users in the hopes of evading our detector; but
even if this evasion succeeded, the conversion rate of fooling
a recipient might be so low that the attack ultimately fails
to compromise an economically viable number of victims.
Indeed, as we explore in the following section (§ 6), the at-
tackers captured in our dataset already engage in a range of
different behaviors, including a few forms of sophisticated,
manual effort to increase the success of their attacks.

6 Characterizing Lateral Phishing

In this section, we conduct an analysis of real-world lateral
phishing using all known attacks across our entire dataset
(both training and test). During the seven month timespan, a
total of 33 organizations experienced lateral phishing attacks,
with the majority of these compromised organizations experi-
encing multiple incidents. Examining the thematic message
content and recipient targeting strategies of the attacks, our

Scale and Success

# distinct phishing emails 1,902
# incidents 180
# ATOs 154
# organizations w/ 1+ incident 33
# phishing recipients 101,276
% successful ATOs 11%
# employee recip (average) for compromise 542

Table 2: Summary of the scale and success of the lateral phishing
attacks in our dataset (§ 6.1).

analysis suggests that most lateral phishers in our dataset do
not actively mine a hijacked account’s emails to craft person-
alized spearphishing attacks. Rather, these attackers operate
in an opportunistic fashion and rely on commonplace phish-
ing content. This finding suggests that the space of enterprise
phishing has expanded beyond its historical association with
sophisticated APTs and nation-state adversaries.

At the same time, these attacks nonetheless succeed, and a
significant fraction of attackers do exhibit some signs of so-
phistication and attention to detail. As an estimate of the suc-
cess of lateral phishing attacks, at least 11% of our dataset’s at-
tackers successfully compromise at least one other employee
account. In terms of more refined tactics, 31% of lateral phish-
ers invest some manual effort in evading detection or increas-
ing their attack’s success rate. Additionally, over 80% of the
attacks in our dataset occur during the normal working hours
of the hijacked account. Taken together, our results suggest
that lateral phishing attacks pose a prevalent enterprise threat
that still has room to grow in sophistication.

In addition to exploring attacks at the incident granularity
(as done in § 5), this section also explores attacks at the gran-
ularity of a lateral phisher (hijacked account) when studying
different attacker behaviors. As described in Section 2, in-
dustry practitioners often refer to such hijacked accounts as
ATOs, and throughout this section, we use the terms hijacked
account, lateral phisher, and ATO synonymously.

6.1 Scale and Success of Lateral Phishing

Scale: Our dataset contains 1,902 distinct lateral phishing
emails sent by 154 hijacked accounts.4 A total of 33 organi-
zations in our dataset experience at least one lateral phishing
incident: 23 of these organizations came from sampling the
set of enterprises with known lateral phishing incidents (§ 3),
while the remaining 10 came from the 69 organizations we
sampled from the general population. Assuming our random
sample reflects the broader population of enterprises, over
14% of organizations experience at least one lateral phish-
ing incident within a 7 month timespan. Furthermore, based

4Distinct emails are defined by having a fully unique tuple of (sender,
subject, timestamp, and recipients).
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Figure 4: Fraction of organizations with x hijacked accounts that
sent at least one lateral phishing email. 13 organizations had only 1
ATO; the remaining 20 saw lateral phishing from 2+ ATOs (§ 6.1).

on Figure 4, over 60% of the compromised organizations in
our dataset experienced lateral phishing attacks from at least
two hijacked employee accounts. Given that our set of attacks
likely contains false negatives (thus underestimating the preva-
lence of attacks), these numbers illustrate that lateral phishing
attacks are widespread across enterprise organizations.

Successful Attacks: Given our dataset, we do not definitively
know whether an attack succeeded. However, we conserva-
tively (under)estimate the success rate of lateral phishing
using the methodology below. Based on this procedure, we
estimate that at least 11% of lateral phishers successfully
compromise at least one new enterprise account.

Let Alice and Bob represent two different ATOs at the same
organization, where PA and PB represent one of Alice’s and
Bob’s phishing emails respectively, and ReplyB represents a
reply from Bob to a lateral phishing email he received from
Alice. Intuitively, our methodology concludes that Alice suc-
cessfully compromised Bob if (1) Bob received a phishing
email from Alice, (2) shortly after receiving Alice’s phish,
Bob then subsequently sent his own phish, and (3) we have
strong evidence that the two employees’ phishing emails are
related (reflected in criteria 3 and 4 below).

Formally, we say that PA succeeded in compromising Bob’s
account if all of the following conditions are true:

1. Bob was a recipient of PA

2. After receiving PA, Bob subsequently sent his own lateral
phishing emails (PB)

3. Either of the following two conditions are met:

(a) PB and PA used similar phishing content: if the
two attacks used identical subjects or if both of
the phishing URLs they used belonged to the same
fully-qualified domain

(b) Bob sent a reply (ReplyB) to PA, where his reply
suggests he fell for Alice’s attack and where Bob
sent ReplyB prior to his own attack (PB)

4. Either of the following two conditions are met:

(a) PB was sent within two days after Bob received PA

(b) PB and PA used identical phishing mes-
sages or their phishing URLs’ paths fol-
lowed nearly identical structures (e.g.,
‘http://X.com/z/office365/index.html’ vs.
‘http://Y.com/z/office365/index.html’)

Unpacking the final criteria (#4), in the first case (4.a), we
settled on a two-day interarrival threshold based on prior lit-
erature [21, 22], which suggests that 50% of users respond
to an email within 2 days and roughly 75% of users who
click on a spam email do so within 2 days. Assuming that
phishing follows similar time constants for how long it takes
a recipient to take action, 2 days represented a conservative
threshold to establish a link between PA and PB. At the same
time, both prior works show there exists a long tail of users
who take weeks to read and act on an email. The second part
(4.b) attempts to address this long tail by raising the similarity
requirements between Alice and Bob’s attacks before con-
cluding that former caused the latter. For successful attackers
labeled by heuristic 4.b, the longest observed time gap be-
tween PA and PB is 17 days, which falls within a plausible
timescale based on the aforementioned literature.

From this methodology, we conclude that 17 ATOs suc-
cessfully compromised at least 23 future ATOs. While our
procedure might erroneously identify cases where an attacker
has concurrently compromised both Alice and Bob (rather
than compromising Bob’s account via Alice’s), the first two
criteria (requiring Bob to be a recent recipient of Alice’s
phishing email) help reduce this error. Our procedure likely
underestimates the general success rate of lateral phishing
attacks, since it does not identify successful attacks where
the attacker does not subsequently use Bob’s account to send
phishing emails, nor does it account for false negatives in our
dataset or attacks outside of our visibility (e.g., compromise
of recipients at external organizations).

6.2 Recipient Targeting
In this section, we estimate the conversion rate of our dataset’s
lateral phishing attacks, and discuss four recipient targeting
strategies that reflect the behavior of most attackers in our
dataset.

Recipient Volume and Estimated Conversation Rate: Cu-
mulatively, the lateral phishers in our dataset contact 101,276
unique recipients, where 41,740 belong to the same organi-
zation as the ATO. As shown in Figure 5, more than 94%
of the attackers send their phishing emails to over 100 re-
cipients; with respect to the general population of all lateral
phishers, this percentage likely overestimates the prevalence
of high “recipient-volume” attackers, since our detector draws
on recipient-related features.

Targeting hundreds of people gives attackers a larger pool
of potential victims, but it also incurs a risk that a recipient
will detect and flag the attack either to their security team or
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Figure 5: The left CDF shows the distribution of the total number of phishing recipients per ATO. The right CDF shows the fraction of ATOs
where x% of their total recipient set consists of fellow employees.

their fellow recipients (e.g., via Reply-All). To isolate their
victims and minimize the ability for fellow recipients to warn
each other, we found that attackers frequently contact their
recipients via a mass BCC or through many individual emails.
Aside from this containment strategy, we also estimate that
our dataset’s lateral phishing attacks have a difficult time fool-
ing an individual employee, and thus might require targeting
many recipients to hijack a new account. Earlier in Section 6.1,
we found that 17 ATOs successfully compromised 23 new
accounts. Looking at the number of accounts they success-
fully hijacked divided by the number of fellow employees
they targeted, the median conversation rate for our attackers
was one newly hijacked account per 542 fellow employees;
the attacker with the best conversation rate contacted an aver-
age of 26 employees per successful compromise. We caution
that our method for determining whether an attack succeeded
(§ 6.1) does not cover all cases, so our conversation rate might
also underestimate the success of these attacks in practice.
But if our estimated conversion rate accurately approximates
the true rate, it would explain why these attackers contact so
many recipients, despite the increased risk of detection.

Recipient Targeting Strategies: Anecdotally, we know that
some lateral phishers select their set of victims by leveraging
information in the hijacked account to target familiar users;
for example, sending their attack to a subset of the account’s
“Contact Book”. Unfortunately our dataset does not include
information about any reconnaissance actions that an attacker
performed to select their phishing recipients (e.g., explicitly
searching through a user’s contact book or recent recipients).

Instead, we empirically explore the recipient sets across
our dataset’s attackers to identify plausible strategies for how
these attackers might have chosen their set of victims. Four re-
cipient targeting strategies, summarized in Table 3 (explained
below), reflect the behavior of all but six attackers in our
dataset. To help assess whether a recipient and the ATO share
a meaningful relationship, we compute each ATO’s recent
contacts: the set of all email addresses whom the ATO sent
at least one email to in the 30 days preceding the ATO’s
phishing emails. While some attackers (28.6%) specifically

Recipient Targeting Strategy # ATOs

Account-agnostic 63
Organization-wide 39
Lateral-organization 2
Targeted-recipient 44
Inconclusive 6

Table 3: Summary of recipient targeting strategies per ATO (§ 6.2).

target many of an account’s recent contacts, the majority of
lateral phishers appear more interested in either contacting
many arbitrary recipients or sending phishing emails to a large
fraction of the hijacked account’s organization.

Account-agnostic Attackers: Starting with the least-targeted
behavior, 63 ATOs in our dataset sent their attacks to a wide
range of recipients, most of whom do not appear closely re-
lated to the hijacked account. We call this group Account-
agnostic attackers, and identify them using two heuristics.

First, we categorize an attacker as Account-agnostic if
less than 1% of the recipients belong to the same organi-
zation as the ATO, and further exploration of their recipients
does not reveal a strong connection with the account. Ex-
amining the right-hand graph in Figure 5, 37 ATOs target
recipient sets where less than 1% of the recipients belong
to the same organization as the ATO. To rule out the possi-
bility that these attackers’ recipients are nonetheless related
to the account, we computed the fraction of recipients who
appeared in each ATO’s recent contacts; for all of the 37 pos-
sible Account-agnostic ATOs, less than 17% of their attack’s
total recipients appeared in their recent contacts. Among these
37 candidate Account-agnostic ATOs, 33 of them contact re-
cipients at 10 or more organizations (unique recipient email
domains), 2 of them exclusively target either Gmail or Hot-
mail accounts, and the remaining 2 ATOs are best described
as Lateral-organization attackers (below).5 Excluding the 2
Lateral-organization attackers, the 35 ATOs identified by this

5Our extended technical report provides the distribution of recipient do-
mains contacted by all ATOs [17].



first criteria sent their attacks to predominantly external re-
cipients, belonging to either many different organizations or
exclusively to personal email hosting services (e.g., Gmail
and Hotmail), and only a small percentage of these recipients
appeared in the ATO’s recent contacts; as such, we label these
35 attackers as Account-agnostic.

Second, we expand our search for Account-agnostic attack-
ers by searching for attackers where less than 50% of the
ATO’s total recipients also belong to the ATO’s organization,
and where the ATO contacts recipients at many different or-
ganizations; specifically, where the ATO’s phishing recipients
belonged to over twice as many unique domains as all of the
email addresses in ATO’s recent contacts. This search identi-
fied 63 ATOs. To filter out attackers in this set who may have
drawn on the hijacked account’s recent contacts, we exclude
any ATO where over 17% of their attack’s total recipients
also appeared in the ATO’s recent contacts (17% was the
maximum percentage among ATOs from the first Account-
agnostic heuristic). After applying this last condition, our
second heuristic identifies 54 Account-agnostic attackers.

Combining and deduplicating the ATOs from both criteria
results in a total of 63 Account-agnostic attackers (40.9%):
lateral phishers who predominantly target recipients without
close relationships to the hijacked account or its organization.

Lateral-organization Attackers: During our exploration
of potential Account-agnostic ATOs, we uncovered 2 at-
tackers whom we label under a different category: Lateral-
organization attackers. In both these cases, less than 1% of
the attacker’s recipients belonged to the same organization as
the ATO, but each attacker’s recipients did belong to organi-
zations within the same industry as the ATO’s organization.
This thematic characteristic among the recipients suggests
a deliberate strategy to spread across organizations within
the targeted industries, so accordingly, we categorize them as
Lateral-organization attackers.

Organization-wide Attackers: Office 365 provides a
“Groups” feature that lists the different groups that an account
belongs to [30]. For some enterprises, this feature enumerates
most, if not all, employees at the organization. Thus, lateral
phishers who wish to cast a wide phishing net might adopt a
simple strategy of sending their attack to everyone at the or-
ganization. We call these ATOs Organization-wide attackers
and identify them through two ways.

First, we search for any attackers where at least half of their
phishing recipients belong to the ATO’s organization, and
where at least 50% of the organization’s employees received
the phishing email (i.e., the majority of a phisher’s victims
were employees and the attacker targeted a majority of the en-
terprise); this search yielded a total of 16 ATOs. We estimate
the list of an organization’s employees by building a set of all
employee email addresses who sent or received email from
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Figure 6: CDF: the x-axis displays what % of the ATO’s recent
contacts received a lateral phishing email (§ 6.2). The bottom teal
graph filters the ATOs to exclude any ATO identified as Account-
agnostic, Lateral-organization, and Organization-wide attackers; at
the vertical black line, 88% of these filtered ATOs send phishing
emails to at least x = 33% of addresses from their recent contacts.

anyone during the entire month of the phishing incident.6 For
all of these 16 ATOs, less than 11% of the recipients they
target also appear in their recent contacts. Coupled with the
fact that each of these ATOs contacts over 1,300 recipients,
their behavior suggests that their initial goal focuses on phish-
ing as many of the enterprise’s recipients as possible, rather
than targeting users particularly close to the hijacked account.
Accordingly, we categorize them as Organization-wide attack-
ers.

Our second heuristic looks for attackers whose recipient set
consists nearly entirely of fellow employees, but where the ma-
jority of the organization does not necessarily receive a phish-
ing email. Revisiting Figure 5, 36 candidate Organization-
wide ATOs sent over 95% of their phishing emails to fellow
employee recipients. However, we again need to exclude and
account for ATOs who leverage their hijacked account’s recent
contacts. From the first Organization-wide heuristic discussed
previously, we saw that less than 11% of the recipients of
that heuristic’s Organization-wide attackers came from the
ATO’s recent contacts. Using this value as a final threshold
for this second candidate set of Organization-wide attackers,
we identify 29 Organization-wide attackers where over 95%
of their recipients belong to the ATO’s organization but less
than 11% of the recipients came from the ATO’s recent con-
tacts; a combination that suggests the attacker seeks primarily
to compromise other employees, but who do not necessarily
have a personal connection with the hijacked account.

Aggregating and deduplicating the two sets of lateral phish-
ers from above produces a total of 39 Organization-wide
attackers (25.3%), who take advantage of the information in
a hijacked account to target many fellow employees.

6This collection likely overestimates the actual set of employees because
of service addresses, mailing list aliases, and personnel churn.



Targeted-recipient Attackers: For the remaining, uncatego-
rized 50 ATOs, we cannot conclusively determine the attack-
ers’ recipient targeting strategies because our dataset does
not provide us with the full set of information and actions
available to the attacker. Nonetheless, Figure 6 presents some
evidence that 44 of these remaining attackers do draw upon
the hijacked account’s prior relationships. Specifically, 44
attackers sent their attacks to at least 33% of the addresses in
the ATO’s recent contacts.7 Since these ATOs sent attacks to
at least 1 out of every 3 of the ATO’s recently contacted recipi-
ents, these attackers appear interested in targeting a substantial
fraction of users with known ties to the hijacked account. As
such, we label these 44 ATOs as Targeted-recipient attackers.

6.3 Message Content: Tailoring and Themes
Since lateral phishers control a legitimate employee account,
these attackers could easily mine recent emails to craft per-
sonalized spearphishing messages. To understand how much
attackers do leverage their privileged access in their phishing
attacks, this section characterizes the level of tailoring we
see among lateral phishing messages. Overall, only 7% of
our dataset’s incidents contain targeted content within their
messages. Across the phishing emails that used non-targeted
content, the attackers in our dataset relied on two predomi-
nant narratives (deceptive pretexts) to lure their victim into
performing a malicious action. The combination of these two
results suggests that, for the present moment, these attackers
(across dozens of organizations) see more value in opportunis-
tically phishing as many recipients as possible, rather than
investing time to mine the hijacked accounts for personalized
spearphishing fodder.

Content Tailoring: When analyzing the phishing messages
in our dataset, we found that two dimensions aptly character-
ized the different levels of content tailoring and customization.
The first dimension, “Topic tailoring”, describes how person-
alized the topic or main idea of the email is to the victim
or organization. The second dimension, “Name tailoring”,
describes how specifically the attacker addresses the victim
(e.g., “Dear user” vs. “Dear Bob”). For each of these two
dimensions, we enumerate three different levels of tailoring
and provide an anonymized message snippet below; we use
Bob to refer to one of the attack’s recipients and FooCorp for
the company that Bob works at.

1. Topic tailoring: the uniqueness and relevancy of the mes-
sage’s topic to the victim or organization:

7When examining and applying thresholds for the Account-agnostic and
Organization-wide Attackers, we used a slightly different fraction: how many
of the ATO’s phishing recipients also appeared in their recent contacts?
Here, we seek to capture attackers who make a specific effort to target a
considerable number of familiar recipients. Accordingly, we look at the
fraction of the ATO’s recent contacts that received phishing emails, where
the denominator reflects the number of users in the ATO’s recent contacts,
rather than the ATO’s total number of phishing recipients.

Generic Enterprise Targeted

No naming 90 35 9
Organization named 23 16 4
Recipient named 0 3 0

Table 4: Distribution of the number of incidents per message tailor-
ing category (§ 6.3). The columns correspond to how unique and
specific the message’s topic pertains to the victim or organization.
The rows correspond to whether the phishing email explicitly names
the recipient or organization.

(a) Generic phishing topic: an unspecific message that
could be sent to any user (“You have a new shared
document available.”)

(b) Broadly enterprise related topic: a message that ap-
pears targeted to enterprise environments, but one
that would also make sense if the attacker used it at
many other organizations (“Updated work sched-
ule. Please distribute to your teams.”)

(c) Targeted topic: a message where the topic clearly
relies on specific details about the recipient or or-
ganization (“Please see the attached announcement
about FooCorp’s 25th year anniversary.”, where
FooCorp has existed for exactly 25 years.)

2. Name tailoring: whether the phishing message specifi-
cally uses the recipient or organization’s name:

(a) Non-personalized naming: the attack does not men-
tion the organization or recipient by name (“Dear
user, we have detected an error in your mailbox
settings...”)

(b) Organization specifically named: the attack men-
tions just the organization, but not the recipient
(“New secure email message from FooCorp...”)

(c) Recipient specifically named: the attack specifi-
cally uses the victim’s name in the email (“Bob,
please review the attached purchase order...”)

Taken together, this taxonomy divides phishing content
into nine different classes of tailoring; Table 4 shows how
many of our dataset’s 180 incidents fall into each category.
From this categorization, two interesting observations emerge.
First, only 3 incidents (1.7%) actually address their recipients
by name. Since most ATOs (94%) in our dataset email at least
100 recipients, attackers would need to leverage some form
of automation to both send hundreds of individual emails and
customize the naming in each one. Based on our results, it
appears these attackers did not view that as a worthwhile in-
vestment. For example, they might fear that sending many
individual emails might trigger an anti-spam or anti-phishing
mechanism, which we observed in the case of one ATO who
attempted to send hundreds of individual emails. Second,



Word # Incidents Word # Incidents

document 89 sent 44
view 76 review 43
attach 56 share 37
click 55 account 36
sign 50 access 34

Table 5: Top 10 most common words across all 180 lateral phishing
incidents.

looking at the last column of Table 4, only 13 incidents (7%)
use targeted content in their messages. The overwhelming
majority (92.7%) of incidents opt for more generic messages
that an attacker could deploy at a large number of organiza-
tions with minimal changes (e.g., by only changing the name
of the victim organization).

While our attack dataset captures a limited view of all lat-
eral phishing attacks, it nonetheless reflects all known lateral
phishing incidents across 33 organizations over a 7-month
timeframe. Thus, despite the data’s limitations, our results
show that a substantial fraction of lateral phishers do not fully
draw upon their compromised account’s resources (i.e., his-
torical emails) to craft personalized spearphishing messages.
This finding suggests these attackers act more like an oppor-
tunistic cybercriminal, rather than an indomitable APT or
nation-state. However, given the arms-race and evolutionary
nature of security, these lateral phishers could in the future
increase the sophistication and potency of their attacks by
drawing upon the account’s prior emails to craft more tar-
geted content.

Thematic Content (Lures): When labeling each phishing
incident with a level of tailoring, we noticed that the phish-
ing messages in our dataset overwhelmingly relied on one
of two deceptive pretexts (lures): (1) an alarming message
that asserts some problem with the recipient’s account (and
urges them to follow a link to remediate the issue); and (2)
a message that notifies the recipient of a new / updated /
shared document. For the latter ‘document’ lure, the nature
and specificity of the document varied with the level of con-
tent tailoring. For example, whereas an attack with generic
topic tailoring will just mention a vague document, attacks
that use enterprise-related tailoring will switch the terminol-
ogy to an invoice, purchase order, or some other generic but
work-related document.

To characterize this behavior further, we computed the most
frequently occurring words across our dataset’s phishing mes-
sages. First, we selected one phishing email per incident, to
prevent incidents with many identical emails from biasing
(inflating) the popularity of their lures. Next, we normalized
the text of each email: we removed auto-generated text (e.g.,
user signatures), lowercased all words, removed punctuation,
and discarded all non-common English words; all of these
can be done with open source libraries such as Talon [27] and
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Figure 7: Number of lateral phishing incidents per day of week.

NLTK [5]. Finally, we built a set of all words that occurred
in any phishing email across our incidents and counted how
many incidents each word appeared in.

Interestingly, our dataset’s phishing messages draw on a
relatively small pool of words: there are just 444 distinct, com-
mon English words across the texts of every phishing message
in our dataset (i.e., every phishing email’s text consists of an
arrangement from this set of 444 words). In contrast, a ran-
dom sample of 1,000 emails from our dataset contained a
total of 2,516 distinct words, and only 176 of these emails
consisted entirely of words from the phishing term set.

Beyond this small set of total words across lateral phishing
emails, all but one incident contained at least one of the top
20 words, illustrating the reliance on the two major lures we
identified. Our extended technical report shows the occur-
rence distribution of each word [17]. Focusing on just the top
ten words and the number incidents that use them (Table 5),
the dominance of these two thematic lures becomes apparent.
Words indicative of the “shared document” lure, such as ‘doc-
ument’, ‘view’, ‘attach’, and ‘review’, each occur in over 23%
of incidents, with the most popular (document) occurring in
nearly half of all incidents. Similarly, we also see many words
from the account-related lure in the top ten: ‘access’, ‘sign’
(from ‘sign on’), and ‘account’.

Overall, while our dataset contains several instances of
targeted phishing messages, the majority of the lateral phish-
ing emails we observe rely on more mundane lures that an
attacker can reuse across multiple organizations with little ef-
fort. The fact that we see this behavior recur across dozens of
different organizations suggests either the emergence of a new,
yet accessible, form of enterprise phishing, or an evolution in
the way “ordinary” cybercriminals execute phishing attacks
(moving from external accounts that use clever spoofing to
compromised, yet legitimate accounts).

6.4 Temporal Aspects of Lateral Phishing

Because attackers might not live or operate in the same geo-
graphic region as the hijacked account, prior work has sug-
gested using features that capture unusual timing properties
inherent in phishing emails [11, 15, 41]. Contrary to this in-
tuition, in our dataset most lateral phishing attacks occur at
“normal” times of the day and week. First, for 98% of lateral
phishing incidents, the attacker sent the phishing email dur-
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Figure 8: CDF of the fraction of incidents from active ATOs where
the time (hour) of day fell within the x’th percentile of the hours at
which the ATO’s benign emails in the preceding 30 days were sent.
Active ATOs are hijacked accounts that sent at least 1 non-phishing
email within the 30 days preceding their lateral phishing email.

ing a weekday. Additionally, the majority of attackers in our
dataset send their phishing emails during the true account’s
normal working hours.

Day of the Week: From Figure 7, all but three lateral phish-
ing incidents occurred during a work day (Monday–Friday).
This pattern suggests that attackers send their phishing emails
on the same days when employees typically send their benign
emails, and that the day of the week will provide an ineffec-
tive or weak detection signal. Moreover, 67% of incidents
occur in the first half of the week (Mon–Wed), indicating that
the lateral phishers in our dataset do not follow the folklore
strategy where attackers favor launching their attacks on Fri-
day (hoping to capitalize on reduced security team operations
over the coming weekend) [37].

Time (Hour) of Day: In addition to operating during the
usual work week, most attackers tend to send their lateral
phishing emails during the typical working hours of their hi-
jacked accounts. To assess the (ab)normality of an attack’s
sent-time, for each ATO, we gathered all of the emails that the
account sent in the 30 days prior to their first lateral phishing
email. We then mapped the sent-time of each of these histori-
cal (and presumably benign) emails to the hour-of-day on a 24
hour scale, thus forming a distribution of the typical hour-of-
day in which each hijacked account usually sent their emails.
Finally, for each lateral phishing incident, we computed the
percentile for the phishing email’s hour-of-day relative to the
hour-of-day distribution for the ATO’s historical emails. For
example, phishing incidents with a percentile of 0 or 100 were
sent at an earlier or later hour-of-day than any email that the
true account’s owner sent in the preceding 30 days.

Across all lateral phishing incidents sent by an active ATO,
Figure 8 shows what hour-of-day percentile the phishing inci-

dent’s first email occurred at, relative to the hijacked account’s
historical emails. Out of the 180 incidents, 15 incidents were
sent by an “inactive” (quiescent) ATO that sent zero emails
across all 30 days preceding their lateral phishing emails; Fig-
ure 8 excludes these incidents. Of the remaining 165 incidents
sent by an active ATO, 18 incidents fall completely outside of
the hijacked account’s historical operating hours, which sug-
gests that a feature looking for emails sent at atypical times
for a user could help detect these attacks. However, for the
remaining 147 incidents, the phishing emails’ hour-of-day
evenly cover the full percentile range. As shown in Figure 8,
the percentile distribution of phishing hours closely resem-
bles the CDF of a uniformly random distribution (a straight
y = x line); i.e., the phishing email’s hour-of-day appears to
be randomly drawn from the true account’s historical hour-
of-day distribution. This result indicates that for the majority
of incidents in our dataset (147 out of 180), the time of day
when the ATO sent the attack will not provide a significant
signal, since their sent-times mirror the timing distribution of
the true user’s historical email activity.

Thus, based on the attacks in our dataset, we find that two
weak timing-related features exist: searching for quiescent
accounts that suddenly begin to send suspicious emails (15 in-
cidents), and searching for suspicious emails sent completely
outside of an account’s historically active time window (18
incidents). Beyond these two features and the small fraction
of phishing attacks they reflect, neither the day of the week
nor the time of day provide significant signals for detection.

6.5 Attacker Sophistication
Since most of our dataset’s lateral phishers do not mine the
hijacked account’s mailbox to craft targeted messages, one
might naturally conclude that these attackers are lazy or unso-
phisticated. However, in this subsection, we identify two kinds
of sophisticated behavior that required some investment of
additional time and manual effort: attackers who continually
engage with their attack’s recipients in an effort to increase
the attack’s success rate, and attackers who actively “clean
up” traces of their phishing activity in an attempt to hide their
presence from the account’s legitimate owner. In contrast to
the small number of attackers who invested time in crafting
tailored phishing messages to a personalized set of recipients,
nearly one-third (31%) of attackers engage in at least one of
these two sophisticated behaviors.

Interaction with potential victims: Upon receiving a phish-
ing message, some recipients naturally question the email’s
validity and send a reply asking for more information or as-
surances. While a lazy attacker might ignore these recipients’
replies, 27 ATOs across 15 organizations actively engaged
with these potential victims by sending follow-up messages
assuring the victim of the phishing email’s legitimacy. For ex-
ample, at one organization, an attacker consistently sent brief
follow-up messages such as “Yes I sent it to you” or “Yes,



have you checked it yet?”. In other cases, attackers replied
with significantly more elaborate ruses: e.g., “Hi [Bob], its
a document about [X]. It’s safe to open. You can view it by
logging in with your email address and password.”

To find instances where a phisher actively followed-up
with their attack’s potential victims, we gathered all of the
messages in every lateral phishing email thread and checked to
see if the attacker ever received and responded to a recipient’s
reply (inquiry).8 In total, we found that 107 ATOs received
at least one reply from a recipient. Of these reply-receiving
attackers, 27 ATOs (25%) sent a deceptive follow-up response
to one or more of their recipients’ inquiries.

Stealthiness: Separate from interacting with their potential
victims, attackers might expend manual effort to hide their
presence from the account’s true owner by removing any
traces of their phishing emails, particularly since lateral phish-
ers appear to operate during the hijacked account’s normal
working hours (§ 6.4). To estimate the number of these ATOs,
we searched for whether any of the following emails ended
up in the hijacked account’s Trash folder, and were deleted
within 30 seconds of being sent or received: any phishing
emails, replies to phishing emails, or follow-up emails sent by
the attacker. The 30 second threshold distinguishes stealthy
behavior from deletion resulting from remediation of the com-
promised account. In total, 30 attackers across 16 organiza-
tions engage in this kind of evasive clean-up behavior.

Of the 27 ATOs who interactively responded to inquiries
about their attack, only 9 also exhibited this stealthy clean-up
behavior. Thus, counting the number of attackers across both
sets, 48 ATOs engaged in at least one of these behaviors.

The sizeable fraction of attackers who engage in a sophisti-
cated behavior creates a more complex picture of the attacks
in our dataset. Given that these attackers do invest dedicated
and (often) manual effort in enhancing the success of their
attacks, why do so many of them (over 90% in our dataset)
use non-targeted phishing content and target dozens to hun-
dreds of recipients? One plausible reason for this generic
behavior is that the simple methods they currently use work
well enough under their economic model: investing additional
time to develop more tailored phishing emails just does not
provide enough economic value. Another reason might be
that growth of lateral phishing attacks reflects an evolution
in the space of phishing, where previously “simple” exter-
nal phishers have moved to sending their attacks via lateral
phishing because attacks from (spoofed) external accounts
have become too difficult, due to user awareness and/or better
technical mitigations against external phishing. Ultimately,
based on our work’s dataset, we cannot soundly answer why
so many lateral phishers employ simple attacks, and leave it
as an interesting question for future work to explore.

8Office 365 includes a ConversationID field, and all emails in the same
thread (the original email and all replies) get assigned the same Conversa-
tionID value.

7 Summary

In this work we presented the first large-scale characteriza-
tion of lateral phishing attacks across more than 100 million
employee-sent emails from 92 enterprise organizations. We
also developed and evaluated a new detector that found many
known lateral phishing attacks, as well as dozens of unre-
ported attacks, while generating a low volume of false posi-
tives. Through a detailed analysis of the attacks in our dataset,
we uncovered a number of important findings that inform
our mental models of the threats enterprises face, and illu-
minate directions for future defenses. Our work showed that
14% of our randomly sampled organizations, ranging from
small to large, experienced lateral phishing attacks within
a seven-month time period, and that attackers succeeded in
compromising new accounts at least 11% of the time. We
uncovered and quantified several thematic recipient targeting
strategies and deceptive content narratives; while some at-
tackers engage in targeted attacks, most follow strategies that
employ non-personalized phishing attacks that can be readily
used across different organizations. Despite this apparent lack
of sophistication in tailoring and targeting their attacks, 31%
of our dataset’s lateral phishers engaged in some form of so-
phisticated behavior designed to increase their success rate or
mask their presence from the hijacked account’s true owner.
Additionally, over 80% of attacks occurred during a typical
working day and hour, relative to the legitimate account’s
historical emailing behavior; this suggests that these attackers
either reside within a similar timezone as the accounts they
hijack or make a concerted effort to operate during their vic-
tim’s normal hours. Ultimately, our work provides the first
large-scale insights into an emerging, widespread form of
enterprise phishing attacks, and illuminates techniques and
future ideas for defending against this potent threat.
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A Detector Implementation and Evaluation
Details

A.1 Labeling Phishing Emails

Labeling an email as phishing or benign: When manually
labeling an email, we started by examining five pieces of in-
formation whether the email was a reported phishing incident,
the message content, the suspicious URL flagged and if its
domain made sense in context, the email’s recipients, and
the sender. With the exception of a few incidents, we could
easily identify a phishing email from the above steps. For
example: an email about a “shared Office 365 document” sent
to hundreds of unrelated recipients and whose document link
pointed to a bit.ly shortened [non-Microsoft] domain; or an
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email describing an “account security problem” sent by a non-
IT employee, where the “account reset” URL pointed to an
unrelated domain. For the more difficult cases, we analyzed
all replies and forwards in the email chain, and labeled the
email as phishing if it either received multiple replies / for-
wards that expressed alarm or suspicious, or if the hijacked
account eventually sent a reply saying that they did not send
the phishing email. Finally, as described in Section 3.3 we
visited the non-side-effect, suspicious URLs from a sample of
the labeled phishing emails; All of the URLs we visited led to
either an interstitial warning page (e.g.,, Google SafeBrows-
ing), or a spoofed log-on page. For the emails flagged by our
detector, but which appeared benign based on examining all
the above information, we conservatively labeled them as
false positives. In many cases, false positives were readily
apparent; e.g., emails where the “suspicious URL” flagged by
our detector occurred in the sender’s signature and linked to
their personal website.

Training exercises vs. actual phishing emails: In addition
to distinguishing between a false positive and an attack, we
checked to ensure that our lateral phishing incidents repre-
sented actual attacks, and not training exercises. First, based
on the lateral phishing emails’ headers, we verified that all
of the sending accounts were legitimate enterprise accounts.
Second, all but five of the attack accounts sent one or more
unrelated-to-phishing emails in the preceding month. These
two points gave us confidence that the phishing emails came
from existing, legitimate accounts, and thus represented ac-
tual attacks; i.e., training exercises will not hijack an existing
account, due to the potential reputational harm this could in-
cur (and enterprise security teams we’ve previously engaged
with do not do this). Furthermore, none of our dataset’s lateral
phishing incidents are training exercises known to Barracuda,
and none of the lateral phishing URLs used domains of known
security companies.

A.2 Model Tuning and Hyperparameters
Most machine learning models, including Random Forest, re-
quire the user to set various (hyper)parameters that govern the
model’s training process. To determine the optimal set of hy-
perparameters for our classifier, we followed machine learning
best practices by conducting a three-fold cross-validation grid
search over all combinations of the hyperparameters listed
below [4].

1. Number of trees: 50–500, in steps of 50 (i.e., 50, 100,
150, . . . , 450, 500)

2. Maximum tree depth: 10–100, in steps of 10

3. Minimum leaf size: 1, 2, 4, 8

4. Downsampling ratio of (benign / attack) emails: 10, 50,
100, 200

Because our training dataset contained only a few dozen in-
cidents, we used three folds to ensure that each fold in the
cross-validation contained several attack instances. Our ex-
periments used a Random Forest model with 64 trees, a max-
imum depth of 8, a minimum leaf size of 4 elements, and a
downsampling of 200 benign emails per 1 attack email, since
this configuration produced the the highest AUC score [16].
But we note that many of the hyperparameter combinations
yielded similar results.
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