
Louis, Lester and Pierre:

Three Protocols for Location Privacy

Ge Zhong, Ian Goldberg, and Urs Hengartner

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, ON, Canada N2L 3G1
{gzhong,iang,uhengart}@cs.uwaterloo.ca

Abstract. Location privacy is of utmost concern for location-based ser-
vices. It is the property that a person’s location is revealed to other
entities, such as a service provider or the person’s friends, only if this
release is strictly necessary and authorized by the person. We study how
to achieve location privacy for a service that alerts people of nearby
friends. Here, location privacy guarantees that users of the service can
learn a friend’s location if and only if the friend is actually nearby. We
introduce three protocols—Louis, Lester and Pierre—that provide loca-
tion privacy for such a service. The key advantage of our protocols is
that they are distributed and do not require a separate service provider
that is aware of people’s locations. The evaluation of our sample im-
plementation demonstrates that the protocols are sufficiently fast to be
practical.

1 Introduction

The ubiquity of cellphones has led to the introduction of location-based
services, which let cellphone users benefit from services that are tailored
to their current location. For example, individuals can learn about in-
teresting nearby places or get directions to a target location. Location
privacy is of utmost concern for such location-based services, since know-
ing a person’s location can leak information about her activities or her
interests. Therefore, a person’s location should be revealed to other enti-
ties only if this release is strictly necessary and authorized.

The potential of location-based services, together with rising interest
in social-networking applications, has led to the introduction of buddy-
tracking applications. For example, Boost Mobile, a US cellphone ser-
vice targeted at young people, offers the Loopt Service [14], which alerts
users of nearby friends. The drawback of the Loopt Service is that it is
bound to a particular cellphone network and wireless technology. MIT’s

iFIND project [15] works around this problem by introducing a dis-
tributed buddy-tracking application, where a person’s WiFi device deter-
mines its location and shares this information with the person’s friends.
While it is possible to exploit this approach for alerting people of nearby
friends, its disadvantage is that the friends always learn each other’s lo-
cation, regardless whether they are actually nearby; that is, the approach
may reveal more information than desired. What we really want is a dis-
tributed buddy-tracking application where users (and their devices) can
learn information about their friends’ locations if and only if their friends
are actually nearby. In the rest of this paper, we call this problem the
nearby-friend problem.

We present three protocols—Louis, Lester and Pierre1—for solving the
nearby-friend problem. The Louis protocol requires a semi-trusted third
party that does not learn any location information. The Lester protocol
does not need a third party, but has the drawback that a user might be
able to learn a friend’s location even if the friend is in an area that is no
longer considered nearby by the friend. However, this can happen only if
the user is willing to invest additional work. The Pierre protocol does not
have this disadvantage at the cost of not being able to tell the user the
precise distance to a nearby friend.

Our protocols can run on wireless devices with limited communication
and computation capabilities. The Louis protocol requires four commu-
nication steps, whereas the Lester and Pierre protocols require only two
steps. Furthermore, the evaluation of our sample implementation shows
that the cost of running our protocols is comparable to the cost of setting
up a TLS [7] connection.

The rest of this paper is organized as follows. In section 2, we discuss
previous approaches to solve the nearby-friend problem. Our protocols
exploit homomorphic encryption, which we review in section 3. We present
the Louis, Lester and Pierre protocols in sections 4, 5, and 6, respectively,
and compare their features in section 7.

2 Related Work

Location cloaking has been a popular approach for providing location
privacy [5, 9, 10, 16]. Here, an individual’s device or a third party cloaks
the individual’s location before giving it to the provider of a location-
based service. Cheng et al. [5] study location cloaking for a service that
alerts people of nearby friends. For each individual, the service provider

1 Our protocols are named after three former residents of 24 Sussex Drive, Ottawa.

knows only that the individual is within a particular region, but not where
exactly. The authors develop a metric for describing the quality of an
answer received from the service. This metric allows an individual to trade
off privacy for better answer quality. A drawback of this approach is that
the service provider learns some location information. Our protocols do
not require such a third party. (In the Louis protocol, the third party does
not learn any location information.) Furthermore, if a friend is nearby,
our protocols will always return a positive answer and there is no doubt
about the quality of the answer.

The nearby-friend problem is an instance of a secure multiparty com-
putation problem, where multiple parties jointly compute the output of
a function without learning each other’s inputs. We next examine two
previous approaches based on secure multiparty computation that are
applicable to solving the nearby-friend problem.

Køien and Oleshchuk [12] present a secure two-party protocol for the
point-inclusion problem. The protocol allows Alice to learn whether a
point chosen by Bob is in a polygon determined by Alice, without Bob
revealing the point to Alice and without Alice revealing the polygon to
Bob. We could exploit this protocol for letting Alice know whether Bob is
nearby. Namely, Alice determines the circle around her current location
that corresponds to the area that she considers nearby and approximates
the circle with a polygon; Bob picks the point that corresponds to his
current location. However, Køien and Oleshchuk’s protocol has a flaw:
Alice can learn Bob’s location by choosing a degenerate polygon. For
example, if there are only two different edges in the polygon and all
the other edges are identical to one of them, Alice will usually be able
to solve a system of linear equations to determine Bob’s location. Bob
cannot detect degenerate polygons, assuming the underlying encryption
scheme is semantically secure, so this protocol is not adequate for solving
the nearby-friend problem.

Atallah and Du [1] also study the point-inclusion problem. Their pro-
tocol lets both Alice and Bob learn whether Bob’s point is in Alice’s
polygon. The protocol is based on solving the secure two-party scalar
product problem and the secure two-party vector dominance problem [1].
With the help of a semi-trusted third party, the first problem can be
solved in three communication steps [8]. The solution of the second prob-
lem is based on solving Yao’s millionaire problem [22]. The most efficient
constant-round protocol for solving this problem requires six communi-
cation steps [3]. With a semi-trusted third party, the problem can be
solved in three communication steps [4]. Our Louis protocol, which needs

a semi-trusted third party, lets Alice know in four communication steps
whether Bob is nearby and requires one additional step to inform Bob of
this result. The Lester and Pierre protocols each require two communi-
cation steps to let Alice learn whether Bob is nearby. To let Bob know
whether Alice is nearby, these protocols also require one additional step.
In summary, to achieve the same result as Atallah and Du’s protocol, our
protocols require fewer communication steps and the Lester and Pierre
protocols do not need a third party at all.

3 Homomorphic Encryption

Our protocols use the techniques of public-key cryptography, but we re-
quire the cryptosystems used to have a special algebraic property: that
they are additive homomorphic. An additive homomorphic cryptosystem
is one in which, given E(m1) and E(m2), one can efficiently compute
E(m1 + m2). Our protocols use two of these systems, which we review
here.

3.1 Paillier

The first of these systems is the Paillier cryptosystem [18]. Like the RSA
cryptosystem, a user Alice selects random primes p and q and constructs
n = pq; plaintext messages are elements of Zn. Unlike RSA, however,
ciphertexts are elements of Zn2. Alice picks a random g ∈ Z

∗

n2 and verifies
that µ = (L(gλ mod n2))−1 mod n exists, where λ = lcm(p−1, q−1) and
L(x) = (x − 1)/n. Alice’s public key is then (n, g) and her private key is
(λ, µ).

To encrypt a message m, another user Bob picks a random r ∈ Z
∗

n

and computes the ciphertext c = E(m) = gm · rn mod n2. To decrypt this
message, Alice computes D(c) = L(cλ mod n2) · µ mod n, which always
equals m.

Given E(m1) = gm1 · rn
1 mod n2 and E(m2) = gm2 · rn

2 mod n2, Bob
can easily compute E(m1 + m2) = E(m1) · E(m2) mod n2 = gm1+m2 ·
(r1r2)

n mod n2.
Note that if Bob does not trust Alice enough to generate her Paillier

modulus correctly, he can insist she prove its validity (that is, that it is
the product of exactly two nearly equal primes) [13].

3.2 CGS97

Cramer, Genarro and Schoenmakers [6] present the CGS97 scheme. This
is a variant on El Gamal, where we have (public) large primes p and q such

that q|p − 1. Plaintexts are elements of Zq and ciphertexts are elements
of Zp ×Zp. Alice’s private key is a random element a ∈ Zq and her public
key is A = ga mod p.

To encrypt a message m, Bob picks a random r ∈ Zq and computes
(c1, c2) = E(m) = (gr mod p,Ar+m mod p). To decrypt this message,
Alice finds Am = c2 · c−a

1 mod p and computes m as the discrete log of
that value with the base of A, mod p. Note that this can only be done if
M , the number of possible plaintext messages, is small. In that event, the
Pollard lambda, or “kangaroo”, method [19] can find m in time O(

√
M).

Given E(m1) = (gr1 mod p,Ar1+m1 mod p) and E(m2) = (gr2 mod p,
Ar2+m2 mod p), Bob can easily compute E(m1 + m2) = (gr1+r2 mod p,
Ar1+r2+m1+m2 mod p) by pointwise multiplication mod p.

4 The Louis Protocol

There are three participants in the Louis protocol: Alice, Bob and Trent.
Alice and Bob are friends and Alice wants to know whether Bob is nearby.
Alice considers Bob nearby if he is within a circle of some radius r centered
around Alice. Alice informs Bob of r and Bob can refuse to participate in
the protocol if he considers it to be too large. Trent acts as a third party
and helps Alice and Bob decide whether they are nearby. Unlike other
protocols for implementing location-based services that exploit third par-
ties [5, 9, 10, 14], the Louis protocol does not allow Trent to learn any
location information about either Alice or Bob.

Our protocol consists of two phases. In the first phase, Alice and Bob
jointly solve the nearby-friend problem and Alice learns whether Bob
is nearby. If this is the case, Alice and Bob inform each other of their
locations in the (optional) second phase of the protocol. Alice and Bob
cannot learn each other’s locations if they are not nearby.

Alice and Bob can misbehave and input fake locations into the pro-
tocol. However, the detection of misbehaviour by one of them will likely
affect their friendship, so they are less likely to misbehave. We discuss the
detection of misbehaviour by Alice or Bob, and of cheating by the third
party Trent in section 4.3.

4.1 Protocol Description

We assume that a location can be mapped to two-dimensional coordinates
and that the mapping is known to Alice and Bob. Let Alice’s location be
(x, y) and Bob’s be (u, v). By the definition above, they are nearby if

Trent

6(u,v)
(x,y)

5

1

2 Alice
Bob

3

4

Fig. 1. System model of the Louis protocol. The dashed arrows indicate the optional
second phase.
√

(x − u)2 + (y − v)2 < r. Equivalently, we can check the sign of d =
(x − u)2 + (y − v)2 − r2. In particular, Bob is near Alice if d < 0.

Figure 1 presents the two communication channels used in our system
model. The first is between Alice and Bob, and the second is between
Alice and Trent. Alice also acts as a relay of the communication between
Bob and Trent. The benefit of this approach is to hide Bob’s identity from
Trent, thus improving privacy. We assume that the two secure communi-
cation channels are set up before our protocol begins.

The protocol consists of two phases. The first phase lets Alice deter-
mine whether Bob is nearby. If this is the case, the (optional) second phase
lets Alice and Bob learn each other’s locations. In our protocol, EA(·) is
the Paillier additive homomorphic encryption function using Alice’s pub-
lic key, ET (·) is a (non-homomorphic) public-key encryption function us-
ing Trent’s public key, H(·) is a cryptographic hash function, sigA(m) is
Alice’s signature on message m, and similarly with sigT (m).

1. First phase: Alice determines her location (x, y) and her desired
radius r, and picks a random salt sA.
Alice→Bob: EA(x2 + y2), EA(2x), EA(2y), r, H(x ‖ y ‖ sA)

2. Bob checks the value of r. If he thinks r is too large, he aborts the
protocol. Otherwise, he determines his location (u, v), picks a random
value k and computes

EA(d + k) =
EA(x2 + y2) · EA(u2 + v2) · EA(k)

(EA(2x))u · (EA(2y))v · EA(r2)
,

Bob also chooses a random salt sB.
Bob→Alice: EA(d + k), ET (k), H(u ‖ v ‖ sB), H(k).

3. Alice decrypts EA(d + k).
Alice→Trent: d + k, ET (k), sigA(d + k), sigA(ET (k))

4. Trent decrypts ET (k) and verifies Alice’s signatures. Next, he com-
putes d. If d < 0, Trent sets answer = ′YES′ else answer = ′NO′.
Trent→Alice: answer, sigT (answer ‖ sigA(d + k) ‖ sigA(ET (k))).

5. Alice verifies Trent’s signature. Next, if answer == ′YES′, she knows
that Bob is nearby. Alice terminates the protocol if Bob is not nearby
or if only the first phase of the protocol is run. Otherwise:

Alice Bob Trent

TLS connection time 516 ± 2 ms 255 ± 4 ms 256 ± 2 ms

Computation time 635 ± 4 ms 175 ± 4 ms 41 ± 0.6 ms

Table 1. Runtime of the Louis protocol.

Second phase: Alice reveals her location to Bob:
Alice→Bob: answer, d + k, sigA(d + k), sigA(ET (k)), sigT (answer ‖
sigA(d + k) ‖ sigA(ET (k))), x, y, sA.

6. Bob verifies all signatures. He then computes H(x ‖ y ‖ sA) and
compares the hash value with the one provided by Alice in step 1. He
also uses (x, y) to compute d+k and compares it to the value received.
If the values do not match, Bob aborts the protocol. Otherwise Bob
reveals his location to Alice:
Bob→Alice: u, v, sB, k.

7. Alice computes H(u ‖ v ‖ sB) and H(k) and compares the values
with the hash values provided by Bob in step 2. Alice also computes
d + k based on (x, y), (u, v), and k and verifies whether it equals the
decrypted value of EA(d + k).

Note that our protocol checks whether d < 0. In the Paillier cryptosys-
tem, d will be an element of Zn, so to check this condition, we ensure that
n is sufficiently large, and we say d < 0 if n/2 < d < n.

4.2 Measurements

We implemented our protocols using the OpenSSL [17] and NTL [21]
libraries. We chose RSA for the non-homomorphic encryption and sig-
nature functions. The key sizes of all the cryptographic functions are
2048 bits. Our hash function is SHA-256, and the cipher stack in TLS
is AES256 in CBC mode with ephemeral Diffie-Hellman key exchange.
(The ephemeral keys can be used in the Lester and Pierre protocols, be-
low.) We evaluated these protocols on a 3.0 GHz Pentium 4 desktop. We
ran the protocol one hundred times and measured TLS connection-setup
time and overall computation time for each protocol participant. Table 1
shows our results.

With 2048-bit keys, it takes about a quarter second to set up a TLS
connection. Alice initiates two TLS connections, which takes about half
a second. Trent’s computation time is very small. The major burden is
on Alice, who takes about 0.6 s; Bob’s computation time is less than one
third of Alice’s. In short, if a mobile device can set up a TLS connection, it
should be able to finish the Louis protocol in comparable time or shorter.

4.3 Analysis

The Louis protocol can directly detect scenarios where Alice and Bob
reveal other locations than the ones they committed to. We next explain
how Alice and Bob can discover other kinds of misbehaviour.

Alice detects misbehaviour by Bob or Trent. If Alice detects suspicious
behaviour, such as not spotting nearby Bob though she was told that he
is nearby, and if only the first phase of the protocol has been run, Alice
asks Bob to execute the second phase. If Bob refuses, Alice will suspect
that Bob misbehaved. Otherwise, Alice proceeds as follows:

If Alice is told by Trent that Bob is nearby, but then fails to spot Bob
at his released, nearby location, Alice will realize Bob’s misbehaviour. If
the released location is not nearby, Alice asks Bob to reveal the random
values that he used in his calculations and repeats the calculations. If
the results are not identical to the ones released by Bob, Bob must have
misbehaved. Otherwise, there was cheating by Trent.

If Alice is told by Trent that Bob is not nearby, but then spots him
in her vicinity, she proceeds in a similar way. Namely, if the location
released by Bob is not nearby, Bob must have misbehaved. If it is nearby,
Alice repeats Bob’s calculations, as explained above, to detect cheating
by Trent.

Finally, if step 7 in the protocol fails, Alice also repeats Bob’s calcu-
lations to discover who misbehaved.

Bob detects misbehaviour by Alice or Trent. If the second phase of the
protocol is not run, Bob does not learn any location information about
Alice, which makes it impossible for him to detect misbehaviour. However,
Bob can refuse to answer multiple queries from Alice if they arrive within
a very short time. These queries could be part of a probing attack, where
Alice knows a set of likely locations for Bob and uses each of them for
invoking the protocol.

If the second phase of the protocol is run and Bob detects suspicious
behaviour, Bob uses mechanisms similar to Alice’s to discover misbe-
haviour.

Alice or Bob collude with Trent. Our protocol cannot detect collusion,
where Trent tells the value of d to one of the parties. However, Alice and
Bob can jointly choose the third party, which reduces the risk of collusion.

5 The Lester Protocol

The Louis protocol allows Alice and Bob to learn each other’s locations if
and only if they are nearby, but it requires the participation of Trent. In

our second protocol, Lester, we do away with the need for Trent. However,
this comes at some small costs. First, the information disclosure is now
only one-way; that is, Alice learns about Bob’s location, but not vice
versa. Alice and Bob could of course run the protocol a second time, with
the roles reversed, to mutually exchange information. (Note that this
requires only one extra message, since the resulting two messages from
Bob to Alice can be combined.) Second, Alice learns less exact information
about Bob; she only learns the distance between them, although this may
actually be a benefit, depending on the context.

5.1 Protocol Description

This protocol uses the CGS97 cryptosystem of section 3.2. Recall that
this cryptosystem has an unusual property: the amount of work Alice
must do in order to decrypt a message depends on the number of possible
messages. We use this property to our advantage in this protocol.

The Lester protocol is very simple. Let a and b be Alice and Bob’s
private keys, and A = ga and B = gb be their public keys. Note that these
keys may be ephemeral; if Alice and Bob are communicating via TLS [7],
for example, they can use the key pairs from an ephemeral Diffie-Hellman
key exchange. Alice and Bob can each calculate C = Ab = Ba. Alice sends
Bob EA(x2+y2), EA(2x), EA(2y). Bob picks a workfactor t (see below) and
a random salt s of length t, and sends to Alice t, EA(b · (D ·2t + s)), where
D = (x − u)2 + (y − v)2 is the square of the distance between Alice and
Bob. Alice receives this message, and can calculate Ab·(D·2t+s) = CD·2t+s.

If Alice wants to learn whether Bob is closer than some threshold
distance r away, she uses the kangaroo method [19] to determine D ·2t +s
if it is in the range [0, r2 · 2t]. This can be done in time O(r · 2t/2) and
space O(t log r). Other methods to calculate discrete logarithms, such as
baby-step-giant-step [20], can solve this problem with the same runtime,
but with exponentially larger space requirements. If this step is successful,
shifting the result by t bits yields D. The effect of Bob including a factor
of b in his response to Alice is that Alice’s discrete logarithm calculation
is to the base of the ephemeral C rather than A. This prevents Alice
from doing a certain amount of reusable precomputation derived from a
predetermined base.

Bob should choose t so that he is comfortable with the amount of
work Alice would have to do in order to discover the distance between
them. This will likely depend on things Bob knows about his friend Alice,
such as the computational capacity of Alice’s cellphone.

 0

 50

 100

 150

 200

 250

 20 24 28 32 36 40

co
m

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

workfactor t

-3
-2
-1
 0
 1
 2
 3
 4
 5
 6
 7
 8

 20 24 28 32 36 40

lo
g 2

(c
om

pu
ta

tio
n

tim
e)

workfactor t

Fig. 2. Alice’s computation time in the Lester protocol.

5.2 Measurements

The runtime of the Lester protocol is dominated by Alice’s computation
of the discrete log of CD·2t+s to the base of C. In Figure 2, we plot this
time against the workfactor value t, chosen by Bob. For fixed r, we expect
this runtime to scale as 2t/2 and the log plot shows that this is indeed the
case. This gives Bob a fair amount of control over the amount of work
Alice will need to do to find the distance between them: in our setup,
if t = 20, Alice needs only about a quarter of a second, and if t = 40,
Alice needs a few minutes of computation time. If this is not enough,
Bob could choose even larger values, and the exponential nature of the
runtime means he can make Alice work a very long time with only a small
increase in t.

We measured Bob’s computation time, on the other hand, to be
175 ± 2 ms, comparable to that of the Louis protocol, and this value
is independent of t.

5.3 Analysis

This protocol has no way to detect if Alice or Bob use incorrect loca-
tions as their input. This could allow Alice to confirm a guess of Bob’s
location simply by entering that guess as her own location and seeing if
the protocol successfully finds Bob to be very nearby. Alice could also
check specific ranges of large values of D. For example, if locations are
measured in metres, she could check whether Bob is between 10000 and
11000 m away for about the same cost as checking whether he is between
0 and 4600 m away. Of course, the former ring represents a much more
widely spread out geographical area, and knowing only that Bob is in that

ring probably gives less useful information to Alice. An exception is when
Alice knows a few places that Bob is likely to be: his home, his work,
etc.; she can then confirm those guesses with minor difficulty. Note that
Bob has a little bit of extra power: not only can he choose a large t if he
suspects Alice is probing for his exact location, but he can also effectively
refuse to participate in the protocol, without letting Alice know. He does
this by returning an unconditional negative; that is, an encryption of a
random value instead of the correct response. This makes it extremely
probable that Alice’s discrete log computation will fail. If Bob wants to
be extra careful, he should be sure to avoid revealing he has done this to
side channels, such as timing differences [11]. Conversely, he could return
an unconditional positive by returning an encryption of a small number
rather than the result of his calculation. If Alice cares, she can prevent
the latter by adding a random value k to her x2 + y2 and dividing Bob’s
response by Ck·2t

. Of course, as in the Louis protocol, Alice is likely to
notice if Bob claims to be nearby but is not.

Another downside of this protocol is that Bob only has very coarse
control over the threshold distance; he can choose how much work Alice
would have to do in order to discover that he was, say, 500 metres away,
but with only twice as much work, Alice could discover that Bob was
1000 metres away. A minor modification to the Lester protocol, however,
can make Alice’s work be quadratic in the threshold distance instead of
linear. Instead of the CGS97 cryptosystem, the Boneh-Goh-Nissim cryp-
tosystem [2] can be used. This protocol has the same properties (additive
homomorphic; decryption takes O(

√
M) time) as CGS97, but also allows

calculations of encryptions of quadratic functions, in addition to linear
ones. With this system, Bob could compute EA(D2 · 2t + s) for a random
salt s between 0 and (2D +1)2t −1, and Alice’s work to find the distance
to Bob will be O(r2 · 2t/2).

6 The Pierre Protocol

Our third protocol, Pierre, solves the above problems with the Lester
protocol and gives Bob more confidence in his privacy. On the other hand,
if Alice and Bob are nearby, the Pierre protocol will inform Alice of that
fact, but will give her much less information about Bob’s exact location.

6.1 Protocol Description

In this protocol, Alice picks a resolution distance r, roughly analogous to
the threshold distance r in the previous protocols. Alice and Bob then

Alice

D = 0

D = 1 D = 2

r

r r

Bob

Bob

Bob

Bob

D = 5r

D = 1r

Bob

r

Fig. 3. Grid distances in the Pierre protocol. The x and y distances between Alice and
Bob are measured in grid cells (integral units of r), and Dr = (∆xr)

2 + (∆yr)
2. Alice

can determine whether Bob is in the dark grey, medium grey, or light grey area, but
no more specific information than that.

express their coordinates in (integral) units of r; that is, if Alice’s true
position is (x, y), then for the purposes of this protocol, she will use
coordinates (xr, yr) = (⌊x

r ⌋, ⌊
y
r ⌋), and similarly for Bob. This has the

effect of dividing the plane into a grid, and Alice and Bob’s location
calculations only depend on the grid cells they are in; see Figure 3.

This protocol can use either of the homomorphic cryptosystems we
have mentioned. It turns out that CGS97 is slightly more efficient, so we
will use the notation of that system. As with the Lester protocol, Alice
and Bob’s public keys can be the ephemeral ones generated during TLS
setup.

Alice sends to Bob r, EA(x2
r + y2

r), EA(2xr), EA(2yr). Bob picks three
random elements ρ0, ρ1, ρ2 of Z

∗

p and replies with EA(ρ0 ·Dr), EA(ρ1 ·(Dr−
1)), EA(ρ2 · (Dr − 2)), where Dr = (xr − ur)

2 + (yr − vr)
2 is the square

of the distance between Alice and Bob, in integral units of r. As in the
Lester protocol, if Bob is uncomfortable with Alice’s query, either because
of her choice of r, her frequency of querying, or some other reason, Bob
can reply with encryptions of three random values, ensuring Alice will
not think he is nearby.

Note that ρ0 · Dr = 0 if Alice and Bob are in the same grid cell
and is a random element of Z

∗

p otherwise. Similarly, ρ1 · (Dr − 1) = 0
if Alice and Bob are in adjacent grid cells and random otherwise, and
ρ2 · (Dr − 2) = 0 if Alice and Bob are in diagonally touching grid cells
and random otherwise.

Alice Bob

TLS connection time 256 ± 3 ms 257 ± 1 ms

Computation time 384 ± 4 ms 354 ± 3 ms

Table 2. Runtime of the Pierre protocol.

In CGS97, it is easy for Alice to check whether a received ciphertext
(c1, c2) is an encryption of 0: this is the case exactly when c2 = c1

a mod p,
where a is Alice’s private key. Therefore, with this protocol, Alice can tell
when Bob is in the same, adjacent, or diagonally touching grid cell (and
learns which is the case), but she learns no more specific information than
that.

6.2 Measurements

We measured the computation time of the Pierre protocol using 2048-
bit keys for both TLS and CGS97; the results are shown in Table 2.
For comparison, we also show the time to set up an TLS connection
between Alice and Bob. The computation times shown are for the worst-
case situation; that is, Alice and Bob are not nearby.

We can see that the computational cost of the Pierre protocol is only
slightly more expensive than setting up TLS; this suggests that the pro-
tocol would be reasonable to run on mobile devices.

6.3 Analysis

As with the other protocols, we cannot prevent Alice from using an incor-
rect location in order to try to confirm a guess of Bob’s location. However,
in the Lester protocol, as mentioned above, Alice can try to verify a num-
ber of guesses with a single query to Bob. This is not the case in the
Pierre protocol; each protocol run tells Alice only whether Bob is near
the location she entered, and she can extract no other information from
Bob’s reply.

Like the Lester protocol, the Pierre protocol can gain a minor benefit
from using the Boneh-Goh-Nissim cryptosystem. Bob can combine two of
his responses and reply with, for example, EA(ρ1 · Dr · (Dr − 1)), EA(ρ2 ·
(Dr − 2)). If the first ciphertext decrypts to 0, then Alice knows that Dr

is either 0 or 1, but not which. This gains Bob a small amount of privacy,
and at the same time slightly decreases the size of his reply, even taking
into account that Boneh-Goh-Nissim is elliptic curve based.

A more dramatic benefit could be gained by using a ring homomorphic

encryption system; that is, a system in which, given E(x) and E(y), one

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

pr
ob

ab
ili

ty
 o

f
su

cc
es

s

true distance (*r)

Louis
Lester
Pierre

Fig. 4. Success probabilities of the three protocols, as a function of the actual distance
between Alice and Bob (as a multiple of r).

can efficiently compute both E(x + y) and E(x · y). With such a system,
Bob could reply with the single ciphertext EA(ρ ·Dr · (Dr − 1) · (Dr − 2)).
Bob could also include more factors of (Dr−i) inside the encryption while
reducing r and be able to more accurately approximate a circle around
Alice by using more grid cells of a smaller size. Unfortunately, no secure
ring homomorphic cryptosystem is yet known to exist.

7 Comparison of the Protocols

In each of our three protocols we say Alice succeeds if she discovers Bob
is nearby. In some of the protocols, if Alice succeeds, she also learns
extra information about Bob’s location. We have set up each of our three
protocols so that if Alice and Bob are within a distance r of each other,
Alice will succeed. In the Louis protocol, the inverse is also true: if Alice
and Bob are slightly more than distance r apart, Alice will not succeed.
This behaviour does not match realistic use models, however; it is unlikely
that Alice will want to learn if Bob is 199 m away, but not if Bob is
201 m away. In our other two protocols, the probability that Alice succeeds
does not fall to 0 as soon as Bob is slightly further than r away; rather,
it gradually drops to 0 as Bob gets further, reaching 0 at some outer
threshold distance rout. That is, if Bob’s distance from Alice is less than
r, Alice will certainly succeed; if his distance is greater than rout, Alice
will certainly not succeed, and between those values, Alice’s probability
of success gradually decreases. This seems to fit better with what Alice
is likely to want.

Protocol Louis (first Louis (both Lester Pierre
phase only) phases)

Extra information none Bob’s exact Bob’s exact Bob’s grid
learned by Alice location distance cell distance

Requires third party X X

Bob learns r X X X

Bob learns Alice’s location X

Communication steps 4 6 2 2

Table 3. Feature comparisons of our three protocols

In Figure 4 we plot Alice’s success probability against Bob’s distance
from her (in units of r), for each of the three protocols. As you can see, all
three protocols succeed with probability 1 when the distance is less than
r. The success probability of the Louis protocol drops immediately to 0 at
that point, while the other protocols fall to 0 more gradually. The success
probability of the Lester protocol starts dropping slowly as the distance
increases past r, but then has a rapid decrease to 0 soon after; this is due
to the fact that the kangaroo method for finding discrete logarithms has a
small chance of succeeding, even if the logarithm in question is outside the
expected exponent range. The success probability of the Pierre protocol,
on the other hand, decreases to 0 gradually as the distance increases from
r to rout = 2

√
2r; this last value is the maximum distance by which Alice

and Bob can be separated and still be in diagonally touching cells.

In Table 3 we summarize the properties of our three protocols. For
each, we indicate what additional information Alice learns about Bob’s
location in the event that the protocol succeeds, and whether the proto-
col requires the participation of a third party. We also indicate whether
Bob learns Alice’s choice of r, whether Bob learns any information about
Alice’s location, and the number of communication steps.

8 Conclusion

We have presented three protocols to solve the nearby-friend problem
without requiring a third party that learns location information. Com-
pared to previous work, our protocols require fewer rounds of compu-
tation. Moreover, we have demonstrated their feasibility with a sample
implementation and its evaluation.

Alerting people of nearby friends is only one of many possible location-
based services. A topic of further investigation is what other services can
be built with the techniques exploited in this paper.

Acknowledgments

We thank the anonymous reviewers for their comments. This work is
supported by the Natural Sciences and Engineering Research Council of
Canada.

References

1. M. J. Atallah and W. Du. Secure Multi-party Computational Geometry. In
Proceedings of 7th International Workshop on Algorithms and Data Structures,
pages 165–179, August 2001.

2. D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF Formulas on
Ciphertexts. In Theory of Cryptography (TCC) ’05, Lecture Notes in Computer
Science 3378, pages 325–341. Springer-Verlag, 2005.

3. F. Brandt. Efficient Cryptographic Protocol Design based on Distributed El
Gamal Encryption. In Proceedings of 8th International Conference on
Information Security and Cryptology (ICISC), pages 32–47, December 2005.

4. C. Cachin. Efficient Private Bidding and Auctions with an Oblivious Third
Party. In Proceedings of 6th ACM Conference on Computer and Communications
Security, pages 120–127, November 1999.

5. R. Cheng, Y. Zhang, E. Bertino, and S. Prabhakar. Preserving User Location
Privacy in Mobile Data Management Infrastructures. In Proceedings of 6th
Workshop on Privacy Enhancing Technologies (PET 2006), Lecture Notes in
Computer Science 4258, pages 393–412. Springer-Verlag, June 2006.

6. R. Cramer, R. Gennaro, and B. Schoenmakers. A Secure and Optimally Efficient
Multi-Authority Election Scheme. In Advances in Cryptology—Eurocrypt ’97,
Lecture Notes in Computer Science 1233, pages 103–118. Springer-Verlag, 1997.

7. T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.1. RFC 4346, http://www.ietf.org/rfc/rfc4346.txt, April 2006.

8. W. Du and Z. Zhan. A Practical Approach to Solve Secure Multi-party
Computation Protocols. In Proceedings of 2002 Workshop on New Security
Paradigms Workshop, pages 127–135, September 2002.

9. B. Gedik and L. Liu. Location Privacy in Mobile Systems: A Personalized
Anonymization Model. In Proceedings of 25th International Conference on
Distributed Computing Systems (ICDCS 2005), June 2005.

10. M. Gruteser and D. Grunwald. Anonymous Usage of Location-Based Services
Through Spatial and Temporal Cloaking. In Proceedings of First International
Conference on Mobile Systems, Applications, and Services (MobiSys 2003), May
2003.

11. P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In Advances in Cryptology—CRYPTO ’96, Lecture Notes in
Computer Science 1109, pages 104–113. Springer-Verlag, August 1996.

12. G. M. Køien and V. A. Oleshchuk. Location Privacy for Cellular Systems;
Analysis and Solutions. In Proceedings of 5th Workshop on Privacy Enhancing
Technologies (PET 2005), Lecture Notes in Computer Science 3856, pages 40–58.
Springer-Verlag, May/June 2005.

13. M. Liskov and R. Silverman. A Statistical Limited-Knowledge Proof for Secure
RSA Keys. IEEE P1363 working group, 1998.

14. Loopt, Inc. loopt - Live In It. http://www.loopt.com/. Accessed February 2007.
15. MIT SENSEable City Lab. iFind. http://ifind.mit.edu/. Accessed February

2007.
16. M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The New Casper: Query Processing

for Location Services without Compromising Privacy. In Proceedings of the 32nd
International Conference on Very Large Data Bases (VLDB 2006), pages
763–774, September 2006.

17. The OpenSSL Project. OpenSSL: The Open Source toolkit for SSL/TLS.
http://www.openssl.org/. Accessed February 2007.

18. P. Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In Advances in Cryptology—Eurocrypt ’99, Lecture Notes in Computer
Science 1592, pages 223–238. Springer-Verlag, 1999.

19. J.M. Pollard. Monte Carlo Methods for Index Computation (mod p).
Mathematics of Computation, 32(143):918–924, July 1978.

20. D. Shanks. Class number, a theory of factorization, and genera. Proceedings of
Symposia in Pure Mathematics, 20:415–440, 1971.

21. Victor Shoup. NTL: A Library for doing Number Theory.
http://www.shoup.net/ntl/. Accessed February 2007.

22. A. C. Yao. Protocols for Secure Computations. In Proceedings of 23rd IEEE
Symposium on Foundations of Computer Science, pages 160–164, 1982.

