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Abstract—Flow untraceability is one critical requirement for
anonymous communication with network coding, which prevents
malicious attackers with wiretapping and traffic analysis abilities
from relating the senders to the receivers, using linear dependency
of the received packets. There have recently been proposals
advocating encryptions on the Global Encoding Vectors (GEV)
of network coding to thwart such attacks [1], [2]. Nevertheless,
there has been no exploration of the capability of networking
coding itself, to constitute more efficient and effective algorithms
which guarantee anonymity. In this paper, we design a novel,
simple, and effective linear network coding mechanism (ALNCode)
to achieve flow untraceability in a communication network with
multiple unicast flows. With solid theoretical analysis, we first
show that linear network coding (LNC) can be applied to thwart
traffic analysis attacks without the need of encrypting GEVs. Our
key idea is to mix multiple flows at their intersection nodes by
generating downstream GEVs from the common basis of upstream
GEVs belonging to multiple flows, in order to hide the correlation
of upstream and downstream GEVs in each flow. We then design
a deterministic LNC scheme to implement our idea, by which
the downstream GEVs produced are guaranteed to obfuscate
their correlation with the corresponding upstream GEVs. We also
give extensive theoretical analysis on the intersection probability
of GEV bases and the influential factors to the effectiveness of
our scheme, as well as the algorithm complexity to support its
efficiency.

I. INTRODUCTION

Following its success in maximizing network throughput

[3]–[5], network coding has recently been shown to provide

information security in a content distribution network, against

active entropy and Byzantine modification attacks, as well

as passive wiretapping attacks. To battle active attacks where

malicious attackers can alter message content, secure network

coding schemes have been proposed to guarantee integrity

of the transmitted data in the network, based on the error

correction and detection capabilities of network coding [6]–

[8]. In face of passive wiretappers which may eavesdrop on

the links to acquire transmitted information, network coding can

naturally and effectively provide confidentiality of the messages

as long as the attacker cannot obtain sufficient numbers of

linearly independent coded messages [9]–[11].

In this paper, we consider how to use network coding to

achieve anonymity, another key aspect of secure data commu-

nication, by which the identities of the sender and the receiver

of a unicast flow, as well as the path traversed, are desirably

hidden from wiretappers with traffic analysis abilities.

Flow untraceability has become increasingly important in

today’s Internet with more and more users resuming both roles

of a content supplier and a content consumer. In online social

networks such as Facebook and Twitter, friends exchanging

private messages or contents may not want others to know;

In a peer-to-peer (P2P) file sharing system, anonymous P2P

communication is desired to share copyrighted files without

revealing one’s identity and risking litigation, as well as to

prevent tracking or data mining activities from spammers.

To provide flow untraceability against traffic analysis attacks,

traditional approaches without network coding choose from the

following approaches [12]–[16]: (1) hide the content correlation

among messages with encryption, (2) hide the size correlation

of messages by padding with random symbols, (3) hide the

time correlation among messages of the same flow by mixing

the order of message transmissions from different flows at in-

termediate nodes, as well as (4) protect the routing information

using secure routing protocols [15]–[17].

Linear network coding (LNC) has been promising to achieve

the same objectives with much better efficiency: it naturally

conceals content correlation of messages in the same flow,

instead of using computationally expensive encryption and

decryption for each message at each intermediate node; coded

messages have an equal size and are buffered at intermediate

nodes to generate new coded messages, naturally preventing

correlating message sizes and arrival time patterns.

In LNC, each coded message in the network corresponds

to a Global Encoding Vector (GEV), which consists of the

coding coefficients it is produced with, with respect to the set

of original messages. Given the encoding mechanisms of LNC,

linear dependency among GEVs of coded messages may reveal

information of the flow path, if the wiretapper analyzes the

correlation between coded messages in the upstream and those

in the downstream. Therefore, if a secure anonymous routing

protocol is in place to hide the routing information, the key

challenge of applying LNC for anonymous communication is

to hide the correlation among GEVs.

A natural solution is to use encryption. Fan et al. [1] and

Zhang et al. [2] propose to share a secret key between the

source and the destination, apply an encryption function which

allows intermediate nodes to produce new encrypted GEVs
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Fig. 1. ALNCode design: an example.

without knowing the secret key, and then let the destination

decrypt received GEVs with the pre-shared secret key. To

implement such an encryption/decryption scheme, a Trust Au-

thority (TA) or Key Distribution Center (KDC) is needed to

distribute the secrete key to the source and the destination

before the flow starts. In networks with large numbers of unicast

flows, this approach may not scale well.

Can anonymous communication be provided in a more

scalable, efficient, but effective fashion without intensive en-

cryptions at all? This paper provides a “yes” answer, by

exploring the power of LNC itself. We design a novel, simple,

and effective Anonymous Linear Network Coding mechanism,

referred to as ALNCode, which thwarts against traffic analysis

attacks in a communication network with multiple unicast

flows, without encrypting GEVs and sharing any secrete keys

among sources and destinations. Our key idea is to mix multiple

flows at their intersection nodes by generating downstream

GEVs from the common basis of upstream GEVs belonging

to multiple flows, in order to hide the correlation of upstream

and downstream GEVs of each flow.

An example in Fig. 1 illustrates the idea: In a network with

3 unicast flows from source si to destination di, i ∈ {1, 2, 3},

respectively, each flow may go through multiple paths in

the cloud and paths of different flows intersect at common

intermediate nodes. LNC is performed at each node among

messages of the same flow over finite field F2. Each flow has 4
original messages. Assume an intermediate node k receives 6

coded messages from 3 flows: two coded messages with GEVs

a = [1, 0, 1, 0] and b = [1, 1, 0, 1] from flow s1 → d1, two

coded messages with GEVs c = [0, 1, 1, 0] and d = [1, 0, 1, 1]
from flow s2 → d2, and the rest two with GEVs e = [1, 1, 1, 1]
and f = [0, 1, 0, 1] from flow s3 → d3. k can generate a new

coded message for flow s1 → d1 by xor-ing the two received

messages with GEVs a and b, and derive the new GEV as

g = a + b = [0, 1, 1, 1]. This new GEV is obfuscated, because

g = a + b = a + c + d = b + e + f = c + d + e + f , i.e., g

is not only correlated with {a,b}, but also {a, c,d}, {b, e, f},

and {c,d, e, f}. Therefore, to any traffic analysis attacker that

tries to correlate the upstream and downstream GEVs, it would

not be able to tell which messages belong to the same flow.

To the best of our knowledge, no previous work has aimed

to preserve flow untraceability with such obfuscated network

codes across multiple flows to hide GEV correlations. The main

contributions of the paper are summarized as follows:

⊲ We propose ALNcode, a light-weighted LNC mechanism

for flow untraceability in networks with multiple unicast

flows. We present solid theoretical analysis to support the

validity of our idea.

⊲ We design a deterministic LNC scheme to implement

ALNcode, by which the downstream GEVs produced are

guaranteed to obfuscate their correlation with the corre-

sponding upstream GEVs, under mild conditions.

⊲ We give extensive theoretical analysis on the intersection

probability of the GEV bases and the influential factors to

the effectiveness of our scheme, as well as the algorithm

complexity to support its efficiency. We also discuss how

our scheme can be practically applied to provide full-

fledged flow untraceability, in terms of the anonymity of

the source, the destination, as well as the paths of packets.

The rest of the paper is organized as follows. We formally

present the models of network coding and wiretapping attacks,

as well as our anonymous communication objectives in Sec. II.

We present the key idea of ALNcode and the detailed deter-

ministic LNC design in Sec. III. Sec. IV gives our extensive

theoretical analysis on the effectiveness of our design and

Sec. V discusses how our mechanism can efficiently throttle

traffic analysis attacks. We discuss related work in Sec. VI and

conclude the paper in Sec. VII.

II. ANONYMOUS COMMUNICATION MODEL WITH LNC

In this section, we present the network and LNC model, the

traffic analysis attacks we consider, as well as the goals of

anonymous communication.

A. Network and Linear Network Coding Model

We consider a communication network with multiple unicast

flows between multiple pairs of source and destination nodes.

Each flow has a unique flow number and may go through

multiple paths; the paths of different flows may intersect at

common intermediate nodes (e.g., Fig. 1(a)). Linear network

coding (LNC) [18] is applied in the transmission of each unicast

flow: a source node partitions the data flow into messages of

the fixed size H , and every h consecutive messages in the flow

form a generation. LNC is performed among messages in the

same generation of a flow.

Source encoding: Given original messages {m1, · · · ,mh}
in generation j of flow i, the source node selects h linearly

independent GEVs, {v1, · · · ,vh}, over finite field Fh
q , and

generates h coded messages {m′
1, · · · ,m′

h} using these GEVs.

The h coded messages are generated as follows, shown together

with the GEVs:

[
vn m′

n

]
=

[
vn

h∑
l=1

vn,lmn

]
, (1)

where 1 ≤ n ≤ h and vn,l is the lth element of vector vn.

Intermediate node encoding: Each intermediate node buffers

coded messages received for a generation of a flow for T time

slots, and produces new coded messages for this generation

from the buffered messages. Suppose the node has received

r coded messages {m′
1, · · · ,m′

r} for generation j of flow i

during time T , corresponding to r GEVs {v′
1, · · · ,v′

r}. To

generate a new coded message, it produces a local encoding



vector c = [c1, · · · , cr] from finite field Fr
q , and then generates

the new coded message m′′ together with a new GEV v′′ as:

[
v′′ m′′

]
=

[
r∑

l=1

clv
′
l

r∑
l=1

clm
′
l

]
. (2)

Destination decoding: After receiving h coded messages

{m′′
1 , · · · ,m′′

h} from generation j of flow i with linearly

independent GEVs {v′′
1 , · · · ,v′′

h}, a destination node recovers

the original messages {m1, · · · ,mh} by inverting the matrix

composed by the GEVs:




m1

...

mh


 =




v′′
1
...

v′′
h




−1 


m′′
1

...

m′′
h


 . (3)

In a practical communication network, each coded message

to be delivered is tagged with its routing information, flow

number, generation number, and the GEV, which together is

referred to as a data packet. We assume all data packets in

the network have an equal size. We also assume that a secure,

anonymous routing protocol [15]–[17] is in place (similar to

the assumptions made in [1] and [2]). With such a secure,

anonymous routing protocol, the route of each flow from the

source to the destination is decided locally at each intermediate

node, who knows only the previous-hop and next-hop nodes

along the path. The routing information, flow and generation

numbers attached to each coded message is protected by

encryption with public/private keys generated locally by each

intermediate node and exchanged only among neighbors. On

the other hand, GEVs and message contents are not encrypted.

B. The Attack Model

We consider passive wiretapping attackers from outside of

the network with traffic analysis abilities. For such an outside

attacker, we assume it can observe all the packets along all the

links in the network and analyze them, attempting to identify

sources, destinations, and paths of the flows [1], [12]–[14]. For

each attacker, routing, flow, and generation information in each

data packet sniffed is hidden (by the secure, anonymous routing

protocol), but GEVs and coded messages are open.

C. The Anonymous Communication Goals

The flow untraceability objectives we aim to achieve in this

paper include:

⊲ Flow path anonymity. The attacker cannot deduce the

flow paths of each flow, i.e., if an attacker observes an

upstream packet and a downstream packet at a node, it

cannot distinguish whether they are in the same flow or

not.

⊲ Source and destination anonymity. The attacker cannot

determine which node each flow originates from or ter-

minates at, i.e., it is not able to tell which nodes in the

network (sources) are communicating with which other

nodes (destinations).

We summarize important notations in the paper for ease of

reference in Table I.

TABLE I

Symbol Definition

Fq a finite field of size q, where q is a prime number

h the number of messages in each generation of a flow
H the size of each message

Vi,j,k
the set of GEVs received by node k from generation j
of flow i in the past T time slots

Ṽi,j,k
the set of GEVs received by node k from flows other
than i in the past T time slots

f1
the number of GEVs received by node k from genera-
tion j of flow i in the past T time slots

f2
the number of GEVs received by node k from flows
other than iin the past T time slots

F
the total number of GEVs received by node k from all
the flows and generations in the past T time slots

L(·)
linear span of a set of vectors. For a matrix B, L(B)
is the row vector space of B.

Symbol T transpose of a matrix or a vector
r1 dim(L(Vi,j,k))

r2 dim(L(Ṽi,j,k))
R dim(L(

⋃
∀i,j Vi,j,k))

C
the matrix formed by nonzero vectors in the set of
vectors C as its rows

Ni,j,k the basis of vector space L(Vi,j,k) ∩ L(Ṽi,j,k)

N N = |Ni,j,k| = dim(L(Vi,j,k) ∩ L(Ṽi,j,k))

Θi,j,k
the obfuscated basis of L(Vi,j,k) which is the basis of
L(Vi,j,k) extended from Ni,j,k

III. ALNCode: ANONYMOUS LINEAR NETWORK CODING

AGAINST TRAFFIC ANALYSIS ATTACKS

We now present our Anonymous Linear Network Coding

(ALNCode) mechanism to provide flow untraceability. We first

present the general idea and then design a detailed deterministic

LNC scheme to achieve the objective.

A. The Basic Idea

The key idea in ALNCode is to produce new coded messages

with obfuscated GEVs at intermediate nodes, which are linearly

correlated not only with received GEVs from the same flow,

but also those from other flows. Fig. 2 gives an illustration:

Let Vi,j,k denote the set of GEVs of coded messages received

at intermediate node k from generation j of flow i in the past

T time slots, and L(Vi,j,k) be the linear span of these GEVs.

Let Ṽi,j,k =
⋃

l 6=i,∀j Vl,j,k be the set of GEVs received at k

from flows other than i before and within the T time slots, and

L(Ṽi,j,k) be its linear span.

Suppose Ni,j,k = {n1, · · · ,n|Ni,j,k|} denotes the basis of

vector space L(Vi,j,k) ∩ L(Ṽi,j,k), Ni,j,k can be extended to

the basis of vector space L(Vi,j,k) (with methods described

in Sec. III-B), i.e., letting r1 = dim(L(Vi,j,k)), there exist

r1−|Ni,j,k| vectors, {δ1, · · · , δr1−|Ni,j,k|}, in L(Vi,j,k), such

that Θi,j,k = {n1, · · · ,n|Ni,j,k|, δ1, · · · , δr1−|Ni,j,k|} forms

the basis of L(Vi,j,k). We hereinafter refer to Θi,j,k as the

obfuscated basis of L(Vi,j,k).
To produce a new coded message for generation j of flow i,

we seek to generate a new GEV vi,j that is linear combination

of a and b, where vector a is generated from L(Vi,j,k) and

vector b is generated from L(Vi,j,k) ∩L(Ṽi,j,k). In this way,

vi,j could have linear correlation with both GEVs in Vi,j,k

and Ṽi,j,k. If an attacker attempts to trace back the source of

the coded packet with GEV vi,j , both the GEVs in Vi,j,k and
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Fig. 2. Obfuscated GEV production for generation j of flow i at intermediate
node k.

Ṽi,j,k could be correlated with vi,j , and the attacker would fail

to identify which flow the packet actually belongs to.

How do we generate vi,j as the linear combination of vectors

in L(Vi,j,k) and L(Vi,j,k)∩L(Ṽi,j,k), respectively? Let Θi,j,k

be the matrix formed by vectors in Θi,j,k as its rows, and

ρ = {ρ1, · · · , ρr1} be a vector in Fr1
q . Set vi,j = ρΘi,j,k =∑|Ni,j,k|

l=1 ρlnl +
∑r1

l=|Ni,j,k|+1 ρlδl−|Ni,j,k|. Then vi,j is linear

combination of vector b =
∑|Ni,j,k|

l=1 ρlnl from L(Vi,j,k) ∩

L(Ṽi,j,k) and vector a =
r1∑

l=|Ni,j,k|+1

ρlδl−|Ni,j,k| from L(Vi,j,k).

Above we have provided one method to generate the GEV

vi,j which is potentially an obfuscated GEV, but not guaran-

teed. We next prove the sufficient and necessary condition that

an obfuscated new GEV does exist, and the sufficient condition

under which vi,j produced above is an obfuscated GEV.

Theorem 1: At intermediate node k, an obfuscated GEV

ui,j exists for generation j of flow i, iff dim(L(Vi,j,k) ∩

L(Ṽi,j,k)) 6= 0.

Proof: We first prove the necessity of the condition. If

ui,j is a GEV generated by node k for generation j of flow

i, we have ui,j ∈ L(Vi,j,k). If ui,j is an obfuscated GEV,

ui,j is linearly correlated with both the GEVs in L(Vi,j,k)

and those in L(Ṽi,j,k), i.e., there exist a ∈ L(Vi,j,k) and b ∈

L(Ṽi,j,k) where b 6= 0, such that ui,j = a+b. Therefore, b =

ui,j − a ∈ L(Vi,j,k). Since we also have b ∈ L(Ṽi,j,k), b ∈

L(Vi,j,k)∩L(Ṽi,j,k). Thus, there exists this non-zero vector b

in L(Vi,j,k)∩L(Ṽi,j,k), i.e., dim(L(Vi,j,k)∩L(Ṽi,j,k)) 6= 0.

We next prove the sufficiency of the condition. If

dim(L(Vi,j,k)∩L(Ṽi,j,k)) 6= 0, there exists a non-zero vector

b ∈ L(Vi,j,k)∩L(Ṽi,j,k), and we can just set ui,j = b, which

is linearly correlated with both the GEVs in L(Vi,j,k) and those

in L(Ṽi,j,k)). Thus the theorem is proved.

Theorem 2: When dim(L(Vi,j,k) ∩L(Ṽi,j,k)) 6= 0, a GEV

vi,j generated by node k for generation j of flow i using the

above mentioned method, is an obfuscated GEV, if not all the

first |Ni,j,k| elements of ρ are zero.

Proof: Using the above mentioned method, we know

vi,j =

|Ni,j,k|∑

l=1

ρlnl +

r1∑

l=|Ni,j,k|+1

ρlδl−|Ni,j,k|.

Since each nl, 1 ≤ l ≤ |Ni,j,k|, is a vector in L(Vi,j,k) ∩

L(Ṽi,j,k),
∑|Ni,j,k|

l=1 ρlnl is a linear combination of the vectors

in L(Vi,j,k) ∩ L(Ṽi,j,k). Since not all the first |Ni,j,k| ele-

ments of ρ are zero and vectors n1, . . . ,n|Ni,j,k| are linearly

independent,
∑|Ni,j,k|

l1=1 ρl1nl1 is a non-zero vector. On the other

hand,
∑r1

l=|Ni,j,k|+1 ρlδl−|Ni,j,k| is a linear combination of the

vectors in L(Vi,j,k). Thus, GEV vi,j has linear correlation with

both GEVs in L(Vi,j,k) and those in L(Ṽi,j,k)).

B. The Deterministic Linear Network Coding Scheme

Based on Theorems 1 and 2, we now design a detailed

LNC scheme, by which r1 new coded messages with linearly

independent obfuscated GEVs can be generated at each inter-

mediate node k, after it receives r1 linearly independent GEVs

in the past T time slots from generation j of flow i, as long as

dim(L(Vi,j,k) ∩ L(Ṽi,j,k)) 6= 0 is satisfied.

The basic method proposed in the previous section shows

how to generate obfuscated GEVs: We obtain L(Vi,j,k) ∩

L(Ṽi,j,k) from the received GEVs at node k from generation j

of flow i and other flows. We derive Ni,j,k, i.e., its basis, and

extend it to Θi,j,k, i.e., the basis of vector space L(Vi,j,k). We

then select vectors ρ ∈ Fr1
q with the first |Ni,j,k| elements

not all zero and generate GEVs vi,j = ρΘi,j,k. We know

these GEVs are obfuscated GEVs (Theorem 2), but we need to

select different ρ’s, such that r1 linearly independent obfuscated

GEVs can be produced. We next detail these procedures, as well

as how local encoding vectors are formed at k to generate these

new GEVs from received GEVs.

1) Derive Θi,j,k

Let Λ = {α1, · · · ,αr1
} be the maximum independent set

of Vi,j,k. Λ is the basis of L(Vi,j,k). Let Λ be the matrix

formed by vectors in Λ as its rows. Let Γ = {β1, · · · ,βr2
}

be the maximum independent set of Ṽi,j,k. Γ is the basis of

L(Ṽi,j,k). We compute the basis of L(Vi,j,k)∩L(Ṽi,j,k) from

Λ and Γ and extend it to the basis of L(Vi,j,k) following the

general method [19] to get the basis of the intersection of two

vector spaces and extend it to the basis of one vector space:

i) Construct a matrix A = {αT
1 , · · · ,αT

r1
,βT

1 , · · · ,βT
r2
}

with dimension h × (r1 + r2) and then reduce A to its row-

echelon form rref(A) by Gaussian elimination. Note that if

a row of rref(A) is non-zero, the first non-zero element of

this row is refereed to as the pivot of the row. A non-pivotal

column refers to a column no elements of which is a pivot.

ii) Let N be the number of non-pivotal columns of rref(A).
Then N = dim(L(Vi,j,k) ∩ L(Ṽi,j,k)) [19]. We can ob-

tain N linear combinations
r1∑

l=1

an,lαl, 1 ≤ n ≤ N , where

[an,1, · · · , an,r1 , an,r1+1, · · · , an,h]T is the nth non-pivotal

column of rref(A). These linear combinations form the basis

of L(Vi,j,k) ∩ L(Ṽi,j,k), i.e., Ni,j,k, and N = |Ni,j,k|.

iii) To derive Θi,j,k, a basis of L(Vi,j,k) which contains

Ni,j,k, we first construct a h × (N + r1) dimensional matrix

Φ =

[
r1∑

l=1

a1,lα
T
l , · · · ,

r1∑
l=1

aN,lα
T
l , αT

1 , · · · , αT
r1

]
.

We know the basis of the column space of Φ can be derived as

follows: reduce Φ to its row-echelon form rref(Φ), and then



those column vectors in Φ, that correspond to the columns in

rref(Φ) containing pivots, form the basis. The column space

of Φ is indeed L(Ni,j,k∪Vi,j,k) = L(Vi,j,k), and thus we have

derived a basis of L(Vi,j,k). In addition, since the set of vectors

in Ni,j,k are linearly independent, all the column vectors in the

Ni,j,k part of Φ correspond to columns in rref(Φ) containing

pivots. Thus, the basis of L(Vi,j,k) derived above is composed

of all the vectors in Ni,j,k, as well as r1 − N other GEVs in

Vi,j,k, which we denote as {αL1 , · · · ,αLr1−N
}. Θi,j,k, the

basis of L(Vi,j,k) which contains Ni,j,k, is thus derived as

{

r1∑

l=1

a1,lαl, · · · ,

r1∑

l=1

aN,lαl,αL1 , · · · ,αLr1−N
}. (4)

2) Generate r1 linearly independent obfuscated GEVs

The vectors in Θi,j,k form the basis of L(Vi,j,k) and the first

N vectors in Θi,j,k are the basis of L(Vi,j,k) ∩ L(Ṽi,j,k). In

general, to produce r1 linearly independent obfuscated GEVs,

we left-multiply Θi,j,k by a nonsingular matrix composed by

r1 linearly independent vectors from Fr1
q , the first N elements

of each of which are not all zeros. We can select a nonsingular

lower triangular matrix C1 as follows:

C1 =




c1,1

c2,1 c2,2
0

...
...

. . .

cr1,1 cr1,2 · · · cr1,r1


 ,

where each ci′,j′ , 1 ≤ j′ ≤ i′ ≤ r1 is randomly selected from

{1 · · · q − 1}. Since dim(L(Vi,j,k) ∩ L(Ṽi,j,k)) 6= 0 and the

leading element of each row of C1 is non-zero, each row vector

of C1Θi,j,k is an obfuscated GEV; since matrix C1 has full

rank, these r1 obfuscated GEVs are linearly independent.

3) Construct local encoding vectors

Recall the intermediate node encoding model described in

Sec. II-A: after receiving coded messages corresponding to r1

linearly independent GEVs Λ = {α1, · · · ,αr1
}, node k selects

r1 coding coefficients from Fr1
q . Then according to this local

encoding vector, it does a linear combination of the r1 received

coded messages to produce a coded message, and also does a

linear combination of the received GEVs to produce the new

GEV for the message. We can derive the local encoding vectors

to produce the r1 linearly independent obfuscated GEVs, i.e.,

the rows of C1Θi,j,k, as follows.

Let Ω denote the r1×r1 dimensional local encoding matrix,

whose rows are the local encoding vectors. It should satisfy

ΩΛ = C1Θi,j,k. Since the matrix Θi,j,k is formed by the

obfuscate basis as its rows, it can be represented as Θi,j,k =
C2Λ, where C2 is a r1 × r1 dimensional matrix as follows:

C2 =




a1,1 · · · a1,r1

...
...

...

aN,1 · · · aN,r1

Ir1,L1

...

Ir1,Lr1−N




(according to Eq. (4)),

Algorithm 1 Local Encoding Matrix Computing

1: Find the maximum independent set of Vi,j,k and Ṽi,j,k by Gaussian
elimination which are {α1, · · · , αr1} and {β1, · · · , βr2

} respectively.

2: Construct a matrix A = {αT
1 , · · · , αT

r1
, βT

1 , · · · , βT
r2
} with dimension

h × (r1 + r2).
3: Compute row-echelon form matrix rref(A) by Gaussian elimination. Let

the number of non-pivotal columns of rref(A) be N .
4: for n from 1 to N do

5: θn =
r1∑

l=1
an,lαl where [an,1, · · · , an,h]T is the nth non-pivotal

column of rref(A). The nth row of C2 is set to [an,1, · · · , an,r1 ].
6: end for

7: Ni,j,k =
N⋃

n=1
θn.

8: Find r1 − N vectors in Vi,j,k , {αL1
, · · · , αLr1−N

}, such that GEVs

in set {θ1, · · · , θN , αL1 , · · · , αLr1−N
} are linearly independent.

9: for n from 1 to r1 − N do

10: θN+n = αLn
. The (N + n)th row of C2 is set to Ir1,Ln

.
11: end for
12: The obfuscated basis of L(Vi,j,k) is Θi,j,k = {θ1, · · · , θr1}.
13: for l from 1 to r1 do

14: select l numbers from {1, · · · , q− 1} as the first l elements of the lth
row of matrix C1. The remaining r1 − l elements are set to 0.

15: end for

16: return local encoding matrix Ω = C1C2.

where Ir1,Ln
is the Lnth row of a r1 × r1 identity matrix.

Since ΩΛ = C1Θi,j,k = C1C2Λ, we derive Ω = C1C2,

i.e., each row of C1C2 is a local encoding vector, which node

k should use to generate r1 independent obfuscated GEVs.

Let {m′
1, · · · ,m′

r1
} denote the r1 received coded messages

corresponding to the r1 linearly independent GEVs in Λ,

and M′ be the matrix formed by these coded messages as

its rows. The r1 linearly independent obfuscated new GEVs

{v′′
1 , · · · ,v′′

r1
} and the corresponding new coded messages

{m′′
1 , · · · ,m′′

r1
} can be calculated as follows:




v′′
1 m′′

1
...

...

v′′
r1

m′′
r1


 = Ω




α1 m′
1

...
...

αr1 m′
r1


 =

[
ΩΛ ΩM′

]
.

Algorithm 1 shows to calculate the local encoding matrix. Let

f1 be the number of GEVs node k received from generation

j of flow i in the past T time slots and f2 be the number of

GEVs from other flows. Since the computational complexity of

Gaussian elimination applied to a m × n dimensional matrix

is O(mn min(m,n)) and that of matrix multiplication between

a m × n dimensional matrix and a n × l dimensional matrix

is O(mnl), the computational complexity of Algorithm 1 is

O(h2(f1 + f2)). To further calculate r1 new coded messages,

the total computational complexity is O(h2(f1 + f2) + r2
1H).

Due to space limit, we omit the details.

At the source and destination. Our previous discussions

have been focusing on recoding at intermediate nodes to hide

relationship of its incoming and outgoing packets. We next

show that with a similar scheme, the source and destination

nodes of a flow can also hide themselves, as long as there are

other flows going through them.

A source node s of flow i can produce coded messages with

any GEVs from Fh
q . If s also receives other flows, it can produce
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Fig. 3. ALNCode at the source node and the destination node.

obfuscated GEVs for generation j of flow i, using vectors from

L(Ṽi,j,s). This is because vectors in L(Ṽi,j,s) are linearly

correlated with the received GEVs from other flows, and they

are valid GEVs to produce coded messages at the source for

generation j of flow i. At the destination node d of flow i,

if some other flows go through it, it can generate obfuscated

GEVs for these other flows, exploiting the received GEVs from

flow i. In both cases, the anonymity of source and destination

nodes are protected, and an attacker can not distinguish whether

coded messages originate from or terminate at a node.

Fig. 3 gives an example, where solid directed lines denote

packets of generation j of flow i and dotted directed lines

denote packets of other flows. Let h = 3 and LNC is performed

over F3. At the source of flow i, a = [1, 1, 1],b = [2, 2, 0], c =
[2, 1, 0] are incoming GEVs from other flows. The source can

generate obfuscated GEVs such as d = 2b = [1, 1, 0], e =
a + 2b = [2, 2, 1], and f = a + b + c = [2, 1, 1]. At the

destination, o = [1, 2, 2],p = [0, 2, 1] are incoming GEVs from

generation j of flow i and m = [0, 2, 1],n = [1, 1, 0] are from

generation j′ of flow i′. The destination can generate obfuscated

GEVs for flow i′, such as g = m+n = o+2p = [1, 0, 1],h =
m + 2n = 2o = [2, 1, 1].

IV. EFFECTIVENESS ANALYSIS OF ALNCode

Using ALNCode, a node k which receives multiple flows

can effectively produce new coded messages for each outgoing

flow, with obfuscated GEVs against traffic analysis attacks, as

long as the condition of dim(L(Vi,j,k) ∩ L(Ṽi,j,k)) 6= 0 is

satisfied. But does this condition hold with high probability in

practice? The answer to this question is crucial to the practical

effectiveness of our scheme, which we seek in the following.

In this section, we use L1 to denote L(Vi,j,k) and L2 to

denote L(Ṽi,j,k), respectively, for simplified references. We

assume that the GEVs received by node k are randomly and

independently selected from finite field Fh
q . In this case, L1 is a

span space of f1 vectors randomly selected from Fh
q and L2 is

a span space of f2 vectors randomly selected from Fh
q (Recall

that f1 and f2 are the numbers of GEVs received at k from

generation j of flow i and from other flows, respectively).

A. The Intersection Probability

We prove the lower bound of the probability dim(L1∩L2) 6=
0, for any f1 ≥ 0, f2 ≥ 0 (which is referred to as the

intersection probability), in Theorem 3.

Let

[
m

r

]

q

be the Gaussian binomial coefficient, i.e.,

[
m

r

]

q

= (qm−1)(qm−1−1)···(qm−r+1−1)
(q−1)(q2−1)···(qr−1) , 0 < r ≤ m. We set

[
m

0

]

q

= 1,∀m > 0. We first prove two lemmas.

Lemma 1: For any m × n dimensional matrix B whose

elements are randomly selected from finite field Fq, the prob-

ability that rank(B) = r, 0 ≤ r ≤ min(m,n) is given by:

p1(m,n, r, q) =

[
m

r

]

q

n∏
l=n−r+1

(ql − 1)q
r(r−1)

2 −mn.

Proof: From Theorem 1.10 in [20], the number of m× n

dimensional matrices with rank r, 0 ≤ r ≤ min(m,n)

is:

[
m

r

]

q

n∏
l=n−r+1

(ql − 1)q
r(r−1)

2 . Since the total num-

ber of m × n dimensional matrices is qmn, the proba-

bility that a m × n dimensional matrix has a rank of

r is





m

r





q

n
∏

l=n−r+1

(ql−1)q
r(r−1)

2

qmn =

[
m

r

]

q

n∏
l=n−r+1

(ql −

1)q
r(r−1)

2 −mn.

From Lemma 1, we have p1(m,n, r, q) = p1(n,m, r, q).

Lemma 2: Given a vector space L1 with dim(L1) = r(r ≥
0), if L2 is a vector space spanned by f2 vectors randomly

selected from Fh
q , the probability that dim(L1 ∩ L2) 6= 0 is:

p2(r, f2, h, q) ≥ 1 −

min(f2,h−r)∑

g=0

p1(f2, h − r, g, q)q(g−f2)r.

Proof: Given dim(L1) = r, let the basis of L1

be {v1, · · · ,vr}. Suppose the basis of Fh
q extended by

{v1, · · · ,vr} is V = {v1, · · · ,vh}. Let V be the matrix

formed by vectors in V as its rows. Since matrix V is formed

by the basis of Fh
q , for any vector v0 in Fh

q , there exists a

unique vector α in Fh
q , such that v0 = αV.

A f2 × h dimensional matrix B is formed by f2 vectors
randomly selected in Fh

q as its rows. We can express B as









α1,1 · · · α1,r α1,r+1 · · · α1,h

α2,1 · · · α2,r α2,r+1 · · · α2,h

...
...

...
...

...
...

αf2,1 · · · αf2,r αf2,r+1 · · · αf2,h

















v1

v2

...
vh









= [ Λ1 Λ2 ]V, (5)

where Λ1 denotes a f2 × r dimensional matrix and Λ2 is

a f2 × (h − r) dimensional matrix. Since the first r rows of

V compose the basis of L1, the intersection of L1 and the

row space of matrix B (i.e., L2) is nonzero, iff there exists a

vector [b1, · · · , br][V]r1 in the row space of matrix B, where

[b1, · · · , br] 6= 0 and [V]r1 denotes a matrix formed by the set

of rows in V with indices from 1 to r. This is equivalent to that

dim(L1 ∩ L2) 6= 0, iff the row space of matrix
[

Λ1 Λ2

]

includes a nonzero vector [b1, · · · , br, 0, · · · , 0] of length h,

based on Eq. (5).

Since the f2 row vectors of B are randomly selected from

Fh
q , the row vectors of matrix

[
Λ1 Λ2

]
are randomly

distributed in Fh
q . Consequently, the probability of dim(L1 ∩

L2) 6= 0 equals to the probability that the row space of

matrix
[

Λ1 Λ2

]
, with randomly selected elements from



Fh
q , includes a nonzero vector (b1, · · · , br, 0, · · · , 0) of length

h. The latter further equals to the probability that the row

space of the matrix
[

Λ2 Λ1

]
includes a nonzero vector

[0, · · · , 0, b1, · · · , br] of length h.
By Gaussian elimination, we can derive the row-echelon

form of matrix
[

Λ2 Λ1

]
, rref(

[
Λ2 Λ1

]
), which

has rank(
[

Λ2 Λ1

]
) non-zero rows. The column vec-

tors in
[

Λ2 Λ1

]
, those corresponding to columns in

rref(
[

Λ2 Λ1

]
) containing pivots, form the basis of the

column space of
[

Λ2 Λ1

]
. If the column space of Λ1

(i.e., L(ΛT
1 )) is not a subspace of that of Λ2 (i.e., L(ΛT

2 )),
then the basis of the column space of

[
Λ2 Λ1

]
must

contain at least one column vector from Λ1. Therefore, there
exists an index l where h − r < l ≤ h, such that the lth
column vector in rref(

[
Λ2 Λ1

]
) contains a pivot and the

corresponding row vector in rref(
[

Λ2 Λ1

]
) with that pivot

takes the form of [b′1, · · · , b′l−1, b
′
l, · · · , b′h] with b′n = 0 for

0 ≤ n ≤ l − 1 and b′l 6= 0. Since Gaussian elimination
equals to a series of elementary row operations, we derive
that the row space of

[
Λ2 Λ1

]
contains the nonzero vector

[b′1, · · · , b′l−1, b
′
l, · · · , b′h] with b′n = 0 for 0 ≤ n ≤ l − 1 and

b′l 6= 0. Therefore, if L(ΛT
1 ) * L(ΛT

2 ), then the row space

of matrix
[

Λ2 Λ1

]
includes a nonzero vector of length h

in the form of [0, · · · , 0, b1, · · · , br]. We thus know that the
probability of dim(L1 ∩ L2) 6= 0 is lower bounded by the
probability of L(ΛT

1 ) * L(ΛT
2 ), i.e.,

p2(r, f2, h, q) ≥ P (L(ΛT
1 ) * L(ΛT

2 ))

= 1 − P (L(ΛT
1 ) ⊆ L(ΛT

2 )). (6)

Since the column vectors of Λ1 and Λ2 are randomly and in-
dependently selected from Ff2

q , we derive P (L(ΛT
1 ) ⊆ L(ΛT

2 )):

min(f2,h−r)
∑

g=0

P (rank(ΛT
2 ) = g)P (L(ΛT

1 ) ⊆ L(ΛT
2 )|rank(ΛT

2 ) = g). (7)

If rank(ΛT
2 ) = g, then the number of vectors in L(ΛT

2 ) is

qg . Therefore, when a vector is randomly selected from Ff2
q ,

the probability that it is in L(ΛT
2 ) is qg−f2 . Given a vector

space L(ΛT
2 ), we have L(ΛT

1 ) ⊆ L(ΛT
2 ) iff every row vectors

in ΛT
1 is in L(ΛT

2 ). Since the number of row vectors in ΛT
1 is

r, the probability that every row vectors in ΛT
1 is in L(ΛT

2 ) is

q(g−f2)r, i.e.,

P (L(ΛT
1 ) ⊆ L(ΛT

2 )|rank(ΛT
2 ) = g) = q(g−f2)r.

From Lemma 1, P (rank(ΛT
2 ) = g) = p1(h − r, f2, g, q) =

p1(f2, h − r, g, q). Therefore, Eq. (7) equals to

min(f2,h−r)∑

g=0

p1(f2, h − r, g, q)(
qg

qf2
)r.

Thus, p2(r, f2, h, q) ≥ 1−
min(f2,h−r)∑

g=0
p1(f2, h− r, g, q)q(g−f2)r.

Now we prove the lower bound of the probability that

dim(L1 ∩ L2 6= 0) when L1 is a span space of f1 vectors

randomly selected from Fh
q and L2 is a span space of f2 vectors

randomly selected from Fh
q .

Theorem 3: Let L1 and L2 be span spaces of f1 and

f2 vectors randomly selected from Fh
q , respectively, for any

h, f1, f2 ≥ 0 . The probability dim(L1 ∩ L2) 6= 0 satisfies:

P (dim(L1 ∩ L2) 6= 0)

≥

min(f1,h)∑

r=0

([
f1

r

]

q

h∏

l=h−r+1

(ql − 1)q
r(r−1)

2 −f1h

)
×


1 −

min(f2,h−r)∑

g=0




[
f2

g

]

q

h−r∏

l=h−r−g+1

(ql − 1)q
g(g−1)

2 −f2h+gr





 .

Proof: From Lemma 1, the probability that dim(L1) =
r is p1(f1, h, r, q). From Lemma 2, when dim(L1) = r, the

probability that dim(L1 ∩L2) 6= 0 is p2(r, f2, h, q). Therefore,

P (dim(L1 ∩ L2) 6= 0) =
min(f1,h)∑

r=0
p1(f1, h, r, q)p2(r, f2, h, q)

≥ p3(f1, f2, h, q),

where the lower bound p3(f1, f2, h, q) is defined to be the term

in the right-hand side of the inequality in the theorem.

B. The Influential Parameters

To provide a better idea of the intersection probability

P (dim(L1 ∩ L2) 6= 0) with its deciding parameters, we show

the lower bound derived in Theorem 3 at different values

of f1, f2, h, and q in Fig. 4. Fig. 4 (a) and (b) show that

the probability increases with the increase of f1 and f2,

respectively. 1 The reason is straightforward: when h and q

are fixed, the more GEVs a node receives in the current flow

and in other flows, the larger probability the two vector spaces

L1 and L2 have nonzero intersection.

Fig. 4(c) shows that the probability decreases with the

increase of h, while Fig. 4(d) demonstrates different trends with

the increase of q in different cases. In particular, for ∀f1, f2 >

0, we show below with analysis that: when f1 + f2 ≤ h, this

lower bound probability decreases with the increase of q and

h; when f1 + f2 > h, it increases with the increase of q and

decreases with the increase of h.

If f1 + f2 ≤ h, from Lemma 1, the probability that the

(f1 +f2)×h dimensional matrix formed by the received GEVs

as its rows has full rank, is higher with larger q and h. When

the (f1 + f2) × h dimensional matrix has full rank, the f1 +
f2 GEVs are linearly independent (since f1 + f2 ≤ h), i.e.,

dim(L1∩L2) = 0. Thus, the intersection probability decreases

with the increase of q and h.

If f1+f2 > h, we use V1 to denote Vi,j,k and V2 to denote

Ṽi,j,k. Let V3 =

[
V1

V2

]
. The analysis is shown below [21]:

dim(L1 ∩ L2) = dim(L(V1) ∩ L(V2))

= dim(L(V1)) + dim(L(V2)) − dim(L(V1 ∪ V2))

= rank(V1) + rank(V2) − rank(V3).

1Though not shown in the plots, we note that: in the case of Fig. 4(a), the
probability approaches 1 when f1 > 10; in the case of Fig. 4(b), the probability
goes to zero when f2 < 5 and approaches 1 when f2 > 15.
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Fig. 4. Lower bound of intersection probability P (dim(L1 ∩ L2)) 6= 0, when (a) f2 = 12, q = 2, h = 15; (b) f1 = 3, q = 2, h = 15; (c) f1 = 3, f2 =
12, q = 2; (d) h = 15.

If the f1 GEVs received from generation j of flow i are
linearly independent, and the f2 GEVs received from other
flows are linearly independent, then rank(V1) = min(f1, h),
rank(V2) = min(f2, h), and rank(V3) ≤ h. Then

dim(L1 ∩ L2) = rank(V1) + rank(V2) − rank(V3)

≥ min(f1, h) + min(f2, h) − h

> 0. (since f1 + f2 > h and f1, f2 > 0) (8)

Therefore, if the probabilities that V1 and V2 have full

ranks increase, the probability that dim(L(V1) ∩ L(V2)) > 0
increases. From Lemma 1, the former probabilities increase

with the increase of q and the decrease of h.

The above results can guide the practical selection of field

size (q), the number of messages per generation (h), and the

number of messages to buffer before recoding (f1) in ALNCode,

given the routes of flows decided by the routing protocol

(which determines f2). In general, an intermediate node may

buffer sufficient number of messages with linearly independent

GEVs in generation j of flow i to produce different new coded

messages. When dividing a flow into generations, a reasonably

small h should be chosen to guarantee a good intersection

probability, as well as low decoding complexity. The finite field

size q can then be set accordingly: if many linearly independent

GEVs can be received at each node such that f1 + f2 > h, a

relatively large q can be used, but not too large considering

the communication overhead and decoding complexity; if few

GEVs can be received, we can simply select q = 2 for the best

intersection probability.

V. DISCUSSIONS ON ANONYMITY AGAINST ATTACKS

We now discuss how the proposed ALNCode can practically

provide anonymity against traffic analysis attacks.

A traffic analysis attacker may try to identify the source,

destination, and the path of a flow by analyzing the correlation

among coded packets it observes. In a coded packet, the routing,

flow, and generation information are protected by the secure

routing protocol, and the attacker can only try to identify the

correlation among GEVs along the links.

We show the computational complexity for GEV correlation

analysis at each node the attacker eavesdrops on is very high

in ALNCode. Let the input GEVs at a node be {v1, · · · ,vF }
and an output GEV is v. To find the correlation between v

and all the input GEVs, the attacker needs to solve a system of

linear equations
∑F

l=1 xlvl = v, with F variables, x1, . . . , xF ,

and h equations. If dim(L(
⋃F

l=1 vl)) = R, F − R variables

are designated as free, i.e., they can take any value from Fq,

while the remaining variables are dependent on these free

variables. The dimension of the solution set is F −R. To solve

those equations, the attacker may first use Gaussian elimination

to find the F − R free variables and the linear dependence

among the R remaining variables and the free variables. The

computational complexity is O(Fh min(F, h))). After values of

the F − R free variables are given, the R remaining variables

can be calculated within O(R(F −R)) time. Since the number

of different value combinations of the F − R free variables is

qF−R, the computational complexity to find the solution set is

O(qF−R(Fh)). Therefore, the overall computational complex-

ity to analyze the linear correlation between one output GEV

and all input GEVs is O(Fh min(F, h)) + qF−RR(F − R)).
Note that R ≤ h. If the total number of GEVs received by

each node from different flows, F , is sufficiently large, the

computational complexity grows to infinite.

Even if the attacker obtains the correlation among upstream

and down stream GEVs at a node, the computational com-

plexity to trace the flow back (or forth) to the source (or

destination) grows exponentially, given that each output GEV

in ALNCode is correlated with multiple sets of input GEVs

with high probability. In a network with a large number of

nodes and flows, it is almost computationally impossible for an

attacker to correctly identify the source, destination, and paths

of a flow. Therefore, ALNCode is efficient to defend against

traffic analysis attacks and protect the anonymity of the source,

the destination, and the paths of each flow.

In addition, confidentiality of the message content can also

be protected in ALNCode from any outside attacker, since the

flow and generation information in each coded packet is hidden

by the secure, anonymous routing protocol. Even if an outside

attacker can acquire all the packets transmitted in the network,

it does not know which flow and generation coded packets

belong to, and thus cannot group packets belonging to the same

generation of a flow to decode the original messages.

VI. RELATED WORK

Network coding has been widely explored in recent years,

to achieve the maximum throughput of a network [3]–[5], as

well as to provide information security in a content distribution

network against active modification attacks and passive wire-

tapping attacks [6]–[11], [18]. With respect to defense against

wiretapping attacks, the main focus has been on exploring the

capability of network coding to provide confidentiality of the



message content [9]–[11]. Few efforts have been devoted to

utilizing network coding on communication anonymity.

The concept of anonymous communication between sources

and destinations was first introduced by Chaum et al. [12].

Among all attack models against anonymity, traffic analysis

attack is a major one. There exist a number of approaches on

defending anonymity against traffic analysis attack in traditional

networks without network coding, with three representative

ones: the Crowds approach, the onion routing approach, and

the Mix approach.

Crowds [22] provides a centralized service to randomly select

participants of a network into a group (the “crowd”), which

includes the source. Each message is routed through the crowd

before it is sent to the destination node, such that the attacker

cannot tell which node in the crowd is the original source. In the

onion routing approach [13], the source establishes a path to the

destination through a number of nodes called onion routers, and

encrypts the routing information and message repeatedly with

public keys of the onion routers, in order to prevent any attacker

from learning the path information. With the Mix approach

[14], [15], instead of forwarding each message as it arrives,

an intermediate node, i.e., the Mix node, waits for a random

period of time and then forwards messages it received in mixed

order, so as to hide the time correlation among messages of the

same flow. These existing approaches either require centralized

services, which is not scalable, or demands encryption of whole

messages, which is computationally expensive.

Among the few proposals which utilize LNC for anonymous

communication, we have discussed the work by Fan et al. [1]

and Zhang et al. [2] in Sec. I. Both approaches require central-

ized key distributed services for encryption and decryption of

the GEVs at source and destination, which limits the scalability

of the system. In contrast, we have shown that ALNcode

provides flow anonymity with low computational complexity

in a fully distributed manner.

VII. CONCLUSION

This paper explores the power of linear network coding to

provide flow untraceability against traffic analysis attackers

in networks with multiple unicast flows. An effective LNC

mechanism, ALNCode, is proposed, that protects anonymity

of source, destination, and paths of each flow with a simple

but novel idea: nodes in the network mix the flow correlation

between downstream and upstream packets by generating GEVs

for outgoing coded messages from the common basis of incom-

ing GEVs belonging to multiple flows. A deterministic LNC

scheme is discussed in details that implements the idea. Other

highlights of our contributions include the solid and extensive

theoretical analysis on the existence condition of obfuscated

GEVs, the intersection probability of GEV bases, and the

complexity of our scheme, as well as abundant discussions

on practical settings of influential parameters for the best

effectiveness of our scheme.
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