
A Family of Dunces: Trivial RFID Identification
and Authentication Protocols

Gene Tsudik ?

Computer Science Department
University of California, Irvine

gts@ics.uci.edu

Abstract. Security and privacy in RFID systems is an important and
active research area. A number of challenges arise due to the extremely
limited computational, storage and communication abilities of a typical
RFID tag. This paper describes a step-by-step construction of a family of
simple protocols for inexpensive untraceable identification and authen-
tication of RFID tags. This work is aimed primarily at RFID tags that
are capable of performing a small number of inexpensive conventional (as
opposed to public key) cryptographic operations. It also represents the
first result geared for so-called batch mode of RFID scanning whereby the
identification (and/or authentication) of tags is delayed. Proposed pro-
tocols involve minimal interaction between a tag and a reader and place
very low computational burden on the tag. Notably, they also impose
low computational load on back-end servers.

1 Introduction

RFID technology is rapidly becoming ubiquitous. In the near future, it is ex-
pected to replace barcodes as the most common means of product and merchan-
dise identification. Current and emerging applications range from toll transpon-
ders, passports and livestock/pet tracking devices (on the high end) to miniscule
stealthy tags in everyday items, such as clothing, pharmaceuticals, library books
and so on. Unlike barcodes, RFID tags do not require close physical proximity
between a reader and a scanned object and also do not require a line-of-sight
communication channel. Furthermore, RFID tags’ smaller form factor takes up
less valuable packaging “real estate”. However, current and emerging RFID pro-
liferation into many spheres of everyday life raises numerous privacy and security
concerns.

One of the main issues has to do with malicious tracking of RFID-equipped
objects. While tracking RFID tags is typically one of the key features and goals
of a legitimate RFID system (e.g., in a supply-chain environment) unauthorized
tracking of RFID tags is viewed as a major privacy threat.

? An earlier (and much shorter) version of this paper appeared in [1]. This paper
includes substantial revisions, enhancements and extensions to [1].



In general, in-roads recently made by the RFID technology have prompted
some public discontent and controversy. Privacy advocates have pointed out
some sinister consequences of malicious tag tracking.

This paper describes a protocol family for inexpensive untraceable identifi-
cation and authentication of RFID tags. Untraceable means that it is computa-
tionally infeasible to infer – from interactions with a tag – information about
the identity of the tag or link multiple authentication sessions of the same tag.
Proposed protocols are inexpensive, requiring as little as one light-weight cryp-
tographic operation on the tag and storage for one key. They are particularly
well-suited for the batch mode of tag identification whereby a reader interro-
gates a multitude of tags and later identifies/authenticates them in bulk. Fur-
thermore, real-time computational load on the back-end sever is minimal due to
the simple pre-computation technique described below.

1.1 Operating Environment

The adversary, in our context, can be either passive (e.g., eavesdropper) or active
(e.g., impersonator). It can corrupt or, attempt to impersonate, any entity and
we assume that its primary goal is to track RFID tags. (In other words, we say
– informally – that the adversary succeeds if it manages, with non-negligible
probability over 50%, to link multiple authentication sessions of the same tag.)
We point out from the start that we do not initially consider forward security –
adversary’s inability to link or trace prior manifestations of a tag in the event of
complete tag compromise. At the same time, compromise of a set of tags should
not lead to the adversary’s ability to track other tags (except by distinguishing
among the two sets). Furthermore, our initial goals do not include resistance
to denial of service (DoS) attacks, e.g., attacks that aim to disable the tags.
However, we outline out some DoS-resistant solutions later in the paper.

The legitimate entities are: tags, readers and servers. A reader is a device
querying tags for identification information. A server is a trusted entity that
knows and maintains all information about tags, their assigned keys and any
other such information. A server is assumed to be physically secure and not
subject to attacks. Multiple readers are assigned to a single server. A server
only engages in communication with its constituent readers. For simplicity, we
assume a single logical server that might resolve to multiple physically replicated
servers. All communication between a server and its readers is assumed to be
over private and authentic channels. Furthermore, servers and readers maintain
loosely synchronized clocks. Both readers and server have ample storage,
computational and communication abilities. (However, in some cases, readers
may not be able to communicate with servers in real time; see below.)

We assume that an RFID tag has no clock and small amounts of ROM (e.g.,
to store a key) and non-volatile RAM (to store ephemeral state, such as a counter
or time-stamp). With power supplied by a reader – whether contact or contact-
less – a tag is able to perform a modest amount of computation and commit any
necessary state information – of small constant length – to non-volatile storage.



1.2 Goals

As usual, our goals are to minimize everything, including:

1. non-volatile RAM on the tag
2. code (gate count) complexity
3. tag computation requirements
4. number of rounds in reader-tag interaction1

5. message size in reader-tag interaction
6. server real-time computation load
7. server storage requirements

It is easy to see that the first three items directly influence tag cost. Also, the
4th item (number of rounds and messages) is important since more rounds imply
more protocol logic and, hence, higher complexity and gate count. In fact, having
more than two rounds in reader-tag interaction implies that the tag MUST keep
soft state while the protocol executes. This would necessitate either bigger non-
volatile RAM or continuous power from the reader (while the protocol executes)
to store soft state in volatile RAM.

Finally, we need to avoid features currently not realistic for most low-cost
RFID tags, such as public key cryptography, tamper-resistant shielding or an
on-board clock.

1.3 Modes of Operation

We consider two modes of tag identification: real-time and batch. Here we make
an assumption that the back-end server is necessary as a reader is unable to
identify/authenticate tags on its own, primarily because of the scale, i.e., large
numbers of deployed tags. In situations where this assumption is false, the dis-
cussion in this section does not apply. For example, one could imagine an RFID-
equipped driver’s license reader carried by law enforcement officers which is
capable of storing information about all locally-issued driver’s licenses, e.g., on
the order of tens of millions. (Also, some recent work [16] shows how to perform,
under some circumstances, serverless RFID authentication.)

The real-time mode is the one typically considered in the literature: it involves
on-line contact between the reader and the server, in order to quickly identify
(and, optionally, authenticate) the tag in question. If immediate feedback about
a tag is needed – e.g., in facility access, retail or library check-out scenarios –
the server must be contacted in real time.

In batch mode, a reader scans numerous tags, collects replies and sometime
later performs their identification (and optionally, authentication) in bulk. From
the security perspective, the batch mode seems relevant wherever immediate

1 We use the term “interaction” – as opposed to “protocol” – since the actual tag
authentication protocol may involve interaction between a reader and a server, in
addition to that between a tag and a reader. We are understandably less concerned
about the complexity of the former.



detection of fraudulent/counterfeit tags is not the the highest-priority issue and,
instead, emphasis is on security against fraudulent readers. In practical terms,
however, the batch mode is appropriate when circumstances prevent or inhibit
contacting the back-end server in real time. For example, consider an inventory
control application, where readers are deployed in a remote warehouse and have
no means of contacting a back-end server in real time. More generally, some of
the following factors might prompt the use of the batch mode:

– The server is not available in real time, either because it is down, discon-
nected or because readers do not have sufficient means of communication.

– The server is available, but is over-loaded with requests, causing response
time to be jittery, thus making each tag interrogation instance unacceptably
slow.

– The server is available and not over-loaded but is located too far away,
causing response time to be too long. (Or, the network is congested, which
cause unacceptable delays).

– A mobile/wireless reader has limited resources and, in order to conserve
battery power, simply can not afford to contact the server for each scanned
tag.

1.4 Tag Requirements

Each tag RFIDi is initialized with at least the following values:

Ki, T0, Tmax

Ki is a tag-specific value that serves two purposes: (1) tag identifier, and (2)
cryptographic key. Thus, its size (in bits) must be the greater of that required
to uniquely identify a tag (i.e., a function of the total number of tags) and that
required to serve as sufficiently strong cryptographic key for the purposes of
Message Authentication Code (MAC) computation. In practice, a 160-bit Ki

will most probably suffice.
T0 is the initial timestamp assigned to the tag. This value does not have to be

a discrete counter, per se. For example, T0 can be the time-stamp of manufacture.
T0 need not be tag-unique; an entire batch of tags can be initialized with the
same value. The bit-size of T0 depends on the desired granularity of time and the
number of times a tag can be authenticated. Tmax can be viewed as the highest
possible time-stamp. Like T0, Tmax does not need to be unique, e.g., a batch of
tags can share this value.

Each tag is further equipped with a sufficiently strong, uniquely seeded
pseudo-random number generator (PRNG). In practice, it can be resolved as
an iterated keyed hash (e.g., HMAC) started with a random secret seed and
keyed on Ki. For a tag RFIDi, PRNGj

i denotes the j-th invocation of the
(unique) PRNG of that tag. No synchronization whatsoever is assumed as far as
PRNG-s on the tags and either readers or servers. In other words, given a value
PRNGj

i , no entity (including a server) can recover Ki or any other information
identifying RFIDi. Similarly, given two values PRNGj

i and PRNGk
j , deciding

whether i = j must be computationally infeasible.



2 A Family of Dunces: YA-TRIP, YA-TRAP and
YA-TRAP*

In this section, we introduce our main idea, based on the use of monotonically
increasing time-stamps. We then present three protocols, starting with YA-TRIP
which only offers efficient tag identification, continuing with YA-TRAP which
also provides tag authentication, and concluding with YA-TRAP* which, in
addition, incorporates DoS resistance features.

2.1 The Main Idea

The main idea of our proposal is the use of monotonically increasing time-
stamps2 to provide tracking-resistant (anonymous) tag authentication. The use
of timestamps is motivated by the old result of Herzberg, et al. [6], which we
briefly summarize next.

The work in [6] considered anonymous authentication of mobile users who
move between domains, e.g., in a GSM [13] cellular network or a wired Kerberos-
secured [12] internetwork. The technique in [6] involves a remote user identifying
itself to the host domain by means of an ephemeral userid. An ephemeral userid
is computed as a (collision-resistant, one-way) hash of current time and a secret
permanent userid.

A trusted server in the user’s “home” domain maintains a periodically up-
dated hash table where each row corresponds to a traveling user. The length of
the update interval is a system-wide parameter, e.g., one hour. The table can
be either pre-computed or computed on-the-fly, as needed. Each row contains a
permanent userid and a corresponding ephemeral userid. When a request from
a foreign agent (e.g., Kerberos AS/TGS3 in a remote domain or VLR4 in a
GSM setting) comes in, the home domain server looks up the ephemeral userid
in the current table. (Since hash tables are used, the lookup cost is constant.)
Assuming that timestamp used by the (authentic) traveling user to compute
the ephemeral userid is reasonably recent (accurate), the hash table lookup is
guaranteed to succeed. This allows a traveling user to be authenticated while
avoiding any tracing by foreign agents or domains.

One of the main advantages of this approach is that the home domain server
does not need to compute anything on demand, as part of each request pro-
cessing. Instead, it pre-computes the current hash table and waits for requests
to come in. The cost of processing a request amounts to a table lookup (con-
stant cost) which is significantly cheaper than a similar approach using nonces
or random challenges. In the latter case, the server would need to compute an
entire table on-the-fly in order to identify the traveling user. As time goes by,
an ephemeral userid table naturally ‘expires’ and gets replaced with a new one.
This is the main feature we would like to borrow for tag authentication purposes.

2 No other type of counters or sequence numbers will do.
3 Authentication Server / Ticket Granting Server.
4 Visitor Location Registry.



Although the technique from [6] works well for traveling/mobile users, it is
not directly applicable to the envisaged RFID environment. First, a mobile user
can be equipped with a trusted personal device that keeps accurate time. It can
be as simple as a wristwatch or as sophisticated as a PDA. (Moreover, even
without any trusted device, a human user can always recognize grossly incorrect
time, e.g., that which is too far into the future.) Such a device can be relied
upon to produce reasonably accurate current time. An RFID tag, on the other
hand, cannot be expected to have a clock. Thus, it is fundamentally unable to
distinguish among a legitimate and a grossly inaccurate (future) time-stamp.

However, if the tag keeps state of the last time-stamp it “saw” (assuming it
was legitimate), then it can distinguish between future (valid) and past (invalid)
time-stamps. We capitalize on this observation and rely on readers to offer a
putatively valid timestamp to the tag at the start of the identification protocol.
A tag compares the time-stamp to the stored time-stamp value. If the former
is strictly greater than the latter, the tag concludes that the new time-stamp
is probably valid and computes a response derived from its permanent key and
the new timestamp. A tag thus never accepts a time-stamp earlier than – or
equal to the one stored. However, to protect against narrowing attacks5, even if
the timestamp supplied by the reader pre-dates the one stored, the tag needs to
reply with a value indistinguishable from a normal reply (i.e., a keyed hash over
a valid timestamp). In such cases, the tag replies with a random value which is
meaningless and cannot be traced to the tag even by the actual server.

2.2 YA-TRIP: Yet Another Trivial RFID Identification Protocol

We now present the first protocol (YA-TRIP) which provides only the very basic
service – efficient tag identification. The protocol is illustrated in Figure 1.
Remark: We note that MACs based on keyed hashes are a fairly simple and
general technique which has been used in other RFID-related contexts, e.g., [19].
Although YA-TRIP and its extensions described below use such standard MACs,
it is worth noting that more efficient constructs have been proposed, e.g., Juels’
light-weight MAC scheme in [19]. Also, the use of PRNGs to obfuscate the tag
identity was first introduced by Weis, et al. [18].

The important part of the protocol encompasses steps 1-3. It consists of only
two rounds and two messages. The size of the first message determined by Tr

and the second – by Hid. In each case, the size is no greater than, say, 160 bits.
Note that Hid computed in step 2.3.2 and sent in step 3 does not actually

authenticate the tag in the sense of the tag actually being present. What step
2.3.2 achieves is a weaker notion which we call “identification”. It proves that
at some point, perhaps far in the past, the tag was involved in a protocol (with
a legitimate or a rogue reader) wherein it received, and replied to, the value Tr.

5 Informally, a narrowing attack occurs when the adversary queries a tag with a partic-
ular timestamp and then later tries to identify the same tag by querying a candidate
tag with a timestamp slightly above the previous one.



[1] Tag ←− Reader: Tr

[2] Tag:a

– [2.1] δ = Tr − Tt

– [2.2] if (δ ≤ 0) or (Tr > Tmax)
– [2.2.1] Hid = PRNGj

i

– [2.3] else
– [2.3.1] Tt = Tr

– [2.3.2] Hid = HMACKi
(Tt)

[3] Tag −→ Reader: Hid

In real-time mode, the following steps take place immediately
following Step 3. In batch mode, they are performed later.

[4] Reader −→ Server: Tr, Hid

[5] Server:
– [5.1] s = LOOKUP (HASH TABLETr , Hid)
– [5.2] if (s == −1)
– [5.2.1] MSG=TAG-ID-ERROR
– [5.3] else
– [5.3.1] MSG=TAG-VALID /* can return G(Ks) instead */

[6] Server −→ Reader: MSG

a Note that it is imperative for the respective times taken by steps 2.2 and 2.3 to be
as close as possible. This is needed to prevent obvious timing attacks by malicious
readers (aimed at distinguishing among the two cases). This is the reason for PRNG
to be resolved as described in Section “Tag Requirements” above.

Fig. 1. YA-TRIP: Tag Identification

In other words, the tag’s reply in step 3 could be pre-recorded and replayed by
the adversary.

Recall that we assume private and authentic channels between readers and
the back-end server. Moreover, a server is assumed to “talk” only to non-compromised
(non-malicious) readers. This pertains to steps 4 and 6 above. Note also that the
specifics of step 5.3 depend on the application requirements. If the application
allows genuine readers to identify/track valid tags, the server could return a
meta-id of the tag: G(Ks) where G(.) is a suitable cryptographic hash with the
usual features. Otherwise, it suffices to simply inform the reader that the tag in
question is valid, as shown in Step 5.3.1 in Figure 1.

In batch mode, the reader interrogates a multitude of tags, collects their re-
sponses and, at a later time, off-loads the collected responses, along with the
corresponding Tr value(s) to the server. (Note that, if tag responses are col-
lected over multiple time intervals, the reader needs to group responses according
to the Tr value used.) The server then needs to identify the tags. In this set-



ting, YA-TRIP is highly advantageous. Even currently most efficient techniques
such as the MSW protocol [2], require the server to perform O(log n) pseudo-
random function (PRF) operations to identify a single tag. This translates into
O(n ∗ log n) operations to identify n tags. Whereas, YA-TRIP only needs O(n)
operations for the same task (since the same Tr-specific hash table is used for
all lookups and each lookup takes constant time).

2.3 Drawbacks

The YA-TRIP protocol, as presented above, has some potential drawbacks.
First, YA-TRIP does not provide tag authentication – it merely identifies a

tag. In order to authenticate itself, a tag needs to reply to a random challenge by
the reader. Obviously, Tr is not random, thus, the reply in step 3 only identifies
the tag. To remedy this, we extend the protocol in section 2.4.

Second, YA-TRIP is susceptible to a trivial denial-of-service (DoS) attack:
an adversary sends a wildly inaccurate (future) time-stamp to a tag and incapac-
itates it either fully (if the time-stamp is the maximal allowed) or temporarily.
Although DoS resistance is not one of our initial goals, it is an important issue.
We address it in section 2.5.

Third, the protocol does not offer reader authentication or identification. We
do not consider this to be a drawback but a feature. Viewed from the application
perspective, the main purpose of reader/tag interaction is to identify (and, op-
tionally, authenticate) the tag. While a number of previously proposed protocols
manage (or attempt) to let the tag authenticate the reader, we claim that this is
ultimately a waste of time and resources. The reason for this claim is two-fold:

1. MORE ROUNDS: Authenticating a reader requires at least a three rounds
and three protocol messages; whereas, YA-TRIP is a two-round two-message
protocol. It is easy to see why a minimum of three rounds would be needed:
the reader always initiates interaction (round 1), the tag generates a chal-
lenge and sends it to the reader (round 2), and, the reader replies to the
challenge (round 3). Moreover, if the tag does not identify (and authenti-
cate) itself to the reader until the reader first authenticates itself to the tag,
a fourth round (and a fourth) message becomes necessary.

2. TAG STATE: To authenticate a reader, the tag MUST “remember” the
challenge it sends to the reader. This challenge represents state that must
be kept by the tag between rounds 2 and 3. However, this brings up the
possibility of the reader’s reply never arriving, i.e., what happens if the
protocol does not complete? The tag winds up in a state of “tilt” and requires
additional logic to recover. All this translates into needing more resources
on the tag.

Finally, the protocol makes an important assumption that a given tag is never
authenticated (interrogated) more than once within the same interval. This has
some bearing on the choice of the interval. A relatively short interval (e.g., a
second) makes the assumption realistic for many settings. However, it translates



into heavy computational burden for the server, i.e., frequent computation of
ephemeral tables. On the other hand, a longer interval (e.g., an hour) results
in much lower server burden, albeit, it may over-stretch our assumption, since
a tag may need to be interrogated more than once per interval. One solution
is to sacrifice some degree of untraceability in favor of increased functionality,
i.e., allow a tag to iterate over the same time value (accept Tr = Tt) a fixed
number of times, say k. This would entail storing an additional counter on the
tag; once the counter for the same Tt reaches k, the tag refuses to accept Tr = Tt

and starts responding with random values as in Step 2.2 in the protocol. The
resulting protocol would be k-traceable – an adversary would be able to track
a tag over at most k sessions, with the same Tr value. (Note that the adversary
can track actively, by interrogating the tag, or passively, by eavesdropping on
interactions between the tag and valid readers.)

2.4 YA-TRAP: Adding Tag Authentication

Adding tag authentication to YA-TRIP is easy, requiring a few minor protocol
changes. First, we amend the initial reader→tag message to include a random
challenge Rr. Then, we include a MAC of both (reader and tag) challenges in
the tag’s reply message. Later, once the tag is identified by the server, it can be
authenticated by verifying the MAC. The identification step is the same as in
YA-TRIP. The resulting protocol (YA-TRAP) is shown in Figure 2.

Once the server identifies the tag (via LOOKUP ), the extra cost of authen-
ticating it is negligible amounting to one HMAC operation. The additional cost
for the tag in YA-TRAP consists of one PRNG invocation and one HMAC to
compute Hauth.

Introducing Hauth into the protocol serves another useful purpose. In the
event that the tag has been previously de-synchronized (incapacitated) by a
rogue reader and its Tt value has been set far into the future, Hauth alone can be
used as a fall-back in order to identify and authenticate the tag. However, this
would require the server to perform O(n) operations – for each tag 0 ≤ j < n,
compute HMACKj

(Rt, Rr) and compare with Hauth. This side-benefit of Hauth

is useful in mitigating DoS attacks. On the other hand, it puts a much heavier
load on the server which is arguably unimportant in the batch mode. Whereas, if
used in real time mode, an adversary who is observing (and timing) tag-reader
interaction might be able to discern a tag that has been previously desynchro-
nized. Consider the environment where a successful reader-tag interaction results
in some observable event, e.g., a door or a turnstile opens. Now, the adversary
can measure the delay between the tag→ reader message (step 3 in Figure 2)
and the observable event (which takes place after step 6). In the context of a
previously desynchronized tag, this delay would be appreciably longer than that
with a normal (synchronized) tag. Short of artificially padding the delay for all
tags to be the same as for a desynchronized tag (which is clearly undesirable),
there does not appear to be a workable solution.



[1] Tag ←− Reader: Tr, Rr

[2] Tag:
– [2.1] δ = Tr − Tt

– [2.2] if (δ ≤ 0) or (Tr > Tmax)
– [2.2.1] Hid = PRNGj

i

– [2.3] else
– [2.3.1] Tt = Tr

– [2.3.2] Hid = HMACKi
(Tt)

– [2.4] Rt = PRNGj+1
i

– [2.5] Hauth = HMACKi
(Rt, Rr)

[3] Tag −→ Reader: Hid, Rt, Hauth

– THEN, LATER:
[4] Reader −→ Server: Tr, Hid, Rr, Rt, Hauth

[5] Server:
– [5.1] s = LOOKUP (HASH TABLETr , Hid)
– [5.2] if (s == −1)
– [5.2.1] MSG=TAG-ID-ERROR
– [5.3] else if (HMACKs(Rt, Rr) 6= Hauth)
– [5.3.1] MSG=TAG-AUTH-ERROR
– [5.4] else MSG=TAG-VALID

[6] Server −→ Reader: MSG

Fig. 2. YA-TRAP: Tag Authentication

We point out that the step from YA-TRIP to YA-TRAP is identical to that
in the work of Juels [17] where the same idea was used in a somewhat different
context.

2.5 YA-TRAP*: Adding DoS Resistance

Both YA-TRIP and YA-TRAP are susceptible to DoS attacks whereby a rogue
reader can easily incapacitate a tag by feeding it a “futuristic” (or even maxi-
mum) Tr value. Although it is not one of our initial goals (our emphasis is on
efficient identification and authentication), we recognize that DoS resistance is
an important issue in practice. Therefore, we now show how to extend YA-TRAP
to mitigate Denial-of-Service (DoS) attacks aimed at incapacitating tags.

DoS attacks on YA-TRIP/YA-TRAP are possible because a tag has no means
to distinguish a realistic (more-or-less current) time-stamp Tr from one that is
too futuristic. Since adding a clock to a tag is not an option, we need to rely on
external means of establishing timeliness.

Our approach to timeliness requires a reader to present an epoch token each
time it queries a tag, as part of the initial reader→tag message. The epoch token



allows a tag to ascertain that the reader-supplied Tr is not too far into the future.
This token changes over time, but its frequency of change (epoch) is generally
much slower than the unit of Tr or Tt time-stamps. For example, Tt and Tr

are measured in minutes, whereas, the epoch token might change daily. The
main idea is that a current epoch token can be used to derive past epoch tokens
but cannot be used to derive future epoch tokens. A malicious or compromised
reader might possess the current token but will not obtain future tokens. Also,
since the epoch token changes slower than the time-stamp, multiple genuine
interactions between one or more readers and the same tag might use the same
epoch token but different (increasing) Tr values. We envisage the trusted server
serving as the distribution point for epoch tokens. Upon (or near) each epoch,
the server delivers (or securely broadcasts) the appropriate epoch token to all
genuine readers.

The choice of the epoch duration directly influences the degree of vulnera-
bility to DoS attacks. If the epoch is too long (e.g., a month), a rogue reader
would be able to put tags out of commission for at most a month. (Note that
the current epoch token is not secret; see below.) In contrast, if the epoch is
very short (e.g., a minute), a tag might be out of service for at most a minute,
however, the frequency of update becomes problematic since each reader would
need to obtain the current epoch token from the trusted server or some other
trusted repository.

The protocol (YA-TRAP*) is illustrated in Figure 3. DoS resistance in YA-
TRAP* is obtained by introducing a much abused and over-used cryptographic
primitive – a hash chain. A hash chain of length z is generated by starting with
an initial value (say, X) and repeatedly hashing it z times to produce a root
Hz(X). The trusted (and, in batch mode, off-line) server is assumed to have
initialized and generated the hash chain.

In addition to values mentioned in Section 1.4, each tag is initialized with a
root of the hash chain ET0 = Hz(X) of length z = Tmax/INT where Tmax is
as defined in Section 1.4 and INT is the epoch duration, e.g., one day.

At any given time, a tag holds its last time-stamp of use Tt and the its last
epoch token of use ETt. (Note that “last” does not mean current or even recent; a
tag may rest undisturbed for any period of time). When a reader queries a tag (in
step 1), it includes ETr, the current epoch token. The tag calculates the offset of
ETr as ν in step 2.2. Assuming a genuine reader, this offset represents the number
of epochs between the last time the tag was successfully queried and ETr. If Tr is
deemed to be plausible in the first two OR clauses of step 2.3, the tag computes
ν successive iterations of the hash function H() over its prior epoch token ETt

and checks if the result matches ETr. In case of a match, the tag concludes that
Tt is not only plausible but is at most INT time units (e.g., one day) into the
future. Otherwise, the tag assumes that it is being queried by a rogue reader
and replies with two random values: PRNGj

i and PRNGj+1
i , indistinguishable

from Hid = HMACKi
(Tt) and HMACKi

(Rt, Rr), respectively.
We note that, even if Hν(ETt) matches ETr, the tag cannot determine

whether Tr and ETr are current. The tag can only conclude that Tr is strictly



greater than Tt and Tr corresponds to the same epoch as ETr. We claim that
this feature has no bearing on the security of YA-TRAP*. Since the tag has
no clock, it cannot possibly distinguish between current and past-but-plausible
values or Tr and ETr. It can, however, establish with certainty that it has never
replied to the same Tr before and that the epoch corresponding to ETr is at
most current (i.e., not future).

Another detail is that the purpose of Step 2.3.2 in Figure 3 is to inhibit
the adversary’s (whether a passive eavesdropper or a malicious reader) ability
to differentiate between valid and invalid reader input, from the tag’s point of
view. However, it is NOT the purpose of Step 2.3.2 to obscure the value of ν
(see Section 2.6 below).

[1] Tag ←− Reader: Tr, Rr, ETr

[2] Tag:
– [2.1] δ = Tr − Tt

– [2.2] ν = b Tr/INT c − b Tt/INT c
– [2.3] if (δ ≤ 0) or (Tr > Tmax) or (Hν(ETt) 6= ETr)
– [2.3.1] Hid = PRNGj

i ;

– [2.3.2] Hauth = PRNGj+1
i /* dummy step to kill time */

– [2.3.3] Hauth = PRNGj+2
i

– [2.4] else
– [2.4.1] Tt = Tr

– [2.4.2] ETt = ETr

– [2.4.3] Hid = HMACKi
(Tt)

– [2.4.4] Rt = PRNGj+1
i

– [2.4.5] Hauth = HMACKi
(Rt, Rr)

Steps [3-6] are the same as in YA-TRAP

Fig. 3. YA-TRAP*: DoS Resistance

Remaining DoS Attacks: DoS resistance in YA-TRAP* is limited by the mag-
nitude of the system-wide INT parameter. Once revealed by the server and
distributed to the genuine readers, the current epoch token ETr is not secret;
it can be easily snooped on by the adversary. Therefore, the adversary can still
incapacitate tags (however many it has access to) for at most the duration of
INT if it queries each victim tag with the current epoch token and the maximum
possible Tr value within the current epoch. We consider this kind of a limited
DoS attack to be a relatively small price to pay.



2.6 Discussion and Extensions

Forward Security: None of the aforementioned protocols is forward-secure [15,
14]. Forward security would require periodic key evolvement. If the tag’s key
(Ki) evolves in a one-way fashion (e.g., via as suitable hash function), then, an
adversary who compromises a tag at time T cannot identify/link prior occur-
rences of the same tag. We view forward security as a feature orthogonal to our
main design goals. However, it is relatively easy to add forward security to all
three protocols; we sketch this out in the context of YA-TRAP* (refer to Figure
3):

– Introduce an additional operation for the tag:
– [2.4.6] Kν

i = Hν(Ki)
– Change the way the server computes ephemeral tables:

– Recall that, for each time-stamp Tc, the server pre-computes a table, where
each entry corresponds to a unique tag i. Instead of computing each table
entry as: HKi

(Tc), the server computes it as: HKν
i
(Tc) where ν = b Tc/INT c

As a result of this simple modification, the tag’s key is evolved one per epoch
determined by INT and forward security is trivially achieved. The extra cost is
due to the ν hash operations on the tag in step 2.4.6. If a tag i is compromised
during epoch j, its key Kj

i is j-th evolution of the original key K0
i . Due to

one-way key evolvement, knowledge of Kj
i makes The adversary is faced with

the following decision problem: given Kj
i , distinguish HMACKs

i
(Rt, Rr) from a

random value.

Timing Attacks We claim that YA-TRIP and YA-TRAP are immune to crude
timing attacks that aim to determine the tag’s state (whether it is desynchro-
nized) or its Tt value. From the timing perspective, Steps 2.2 and 2.3 in Figures
1 and 2) are indistinguishable since PRNG and HMAC are assumed to execute
in the same time. However, YA-TRAP* is clearly vulnerable to timing attacks.
Note that the execution the last OR clause in step 2.3 in Figure 3 is dependent
upon the offset of Tr which can be freely selected by the adversary. Consequently,
the adversary can mount a timing attack aimed at determining the epoch corre-
sponding to the tag’s last time-stamp of use (Tt). This is because the number of
repeated hash operations in step 2.3 is based on ν = b Tr/INT c − b Tt/INT c.
One obvious countermeasure is to artificially “pad” the number of iterated hashes
or introduce a random delay in tag’s reply to the reader. However, we consider
such countermeasures to be counterproductive as they increase protocol execu-
tion time which is undesirable, especially in batch mode.

As pointed out by Juels and Weis [10], YA-TRAP+ proposed by Burmester,
et al. [4] (as well as our YA-TRAP) is susceptible to timing attacks whereby the
adversary can distinguish between these two cases: (1) normal, synchronized tag
and (2) desynchronized tag, based on timing on the server side. This is possible
because (1) requires the server to perform a quick table lookup, whereas, (2)
requires it to perform a brute-force search. This attack is only applicable in real-
time mode since server operation in batch mode is not subject to being timed
by the adversary.



2.7 Efficiency Considerations

We now consider the respective costs of the three protocols described above.
YA-TRIP is very efficient for tags. When an acceptable Tr is received, the

computational burden on the tag is limited to a single keyed hash computation
(e.g., an HMAC). Otherwise, a tag is required to generate a pseudo-random value
(via PRNG), which, as discussed earlier, also amounts to a single keyed hash.
Again, we stress that the two cases are indistinguishable with respect to their
runtime. The reader is not involved computationally in YA-TRIP, YA-TRAP or
YA-TRAP*, since it neither generates nor checks any values.

YA-TRAP requires a tag to perform two extra keyed hash operations (for a
total of three): one to produce Rt in step 2.4 and the other – to compute Hauth

in step 2.5.
In YA-TRAP*, a tag also performs three keyed hash operations (in either

step 2.3 or 2.4) and, in addition, needs to compute ν hashes over ETt. However,
we stress that, in normal operation, ν is typically either zero or one. (Note that,
if ν = 0, the notation H0(ETt) resolves to ETt).

In all three protocols, although the computational load on the server is rel-
atively heavy, most of the work is not done in real time. The real-time (on
demand) computation amounts to a simple table look-up. The server can pre-
compute ephemeral tables at any time. The amount of pre-computation depends
on available storage, among other factors.

The efficiency with respect to server load can be illustrated by comparison.
One simple and secure approach to untraceable tag identification and authenti-
cation entails the reader sending a random challenge Rr to the tag and the tag
replying with keyed hash (or encryption) of the reader’s challenge Rr and the
tag’s own nonce/challenge Rt, e.g., Hid−auth = HMACKi

(Rr, Rt). . The reader
then forwards the reply – comprised of Hid−auth, Rr and Rt – to the server. In
order to identify the tag, the server needs to perform O(n) on-line keyed hashes
(or encryption operations), where n is the total number of tags. Although, on
the average, the server only needs to perform n/2 operations to identify the
tag, the work is essentially wasted, i.e., it is of no use for any other protocol
sessions. Whereas, in our case, one ephemeral table can be used in the context
of numerous (as many as n) protocol sessions.

The same issues arise when comparing YA-TRIP with the work of Molnar,
et al. [2]. Although the MSW protocol from [2] is much more efficient than the
näıve scheme we compared with above, it requires the tag to store O(logn) keys
and perform O(logn) pseudo-random function (PRF) operations (each roughly
equivalent to our keyed hash). In contrast, YA-TRIP only requires a single key
on the tag and a single PRF.

As far as cost considerations, our requirement for (small) non-volatile RAM
on the tag elevate the cost above that of cheapest tag types, i.e., less than 10
cents per tag. In this sense, YA-TRIP is more expensive than the one of the
MSW protocols which does not require any non-volatile RAM (it only needs a
physical random number generator). The other protocol presented in [2] requires
tags to have non-volatile storage for a counter.



2.8 Security Analysis?

No formal security analysis of YA-TRIP, YA-TRAP and YA-TRAP* is included
in this paper. However, we note that the security analysis in [6] is directly ap-
plicable to YA-TRIP. With respect to YA-TRAP, its extra feature of tag au-
thentication is orthogonal to tag identification in YA-TRIP. In fact, if we strip
tag identification from YA-TRAP, it becomes a trivial two message one-way
authentication protocol whereby a tag simply replies to a challenge from the
reader (Rr) with HMACKi

(Rt, Rr) which is further randomized with tag’s own
nonce Rt. The security of this kind of authentication has been considered in the
literature.

Security of YA-TRAP* is less clear. It offers limited DoS-resistance by check-
ing the validity of the proffered epoch token (ETr). As pointed out above (at
the end of Section 2.5), YA-TRAP* still permits some limited DoS attacks and
the degree to which such attacks are possible is based on INT – the duration of
the authorization epoch. We consider this to be a reasonable trade-off between
security and functionality.

Some recent work by Juels and Weiss [10] examined the properties of YA-
TRIP as it originally appeared in [1]. They conclude that, in YA-TRIP, the
adversary can easily “mark” a victim tag by feeding it an arbitrary future time-
stamp (Tr) and later recognize/identify the same tag seeing whether it fails in an
interaction with a genuine reader. This “attack” makes two assumptions: (1) that
the success or failure of tag-reader interaction is observable by the adversary and
(2) that the desynchronized tag(s) is/are unique. While the second assumption
is perhaps realistic, the first one is not, at least in many practical settings. The
first assumption is unrealistic in, for example, warehouse or inventory settings or
wherever the interaction concludes without some publicly visible effect (such as
a door opening). We also note that, even if both assumptions hold, the claimed
attack has limited effect in the context of YA-TRAP* due to the DoS-resistance
feature.6

3 Related Work

There is a wealth of literature on various aspects of RFID security and privacy;
see [11] for a comprehensive list. We consider only related work that seems
relevant for comparison with our approach, i.e., protocols that emphasize efficient
server computation, involve minimal 2-round reader-tag interaction, and aim to
reduce tag requirements and computation. (Of course, this rules out some other
notable and useful results.)

The first notable result is the set of MSW protocols by Molnar, et al. [2]
which we use in section 2.7 above in comparing the efficiency of our protocols.
The approach taken is to use hierarchical tree-based keying to allow for gradual
and efficient tag identification/authentication. Tree-based keying involves a tree

6 We say “limited” since the attacker can still mark and recognize a tag, but, only
within a single epoch.



of degree k and depth t = logk(n) where n is the total number of tags. Each
tag holds t = logk(n) distinct keys and, upon being challenged by a reader,
responds with t MACs each based on a different key. The server can then iden-
tify/authenticate a tag with O(logk(n)) complexity. YA-TRIP and YA-TRAP
are more efficient for tags in terms of computation and storage since the num-
ber of on-tag cryptographic operations (1 and 2, respectively) and tag storage
requirements (1 key in each) are independent of the total number of tags. YA-
TRAP* is less efficient: 3 cryptographic operations plus ν hashes to validate the
epoch token. However, in normal operation, ν is either zero or one. (It is zero
since a tag might be successfully and legitimately queried many times within one
epoch.) MSW protocols appear more efficient on the server side since t << n.
Nonetheless, if O(n) sensors are queried with the same Tr value, the total server
cost of MSW is O(n · logk(n)). In contrast, our server cost is always O(n) regard-
less of the number of tags queried. MSW protocols also have a security “feature”
whereby an adversary who compromises one tag, is able to track/identify other
tags that belong to the same families (tree branches) as the compromised tag.
This vulnerability of MSW protocols has been explored by Avoine, et al. [9].
The same concern does not arise in our protocols since no two tags share any
secrets. Finally, we note that MSW protocols are not easy to amend in order to
support forward security.

Based in part on the early (and preliminary) version of this work [1], Burmester,
et al. [4] came up with a secure universally-composable framework for RFID pro-
tocols. One of their sample protocols (called YA-TRAP+) is almost identical to
YA-TRAP and, although they were developed independently and (most likely)
concurrently, [4] was published earlier. As we mention above, in real-time mode,
YA-TRAP+ and YA-TRAP are susceptible to some timing attacks. However,
we note that, due to limited DoS-resistance, YA-TRAP* is not vulnerable to
timing attacks, assuming that the server pre-computes all tables for each value
of Tr within the current epoch.7

Another proposal by Avoine and Oechslin (AO) [3] is similar in spirit, but
very different in technical details, from the protocols in this paper. The AO
approach involves offers built-in forward security (via one-way key evolvement
for each tag query). It is based on a previously proposed OSK (Ohkubo-Suzuki-
Kinoshita) protocol [5] coupled with Hellman’s time/memory trade-off technique
[8]. Because the tag’s key evolves for each query, an active attacker can incapac-
itate any tag by repeatedly querying it; albeit, the number of queries might be
large, as determined by the length of the hash chain, e.g., 210. Also, the AO and
OSK protocols do not offer tag authentication; like YA-TRIP they offer only
tag identification. It is simple to extend AO/OSK protocols to incorporate tag
authentication and DoS-resistance along the lines of our approach in YA-TRAP

7 This would entail server maintaining up to INT distinct hash tables and looking up
the Hid value over all of them. If hash tables are looked up in random order, the
overall lookup time will be similarly randomized. Thus, timing attacks would not
apply.



and YA-TRAP*. Juels and Weis [10] show some potential vulnerabilities of the
AO/OSK protocols.

Acknowledgements

Many thanks to Stephan Engberg, David Molnar, Ari Juels, Xiaowei Yang and
Einar Mykletun for helpful input on early versions of this paper. We are also
grateful to the PET’07 anonymous referees for their insightful comments.

References

1. G. Tsudik, Yet Another Trivial RFID Authentication Protocol, IEEE PerCom
(Work-in-Progress Session), March 2006.

2. D. Molnar, A. Soppera and D. Wagner, A Scalable, Delegatable Pseudonym
Protocol Enabling Ownership Transfer of RFID Tags, Workshop in Selected
Areas in Cryptography, August 2005.

3. G. Avoine and P. Oechslin, A Scalable and Provably Secure Hash-Based RFID
Protocol, PerSec Workshop, March 2005.

4. M. Burmester, B. de Medeiros and T. Van Le, Provably Secure Ubiquitous Sys-
tems: Universally Composable RFID Authentication Protocols, IEEE/Createnet
Securecomm, September 2006.

5. M. Ohkubo, K. Suzuki, and S. Kinoshita, Efficient hash-chain based RFID pri-
vacy protection scheme, UBICOMP Workshop on Privacy: Current Status and
Future Directions, 2004.

6. A. Herzberg, H. Krawczyk and G. Tsudik, On Traveling Incognito, IEEE Work-
shop on Mobile Systems and Applications, December 1994.

7. G. Ateniese, A. Herzberg, H. Krawczyk and G. Tsudik, On Traveling Incognito,
Computer Networks, Vol. 31, No. 8, pp. 871-884, April 1999.

8. M. Hellman, A cryptanalytic time-memory tradeoff, IEEE Transactions on In-
formation Theory, Vol. 26, pp. 401406, 1980.

9. G. Avoine, E. Dysli, and P. Oechslin, Reducing Time Complexity in RFID Sys-
tems, Workshop on Selected Areas in Cryptography (SAC’05), August 2005.

10. A. Juels and S. Weis, Defining Strong Privacy for RFID, IACR eprint, April
2006.

11. G. Avoine, Security and Privacy in RFID Systems: Bibliography, http://

lasecwww.epfl.ch/∼gavoine/rfid/, February 2007.
12. J. Steiner and B. Neuman and J. Schiller, Kerberos: An Authentication Service

for Open Network Systems, USENIX Winter 1988 Technical Conference, pp.
191–202,1988.

13. S. Redl, M. Weber and M. Oliphant, GSM and Personal Communications Hand-
book, Artech House, May 1998, ISBN 13: 978-0890069578.

14. H. Krawczyk, Simple forward-secure signatures from any signature scheme,
ACM Conference on Computer and Communications Security, pp. 108–115,
2000.

15. R. Anderson, Two remarks on public-key cryptology, Invited Talk, ACM Con-
ference on Computer and Communications Security, 1997.

16. C. Tan, B. Sheng, and Q. Li Serverless Search and Authentication Protocols for
RFID, IEEE PerCom’2007.



17. A. Juels, P. Syverson and D. Bailey, High-Power Proxies for Enhancing RFID
Privacy and Utility, Workshop on Privacy-Enhancing Technologies (PET’05),
May 2005.

18. S. Weis, S. Sarma, R. Rivest, D. Engels, Security and Privacy Aspects of Low-
Cost Radio Frequency Identification Systems, Security in Pervasive Computing
Conference (SPC’03), March 2003.

19. A. Juels, Yoking-Proofs for RFID Tags, Workshop on Pervasive Computing and
Communication Security (PerSec), 2004.


