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Abstract. Anonymity systems designed to handle anonymous email
have been implemented with a variety of different mixes. Although many
of their properties have been analysed in previous work, some are still
not well understood and many results are still missing.

In this paper we reexamine the generalised mix framework and the bi-
nomial mix of [7]. We show that under some parameterizations the bino-
mial mix has undesirable properties. More specifically, for any constant
parameterization of the binomial mix, there is a minimum number of
messages beyond which it acts as a timed mix. In this case the number
of messages inside it is no longer hidden from the adversary and the mix
is vulnerable to easy active attack. We suggest ways to avoid this in the
generalised mix framework. Secondly, we show that the binomial distri-
bution used in the framework produces distribution of pool sizes with
low variance and show how to improve on this.

Finally, we present a technique from queueing theory which allows us
to analyse this property for a class of mixes assuming Poisson message
arrivals.

1 Introduction

Anonymous email systems are commonly implemented using mixes [2]. To pro-
vide anonymity a mix has to follow a cryptographic protocol which ensures
bitwise unlinkability to prevent attackers linking messages based on their bit
patterns and a batching or reordering strategy to prevent timing attacks, i.e.
adversaries linking messages by simply watching them coming in and out of the
mix.

In this paper we consider batching strategies of mixes used in real message-
based anonymity systems such as Mixmaster and Mixminion. In the remailer
community which runs these systems there is an ongoing debate about the prop-
erties of different batching strategies; we hope this work not only contributes to
this debate, but also helps influence the design of deployed systems and hence
improve the anonymity properties for their users. We start off by describing what
is perhaps the most sophisticated mix to date, the binomial mix.

The binomial mix has been proposed in [7] and further analysed in [4]. The
batching strategy of this mix is as follows: if the mix contains M messages, then
the number of messages to be forwarded on to their next hops (or destinations)
is determined by the number of heads obtained from tossing a biased coin for
each message. The bias of the coin is obtained from the function g(M) which is
the cumulative normal distribution function.



The rest of the paper is organized as follows: first we review the generalised
mix framework. Then we look at the expected number of messages to be kept in
the pool as a function of the number of messages in the mix for some existing
mixes. We find that as the number of messages in the existing binomial mix
increases, the expected size of the pool approaches zero and argue that this
is undesirable. Another consequence of this is that the binomial mix loses its
desirable property of hiding the number of messages inside it at high traffic
volume. We then show that by altering the g(M) function and the distribution
from which the number of messages to be forwarded is drawn we can alter the
expected size of the pool mix and its variance and hence retain the desirable
properties of the binomial mix at high traffic volumes. Finally, we turn our
attention to the distribution of the number of messages in the mix. We present
a technique which allows us to calculate the distribution of messages inside the
Stop and Go mix and to slight variants of the timed dynamic pool mix and the
binomial mix assuming message arrivals are Poisson distributed.

2 The Generalised Mix Framework

The generalised mix framework and the binomial mix have evolved from the
pool and the timed dynamic pool mixes [12]. The framework introduced two
innovations: unlike in the case of the pool mixes where the number of messages
to be forwarded is deterministic, it is now a random variable chosen from the
binomial distribution®, Bin(M, g(M)). The expectation of this random variable
is determined by a function g of the number of messages in the mix. Before we
proceed, let us set up the terminology explicitly.

— M is the number of messages in the mix at the start of the round

— X is the number of messages retained in the mix

— P = g(M) where g : [0,00) — [0,1] is the probability of forwarding each
message

Hence a mix is specified almost entirely? by the function g(M). Whilst this
is enough to express the mix strategy in a concise manner, we argue that it is
more insightful to look at P(X = x| M), the conditional distribution of the num-
ber of messages retained in the pool and its expectation and variance. Clearly,
the number of messages which stay in the mix follows a binomial distribution
Bin(M, 1 — g(M)).

M

P(X = z|M) = ( "

) g(M)A=D(1 — g(A))*

E[P(X = z[M)] = M(1 - g(M))

! Hence in most cases the attacker cannot tell with certainty how many messages are
in the mix [7], but note [10].
2 The only remaining parameter is ¢, how often the mix flushes.



Var[P(X = a[M)] = Mg(M)(1 - g(M))

We now proceed to look closely at the expectation of the size of the pool in
various existing mixes® defined in the generalised mix framework, i.e. via g(M)
and compare their properties.

3 Expected Pool Size of Various Mixes

We start by comparing the relatively simple mixes from [12] which were further
analysed in [10, 11].
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Fig. 1. The function g(M) for some existing mixes

3.1 Timed Pool Mix

This mix always keeps n messages and outputs M — n. Note that although it is
impossible to express exactly this behaviour in the binomial mix framework, it
will suffice that the expected number of retained messages is n. See Figures 1
and 2 for a graphical representation of the properties of existing mixes.

0if M <n
gp(M):{M_n

a7 otherwise

3 more precisely, their randomized versions
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Fig. 2. Size of the pool as a function of messages in the mix

0if M <n

P(X =z|M)=
( z|M) {M — n otherwise

3.2 Timed Dynamic Pool Mix

This mix always keeps fM (where f < 1) messages, hence gqp(M) = f and
outputs (1 — f)M. Sometimes a certain minimum is also specified, but this
should be designed to act only very rarely in exceptional circumstance without
changing the overall behaviour. Again, we have to make do with this being the
expected number of messages output in our generalised framework. This clearly
shows that the pool grows linearly with the number of messages in the mix. See
Figures 1 and 2.

Clearly, the existing pool mixes define the limiting cases — a constant and
a linear function. Let us now look at the binomial mix and see how it can be
parameterized to behave as either of these.

4 The Binomial Mix

As mentioned above, the weight of the biased coin in the case of the binomial mix
is determined from a cumulative distribution function of the normal distribution.
The question that has not been addressed in the literature so far is which normal
distribution. A normal distribution is uniquely defined by its mean and variance,
N (p, o) hence the g(M) of the binomial mix is as follows.
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Up to now it has been implicitly assumed that in g(M, u,o) p and o are
independent of M (simply constants).
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Fig. 3. Different parameterizations of the cumulative normal distribution function

The function does not have a closed form representation; we illustrate func-
tions with ¢ = 100,00 = 0.3M,0 = 0.5M,0 = M. The difference between these
may not seem significant, however, it is clearer when we examine the expected
pool size as a function of M. This is illustrated in Figure 4.

Clearly, a binomial mix with a constant o parameter limps_... E[P(X|M)] =
0 approaches zero very quickly — the normal distribution has very thin tails.
Hence at large M the constant-c mix has turned into a simple timed mix. This
is clearly undesirable: such a mix can be flushed in one round given a sufficiently
high number of messages and hence admits an easy active attack [12].

The binomial parameterizations where ¢ is linear in M are much better.
First, they retain the property of having a quickly increasing pool for small
values of M, this can be adjusted via the u parameter of the cumulative normal
distribution function and behave like the timed dynamic mix at large values of
M — linear pool size growth.

It is interesting to note that there are several alternatives, also expressed
in the binomial mix framework. Hence below we present 3 mixes with 3 dif-
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Fig. 4. Expected pool size for existing mixes and various parameterizations of the
binomial mix



ferent properties: E[P(X|M)] approaching a non-zero constant (though this
hardly helps with the active attack, the g(M) function is simple and analytically
tractable); logarithmic or square root growth. We show that in terms of the gen-
eralised mix definition they look quite similar, hence looking at the growth of
the size of the pool has been an insightful exercise.

Properties of the new mixes are shown in Figure 5. Because the mixes are all
expressed in the generalised framework, their anonymity and delay properties
(although not in closed form) follow directly from [7,4,5]; we do not restate
them here.

4.1 Binomial+ Mix

First we try to find a mix which is similar to the binomial mix, but can be
adapted so that limps ..o P(M) = n, i.e. it has a pool of at least n messages.
We find the following function to be suitable:

(M —n)e *M 4 n
M
E[P(X|M)] = (M —n)e ™™ +n

Figure 5 uses k = 0.01. Indeed, E[P(X|M)] has a similar shape to that of
the binomial mix.

g(M) =1~

4.2 Logarithmic and Square Root Mixes

If we seek to have slow growth of the pool size, we can have a logarithmic or
a square root function for E[P(X|M)] and hence have giog(M) = 1 — %ﬂ
and ggqrt(M)) =1 — ﬁ Their behaviour is shown in Figure 5. A practical

implementation may have lower bound on the size of the pool in either case;
here we are concerned with the asymptotic properties only. Clearly, these mixes
have higher expected delay but also higher anonymity.

5 Distribution of the Number of Messages to Forward

One of the benefits of introducing the binomial framework as presented in [7]
is the fact that the binomial mix hides the number of messages inside it which
makes it (slightly) more difficult to mount a blending attack on it*. And yet
the obvious parameterization implies that (as the authors of the original paper
conjecture) by sending a sufficiently high number of messages during a single
round, all messages can be flushed from the mix with a high probability. Making
this more precise, the probability of having a message retained in the mix is:

P(X >1|M) =1~ (9(M)™

4 For a thorough analysis of similar issues for the existing mixes see [10]
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Fig. 5. The function g(M) for some new mixes

It is evident that this probability approaches 1 for the Logarithmic, the
Square root and the Binomial+ mixes, and hence it is impossible to flush the
mix in a single round and mount an easy active attack. What is less obvious
(due to the lack of closed form representation of g(M)) is that this probability
asymptotically approaches 0 for the binomial mix with constant ¢®. Clearly, as
we have seen above, this is not the case when o is a function of M.

Attacking the same problem from a slightly different angle, if we examine
the variance of the distribution P(X|M), we find that while the variance for the
number of messages sent out by the constant-o binomial mix approaches zero
with increasing M, it increases in the case of the other mixes. The expectation
E[P(X|M)] and values of one standard deviation around it for the Binomial with
constant ¢, Binomial with ¢ = 0.5M are shown in Figure 6.

It is also clear that the variance of the pool size in the other mixes does not
grow significantly as M increases. This naturally suggests a rethink of the gen-
eralised mix framework; instead of specifying g(M), the mix should be defined
by the probability distribution of the number of messages to be forwarded given
the number of messages in the pool, P(X = z|M), with z € {0...M}%. We
have already seen the case where P(X = z|M) = Bin(M,1 — g(M)), however
there are many alternatives: the Hypergeometric distribution, the Uniform dis-
tribution, the Maximum Entropy Distribution which we describe further below
or (the inelegant) discretized versions of the scaled Beta or the Normal distribu-

5 The reader is invited to verify this either by analytical or empirical means
8 Given X, we construct a random permutation of messages and forward the first X
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tions. Note, however, that from above we already have good candidates for the
expectation of such distributions, namely the linear o binomial, square root or
logarithmic mix g(M) functions.

We do not delve into the question of distributions too deeply, but show
by example that the difference in the variance of the pool size is substantial
and present the maximum entropy distribution which maximizes variance. We
conjecture that such a distribution is optimal at hiding the number of messages
in the mix.

Ezample 1. In this paper we described a version of the timed dynamic pool mix
which had

[P(X|M)]=0.5M
M
pox o - (M) 000 gy
x
Instead, we could have a timed dynamic pool mix with the same [P(X|M)] =
0.5M but P(X = x|M) = Uniform[0, M]. The expectation value and the values

one standard deviation away from it of such a timed dynamic pool mix are also
shown on Figure 6.

The variance of the uniform distribution is ﬁ% which is greater than
that of the binomial distribution, M /4. Note that given a set of values {0... M},
and a given expected value p the maximum entropy distribution is of the fol-

lowing form:

P(X=z)=Cr"

Using the facts that the sum of the probabilities equals 1 and the expectation
equals p allows us to determine the values for constants C' and r. For example, if
we have 100 messages in the mix, we may flush between zero and 100. We wish
to use the maximum entropy distribution to determine how many should be
flushed, with the expected number set at 20 messages. Using numerical methods
to obtain C' and r, we find that the distribution to use is as follows:

P(X = z) = 1.58342(—0.986546)"

Naturally, if © = M/2, the maximum entropy distribution is simply the
uniform distribution.

6 Distribution of the Number of Messages in Mixes

The number of messages inside simple mixes during operation is well understood.
For example, the threshold mix contains no more than N messages, the timed
mix contains quite simply all the messages which have arrived since the last
flush, the timed pool mix contains all the messages which have arrived since the
last flush plus n, the size of the pool. For more complex mixes, this number or



rather, the distribution of the number of messages inside the mix is not so clear.
Yet a mix can only store a finite number of messages, so this distribution needs
to be understood in order to minimize the probability of a message having to
be dropped. This, in part, has originally motivated the choice of g(M) of the
binomial mix which makes it behave as a simple timed mix at high loads.

In the first part of this paper we showed that both the timed dynamic pool
mix and the improved parameterization of the binomial mix retain a constant
fraction of messages — they both have the property that limas_..og(M) = ¢ for
¢ < 1. In this section we present a method for determining the distribution of
the number of messages inside various mixes, in particular the Timed Dynamic
Pool Mix. Such a method allows us to to determine the probability of the mix
running out of space and hence select a suitable parameterization to avoid this.

First, we consider Stop and Go Mix first introduced by Kesdogan in [9].
It delays each message individually by an amount picked from an exponential
distribution. Assuming Poisson distribution of message arrivals, we can model
it as an M /M /n process and use standard queuing theory techniques [3] as we
informally outline below.

We proceed by denoting a mix as an n-state system where n — 1 is the max-
imum possible number of messages in the mix. We assume message arrivals are
distributed with a Poisson distribution with parameter A and the time between
flushes is distributed exponentially with parameter . The system changes state
when either one message arrives (with probability \) or one message leaves (with
probability u1). For example, take a mix which can hold a maximum of three mes-
sages. The rates of transitions between states 0 to 3 (0,1,2 or 3 messages inside
the mix) are as follows:

- I 0 0
A —(A+p)  p 0
0 A = (ptA) p
0 0 A —

Agg =

The rows represents the state of the mix. We see that the rate of transition
out of state 0 and into to state 1 is A — this is the probability that a message
arrives at the mix. Similarly, the rate of transition into state 0 from state 1 is u.
Reading row 2, the rate of transition into state 1 is A from state 0, p from state
3 and —(\ + u) to account for the probabilities of a message arriving or leaving
while the mix is in state 2.

Now, we seek a vector of probabilities P such that the system is in equilib-
rium, i.e. there is no net inflow or outflow from each state. Our last constraint
is that the probabilities sum to 1. We now solve the system of linear equations
AP = 0 together with > P = 1 and obtain P, the probabilities of finding the
system in each state. For instance, when A =1/3 and p = 1/2, the distribution
of messages in the 4 state mix defined above is: [0.4154, 0.2769, 0.1846, 0.1231].

The same technique can be used directly for a mix with exponential inter-
flush times but which, like the timed dynamic pool mix, flushes deterministic
batches of messages. The transition matrix for this mix (f = 0.5) differs from



the one above only by the position of the p in the right hand column — the mix
transitions from having 3 messages inside it to having 1.

- I 0 0

A )k 0
Avdpm = | A —(u+N) 0
0 0 A —u

The vector of probabilities is now [0.4737,0.3158,0.1263, 0.0842]. The proba-
bilities of high states are lower because more messages get forwarded on some of
the flushes, hence fewer remains in the mix. As a further example of the capabil-
ities of this technique, we calculated the distribution of the number of messages
inside a pool and a timed dynamic pool mixes, each with maximum capacity 100
messages. These are illustrated in Figure 7.
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Fig. 7. Distributions of the number of messages inside mixes. A =5, = 0.5

This technique is efficient and allows us to calculate the probability distribu-
tion of the number of messages inside mixes with arbitrary P(X = z|M) with
exponential inter-flush times in an environment with Poisson-distributed inter-
arrival times. Hence a slight modification of the binomial mix with exponential
inter-flush times falls into this category and can now be analysed.



More advanced queueing theory tools are needed to consider other known
mixes. To be more precise, mixes with Poisson arrivals and arbitrary distribu-
tions of inter-flush times can be described by a M/G/n model and those with
deterministic inter-flush times (for instance Pool or Timed Dynamic Pool mixes)
fit the M/D/s model. The interested reader is invited to refer to [3].

In this section we assumed that message inter-arrival times are Poisson dis-
tributed. To the best of our knowledge, the only work investigating the issue is
[6]; there the authors find a large structural break in their data sample. We briefly
reexamined the same data and looking at shorter time horizons we find the dis-
tribution broadly Poisson; though a full empirical investigation of inter-arrival
times is long overdue we do not consider the issue here. From the theoretical
point of view, the number of messages inside a mix which forwards a constant
fraction of messages (such as the linear-o binomial or the timed dynamic pool
mix) follows a mean reverting Ornstein-Uhlenberg stochastic process with non-
Gaussian increments (the increments model the distribution of the number of
messages arriving in one batch). Theories of such processes with arbitrary incre-
ments exist 7; in particular it is reassuring that under reasonable assumptions
the implied distributions inside the mixes are stationary. The mathematically in-
clined reader is referred to [1, 8] for (very complex) properties of such processes.

7 Conclusion

In this paper we drew attention to the asymptotic properties of mixes. By con-
sidering how the size of the pool mix grows with the number of messages in the
mix, we showed that the obvious previously used parameterization of the bino-
mial mix has some undesirable properties and proposed a fix. We have also sug-
gested some new mixes within the generalised mix framework. Next, we showed
that the variance of the previously used binomial mix is zero at high loads, hence
it no longer has pool size hiding properties. Furthermore, mixes which use the
generalised mix framework all have small variance of pool size. We propose using
arbitrary distributions for pool size and show how this can increase the variance
of the pool size. Finally, we present a method for determining the distribution
of messages inside various mixes assuming Poisson message arrivals.
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