
A Practical Buses Protocol for Anonymous Internet Communication

Andreas Hirt Michael J. Jacobson, Jr. Carey Williamson
Department of Computer Science, University of Calgary

{hirt,jacobs,carey}@cpsc.ucalgary.ca

Abstract

This paper describes the design, implementation, analy-
sis, and evaluation of a Practical Buses protocol for anony-
mous network communication. The protocol, based on
the metaphor of a city bus, provides connection anonymity
for Internet-based communication. We modify the origi-
nal Buses protocol from the literature to provide receiver
anonymity, strengthen security, and improve efficiency and
scalability. Our prototype is tested in a LAN scenario. Pre-
liminary performance results show that the Practical Buses
protocol is promising.

Keywords: Anonymity, Privacy, P2P, Internet protocols

1. Introduction

The goal of anonymous communication is to protect the
identities of communicating parties from eavesdroppers and
adversaries. This facilitates freedom of speech without fear
of retribution.

Two types of anonymity are required for complete anon-
ymization [4]. Data anonymity filters out identifying data,
such as the sender field in an e-mail. Connection anonymity
obscures the communication patterns. In this paper, we fo-
cus on connection anonymity.

There are four types of connection anonymity. Sender
anonymity [8] protects the identity of the initiator. Re-
ceiver anonymity [8] protects the identity of the respon-
der. Mutual anonymity [5] provides both sender and re-
ceiver anonymity. Unlinkability [8] means that an attacker
cannot discern sender-receiver relationships. Even if the
identity of one endpoint is compromised, the identity of the
other endpoint cannot be linked to it. Examples that require
sender anonymity, receiver anonymity, mutual anonymity,
and unlinkability are voting, publication of controversial
documents, anonymous bulletin boards, and military com-
munication, respectively.

In this paper, we present a practical Buses protocol that
provides mutual anonymity from all perspectives, and is se-
cure against all known attacks other than Denial of Service

(DoS) attacks. Our protocol is based upon Buses [1], which
uses the metaphor of a city bus. The bus hides a message’s
route through the network, much like a public transit bus
hides a passenger’s route through a city.

Our paper makes three main contributions. First, we
identify and fix several weaknesses in the original Buses
protocol. Second, we suggest several enhancements to fa-
cilitate a robust and efficient implementation of our pro-
tocol. Third, we present preliminary experimental results
demonstrating the functionality and performance of our
protocol. We believe that this is the first-ever implementa-
tion and evaluation of a Buses anonymity protocol. Prelim-
inary experimental results show that the protocol is promis-
ing for LAN environments.

2. Background and Related Work

Classically, the three general techniques employed to
provide anonymity are broadcasting [3], mixes [2], and
re-routing [10]. Unfortunately, none of the foregoing ap-
proaches provides a perfect solution for anonymous Inter-
net communication. Broadcasting and Mixes scale quadrat-
ically because they both require cover traffic to preserve
anonymity. Re-routing techniques reduce cover traffic at
the cost of being vulnerable to known attacks.

Buses [1] is a promising new anonymity technique that
provides strong anonymity without the overhead of cover
traffic. The optimal buffer complexity version of Buses is
the only version that provides mutual anonymity. When the
bus arrives at a node, the node replaces every seat on the bus
with its decryption. Intelligible messages are removed and
replaced with random data.

To send a message, a node first prepares a layered en-
cryption of the message. It encrypts the message with the
destination node’s key, encrypts the encrypted message with
the destination’s predecessor’s key, and so on until it en-
crypts the multiply-encrypted message with its successor’s
key. This layered encrypted message is placed in a random
seat on the bus, and the bus is forwarded.

One layer of the layered encryption is removed at each
hop in the tour of the network, until eventually the intended

receiver removes the last layer of encryption and extracts
the message. For reliable message delivery, the receiver re-
turns an acknowledgment (ACK) in the same seat. Mutual
anonymity is attained from everyone’s perspective, includ-
ing the receiver, because the layered encryption only allows
a receiver to identify the predecessor in the bus route, not
the original sender.

Although buses is similar to mixes because it uses lay-
ered encryption and a re-routing path (i.e., bus route), it
differs in two important ways. First, buses do not require
quadratic cover traffic to maintain strong anonymity. Buses
has the bus sent between exactly two nodes every time unit.
Second, buses requires all the nodes except the sender and
receiver to be corrupted in order to defeat sender and re-
ceiver anonymity [6]. In mixes, only the re-routing nodes
between the sender and receiver need to be corrupted in or-
der to defeat anonymity.

3. Practical Buses Protocol

The Buses protocol is susceptible to replay attacks [6],
bus size scales poorly, and many implementation-related is-
sues are not addressed, such as acknowledgments, retrans-
missions, efficient encryption, and TCP/IP networking is-
sues. The modified Buses protocol, which we refer to as
the Practical Buses protocol, addresses these issues. Mech-
anisms are added1 to improve scalability while preserving
mutual anonymity. Features are also added to improve the
security and efficiency of the protocol. For a complete de-
scription of the Practical Buses protocol, see [6].

3.1. Improving Scalability

The optimal buffer complexity Buses protocol scales
poorly with a bus size of O(ns2) for moderate work loads
(s ≥ √

n), where s is an upper bound on the total number
of messages sent per bus tour and n is the number of par-
ticipants. Our solution provides a tighter bound on bus size
by using owned seats. Each participant exclusively owns k

seats (e.g., k = 2) on the bus. The seats are identified by an
owner field that contains the owner’s public key. The result-
ing buffer size is O(Kn), where K is an upper bound for k

(e.g., K = 4), and K << n for large n.
Each participant can use its owned seats to send and for-

ward messages. A participant that receives the bus decrypts
all of the seats, but does not replace them. Instead, it identi-
fies valid seats to process, and only replaces its owned seats
with any messages to forward or send, and if any excess
messages exist they are queued for the next bus.

1For brevity reasons, the descriptions that follow assume a static net-
work topology. However, dynamic network topologies can be handled us-
ing p-threshold replacement back-off scheme and randomly delayed seat
deletions [6].

To determine if a decrypted seat is valid, the participant
checks for fixed redundancy that is added to each nested
layer before encryption. A flag is used to indicate whether
the data obtained is a message intended for the participant,
or a nested encrypted message that should be forwarded.

In addition, the overhead of layered encryption on the
reverse of the re-routing path does not scale well. Our solu-
tion, which we call nested encryption with indirection, cre-
ates a random indirection path of random bounded length,
with the nested encrypted message based on the reverse of
that path. This allows the message to have fewer layers,
reducing the overhead2.

3.2. Maintaining Mutual Anonymity

Owned seats can compromise mutual anonymity. A par-
ticipant can identify the sender of the message by monitor-
ing who puts messages in their seats and when. To counter
this threat, every time a participant receives a bus, it replaces
all of its owned seats with messages to send, messages to
forward, or random data. As long as an adversary cannot
distinguish between random data and a valid encrypted mes-
sage within polynomial time, mutual anonymity is main-
tained, even on low-traffic networks.

3.3. Improving Security

To improve security, the tampering of seats by anyone
but its owner are detected by RSA-SSA signatures [12] that
are appended to every seat. In addition, the loss of seats
containing messages is detected by ACKs.

ACKs are incorporated by a sender adding a random
128-bit message tag and an anonymous public key in the
innermost layer before encryption. After receiving a mes-
sage, the receiver returns an anonymous ACK: an anony-
mous message sent with the sender’s 128-bit message tag,
a flag in the inner core indicating that it is an ACK, and an
inner core that is encrypted with the anonymous public key.

An anonymous public key, rather than the public key in
the seat owner field, is used to preserve sender anonymity.
Otherwise, an adversary could monitor the network and cor-
relate the anonymous public key to the participant that re-
places seats that have the same key in the owner field.

3.4. Improving Performance

The Practical Buses protocol also improves performance
by incorporating hybrid encryption, resends and acknowl-
edgments, replay protection, expired seats, and persistent
connections.

2This also supports a dynamic topology by providing a logical separa-
tion of indirection path from the physical routing path.

Hybrid encryption is used instead of a semantically se-
cure cryptosystem because it is noticeably faster. In particu-
lar, a layer of the indirected encrypted message consists of a
session key encrypted using the 1024-bit RSA-OAEP [11]
public-key encryption scheme followed by the inner layer
encrypted using the session key with 128-bit AES-CBC [7].
A salt field at the beginning of each encryption layer dou-
bles as the AES key. As a result, a valid message is identi-
fied by having the prescribed OAEP redundancy.

Resends and ACKs are added to provide reliable mes-
sage delivery. When a sender receives an ACK, it stops re-
sending the message. If a sender does not receive an ACK
within a timeout period, it re-sends the message via a nested
encryption with a new indirection path and random AES
keys. This creates a disguised message that is indistinguish-
able from its previous nested encryption. After a maximum
re-send timeout, the protocol reports an error to the applica-
tion to make the user aware that the message was not deliv-
ered.

Replay protection is added because the original Buses
protocol is prone to replay attacks [6]. For each message
that a participant receives, the decrypted inner layer as well
as the value of a 128-bit salt field are recorded until a time-
out elapses. The combination of the salt and message body
uniquely identify a nested encrypted message. However, the
receiver of a message records the message tag instead of the
salt-field. This mechanism prevents a message from being
received multiple times because it was resent multiple times
by the sender due to an ACK timeout. To prevent replays af-
ter the timeout, a timestamp field is appended to the seat and
the seat owner constructs a signature on the entire seat in-
cluding the timestamp to prevent tampering. Received seats
with a timestamp predating the replay protection timeout
are deleted and ignored.

Expired seats are deleted to keep the bus size bounded.
Each node checks for expired seats to delete by checking
every seat’s timestamp. A seat can expire when a participant
unexpectedly disappears from the network without deleting
its seats.

Persistent connections are used to make the connection
setup, connection release, and TCP slow start a one-time
cost. Persistent connections are important when propaga-
tion delay is significant, such as in a WAN.

4. Security Analysis

The analysis of the original Buses protocol in [1] uses a
threat model that is composed of passive and active adver-
saries. A passive adversary is able to control one or more
nodes, and see all the messages that pass through the node
in addition to all of the node’s local information such as its
private keys. An active adversary has all the abilities of a
passive adversary, but can also add, delete, or modify mes-

sages. The analysis in [1] concludes that Buses is secure
under such a threat model. However, our work in [6] shows
that it is vulnerable to a replay attack.

Due to the significant design changes to the Practical
Buses protocol, it is necessary to re-evaluate its security
against known attacks and new attacks. Our threat model
also consists of a passive and active adversary, in addition
to a global eavesdropper. A global eavesdropper can eaves-
drop on all of the communication links used by the anony-
mous communication protocol.

The Practical Buses protocol is shown to resist all of the
known attacks identified in [6]. This prior work categorizes
anonymity attacks gathered from the literature, including
local eavesdropper before/after proxy, size/time correlation,
low load, marker, intersection, full compromised path, tim-
ing, passive traceback, replay, spam, mob, and filter attacks.

To identify new attacks, it is necessary to identify all of
the observable events that an adversary could use to reduce
anonymity. In our case, the attacker can observe seat re-
placements as a global eavesdropper or observe a valid mes-
sage passing through a corrupted node.

Observing all the seat replacements does not reduce
anonymity. All the seats are always replaced, so an attacker
must be able to differentiate between a hybrid-encrypted
message and random data. However, it is not known how
to differentiate between random data and data using hy-
brid encryption with RSA-OAEP and AES-CBC. In fact,
RSA-OAEP [11] [13] and AES [14] are designed so that
their output passes vigorous statistical tests for randomness.
Thus the replacement of a semantically secure cipher with
hybrid-encryption does not reduce anonymity.

Observing a valid message pass through a node does not
reduce anonymity. The attacker can only ascertain the pre-
decessor of a valid message, but the successor could be any-
one on the bus route. Furthermore, the predecessor of a
message could have received the valid message to forward
from any other node in the bus path. As a result, the identifi-
cation of a predecessor as a sender requires that every other
node be corrupted.

5. Experimental Evaluation

The primary performance metric for our prototype is
message latency, defined as the elapsed time between when
a user finishes entering a message and an acknowledgment
of that message being received. The mean and standard de-
viation of the message latency are calculated over multiple
messages read from a (repeatable) workload (e.g., 360 mes-
sages). Note that the message delivery time to the receiver
is typically half of the message latency.

The LAN tests used a Beowulf Cluster of 14 identically-
configured dual-processor 2.4 GHz Pentium machines at the
University of Calgary. Each machine has 2GB RAM and a

512 KB cache. They are connected with a dedicated 1 Gbps
Ethernet switch. The software environment is Linux 2.4.20-
19.7, POSIX threads with libc-2-2.5, GMP 4.1.1, and g++
3.2 To simplify the analysis of the results, a single processor
is used on each machine.

Our initial experiments studied the effect of various fac-
tors on average message latency. In [6] it is shown that mes-
sage latency is independent of message size, but strongly
dependent upon the seat size, number of network nodes, and
the number of indirection layers used. The protocol per-
forms well under random sender-receiver traffic and Pois-
son message arrival process. For space reasons, only the re-
sults from one LAN test are shown here (see Figure 1). This
experiment used a Poisson message arrival process with an
aggregate rate of 30 messages per minute. Message traffic is
non-uniformly distributed among the nodes in the network
with a Zipf-like distribution. Message sizes are random,
ranging in size from 1 byte to 2 KB. The seat size is 3 KB
and the number of indirection layers is randomly chosen as
either 1 or 2.

Figure 1 plots the average message latency as the num-
ber of nodes is scaled from 2 to 14. The vertical dotted lines
show one standard deviation above and below the mean
message latency. Figure 1 highlights the scalability char-
acteristics, showing approximately linear growth of the av-
erage message latency. The protocol is also fair, as shown
in [6].

0

1

2

3

4

5

2 4 6 8 10 12 14

A
ve

ra
ge

 L
at

en
cy

 (
S

ec
on

ds
)

Number of Nodes

Results for Poisson Traffic (30 messages per minute) and 2 Elephants (50%)

Figure 1. results for uniform random traffic

6. Conclusions

The design goals for our Practical Buses protocol include
very strong anonymity, medium-latency, and support to be
extended to a P2P design as well as a dynamic network
topology. The novel techniques central to this design are
owned seats and nested encryption with indirection.

The Practical Buses protocol performs reasonably in a
moderately-sized static network, under various traffic pat-
terns. The send-ACK latency for messages on a LAN are
typically 1-4 seconds, while the send-receive latency is typ-
ically half of that.

Future research directions include extending the testing
to a larger WAN testbed such as PlanetLab [9] and the
derivation of a model. The performance could also be im-
proved by adding in symmetric key tunneling and multiple
bus routes. The former should reduce the constant costs,
and the latter should produce logarithmic scalability. Ide-
ally, this would create the first strong anonymous commu-
nication scheme with a low-latency overhead.

References

[1] A. Beimel and S. Dolev. Buses for Anonymous Message
Delivery. Journal of Cryptology, 16(1):25–39, 2003.

[2] D. Chaum. Untraceable Electronic Mail, Return Addresses
and Digital Pseudonyms. Communications of the ACM,
24(2):84–88, 1981.

[3] D. Chaum. The Dining Cryptographers Problem: Uncondi-
tional Sender and Recipient Untraceability. Journal of Cryp-
tology, 1(1):65–75, 1988.

[4] J. Claessens, B. Preneel, and J. Vandewalle. Solutions for
Anonymous Communication on the Internet. In Proceed-
ings of the International Carnahan Conference on Security
Technology, pages 298–303. IEEE, 1999.

[5] Y. Guan, X. Fu, R. Bettati, and W. Zhoa. An Optimal Strat-
egy for Anonymous Communication Protocols. In Proceed-
ings of 22nd International Conference on Distributed Com-
puting Systems, pages 257–266. IEEE, 2002.

[6] A. Hirt. A Practical Buses Protocol for Anonymous Net-
work Communication. Master’s thesis, University of Cal-
gary, Calgary, Alberta, August 2004.

[7] National Institute of Standards and Technology. Advanced
Encryption Standard — FIPS 197, 2001. http://csrc.nist.gov
/publications/fips/fips197/fips-197.pdf.

[8] A. Pfitzmann and M. Waidner. Networks without User Ob-
servability. Computers & Security, 2(6):158–166, 1987.

[9] PlanetLab, 2005. http://www.planet- lab.org .
[10] M. Reiter and A. Rubin. Crowds: Anonymity for Web

Transactions. ACM Transactions on Information and Sys-
tem Security, 1(1):66–92, 1998.

[11] RSA Laboratories. RSA-OAEP Encryption Scheme — Al-
gorithm Specification and Supporting Documentation. RSA
Security Inc, 2000. ftp://ftp.rsasecurity.com
/pub/rsalabs/rsa algorithm/rsa-oaep spec.pdf.

[12] RSA Laboratories. RSA Signature Scheme with Appendix —
Probabilistic Signature Scheme. RSA Security Inc, 2000.
ftp://ftp.rsasecurity.com
/pub/rsalabs/rsa algorithm/nessie pss.zip.

[13] RSA Laboratories. Recent Results on OAEP Security,
2004. http://www.rsasecurity.com/rsalabs/
node.asp?id=2147$\#$FOPS .

[14] J. Sotto and L. Bassaham. Randomness Testing of the Ad-
vanced Encryption Standard Finalist Candidates. Techni-
cal report, National Institute of Standards and Technologies,
2000.

