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Abstract

The need to communicate anonymously over the Internet has increased with the

proliferation of networked computers. Applications such as military communications,

Web browsing, e-voting, and e-counseling for victims of abuse all require anonymous

communication. Without anonymity, individuals may refrain from communicating

for fear of retribution, potentially resulting in social, psychological, or financial losses,

or even the loss of life.

This thesis contains a comprehensive survey and analysis of anonymous commu-

nication schemes. Analysis of the prior literature shows that there is no secure and

scalable anonymous communication scheme. Previous literature has only analyzed

each scheme for a subset of the known attacks. In this thesis, the analysis is extended

to assess the anonymity capabilities of these schemes with respect to all known at-

tacks. It is shown that none of the scalable anonymous communication schemes are

secure.

The thesis contains a description of the design, implementation, and evaluation

of a prototype anonymous communication scheme. The Buses anonymity protocol is

identified as the most secure and scalable candidate protocol for a dynamic network

topology. The protocol is re-designed and extended into the Practical Buses protocol,

with features added to protect against all of the known attacks in the literature. New

techniques are introduced to make the protocol scalable while preserving mutual

anonymity. The design is extended to make the protocol more efficient, secure, and

fault-tolerant. The experimental results obtained demonstrate that the Practical

Buses protocol is a promising solution for anonymous network communication.
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Chapter 1

Introduction

1.1 Motivation

The phenomenal growth of networked computers has fostered the deployment of

many network applications: e-counseling for victims of abuse, command and control

military communications, e-mail, Web browsing, e-voting, and e-shopping, to name

a few. Many of these applications share private information between parties who

may wish to conceal the identity of the sender, receiver, or both. The goal of an

anonymous communication scheme is to keep the identities of communicating parties

secret from eavesdroppers and adversaries.

Anonymous communication is necessary so that individuals can communicate

without fear of retribution from an adversary or eavesdropper. Without anonymity,

the lack of communication could have detrimental social and psychological effects

in group therapy sessions or result in financial losses in government, business, and

academic applications. In military applications, detection of any communication, or

change in communication patterns could result in death on the battlefield due to an

adversary gleaning information from communication patterns.

Some specific situations where anonymous communication is required are the

following:

• Military communication should keep both the identity of the sender and re-

ceiver anonymous to prevent the enemy from gathering information from their

1
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communication patterns. In addition, the anonymous communication must

be real-time in critical communications such as command and control on the

battlefield.

• Group therapy sessions may have members that wish to keep their comments

anonymous. In order to integrate these members, a dedicated network with

an anonymous chat program could be used to keep the identity of the sender

anonymous. As soon as a member feels comfortable enough to disclose their

identity, the member could reveal their alias to trusted individuals.

• Government and businesses could use a dedicated anonymous network to allow

employees to anonymously report sensitive information (whistle blowing) such

as witnessed theft, scandal, et cetera.

• Group evaluations such as student reviews of a teaching assistant or professor

could be done by using a dedicated anonymous network. The identity of the

student would be kept anonymous to alleviate the student’s fear of a negative

response, and the identity of the party to whom the student is communicating

could be authenticated.

The need for anonymity has motivated many different anonymous communication

schemes: Chaum’s Mixes [7], Onion routing [34, 41, 42, 43], Crowds [35], Hordes [38],

Lucent Personalized Web Assistant (LPWA) [15], Anonymizer [2], Remailer [10]

(types 0,1, and 2), Babel [18], Buses [4], DC-Net [8], Xor-trees [13], Peer-to-peer

Personal Privacy Protocol (P 5) [37], Pipenet [30] and Freedom [14], some of which

are surveyed in [6, 9, 17]. These anonymous communication schemes provide different
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kinds of anonymity, are meant for different application domains, utilize different

techniques to provide anonymity, and have different strengths and weaknesses against

a malicious attacker. However, it will be shown in Chapter 3 that none of these

schemes are completely secure and scalable.

1.2 Types of Anonymity

There are two main types of anonymity [9], both of which must be provided in

order to anonymize an application fully. Data anonymity is concerned with hiding

the identities within the application data itself, and makes use of techniques such

as remailers that strip all identifying information from email headers. Connection

anonymity, on the other hand, is concerned with hiding identities at the network

layer by obscuring communication patterns.

In this thesis, we are only concerned with connection anonymity. There are four

types of connection anonymity, each of which may be required for various applica-

tions.

• Sender anonymity [29] keeps the identity of the sender anonymous. Sender

anonymity is required for applications such as anonymous e-mail, e-voting,

anonymous web-surfing, and e-counseling for victims of abuse.

• Receiver anonymity [29] keeps the identity of the receiver anonymous. Pub-

lishing documents on the web is one application in which receiver anonymity

is often desirable.

• Mutual anonymity [17] provides both sender and receiver anonymity, and can
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be required for anonymous e-mail and anonymous bulletin boards.

• Unlinkability [29] means that an attacker cannot discover the identity of the

sender, even if the identity of the receiver is known, or vice versa. Real-time

communication between allied groups on a battlefield is one example where

unlinkability is desirable, as an enemy can gain a tactical advantage by deter-

mining communication patterns.

Conceivably, there are additional types of anonymity. However, we restrict our-

selves to the classical framework from the literature. Some of the other conceivable

types of anonymity provided are addressed by resistance to various attacks in Chap-

ter 3.

The type of connection anonymity provided by an anonymity scheme may be de-

pendent upon perspective. For example, sender anonymity may be provided from the

perspective of a receiver, but sender anonymity may be defeated by an eavesdropper

that monitors the entire network. Also, no single kind of connection anonymity is

universally the best; it is strictly dependent upon the application. For example, a

“strong” form of anonymity such as mutual anonymity would be undesirable for an

election, because a voter would want to be assured that the proper authority received

his or her ballot.

Connection anonymity can be thought of as a continuum with different degrees

of anonymity. The degree of anonymity can range from absolute privacy to provably

exposed. The interested reader is referred to [35, 38] for more details on degrees of

anonymity.
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1.3 Thesis Objectives

The first objective is to survey the anonymous communication schemes from the lit-

erature, summarize the characteristics of these anonymous communication schemes,

and analyze each scheme for a large set of defined attacks. Previous literature has

only analyzed each anonymous communication scheme for a subset of these attacks;

this analysis is extended and provides a complete picture of the anonymity capabil-

ities of these schemes with respect to all known attacks.

The second objective is to re-design the original Buses protocol [4] in order to

provide mutual anonymity and preserve scalability. This new design addresses several

newly-discovered vulnerabilities and makes it fit for implementation. To achieve this

objective, pre-existing and new techniques are incorporated into the re-designed

Buses protocol.

The third objective is to implement a proof-of-concept prototype of the Practical

Buses protocol, experimentally evaluate its performance, and assess its anonymity.

The experimental and anonymity analysis demonstrate that the Practical Buses pro-

tocol is a promising secure protocol that is scalable, and has manageable overhead.

1.4 Thesis Contributions

There are four main contributions in this thesis:

• The thesis contains a comprehensive survey and analysis of anonymous com-

munication schemes [19]. Analysis shows that all of the schemes except DC-

Net are vulnerable to at least one attack. Several attack susceptibilities not

previously published in the literature are found. In addition, a repository of
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anonymity attacks gathered from throughout the literature are brought to-

gether and grouped according to attack resources. The attributes needed to

defend against each attack are also identified.

• The attributes needed to design a secure anonymous communication scheme are

identified for the mixing, broadcasting, and buses anonymity techniques. From

these required attribute lists, a software engineer could choose the appropriate

anonymity technique for the application domain and design a secure anonymous

communication protocol.

• The Buses protocol [4] is re-designed into the Practical Buses protocol. The

new protocol is secure against all of the surveyed attacks, provides support for

a dynamic network topology while preserving mutual anonymity, is scalable,

and improves fault tolerance, security, and performance. To make the protocol

resist all of the pre-existing attacks, replay protection is added. In addition,

the new techniques nested encryption with indirection, p-threshold replacement

back-off scheme, and randomly delayed seat deletion are introduced to provide a

scalable framework that provides mutual anonymity within a dynamic network.

Acknowledgments and signatures are added to improve the protocol’s fault

tolerance and awareness of active threats. Lastly, hybrid encryption, resends,

dynamic bus size, seat expiration, and reduced seat decryptions are all added

to improve performance.

• A proof-of-concept prototype of the Practical Buses protocol is implemented

and evaluated [20]. To the best of the author’s knowledge, this is the first

implementation of any Buses protocol. Experimental analysis of the Practical
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Buses protocol confirms that the protocol is scalable, and demonstrates its

practicality for real world use.

1.5 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 contains a survey of the

literature’s anonymous communication schemes. Chapter 3 consists of a summary

of the attacks in the literature and an analysis of each anonymous communication

scheme for these attacks. A Practical Buses protocol is introduced in Chapter 4. The

design and implementation of a Practical Buses prototype is explained in Chapter 5

and evaluated in Chapter 6. The evaluation consists of a performance analysis from

experimental results and a theoretical anonymity analysis. Lastly, Chapter 7 contains

a summary of the thesis and a discussion of future work.



Chapter 2

Background and Literature Review

This chapter contains the background information on anonymous communication

schemes. The four main anonymous communication techniques used to provide con-

nection anonymity are identified in Section 2.1. The anonymous communication

schemes Chaum’s Mixes [7], Onion routing [34, 41, 42, 43], Crowds [35], Hordes [38],

Lucent Personalized Web Assistant (LPWA) [15], Anonymizer [2], Remailer [10]

(types 0,1, and 2), Babel [18], Buses [4], DC-Net [8], Xor-trees [13], Peer-to-peer

Personal Privacy Protocol (P 5) [37], Pipenet [30] and Freedom [14] are surveyed in

Sections 2.2 to 2.13. In Section 2.14 the attributes utilized to provide anonymity

for each surveyed anonymous communication technique are summarized. For clar-

ity, examples of the four main anonymity techniques are provided in the Appen-

dices A.1, A.2, A.3 and A.4.

Throughout the chapter, the following notation is used. S is the sender of a

message M , and R is the receiver of the message. R’s reply to the message M, is

denoted M ′. A symmetric key is used by a symmetric cipher such as AES and is

denoted by K. Public keys and private keys are used by asymmetric ciphers such

as RSA and are denoted by K+ and K− respectively. A subscript is appended to

a key to denote the owner of the key. For example, K(R,S) is the symmetric key

that belongs to R and S, and K+
R is R’s public key. Encryption is denoted by E

and decryption is denoted by D. For example, EK+
R
(M) is public-key encryption

8
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of S’s message M with R’s public key, DK−

R
(M) is private key decryption of S’s

message M with R’s private key, and EK(R,S)
(M) is symmetric key encryption of

S’s message M with the symmetric key shared by R and S. Encryption of multiple

arguments separated by commas denotes encryption of the arguments concatenated.

For example, EK+
R
(M, KS,R)) denotes public key encryption with R’s public key of

the concatenation of S’s message M with the symmetric key shared by R and S.

Lastly, A denotes an address and a subscript is appended to denote who the address

belongs to. For example, AR is R’s address and Amix1 is the address of mix1.

2.1 Anonymous Communication Techniques

To date, four techniques are used to provide anonymity: mixes, re-routing, buses,

and broadcasting.

1. Mixes provide anonymity by re-routing a message through intermediate nodes,

layering encryption to hide the contents of a message, and having intermedi-

ate nodes obfuscate the inputs with the outputs (see Section 2.2 for detailed

explanation of Mixes). Mixes provide strong anonymity guarantees against a

large array of attacks with the cost of an expensive overhead.

2. Re-routing re-routes messages through intermediate nodes and may use en-

cryption. They are susceptible to a larger array of attacks than mixes, but are

faster so that the end-users experience a smaller delay.

3. Buses uses layered encryption, along with the metaphor of a city bus which

has a scheduled route through the network. The bus hides the message’s route
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through the network just like a public transit bus hides a passenger’s route

through a city (see Section 2.10 for detailed explanation of buses). Buses

provides strong anonymity because it is secure against all attacks except replay

attacks. Also, buses is scalable and the amount of overhead introduced is

manageable.

4. Broadcasting combines broadcasting and encryption. If a message is encrypted

and broadcast to a group, everyone in the group is equally likely to be the

receiver and only the group member who holds the decryption key knows that it

is the recipient of a message. Strong anonymity is provided, but these schemes

are not scalable and have a large overhead.

2.2 Chaum’s Mixes

The first paper on anonymous communication was written in 1981 by Chaum [7].

This paper introduces sender anonymous e-mail and e-voting. The key to anony-

mous communication is provided by a mix, an intermediate node in the re-routing

path between the sender and receiver that uses layered public-key encryption and

obfuscates incoming messages with outgoing messages. Chaum’s mixes are primarily

of theoretical interest, since the constant rate traffic overhead limits practical scala-

bility. Weaker versions of Chaum’s mixes that do not use constant traffic are used

as a basis in Onion Routing, Mixmaster, and Babel. Chaum’s mixes provide strong

sender anonymity and unlinkability.

To prevent a mix from becoming a single attack point, a sequence of mixes called

a cascade is used. A sender requires the public keys and addresses of all the mixes
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and the recipient in the re-routing path before it can send a message. In addition

to a cascade, a certification authority (CA) is required to provide bindings between

public keys and their respective identities.

When a mix collects enough messages, it sends all messages out in lexicographic

order in a batch (lexicographic batching) to prevent timing correlations between

input messages and output messages. In order to thwart traffic analysis, each sender

must send the same number of messages in a certain time interval; hence, some of the

messages are dummy messages. Uniform message sizes are used so that an attacker

cannot determine size correlation between input messages and output messages of a

mix. The initial message is padded with random bits to achieve the target message

size. As a message passes through a mix, it shrinks and additional random bits are

appended to the message to replace the lost bits. Keeping messages a constant size

is implicitly assumed for the rest of the discussion on Chaum’s mixes.

For a sender to send a message M to receiver R through mix1 it sends:

EK+
1
(R1, EK+

R
(R0, M), R) (2.1)

where EK+
1

denotes public-key encryption for mix1 using the public key K+
1 , R1 and

R0 are random bit-strings used for both random salt (randomizes encryptions with

same content) and receipts, and EK+
R

denotes public-key encryption for the receiver

using the public key K+
R . After receiving the message specified in Equation 2.1,

mix1 decrypts the message with its private key, throws away the random salt R1,

determines the recipient’s address R, and sends EK+
R
(R0, M) to R. The receiver R

then decrypts the message with its private key and throws away the random salt R0.

To ensure that a mix outputs an item properly, a sender can request a re-
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ceipt. In the above example of a single mix, the sender receives a receipt Y =

DK−

1
(C, EK+

1
(R1, EK+

R
(R0, M), R)) from mix1 where C is a large constant known

by everyone and DK−

1
is the private key decryption for mix1 using the private key

K−
1 . C ensures that mix1 produced the signature by forcing EK+

1
(Y ) to start with

C. Otherwise, a malicious adversary could spoof mix1 by replacing Y with random

data. When mix1 outputs multiple messages per batch, it signs the entire output

batch as a whole and produces one receipt Y.

In the event of a dispute, the sender can provide Y, X = (EK+
R
(R0, M), R), and R1

to an arbitrator. To determine if the signature Y is correct, the arbitrator calculates

E+
K1

(R1, X) and checks if this appears in EK+
1
(Y ). If the signature is incorrect, the

arbitrator determines that mix1 failed to output the message properly. Otherwise,

the arbitrator checks if the correct message EK+
R
(R0, M) was sent to the receiver

(EK+
R
(R0, M) is extracted from X). If EK+

R
(R0, M) is not in the output batch of

mix1, then the arbitrator determines that mix1 failed to output the message properly.

If the signature and forwarded message are correct, then the arbitrator rules that

mix1 output the message correctly.

In order to send a message to R through a cascade of mixes mixn, mixn−1, . . . ,

mix1, the structure in Equation 2.1 is applied recursively. That is, the sender sends

to mixn

EK+
n
(Rn, EK+

n−1
(Rn−1, . . . , EK+

2
(R2, EK+

1
(R1, EK+

R
(R0, M), R), A1) . . .), An−1) (2.2)

where A1, . . . , An−1 represent the addresses of mix1, . . . , mixn−1, respectively. After

receiving the message in Equation 2.2, mixn decrypts the message with its private
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key, throws away the random salt Rn, and sends

EK+
n−1

(Rn−1, . . . , EK+
2
(R2, EK+

1
(R1, EK+

R
(R0, M), R), A1) . . .)

to mixn−1. This process is repeated recursively by mixn−1, mixn−2, . . . , mix1 and the

message EK+
R
(R0, M) is ultimately received by the recipient and decrypted. Receipts

can also be used in a cascade of mixes, but a node only needs the receipt of its

successor node. The absence of an item from the predecessor’s receipt can be used

to substantiate the absence of an item from the node’s input.

An extension to mixes provides an untraceable return address. A sender S wants

to send a message to R with a return address (EK+
1
(R+

1 , AS), K+
S ) where AS is

the sender’s real address, K+
S is a public key generated for the reply by R, and

R+
1 is a public encryption key used by the mix on the reply. This return address

R is appended to the message M, layered by encryption as described by Equa-

tion 2.1, and then sent to the receiver. R then sends the reply M ′ to mix1 as

M ′′ = EK+
1
(R+

1 , AS), EK+
S
(R0, M

′). Then, mix1 decrypts EK+
1
(R+

1 , AS), extracts the

address of the sender AS, and sends ER+
1
(EK+

S
(R0, M

′)) to the sender S. R is the

only one who can decrypt the initial message sent by S because it is the only one

with the private key for K+
R . Thus R is the only one who could know R0 (see Equa-

tion 2.1) and this authenticates that R sent the reply message to S. Similarly, R+
1

authenticates that the mix was the intermediate node in the path. Note that instead

of using public key cryptography and the public keys K+
S and R+

1 , symmetric key

cryptography could be used instead to improve performance.

An untraceable return address can be extended to a cascade. In this case, the
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return address that is appended to the receiver’s reply message M ′ is

EK+
1
(R+

1 , EK+
2
(R+

2 , . . . , EK+
n−1

(R+
n−1, EK+

n
(R+

n , AS)) . . .)A2), EK+
S
(R0, M

′) .

The output of mix1 that is sent to mix2 is

EK+
2
(R+

2 , . . . , EK+
n−1

(R+
n−1, EK+

n
(R+

n , AS)) . . .), ER+
1
(EK+

S
(R0, M

′))

and the output of the last mix, mixn, that is sent to S is

ER+
n
(ER+

n−1
. . . ER+

2
(ER+

1
(EK+

S
(R0, M

′))) . . .) .

Another extension is certified mail. The last mix in the re-routing path that

forwards EK+
R
(R0, M) to the receiver R sends a receipt back to the sender which

includes the message EK+
R
(R0, M) and address AR that it was delivered to, via an

untraceable return address. The sender then verifies that the receipt is correct.

Mixes must defend against a replay attack. If an active adversary replays a

message, then the adversary could eventually correlate the message with its output.

For the same reason, return addresses cannot be repeated, and each time S wishes

to receive a reply from R it must send a new return address, i.e., one that contains

different public keys R+
n , R+

n−1, . . . , R
+
1 .

2.3 Onion Routing

Onion routing [34, 41, 42, 43] is an anonymous communication scheme written in

1997 that provides sender anonymity and unlinkability by using mixes. The mixes

obfuscate the incoming messages with the outgoing messages by using pseudo-random

batching. Each mix outputs the input messages in a pseudorandom order within a
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fixed interval of time. The metaphor of an onion is used because route information

is layered with public key and symmetric key encryption in a similar manner as in

Chaum’s mixes. The outer layer of an onion is intended for the next hop in the re-

routing path, and each hop removes the subsequent layer of the onion and forwards

it. The onion is used to create a bi-directional anonymous path. This anonymous

path can then be used by both the sender and receiver to exchange messages.

Onion routing provides sender anonymity and unlinkability and is available for

general public use, see [28]. However, this implementation can only be used in con-

junction with virtual private networks (VPNs), Web browsing, e-mail, remote login

(rlogin), and electronic cash because it must be able to understand the application

layer data it receives. For example, when remote login (rlogin) is used the rlogin

command must make a connection to the application proxy (defined below). The

application proxy must then be able to determine that the data received is an rlogin

packet, parse the server and user name, and send the rlogin request through the

anonymous Onion routing network. The last hop in the anonymous path must then

be able to construct a valid rlogin request on behalf of the sender.

The infrastructure required for Onion routing is an onion proxy and a static Onion

routing network. In remote proxy configuration, the sender requires an application

proxy and the public key and address of an onion proxy. Onion routing requires a

CA as a trusted authority.

In order to use Onion routing, clients adjust their application to make a socket

connection to an application proxy running locally on the client’s machine. Appli-

cation independence is provided by the application proxy, which massages the ap-

plication’s message into formatted cells that the onion proxy can understand. First,



16

a standard structure encrypted with the public key of the onion proxy is sent to

the onion proxy. The standard structure contains the destination address, address

format, and protocol used by the onion proxy. Then, the message is encrypted with

the public key of the onion proxy and sent to the onion proxy.

When an onion proxy receives a standard structure, the onion proxy creates an

onion. An onion is used to set up an anonymous connection for data transfer, but it

does not contain the standard structure or messages. After an onion creates a static

anonymous path, the standard structure is sent and thereafter messages can be sent

using symmetric key encryption.

Each layer of the onion contains seven fields: Version, Back F, Forw F, Desti-

nation Port, Destination Address, Expiration Time, and Key Seed Material. The

version specifies the version of Onion routing being used. Back F specifies the cryp-

tographic function applied in the backward direction of data (receiver to sender) and

Forw F specifies the cryptographic function to be applied in the forward direction

of data (sender to receiver). The Destination Port and Destination Address fields

specify the next onion router in the path. Expiration Time lets an onion router

know how long it must guard against replay attacks before the path expires, and is

specified in seconds relative to 00:00:00 UT January 1, 1970. The 128-bit long Key

Seed Material is used to generate three symmetric keys: key1, key2, and key3. keyi is

generated by applying the SHA hash function to the key seed material i times. key3

is used for the forward direction of data, key2 is used for the backward direction of

data, and key1 is used in the generation of the next inner onion layer.

When preparing an onion, the onion proxy first determines the path of onion

routers, p1, p2, . . . , pk. The onion is then constructed iteratively from the inner core
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outward. The inner core is destined for the last onion router in the path pk, the

next onion layer for pk−1, and so on, with the outer onion layer for p1. The inner

core consists of 100 random bytes of data. Then, each 128-bit additional layer is

prepended to the onion iteratively. The added layer is encrypted with the public key

of the onion router for which the layer is intended. Each time a layer is added, the

rest of the onion is encrypted with key1 from the added layer using symmetric key

encryption (DES OFB with an Initialization Vector of 0).

If an onion router receives an onion with Destination Address and Destination

Port of 0, then it knows that it is the last hop in the path, and passes the connection

to its own exit funnel. The exit funnel then knows that the standard structure

follows, containing the receiver’s destination address. It then attempts to set up

a socket connection with the ultimate destination, retrying the specified maximum

number of times in the standard structure before giving up. Any messages that the

exit funnel forwards to the receiver are encrypted with the receiver’s public key. Each

individual onion router that receives an onion chooses a locally unique anonymous

connection identifier (ACI). The onion router builds a routing table that maps the old

ACI to the predecessor onion router, and the new ACI to the successor onion router.

This makes it possible for messages to be sent in both directions in an established

anonymous connection path.

Onion routing I [41, 42, 43] uses a core of 5 onion routers. Each hop is chosen

at random by the onion proxy and all path lengths are 5. Onion routing II [43] uses

a core of 50 Onion Routers. Each hop is chosen at random by the onion routers

and the path length is random with a minimum length of 1. The path length is

randomized as follows: each onion router flips a biased coin which is weighted with
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probability pf . Let the weighted side of the coin be referred to as “heads”. If the

flip results in heads, the onion is forwarded to another onion router. If the flip is

tails, the anonymous path ends and a socket connection to the receiver is made. The

router then waits for the standard structure.

2.4 Crowds

Crowds [35] utilizes the idea of “blending into a crowd”, a group of geographically

diverse members, and was written in 1998 to provide anonymous Web surfing. Any

crowd member can issue a Web request on behalf of another user. Sender anonymity

is preserved because, to the Web server (the receiver), the request is equally likely

to have originated from any member (the sender) in the crowd. Crowds utilizes re-

routing with path encryption. Path encryption uses one symmetric key to encrypt

the message at the beginning of the re-routing path and the same symmetric key to

decrypt the message at the end of the re-routing path.

Crowds provides sender anonymity and unlinkability. It is used in practice [11]

in conjunction with Web browsing. In order to use crowds, a user downloads and

installs the software from [11] and changes their browser’s proxy settings.

The infrastructure of Crowds consists of two components: Jondoes and a Blender.

A Blender is a centralized trusted server that Crowds requires to maintain crowd

memberships. A user must establish an account, account name and password with

the Blender. Then, when a user starts a Jondoe, a locally running proxy, it contacts

the Blender and authenticates itself with the username and password so it can become

a member of a crowd. If the Blender authenticates the user, it adds the user’s IP
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Address, port number, and account name to the list of crowd members. In addition,

the Blender generates a list of shared symmetric keys, one for every other member

in the crowd, so that the user can exchange authenticated and encrypted messages

with each crowd member. This list is sent to the user encrypted under the account

password. Also, each newly generated key is appropriately sent to each other member

of the crowd encrypted under their respective account password, informing them of

the new crowd member’s IP address, port number, and account name.

After joining a crowd, a single static re-routing path with a minimum length of

1 is created for all the user’s communications. The user’s Jondoe chooses a random

Jondoe in the Crowd to be the first hop in the re-routing path. Then the user sends

the re-routing path creation request to the first hop’s Jondoe. Thereafter, any Jondoe

that receives the path creation request flips a biased coin. With probability pf , the

probability of forwarding, the Jondoe randomly chooses another crowd member to

which the path creation request is forwarded. In order to route the messages, a path

ID is used as a tag on the message to determine the next hop. When creating a

path, a Jondoe replaces the path ID with a new path ID, a randomly chosen 128-bit

integer. The old and new path ID, along with the IP address and port number of

the predecessor and successor nodes are recorded in a routing table. Replacing the

path ID allows for the same Jondoe to appear in the path multiple times, but still

route a message differently each time it appears on the path. If the flip of the biased

coin indicates not to forward the message, it is then sent directly to the server. The

first message sent by a new Jondoe utilizes this path creation, and every subsequent

message follows this same path regardless of the ultimate Web server destination.

Re-routing paths are static because dynamic paths reduce sender anonymity (see
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Theorem 5.2 in [35]). If Jondoe A receives a message from Jondoe B, all Jondoes

excluding A and B are equally likely to be the sender, but B is most likely to be

the sender. If re-routing paths are dynamic, then every time a Jondoe sends a

new message a new path is created. If the next hop Jondoes in each of these paths

collaborate, more messages being sent by the sender may compromise the anonymity

of the sender.

On the other hand, with static path creation, any new user who joins a crowd

and creates a new path is easily identified as a sender of a message. To solve this

problem, a join commit is introduced. Periodically the Blender sends a join commit

to all members of a crowd, and all of the crowd members at the same time create a

new path. A new user refrains from creating a path when the user first joins, and

waits until they receive a join commit.

To reduce latency, a path key is introduced. A path key is a symmetric key

generated by an initiating Jondoe and is forwarded to all Jondoes on the path via

the shared symmetric keys. This allows the use of path encryption for messages and

replies. The exchange of the path key is done securely with the symmetric keys given

by the Blender.

Crowds also prevents a timing attack (defined in Section 3.2). When Web brows-

ing, a user may request a Web page with embedded objects. When the user receives

the Web page the browser automatically requests the embedded objects. If the first

hop in the anonymous path notices a sufficiently short time between sending the

response and additional anonymous messages, then with high probability the first

hop identifies the sender. To prevent this attack, Crowds has the last hop in the

anonymous path check to see whether there are embedded objects, and if so, it re-
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quests them on behalf of the user that initiated the request. The user’s Web browser

is also changed to wait for embedded objects rather than request them itself.

2.5 Hordes

Hordes [38] provides sender anonymity and unlinkability for Web browsing by using

re-routing, link encryption, and multi-casting and was written in 2000. In order

to use Hordes, a client runs a local process h that is analogous to a Jondoe in

Crowds. Hordes utilizes similar techniques as Crowds for sending a message to a

receiver, but uses multicast on a receiver’s response while still maintaining sender

anonymity. Multicast reduces the round trip time to about half of that in Crowds

because multicast is more direct (Crowds has longer return paths due to re-routing).

The infrastructure in Hordes consists of a Blender and CA as trusted authorities,

and Jondoes (the clients running process h). The Blender and Jondoe protocols are

slightly different from Crowds. Hordes has not been used in practice.

Hordes consists of two main steps: initialization and data transmission. Initial-

ization provides the sender with a list of all other Hordes members and their public

keys as well as a multicast class D address Ag (a class D address is the type of

IP address used for multicasting). This process is very similar to Crowds, except

Hordes uses nonces (a value used only once) to ensure fresh lists are received, and

timestamps to ensure that membership updates are not replays.

Data transmission in Hordes on the forward path from sender to receiver has

three main differences from Crowds. Senders must randomly pick a multicast class

D address Ag from AG, the set of multicast class D addresses shared by all Jondoes in
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the Horde. Also, senders must generate a random 128-bit id, which allows a sender

to determine if a received multicast is a reply to one of its messages. Both Ag and

id are sent along with the message so that the receiver can respond to a sender

by multicasting to Ag. Lastly, the major change is that Hordes does not use static

re-routing paths. Instead, each hop in the re-routing path chooses a subset b of all

Horde members to which a message is forwarded. It then exchanges a symmetric key

kf to be used for symmetric key encryption with all members of b. kf is encrypted

with the next hop’s public key and the current node’s private key. To determine if

the message is forwarded to another Jondoe, a biased coin weighted with probability

pf is flipped. pf is a configurable parameter that gives the probability of forwarding

the message to another Jondoe and as pf increases, the average path length increases.

If the coin flip results in forwarding data, a random member of b is chosen by the

Jondoe and selected as the next hop, after which the message is forwarded using

symmetric key encryption with kf . Otherwise, the coin flip results in the message

being sent to the receiver. The use of dynamic paths in Hordes seems as if it would

compromise the anonymity of the sender, but in fact “the size of the subset is chosen

so that the number of forwarders in the set is on the order of the expected number

of paths a Jondoe would be on in Crowds” [38, page 38].

Data transmission in Hordes on the backward path from receiver to sender is

quite simple. To send a message, the id is appended to the front of the message,

and the message is multicast to Ag. A subset of all Horde members, Ag, is chosen

because this allows a sender to listen to a subset of all replies for the entire group

AG. If a subset is not chosen, a sender could waste a lot of resources listening to

broadcast replies that are not intended for it. This drastically reduces the time for
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a reply from a receiver because the reply is sent directly via multicast versus taking

extra re-routing hops.

Multicasting uses class D addresses. A group of members subscribe to a class D

address. This effectively creates a tree of routers, and no individual router knows

the entire membership. To know all the members of the group Ag requires the co-

operation of all the routers and even then, each member of Ag is equally likely to be

the recipient.

2.6 Lucent Personal Web Assistant

On the Internet, clients commonly type in login names and passwords that allow

the user to be identified, sacrificing data anonymity. Lucent Personal Web Assistant

(LPWA) [15] provides weak sender anonymity by using re-routing with no encryption

and data anonymity of login names, secret key or password, and HTTP headers.

Sender anonymity is weak because the re-routing path only consists of the LPWA

proxy, which is easily defeated by an eavesdropper between the sender and the LPWA

proxy. LPWA also prevents servers from establishing a dossier, the set of servers the

client has interacted with so far.

LPWA can be used in conjunction with e-mail and Web browsing and was used

in practice in 1997. It was then the basis for ProxyMate which was sold to CMGI’s

NaviPath in May 2000 [24]. NaviPath has not released its product yet [31]. The

infrastructure of LPWA consists of a single LPWA proxy as a trusted authority.

A sender passes a single passphrase to the secure Janus function which provides

the sender with a persona for the rest of the session with a particular server. The
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persona includes an alias user/login name, an alias secret key or password, and an

alias e-mail.

In order to use LPWA, clients configure their browser settings to use the LPWA

proxy, such as lpwa.com. The LPWA proxy is located at the edge of the subnet of

clients, usually at an Internet Service Provider (ISP) or where a corporate firewall is

located. The proxy utilizes filters and the Janus engine, a software implementation

of the Janus function, to provide anonymity. It is assumed that the communication

between the sender and the LPWA proxy is secure and the passphrase is sent as

plaintext (not encrypted text) to the LPWA proxy. The LPWA proxy is the one

intermediate node in the re-routing path.

The keys to data anonymity in LPWA are filtering and the Janus engine residing

on the LPWA proxy. Filtering removes the From and Referrer headers from HTTP

requests and trims the User-Agent header to remove platform specific information.

The From header can contain the user’s e-mail address. The User-Agent header

contains information about what type of machine the user has. The Referrer header

contains the URL of the Web page in which the URL of the current request appeared.

The purpose of the Janus function is to provide a client with consistent personas,

such as aliases for HTTP login pages, while preserving the anonymity of the client.

The Janus function J is defined as J(ci, sj, pi, t) = MACpi
(ci||sj||t) where MACpi

is the message authentication code generated by a CBC-MAC such as Advanced

Encryption Standard using pi as the key. In this notation ci is the client, sj is the

server, pi is the passphrase (the secret), and t ∈ {u, p, m} denotes whether the client

wants an alias username, password, or e-mail address, respectively.

The Janus function protects against collaborating servers establishing a dossier
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for a client by providing data anonymity. Collaborating servers obtain a unique alias

(login name, password) tuple for each server because the Janus output is dependent

upon sj. The following secrecy and anonymity properties of the Janus function [15]

ensure that collaborating servers cannot establish a dossier. The secrecy property

prevents the collaborating servers from deriving the results of the Janus function

from other results. The anonymity property prevents the collaborating servers from

identifying who the client is given pairs of (alias,password) from different clients.

The only other way for servers to establish a dossier is to analyze the referrer header

in a HTTP request. However, the Janus engine removes the referrer header and a

server cannot establish a dossier this way either.

To formally define the secrecy and anonymity properties, we first introduce some

notation as in [15]. Let au
i,j denote the alias username for client ci to server sj and ap

i,j

denote the corresponding password for client ci to server sj. A client ci is uncorrupted

if the adversary is unable to determine pi. A client ci is opened to server sj if the

pair (au
i,j, a

p
i,j) was communicated to the server. A client ci is identifiably opened

to server sj if the client is opened and the server can determine the corresponding

ci. Now, let us take the definitions of the secrecy and anonymity properties directly

from [15, page 397]:

1. Secrecy : Given a server sj, an uncorrupted and not identifiably opened client ci,

and t ∈ {p, u, m}, the adversary E cannot find J(ci, sj, pi, t) with non-negligible

probability even under a chosen message attack, under the assumption that the

adversary can get J(ci, sj′, pi, t
′) for any sj′ 6= sj or t 6= t′.

2. Anonymity : Given a server sj, and two uncorrupted clients ci, ci′ not opened
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with respect to sj, and t ∈ {p, u}, an adversary cannot distinguish the value

of J(ci, sj, pi, t) from J(ci′ , sj, pi′, t) with non-negligible probability even under

a chosen message attack, under the assumption that the adversary can get

J(ci′′ , sj, pi′′, t) for any list of arguments not used above.

The work in [15] proves that J satisfies these properties.

Weak sender anonymity for e-mail is also provided. In order to make LPWA

transparent to the user, e-mail forwarding is used. The forwarding engine encrypts

the user’s e-mail address. Suppose the result of the encryption is X. The forward-

ing engine then replaces the e-mail’s reply address with X@lpwa.com. When the

server responds to this alias e-mail address, the forwarding engine decrypts X and

forwards the e-mail to the decrypted address. The documentation in [15] does not

specify whether public key or symmetric encryption is used. However, since only the

LPWA proxy needs to store the encryption/decryption key, symmetric encryption is

probably used since it is faster.

One attack to which LPWA is susceptible is if an attacker collects outputs of

the Janus function, hoping for an internal collision (a birthday attack). The at-

tacker would replace the first n bits of a message with alternatives, until one of the

alternatives yields the same Janus function output as the original message. Using

this method, a consequence of [5] shows that an attacker has to try approximately

2(keysize)/2 samples. Thus, 64-bit keys are insecure and keys of at least 128-bits are

recommended [15].



27

2.7 Anonymizer

Similar to LPWA, Anonymizer [2] was written in 1997 to provide weak sender

anonymity for Web browsing by using re-routing with no encryption. Only one

intermediate node is used in the re-routing path, namely the Anonymizer server.

A client changes the browser proxy to the Anonymizer server, and all subsequent

messages are re-routed through the Anonymizer server. Anonymizer strips off all

identifying headers and source addresses of the HTTP request. It then forwards

the request on behalf of the client to the server. All responses are sent back to

the Anonymizer Server, which forwards them back to the original sender. Thus, a

server can only learn the identity of the Anonymizer server. Anonymizer requires

the Anonymizer proxy as a trusted authority.

Currently, Anonymizer is available at [2]. In order to use Anonymizer, a user

must pay a fee to create an account with an Anonymizer server and change their

web browser’s proxy settings.

2.8 Remailers

The purpose of remailers [10] is to provide sender anonymity for e-mail. The first

remailer written was the type 0 remailer Anon.penet.fi in 1993. Type 1 and type 2

remailers also provide unlinkability. Only type 1 remailers allow a receiver to reply

anonymously.

A type 0 remailer is based on re-routing with no encryption. It is very similar

to Anonymizer. The required infrastructure is a single proxy as a trusted authority

that provides one intermediate node in the re-routing path. The sender sends e-mail
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to the intermediate proxy, which strips all identifying headers from the message and

forwards it to the receiver. The intermediate proxy and the connection from the

sender to the intermediate proxy are assumed to be secure for sender anonymity to

be preserved. Currently, there are many type 0 remailers used in practice, see [3] as

an example. However, due to the amount of spam generated by type 0 remailers,

their existence is usually short-lived.

A type 1 remailer is commonly referred to as a Cypherpunk remailer. The in-

frastructure required is a cascade of weak mixes. The mixes are weak because they

rely on message delay, which only partially obfuscates inputs with the outputs of a

mix. In addition, the weak mixes do not use uniform message size which permits a

size correlation attack because each layer of encryption is removed at each weak mix

without adding padding before forwarding the message. Type 1 remailers require a

certification authority (CA) as a trusted server. Currently, there are many type 1

remailers used in practice, see [44, 45] for an extensive list.

An e-mail in a type 1 remailer system is conceptually a layered public-key en-

crypted structure similar to an onion. The inner core of the layered structure contains

the message. Each layer contains routing instructions for each mix: delay, next hop,

and optionally an alias. The delay instructs a mix to hold a message for delay time

units, to thwart traffic analysis. The next hop (IP address) tells the mix whether it

is to send the inner layers to the next mix or to the receiver. The alias allows the

receiver to respond to an e-mail, and each mix maps the alias address to the prede-

cessor node from which it received the onion. Cypherpunk remailers also strip off

all (or at least some) mail headers and add new headers to provide data anonymity.

Lastly, instead of specifying a delay, some type 1 remailers use a message pool. A
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message pool maintains a minimum number of messages in the pool; once the mes-

sage pool is full an incoming message causes a message to leave the pool. To prevent

an attacker from correlating an incoming message with an outgoing message, the

messages in the pool are reordered with each incoming message. To send a message,

a sender requires the public keys and addresses of all the mixes.

A type 2 remailer, Mixmaster, attempts to eliminate attacks that can be used

against Cypherpunk remailers (see Section 3.3.1) by using mixes that delay and

reorder messages, with uniform message size, protection against replays, and the

absence of a means for the receiver to reply. The origin of its name comes from the

fact that it is strongly based upon Chaum’s mixes. The body of the message is 10

kilobytes, and the message is sent through an infrastructure of 20 mixes. The sender

requires the public keys and addresses of 20 mixes. Mixmaster requires a CA as a

trusted server. Currently, there are some Mixmasters used in practice, see [44].

Each layer of the message is encrypted with the public key of the mix for which

it is intended. A received message is decrypted with the private key of the mix,

revealing the header, which contains the next hop, a packet ID, and a symmetric

triple DES key (3DES). The mix checks to make sure it has not seen the packet ID

before, discarding if necessary to prevent replays. The next hop is extracted as well

as the 3DES key. Then, the header is moved to the end of the list of headers (before

the body of the message), and the entire message is decrypted with the 3DES key.

The packet is then forwarded to the next hop. Flags in the core of the message

indicate if it is the last hop and if it is a multi-part message. The body of the

message is then placed into a reordering pool. If it is part of a multi-part message,

the last hop does not place it in the pool until all other parts have arrived. The
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last hop identifies these multi-part messages with a flag, as well as the messages

having the same packet ID but different Message IDs. All parts of the multi-part

message must be received within a certain time limit, otherwise the entire message

is discarded. How the multi-part message is re-assembled in the correct order is not

specified in [10]. However, the problem is easily solved by adding sequence numbers

to multi-part messages.

Mixmaster does not provide perfect sender anonymity if the traffic on the network

is low. Correlations can be discovered between a sender and a receiver receiving a

message a certain time period later. To defeat traffic analysis, dummy messages

would have to be created to maintain a minimum level of traffic.

2.9 Babel

Babel [18] provides sender anonymity, unlinkability, and optionally receiver anonym-

ity for e-mail and was written in 1996. It utilizes a cascade of mixes that use

interval batching, probabilistic deferment, inter-mix detours, and fixed-set random

order paths (as defined below) to obfuscate their input messages with their output

messages. It enables stateless remailers by allowing a sender to append an optional

untraceable return address (as defined below). Babel has not been implemented.

In order to use Babel a user either installs a filter in the .forward file (Unix

configuration file for e-mail forwarding) or changes the proxy to the Babel Proxy.

When a .forward file is used to install Babel, a password that is needed as a secret

key is stored in plaintext. When using the proxy mode of operation, the user’s

password is sent to the proxy mix in plaintext. In proxy mode, it is recommended that
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PGP [47] be used in conjunction with Babel to protect the password. In addition,

it is recommended to use PGP for the original message that is sent to the receiver

to hide the message contents during the first hop (proxy mode) and last hop (both

.forward and proxy mode).

The infrastructure of Babel is a cascade of mixes and a CA as a trusted server.

The sender requires the addresses and the public keys of the mixes, as well as a

password (.forward configuration) or the first mix proxy’s PGP public key (proxy

configuration). Optionally, the PGP key of the receiver is needed.

The fundamental building block of Babel is a mix. To improve the chances that

an adversary does not compromise the only intermediate mix, a cascade of mixes is

used. Babel utilizes a number of techniques to obfuscate incoming messages with

outgoing messages of a mix. Uniform message length prevents size correlation of

incoming and outgoing messages. Random one-time salt via symmetric session keys

ensures that should an eavesdropper intercept a message going out of a mix, they

cannot apply the public key of the mix to discover what the incoming message was.

These session keys also improve performance because symmetric key cryptography is

computationally faster than public-key cryptography. A public key is used to encrypt

the session key, and the session key is used to encrypt the rest of the message. Interval

batching divides time into equal intervals T . If fewer than M messages are received

within time T , decoy messages are generated so that the batch has M messages. A

variant of a timestamp scheme uses the session key to uniquely identify messages

and guard against replays since the chance of a collision of a randomly generated

128-bit integer is considered negligible. The mix must record these session keys with

their timestamps, and can flush its memory of these after some fixed system-wide
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time interval.

The composition of a message for a sender is similar to an onion in Onion routing.

However, the message is padded to exactly Ω bytes, and after each layering and

encryption, the message is trimmed to Ω bytes. Unlike onion routing, the encrypted

layered message in Babel does not set up the symmetric keys for a route; rather,

the inner core contains the message. The maximum message size is α < Ω, which

ensures that trimming does not remove the actual contents of the message. α is

dependent on the number of hops in the re-routing path, how much data each layer

adds, and Ω. Also, it is possible for the sender to give multiple mix addresses at

each layer, which hides the next hop from the current processing mix. Only one mix

from the multiple mixes is able to decrypt the message. Thus, a mix only knows the

predecessor mix and not the successor mix. Lastly, the layer’s header is encrypted

with the public key of the mix the layer is intended for, and the rest of the message

is encrypted with the symmetric key contained within the header.

The anonymous reply path is stored in return path information (RPI), allowing

the mixes to be stateless. The sender randomly chooses a key seed (KS). Then, the

sender generates r symmetric keys K1, K2, . . . , Kr using a hash function iteratively

on KS, and generates a return path of mixes R1, R2, . . . , Rr. The inner core of the

RPI is y0 = EK
S+(KS, r), where EKS

+ is encryption with the sender’s public key

and r is the number of hops in the return path. The sender, starting with the last

mix on the return path Rr calculates

yi = (ARr−i+1
, EK+

Rr−i+1
(Kr−i+1, yi−1)) for 1 ≤ i ≤ r .
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The resulting RPI

yr = AR1 , EK+
R1

(K1, AR2 , EK+
R2

(K2, . . . , EK+
Rr

(Kr, Asender, EK+
S
(KS, r)) . . .))

is prepended to the beginning of the plaintext message. The sender sends this mes-

sage with the prepended RPI to the receiver as an encrypted layered message. The

last mix in the sender’s re-routing path sees the RPI, and modifies the mail header

so that the receiver replies to R1.

To reply to an e-mail, the RPI is treated opaquely and prepended to the reply.

This reply is sent to R1, which is extracted from the mail header of the sender’s

message. Each mix Ri on the return path first decrypts the outer layer of yi with its

private key K−
Ri

and extracts the symmetric key Ki and ARi+1
(the address of the

next hop). It then prepends the RPI with w random bytes (w is the size of a layer)

and deletes the first w bytes to keep the resultant RPI the same size. It applies the

symmetric key Ki to the new RPI and the entire message. Ultimately, the last mix

Rr sends to the sender EK+
S
(KS, r) + random data prepended to

Yr = (EKR
(EKR−1

(. . . EK1(reply message) . . .))

The sender then applies the private key K−
S to extract KS and r, which tells where

the message is located (rw bytes later). The sender then generates the r symmetric

keys from KS, which can be applied to Yr to extract the reply message. Note that

unlike Chaum’s mixes, the prepended EK+
S
(KS, r) makes the sender almost stateless

as well. The sender does not have to remember all the random keys generated for

reply paths, just its own private decryption key K−
S .

RPIs allow Babel to provide mutual anonymity. Alice can send an anonymous

message to a newsgroup or bulletin board and include an RPI. Bob can then anony-
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mously check the newsgroup or bulletin board, and send a reply to Alice. If Bob is

concerned that Alice is trying to trick him into revealing his identity by controlling

the RPI’s return path, Bob can send an anonymous message to R1 of Alice’s RPI

via an encrypted layered structure. Similarly, Bob can include an RPI and Alice can

reply to Bob’s reply via an anonymous message to R1 of Bob’s RPI via an encrypted

layered structure. However, this allows for a replay attack, since Alice could receive

multiple replies to her posted message.

Inter-Mix detours is a method used to prevent replay attacks and spam attacks.

A mix Ri could send an anonymous message on the path I i
1, I

i
2, . . . , I

i
ri
. Then, I i

ri
can

forward the message to Ri+1. An anonymous message on a detour is tagged to prevent

infinite detours. A detour is quite simple, it is just an anonymous message that takes

a detour created by a mix. Inter-Mix detours can be applied on the forward path,

which has the nice property that even a sender cannot recognize its own message as

it leaves a mix. Similarly, inter-mix detours can be applied on the reply path.

Additional techniques that are used to improve mixing are probabilistic defer-

ment and fixed-set random order path. To provide maximal traffic going through the

mixes, fixed-set random order path imposes that a path must pass through all mixes

exactly once. To decrease the probability of an adversary correlating an incoming

message with an outgoing message, probabilistic deferment is introduced. Proba-

bilistic deferment implies that with a certain probability, a message may be deferred

to the next outgoing batch.
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2.10 Buses

The inspiration behind Buses [4] written in 2003, is the observation that public

transit buses hide the movement patterns of passengers. In the networking context,

the key idea is that messages can travel in the “seats” of a “bus” (a large packet

with assigned message fields), appropriately obscured by symmetric key or public-

key encryption. The bus traverses the network, passing from one node to the next.

When in possession of the bus, a node can retrieve messages intended for it or place

messages on the bus to be delivered to another node. By encrypting the messages,

only the intended recipient can recover messages intended for it. If a semantically

secure cryptosystem [26] is used, then an adversary cannot distinguish in polynomial

time whether data on the bus is the encryption of a valid message or random data,

and thus cannot even determine whether communication is taking place at all.

Buses [4] is used to send anonymous messages using two different techniques:

reserved seats or layered encryption (defined below). Reserved seats does not provide

sender anonymity from the perspective of the receiver, but from the perspective of

everyone else mutual anonymity is provided. Layered encryption provides mutual

anonymity from everyone’s perspective. Since Buses uses either symmetric or public-

key encryption, we will use “encryption” to denote either symmetric or public-key

encryption and “key” to denote either symmetric or public key. Buses is distinct

from re-routing and mixing anonymity communication schemes because they do not

require constant traffic to thwart traffic analysis nor do they require all processes to

be busy constantly to provide anonymity. A modified version of Buses is implemented

for the first time in this thesis.
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The infrastructure required is a set of nodes running the Buses protocol and a

semantically secure cryptosystem. The latter requirement prevents an eavesdropper

from distinguishing between random data and an encrypted message within polyno-

mial time. The sender requires the public keys or symmetric keys of the receiver and

all intermediate nodes on the bus route from the sender to the receiver. Also, the

sender is required to be able to buffer a bus. In addition, a CA or a trusted server

is required to distribute the keys securely.

There are three types of bus anonymity schemes described in [4], each of which is

optimal in a different sense. The optimal communication complexity version reduces

the maximum number of messages that are sent simultaneously by the nodes in the

network. The optimal buffer complexity version reduces the number of seats in a

bus, thus reducing the size of the buffer required to store incoming and outgoing

buses. The optimal time complexity version bounds the worst case time it takes two

nodes to communicate anonymously. These basic schemes can be combined to trade

off communication and time complexity.

In the optimal communication complexity version, the bus has n2 seats, where n

is the number of nodes in the system. Seat si,j is reserved for communication from

node pi to node pj. The jth column denotes all the seats reserved to communicate

with node pj. The bus traverses the network using an Euler tour of a spanning tree

to define a ring. When node pi receives the bus, it decrypts column i, retrieves any

intelligible messages, and ignores the rest. Then, it replaces every seat si,j in row

i with either an encrypted message it wants to send to another node or detectable

random data encrypted for pj. The random data is encrypted because it prevents an

attacker from determining how many seats a node is sending by timing how long it
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takes for the node to modify the bus. If a semantically secure cryptosystem is used, an

adversary cannot distinguish the valid messages from the encrypted random data,

and mutual anonymity is achieved. However, mutual anonymity is only provided

from a third party’s perspective, because the receiver can identify the sender by

determining in which row i it received an intelligible message, and correlating this

information to the sending node pi by observing the bus as it traverses the network.

Communication complexity is optimal because there is a single bus. It takes at most

2n− 1 time units for the bus to reach the sender, and at most an additional 2n− 1

time units for the bus to deliver the message to the receiver. The buffer complexity

is O(n2) because there is a bus seat for every (source,destination) pair.

The optimal buffer complexity version reduces the size of the bus. Rather than

having n2 seats, there are s2 seats, where s is an upper bound on the number of

messages that are sent anonymously for each tour of the bus. When the bus reaches

a node pi, it decrypts every seat on the bus, replacing each seat with its decryption.

Any intelligible messages are recorded and replaced with random data. In order for

node pi to send a message, it first prepares a layered encryption of the message.

It encrypts the message with the destination node’s key, encrypts the encrypted

message with the destination’s predecessor’s key, and so on until it encrypts the

multiply-encrypted message with its successor’s key. This layered encrypted mes-

sage is placed in a random seat on the bus and the bus is forwarded to pi’s successor.

One layer of the layered encryption is removed at each hop in the bus tour of the

network, until eventually the intended receiver removes the last layer of encryption

and extracts the message. Mutual anonymity is provided from everyone’s perspec-

tive, including the receiver, because the layered encryption only allows a receiver to
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identify the predecessor in the bus path, and not the original sender.

The optimal buffer complexity version of Buses has a bus of size O(ns2), time

complexity O(n), and communication complexity O(1). It is assumed that s ≤ √
n,

otherwise the buffer complexity is worse than the optimal communication complexity

protocol. The buffer complexity is O(ns2) rather than O(s2) because encrypting with

a semantically secure cryptosystem increases the size of the message with each layer

of encryption. To prevent a size correlation of seats before and after the bus visits

a node, the sender appends dummy blocks to the decryption. In the worst case, the

receiver is O(n) hops away in the Euler tour, so the buffer complexity is O(n) times

s2, the size of the bus.

Since s is the upper bound of messages that are sent anonymously for each cycle

of the bus, it is possible for a bus with buffer complexity O(ns2) to have a “birthday

paradox” where two senders choose the same seat. The expected number of resends

for a message due to the birthday paradox is less than 1 [4]. For reliable message

delivery, the receiver sends an acknowledgment in the same seat. If the sender does

not find an acknowledgment in the seat when the bus returns, the sender simply

resends the message. If a sender has to send a message multiple times, it can double

the size of a bus in order to decrease the probability that an existing message is

accidentally overwritten. Similarly, if multiple acknowledgments are received, then

the size of the bus can be halved.

To minimize the time required to send anonymous messages, the optimal time

complexity variation increases the number of buses, with two buses traveling in each

direction of each link in the network. If a message destined for node pj arrives

in seat si,j at node pk, it transfers to the bus on the link out of pk that has the
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shortest path to pj. One problem with this protocol is that network bandwidth is

consumed in exchanging routing information for shortest paths. As in the optimal

buffer complexity protocol, mutual anonymity is provided if layered encryption is

used and the sender knows the shortest path to the receiver. The time complexity of

this variation is O(diameter of the graph), the communication complexity is O(2m),

and the buffer complexity is O(n2), where m is the number of edges in the graph.

Lastly, a bus protocol that gives a trade-off between time and communication is

possible. In fact, Theorem 4.1 of [4] states:

For every x, where 1 ≤ x ≤ n, there is an anonymous message deliv-

ery protocol with communication complexity O(n/x), buffer complex-

ity O(n2), . . . the time complexity between two nodes is O(min(dx, n)),

where d is the distance between the nodes in the spanning tree.

The idea is to divide the graph into clusters. An individual bus tours each cluster.

Cluster size is directly related to communication complexity and inversely related to

time complexity. In order to improve time complexity, each bus has to be synchro-

nized to meet at common edge nodes of adjoining clusters. As in the optimal buffer

complexity protocol, mutual anonymity is provided if layered encryption is used.

The Buses anonymous communication scheme can be extended to handle mul-

ticast and broadcast, unknown topology, and an active adversary. Multicast and

broadcast can be implemented by having the node send an anonymous message to

another random node to perform the multicast or broadcast on behalf of the anony-

mous sender. For an unknown topology, the bus can perform a random walk in

expected time O(nm) [1], where n is the number of nodes in the graph and m is
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the number of edges. An active adversary can add, delete, or modify messages and

anonymous communication still succeeds. In order for the anonymous communica-

tion scheme to succeed against an active adversary controlling t nodes, a sender must

send a message on t + 1 disjoint paths.

2.11 DC-Net and Xor-trees

DC-Net [8] was written in 1988 and provides mutual anonymity for message commu-

nication, based on the dining cryptographers problem [8]. DC-Net provides a very

strong form of mutual anonymity at the cost of expensive broadcast communication.

Due to this expensive broadcast communication, DC-Net is not used in practice.

The network consists of nodes and edges, and the nodes are completely connected.

Pairs are formed by the two nodes incident to an edge. Each pair observes secret

binary coin flips and calculates the total modulo 2 of all secret binary coin flips it

observes (the parity). This parity is then broadcast to all other nodes. Since each

binary coin flip is observed twice (since two nodes are incident to each edge), the

total of the broadcast parities modulo 2 is zero. If a node wants to communicate

with another node, it inverts the parity observed before broadcasting. This results

in the total of the broadcast parities being odd for the receiver.

This idea can be extended by sharing symmetric keys; each participant has a

symmetric key in common with every other participant. This allows for multiple coin

flips, with the ith bit of the symmetric key representing the ith coin flip. However,

only one node can communicate at a time, otherwise an even number of inversions

results in an even parity. Even worse, if an odd number of nodes communicate, the
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inversion collisions are not detected. Another problem is that the results of each

round must be broadcast to the entire network. Obviously, this scheme does not

scale due to the broadcast communication and hence is not used in practice, even

though it has been implemented [12].

An extension to DC-Net is Xor-trees [13]. This solution reduces the amount of

communication by having nodes transfer the results of their secret coin flips (using

each bit of the shared symmetric key as a coin flip) towards the root, with parent

nodes Xoring the results from the sibling nodes. Once the results are propagated

to the root, it broadcasts the result back down the tree. Public-key cryptography is

used to distribute the shared symmetric keys, so Xor-trees requires a CA. However,

this anonymous communication scheme has the same inherent problems of DC-Net.

It only allows for one node to communicate at a time and has difficulty handling

message collisions when more than one node communicates. Since Xor-trees is just

a slightly more efficient version of DC-Net, it is not analyzed in Chapter 3.

2.12 P 5

Peer-to-Peer Personal Privacy Protocol (P 5) [37] was written in 2002 and is a the-

oretical idea that provides mutual anonymity for message exchanges. It is based

upon a broadcast hierarchy in which each node in the hierarchy mixes its inputs and

outputs and constantly generates a stream of signal and noise packets. P 5 allows

individual users to decrease anonymity to improve efficiency; however, it is not pos-

sible for a user to increase anonymity after it has been decreased. The infrastructure

required by P 5 is an Oracle and a logical broadcast tree. A sender requires the public
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key of the receiver (acquired via out-of-band communication— secure communica-

tion that does not use the anonymous communication protocol) and the channel of

the receiver (see below). Thus, P 5 requires a CA as a trusted authority. P 5 has not

been implemented yet.

A group of N users is partitioned into a logical broadcast tree, L, via their public

keys, K+
0 , K+

1 , . . . , K+
N−1. Each node of L is referred to as a channel, and a subgroup of

users could be listening to each channel. The notation (b/m) is used to represent the

members of a subgroup where b is a bit-string and m is a bitmask (the length of the

bit-string b). m is inversely related to communication and anonymity. For example,

(01/2) represent all group members with the prefix 01 for the hash of their public

key. A user A can join a group (ba/m) where m ≥ 0 and ba = H(K+
A ) (mod 2Ld). In

this notation, H is a secure hash function, K+
A is the public key of A, and Ld is the

depth of the tree.

When a message is sent to a channel, it is sent to all the members of the channel,

their subtrees, and the path from the channel to the root (any channel with an

ancestor or descendant relationship). A message is encrypted with the public key

of the receiver. Any member of the channel that receives this message could be

the receiver. A user that wishes to receive a message can advertise a channel as its

message distribution point in the tree. The higher up in the tree the advertisement

is (smaller m), the bigger the pool of potential users that could be the receiver. Any

of the users in this channel pool is equally likely to be the receiver. To increase

efficiency, a user can advertise itself lower down in the tree (larger m), but this

decreases the pool of channels that could be the receiver, effectively decreasing the

receiver’s anonymity.
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A centralized Oracle that is a trusted authority is assumed to exist. When the

user joins a channel, the Oracle lets a user know how many members belong to that

group. Depending on the user’s desired efficiency, it can migrate down the tree at

the cost of decreasing its anonymity.

To provide sender anonymity, users always generate traffic at a fixed rate destined

for a randomly chosen channel. These packets can be a packet that was received from

another node (either a signal packet that is a message packet or a noise packet which

is a dummy packet), a signal packet that is generated locally, or a noise packet that is

generated locally. The noise packets prevent a passive correlation attack. All packets

are the same size to prevent size correlation. Some packets may be dropped, packets

destined for higher nodes in L are dropped with higher probability.

2.13 Pipenet and Freedom

Another two anonymous communication schemes are Freedom [14] and Pipenet [30].

Pipenet is an extremely short and theoretical description of an anonymous commu-

nication scheme written some time around 2000 and is based upon mixes that use

virtual link encryption. Virtual link encryption means that every single communi-

cation path between two mixes (every virtual link) is associated with a key (either a

symmetric key or a public/private key pair). Before a message is sent across a link,

it is encrypted with the link’s symmetric/public key and after it traverses the link it

is decrypted with the link’s symmetric/private key. Pipenet is not used in practice.

Due to the brevity of the description in [30], it is not possible to properly analyze it

and it is omitted from the analysis in Chapter 3.
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Freedom is a commercially available anonymous communication scheme similar

to Onion routing written in 1999, but it only allows a static re-routing path length

of three intermediate proxies. The company that implemented Freedom (Zeroknowl-

edge) is not releasing any documents on Freedom, so it is not analyzed in Chapter 3.

It is either a re-routing or mixing anonymous communication scheme. See [14] for

an implementation of Freedom.

2.14 Summary

The application support, sender requirements, and infrastructure requirements of

the anonymous communication schemes are summarized in Tables 2.1 and Table 2.2.

Application support denotes the applications that can be used in conjunction with

the anonymous communication scheme. Sender requirements denotes the informa-

tion that the sender needs to participate in the anonymous communication scheme.

It is implicit that the sender has the address of the receiver, except in Buses, DC-Net,

and P 5 where it is not required. Infrastructure denotes what additional components

are needed for users to communicate anonymously. PK denotes public key and SK

denotes symmetric key. Not Applied means that it has not been applied to an actual

application domain. E-mail (1-way) means that the recipient has no means to reply

to the sender.

The anonymity techniques used and the kind of anonymity provided are summa-

rized in Table 2.3. Weak Sender Anonymity denotes a re-routing technique with no

mixing that relies on one intermediate proxy to provide sender anonymity. Weak

Mix is a mix that uses a technique such as message delay instead of batching, which
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Table 2.1: Anonymous Communication Schemes Summary: Application Support,
Sender Requirements, Infrastructure Requirements
Scheme Application Sender Infrastructure

Support Requirements Requirements

Chaum’s Mixes - E-mail - Addresses of Mixes - Cascade of Mixes
- E-voting - PKs of Mixes

- PK of Receiver

Onion Routing - VPN, rlogin - Application Proxy - Onion Routing
- E-mail - Onion Proxy Addr. Network
- Web Cash - PK of Onion Proxy
- Web Browsing - PK of Receiver

Crowds - Web Browsing - Jondoe - Blender
- Blender Account - Participating Crowd
(Login & Password) Members
- Blender Address

Hordes - Web Browsing - Jondoe - Blender
- Blender Account - Multicast Support
(IP Addr. of Initiator,
PK of Blender, &
PK of Sender)
- Blender Address & - Participating Horde
Sender Private Key Members

LPWA - Web Browsing - Passphrase - LPWA Proxy
- Email - Addr. of Janus Proxy

Anonymizer - Web Browsing - Address of Proxy - Anonymizer Proxy

Type 0 Remailer - E-mail (1-way) - Address of Remailer - Type 0 Remailer

Cypherpunk - E-mail - Addrs. of Remailers - Cascade of
- PKs of Remailers Cypherpunk Remailers

Mixmaster - E-mail (1-way) - Addresses of Mixes - Cascade of
- PKs of Mixes Mixmaster Mixes
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Table 2.2: Anonymous Communication Schemes Summary (2): Application Support,
Sender Requirements, Infrastructure Requirements

Scheme Application Sender Infrastructure
Support Requirements Requirements

Babel - E-mail - Addresses of Mixes - Cascade of Babel
- PKs of Mixes Mixes
- Password (.forward
Configuration)
- First Hop’s PGP Key
(Proxy Configuration)
- Receiver’s PGP Key
(Optional)

Buses - Not Applied - Bus Buffer Capacity - Set of Nodes
- PK or SK of Receiver Running Buses
- PKs or SKs of Nodes Protocol
on Route to Receiver - Semantic Security

DC-Net - Not Applied - Shared SKs with - Broadcast Support
Neighbors

P
5 - Not Applied - PK of Receiver - Broadcast Support

- Channel of Receiver - Oracle
- Logical Bcast. Tree
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Table 2.3: Anonymous Communication Schemes Summary: Anonymity Technique,
Anonymity Provided

Scheme Anonymity Anonymity
Technique Provided

Chaum’s Mixes - Mixes - Sender Anon. & Unlinkability
Onion Routing - Mixes - Sender Anon. & Unlinkability
Crowds - Re-routing with - Sender Anon. & Unlinkability

Path Encryption
Hordes - Re-routing with - Sender Anon. & Unlinkability

Link Encryption
(Forward Direction)
- Multicast
(Backward Direction)

LPWA - Janus Function - Data Anon.
- Re-routing - Weak Sender Anon.

Anonymizer - Re-routing - Weak Sender Anon.
Type 0 Remailer - Re-routing - Weak Sender Anon.
Cypherpunk - Weak Mix - Sender Anon. & Unlinkability
Mixmaster - Mixes - Sender Anon. & Unlinkability
Babel - Mixes - Sender or Mutual Anon. (RPI)
Buses - Bus Metaphor - Unlinkability or Mutual Anon.
DC-Net - Shared Coin Flips - Mutual Anon.
P 5 - Broadcast Hierarchies - Mutual Anon.

does not obfuscate the inputs with the outputs of a mix under low load conditions.

The message size, mixing techniques, and path characteristics are summarized in

Table 2.4. Hop-wise means that each node flips a biased coin. If the flip indicates to

forward the message, the node chooses the next hop randomly.

If the anonymous communication scheme has replay protection, if the anonymous

routing scheme uses routing tables to set up anonymous paths, and what type of

encryption it uses is summarized in Table 2.5.
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Table 2.4: Anonymous Communication Schemes Summary: Message Size, Obfusca-
tion Techniques, Path Selector/Length
Scheme Message Mixing Techniques Path Selector/

Size Length

Chaum’s - Uniform - Batching - Sender/Undefined
Mixes (Lexicographic Reordering)

- Constant Rate
(Dummy Messages)

Onion - Uniform - Batching - Onion Proxy/Length 5
Routing (Pseudorandom Reordering) (Onion I)

- Hop-wise/Random
(Onion II)

Crowds - Not Uniform - None - Hop-wise/Random

Hordes - Not Uniform - None - Hop-wise/Random
(forward path)

LPWA - Not Uniform - None - Fixed/Length 1

Anonymizer - Not Uniform - None - Fixed/Length 1

Type 0 - Not Uniform - None - Fixed/Length 1
Remailer

Cypherpunk - Not Uniform - Delay - Sender/Depends on
Implementation

- Maintain Message Pool
(Reordering)

Mixmaster - Uniform - Delay - Sender/Length 20
- Reordering

Babel - Uniform - Interval Batching - Sender/Length is
(Decoy Messages) Number of Mixes
- Probabilistic Deferment
- Inter-Mix Detours
- Fixed-set Random Order
Path

Buses - Uniform - Always Decrypt Seats - Bus/Euler Tour
- Replace a Message Seat - Bus/Random Walk
with Random Data

DC-Net - Uniform - Constant Rate - N/A (Broadcast)
(1 bit)

P
5 - Not Uniform - Constant Rate - Receiver/Dependent

Upon Desired Anon.
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Table 2.5: Anonymous Communication Schemes Summary: Replay Protection,
Anonymous Path Routing Tables

Scheme Replay Anonymous Path Encryption Type
Protection Routing Tables

Chaum’s Mixes Yes No Layered Encryption
Onion Routing Yes Yes Layered Encryption
Crowds No Yes Path Encryption
Hordes No No Link Encryption

(Forward)
None (Backward)

LPWA No Yes None
Anonymizer No Yes None
Type 0 Remailer No No None
Cypherpunk No Yes Layered Encryption
Mixmaster Yes No Layered Encryption
Babel Yes No Layered Encryption
Buses No N/A Layered Encryption
DC-Net N/A N/A None
P 5 No N/A Path Encryption



Chapter 3

Analysis of Vulnerabilities

In this chapter, all of the surveyed schemes in Chapter 2 are analyzed and the attacks

that can be launched against each anonymous communication scheme successfully are

identified. The threat models are defined in Section 3.1 and the attacks are described

in Section 3.2. In Section 3.3, the attack vulnerabilities for each anonymous com-

munication scheme are identified, the results are analyzed, and the features required

to defend against all of the surveyed attacks for each anonymous communication

technique are summarized.

3.1 Threat Models

In order to evaluate the effectiveness of the anonymous communication schemes, it

is necessary to define the threat models. Each threat model represents a malicious

attacker with a different amount of resources. The attacks can be classified into

three threat models:

• An eavesdropper can see messages that traverse one or more links in the net-

work. A global eavesdropper can see messages that traverse all the links in the

network.

• A passive adversary can compromise one or more nodes in the system and can

gather information about messages that pass through a compromised node,

50



51

such as who the predecessor and successor nodes are, and local information

stored on the compromised node (e.g., routing tables, private keys).

• An active adversary has the same abilities as a passive adversary but can also

insert or delete messages on any of the links of the compromised nodes.

Let attacker denote either an eavesdropper or an adversary.

3.2 Attacks

Most of the anonymous communication schemes prevent a compromised receiver

from identifying the sender, however these are not the only attacks that can break

an anonymous communication scheme. Denial of service attacks are not considered in

this analysis, but attacks at the eavesdropper, passive adversary, and active adversary

level are considered1. The definition of the attack, the characteristics that allow the

attack, and the features that thwart the attack are defined below. The nomenclature

and definitions of these attacks vary and are scattered throughout the literature —

our sources are [4], [7], [9], [10], [17], [18], [35], [37], [38], and [41].

3.2.1 Eavesdropper Attacks

The eavesdropper attacks are:

• Local eavesdropper before proxy [9, 18, 35, 38, 41]. If the anonymous communi-

cation scheme sends messages in plaintext before the proxy/first mix/first re-

1In general, there are many possible sets of colluding nodes for each anonymous communication
scheme. The analysis of all these sets is omitted unless defined explicitly in one of the attacks. The
interested reader is referred to the original paper of the anonymous communication scheme, but is
forewarned that this analysis probably does not exist for all possible sets.
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router, then a local eavesdropper before the proxy can defeat sender anonymity.

The attack is thwarted by encrypting the message before it is sent or by having

the first proxy run as a local process on the sender’s machine (this first proxy

must then encrypt the message).

• Local eavesdropper after proxy [9, 18]. If the anonymous communication scheme

sends messages in plaintext from the last proxy/mix/re-router to the receiver,

then a local eavesdropper after the proxy can defeat receiver anonymity. The

attack is countered by encrypting the message with a key that only the receiver

knows.

• Size correlation [4, 7, 9, 10, 18, 37, 41]. If messages are different sizes, then a

global eavesdropper can trace the message from sender to receiver using size

correlation. This defeats all types of anonymity. The attack is defeated by using

uniform message size. This attack is not applicable to broadcast techniques

that send messages directly to the receiver because there is no message size to

trace as it is routed through the network.

• Time correlation [7, 9, 10, 18, 37, 38, 41]. If no mixing techniques are enforced,

a global eavesdropper can trace a packet from sender to receiver. This defeats

all types of anonymity. The attack is stopped by using mixing techniques. This

attack is not applicable to broadcast techniques that send messages directly to

the receiver via broadcast because there are no input/output times at inter-

mediate proxies to correlate. Also, the attack does not apply to Buses because

time correlations only reveal bus route(s), not message patterns.



53

• Low load attack [4, 10, 18] (also similar to Volume attack [41]). If the anony-

mous communication scheme does not enforce a minimum level of traffic via

dummy messages, then under low load conditions all anonymity types are sta-

tistically reduced and in the worst case defeated. A global eavesdropper can

keep track of the number of messages that pass through each individual node.

Then, the message counts between each node can be correlated to determine

communication paths statistically. This attack is foiled by a minimum level

of traffic enforced by dummy/decoy messages. This attack does not apply to

Buses because a bus always travels its route and each node always decrypts

and/or replaces a set of seats. Also, the attack does not apply to broadcast

schemes that broadcast the message directly to the receiver group.

• Marker attack [9, 10, 18, 38, 41]. If an anonymous re-routing communication

scheme only encrypts an incoming message at the first hop and decrypts an

outgoing message at the last hop or does not encrypt a message at all, a com-

mon prefix of a message can be traced from source to destination. This defeats

sender and receiver anonymity. The attack is evaded by layered encryption or

link encryption. This attack does not apply to broadcast techniques or mul-

ticast techniques. For broadcast techniques, messages are sent directly to the

receiver via broadcast and the attacker only identifies that every node that re-

ceives the broadcast is equally likely to be the receiver. Similarly for multicast

every node in the multicast group is equally likely to be the sender to whom

the receiver is replying.

• Intersection attack [37]. Suppose that an eavesdropper knows that a sender



54

belongs to two different sets U and V. Then, the adversary knows that the

sender belongs to the intersection of these two sets. This reduces all types

of anonymity. Out of all the anonymous communication schemes surveyed,

this attack is only applicable to P 5 where a user migrates down the logical

broadcast hierarchy binary tree L. The attack is thwarted by not migrating

down L.

3.2.2 Passive Adversary Attacks

The passive adversary attacks are:

• Full compromised path [38]. If an attacker can compromise all the nodes in a

path, it can determine the source and destination nodes. This defeats all types

of anonymity. The attack is countered by constant rate traffic with dummy

messages and layered encryption, or link encryption. Constant rate traffic with

link encryption or layered encryption prevents an adversary from knowing if it

has compromised the full re-routing path, or just a sub-set of it. This attack

does not apply to Buses. Constant rate traffic is not needed because buses

always travel their routes and semantic security prevents a passive adversary

from determining in polynomial time if a seat was replaced with random data

or an encrypted message. This attack does not apply to broadcast or multicast

schemes that send the messages directly to the receiver.

• Timing attack [35]. When Web browsing, a user requests Web pages. If a

requested Web page has embedded objects, the browser automatically requests

them after receiving the Web page. If a passive adversary notices significantly
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short times between the embedded object requests, it can with high probability

identify the predecessor as the sender and defeat sender anonymity. The attack

is defeated by constant rate traffic with dummy messages and batching or by

the last hop in the anonymous path checking if there are embedded objects and

requesting them on behalf of the sender that initiates the request. In the latter

case, the sender’s web browser is changed not to request embedded objects,

but to wait for them. This attack does not apply to Buses because embedded

objects are sent on the next available bus, not immediately. Also, this attack

does not apply to broadcast techniques because there are no intermediate nodes

between sender and receiver that can identify the sender as a predecessor.

• Passive traceback attack [17, 38]. If a passive adversary can start at a receiver

and then corrupt each routing table on the backward path of the message, it

defeats sender anonymity. However, this requires these paths to be stored in

a routing table. There is currently extensive work in this field because of the

need for network administrators to identify intruders. The attack is stopped

by anonymous message paths not being stored in routing tables. Note that

this attack is passive only if the adversary’s actions to corrupt routing tables

are not noticeable (i.e., it does not create a noticeable event). Otherwise, the

attack is considered an active adversary attack.

3.2.3 Active Adversary Attacks

The active adversary attacks are:

• Replay attack [7, 9, 10, 18, 41]. An active adversary can repeat (multiple
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times) a message that it has observed on the network. It then sees multiple

identical messages pass through the network and can correlate them to the

message it replayed. This defeats receiver anonymity for re-routing/mixes and

decreases sender anonymity. This attack also defeats receiver anonymity for

Buses. When a node in Buses receives a valid message, it replaces the message

with random data. Hence a replay results in a different output Bus for a node

if it received a valid message. If the node did not receive a valid message it

results in an identical output Bus. The attack is foiled by preventing replays

via timestamps, et cetera. The attack does not apply to broadcast schemes

that broadcast messages directly to the receiver because there are no paths to

trace for identical messages.

• Spam attack [9, 10, 18]. If batching and replay protection are used, an ac-

tive adversary can spam a proxy with multiple messages that it creates itself.

Since the active adversary knows what the outgoing messages of the proxy

look like for the messages the adversary creates, it can isolate and identify a

sender’s message. This attack defeats receiver anonymity and decreases sender

anonymity. Note that a spam attack for a non-batching technique is unneces-

sary and a replay attack suffices. The attack is evaded by using message delay

within the message itself, probabilistic deferment, or inter-mix detours.

• Mob attack [35, 37]. An active adversary can join the anonymous communi-

cation scheme and produce a large amount of traffic, reducing the protocol’s

performance. This attack is only applicable to P 5 because it can cause a sender

to migrate down the tree L, reducing sender anonymity via an intersection at-
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tack. The attack is thwarted by preventing migrations down L.

• Filter attack [10] (similar to a trickle attack [18]). If delay is used, an adversary

can delete all messages intended for a mix, except one. When the next message

is sent, it can only be the message that was not deleted. The attack is countered

by using batching.

3.3 Analysis

3.3.1 Attack Susceptibilities

The attacks that each anonymous communication scheme are susceptible to at the

eavesdropper, passive adversary, and active adversary level are summarized in Ta-

bles 3.1 and 3.2. If an anonymous communication scheme is not susceptible to any

of the attacks presented in this thesis for a particular level of attacker, it is labeled

“secure”. Otherwise, the attacks that the anonymous communication scheme cannot

defend against are indicated. If the attack has been identified before, reference(s)

to where it was identified are given in Table 3.3. If the attack is followed by a

∗, then the attack was previously unknown to the best of the author’s knowledge.

These new attacks were identified by cross-referencing the characteristics that defend

against each attack in Section 3.2 against the anonymity schemes’ characteristics in

Tables 2.1, 2.2, 2.3, 2.4, and 2.5. Note that if a scheme is susceptible to a replay

attack, then it is implicitly susceptible to a spam attack (this implication is not

recorded in Tables 3.1 and 3.2).
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Table 3.1: Anonymous Communication Schemes Attack Vulnerabilities
Scheme Eavesdropper Passive Adv. Active Adv.

Chaum’s Mixes - Secure - Secure - Spam attk.∗

Onion Routing - Low load attk.∗ - Full comp. path - Spam attk.∗

- Timing attk.∗ - Marker attk.
- Pass. tb. attk. (onion routers)

Crowds - Size corr. attk.∗ - Full comp. path∗ - Replay attk.∗

- Time corr. attk. - Pass. tb. attk.
- Low load attk.∗

- Marker attk.
(path encryption)
- Loc. evdpr. aft. pxy. ∗

Hordes - Size corr. attk. (fwd)∗ - Full comp. path - Replay Attk.∗

- Time corr. attk. (fwd) - Timing attk.∗

- Low load attk. (fwd)∗

- Loc. evdpr. aft. pxy. ∗

LPWA - Loc. evdpr. bf. pxy. - Full comp. path∗ - Replay attk.∗

- Size corr. attk. - Timing attk.∗

- Time corr. attk. - Pass. tb. attk.∗

- Low load attk.
- Loc. evdpr. aft. pxy. ∗

- Marker attk.∗

Anonymizer - Loc. evdpr. bf. pxy. - Full comp. path∗ - Replay attk.∗

- Size corr. attk. - Timing attk.∗

- Time corr. attk. - Pass. tb. attk.∗

- Low load attk.
- Loc. evdpr. aft. pxy. ∗

- Marker attk.

Type 0 - Loc. evdpr. bf. pxy. - Full comp. path∗ - Replay attk.∗

Remailer - Size corr. attk.∗

- Time corr. attk.∗

- Low load attk.∗

- Loc. evdpr. aft. pxy. ∗

- Marker attk.

Cypherpunk - Size corr. attk. - Full comp. path∗ - Filter attk.
- Low load attk. - Pass. tb. attk.∗ - Replay attk.
- Loc. evdpr. bf./aft. pxy. ∗

Mixmaster - Low load attk. - Full comp. path∗ - Filter attk.∗

- Loc. evdpr. bf./aft. pxy. ∗ - Spam attk.∗
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Table 3.2: Anonymous Communication Schemes Attack Vulnerabilities (2).
Scheme Eavesdropper Passive Adv. Active Adv.

Babel - Loc. evdpr. aft. pxy. ∗ - Full comp. path∗ - Secure
(.forward configuration)

Buses - Secure - Secure - Replay Attk.∗

DC-Net - Secure - Secure - Secure

P
5 - Intersection Attk. - Secure - Mob attk.

3.3.2 Required Defensive Attributes

Upon examining Column 2 of Tables 3.1 and 3.2, it is clear that certain characteristics

are required for anonymous communication schemes to defend against an eavesdrop-

per. Uniform message size is required to prevent size correlation attacks. To prevent

a local eavesdropper before/after a proxy, re-routing and mixing schemes should en-

crypt the message before the first proxy/mix and have the message encrypted so

that only the receiver can decrypt the final message. For mixing techniques, con-

stant rate traffic and batching or probabilistic deferment should be used to prevent

time correlation and low load attacks. A path key for path encryption is not a good

technique to improve efficiency because a global eavesdropper can perform a marker

attack.

Note that a local eavesdropper before/after a proxy can easily be thwarted by

making an encrypted connection to the receiver that does not authenticate the

sender. However, most encrypted connections provide the functionality for the re-

ceiver to authenticate the sender, such as PGP. Clearly, this authentication defeats

sender anonymity.

Thus, a secure anonymous communication scheme at the eavesdropper level
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should either use Buses, DC-Net, or a mixing scheme that uses uniform message

size, message encryption before the first proxy so that only the receiver can decrypt

the final message, constant rate traffic and batching or probabilistic deferment. The

only mix scheme discussed in this thesis that satisfies these characteristics is Chaum’s

mixes.
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Table 3.3: Anonymous Communication Schemes Attack Vulnerabilities: Sources
from Literature

Scheme Sources of Attacks in the Literature
Onion Routing Full comp. path [38]

- Pass. tb. attack [38]
- Marker attack [41]

Crowds - Time corr. attack [37, 38]
- Pass. tb. attack [38]
- Marker attack [38]

Hordes - Full comp. path [38]
- Time corr. attk. (fwd) [37]

LPWA - Loc. evdpr. bf. pxy. [9, 41]
- Size corr. attack [9]
- Time corr. attack [9]
- Low load attack [41]

Anonymizer - Loc. evdpr. bf. pxy. [9, 41]
- Size corr. attack [9, 41]
- Time corr. attack [9, 41]
- Low load attack [41]
- Marker attack [41]

Type 0 - Loc. evdpr. bf. pxy. [9]
- Marker attack [41, 10]

Cypherpunk - Filter attk. [10]
- Size corr. attk. [9, 10, 15]
- Low load attack [10]
- Replay attack [9, 10, 15]

Mixmaster - Low load attack [10]
P 5 - Intersection Attack [37]

- Mob attack [37]
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Re-routing schemes are not secure against global eavesdroppers. Most of the

re-routing schemes say that it is unlikely that an eavesdropper could span multiple

administrative zones. However, assuming the absence of a global eavesdropper opens

the door to attacks. For example, an Ethernet network uses a broadcast medium so

any node on that Ethernet network can act as a global eavesdropper for that network

(this node could be a valid user corrupted by malicious software or a valid but mali-

cious user). Thus, an attacker can corrupt the multiple Ethernet networks spanned

by an anonymous protocol, and become a global eavesdropper. Hence, re-routing

schemes should employ some obfuscation techniques, otherwise they are susceptible

to a global eavesdropper defeating anonymity because of time correlations.

Column 3 in Tables 3.1 and 3.2 shows that certain characteristics are required

for anonymous communication schemes to defend against a passive adversary. To

prevent a full compromised path attack, a re-routing or mixing scheme should use

constant rate traffic with dummy messages and single encryption, layered encryption,

or link encryption. To prevent a passive traceback attack, a re-routing/mix scheme

should not use routing tables. If the application support includes web-browsing, a

timing attack must be defended against. A timing attack is countered by constant

rate traffic with dummy messages and batching. Alternatively, a timing attack is

countered by the last hop in the anonymous path checking if there are embedded

objects and requesting them on behalf of the sender that initiates the request.

A secure anonymous communication scheme at the passive adversary level should

either use Buses, DC-Net, P 5, or a mixing scheme that does not use an anonymous

routing table, uses constant rate traffic with dummy messages and encryption (single,

layered, or link encryption), and uses batching if the application support includes
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Web browsing. An alternative for batching is the last hop in the anonymous path

checking if there are embedded objects and requesting them on behalf of the sender

that initiates the request. The only mix scheme discussed in this thesis that satisfies

these characteristics is Chaum’s mixes.

Finally, Column 4 in Tables 3.1 and 3.2 shows that certain characteristics are re-

quired for anonymous communication schemes to defend against an active adversary.

Mixes and re-routing schemes should use message delay within the message itself,

probabilistic deferment, and inter-mix detours to prevent a spam attack. Re-routing

schemes, mixes, and buses should use replay protection to prevent a replay attack.

If delay is only used, re-routing schemes/mixes are susceptible to a filter attack. A

filter attack is defeated by using batching.

A secure anonymous communication scheme at the active adversary level should

either use Buses with replay protection, a broadcast scheme based upon DC-Net,

or a mixing scheme that uses message delay within the message itself, probabilistic

deferment, inter-mix detours, and replay protection. The only mix scheme discussed

in this thesis that satisfies these characteristics is Babel.

Table 2.4 identifies additional characteristics required of anonymous communica-

tion schemes (based upon re-routing and mixing) to be secure. Path selection should

be done by the sender. Otherwise, if the first node in the re-routing path is a com-

promised node, it can then choose the next hop from the set of compromised nodes.

In the worst case, the entire path consists of compromised nodes and anonymity

is defeated. Also, re-routing schemes that have a noticeable send event (such as in

Crowds during re-routing path creation) should have a fixed path length. Otherwise,

the analysis in [35] shows that sender anonymity is reduced. If a re-routing scheme
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does not have a noticeable send event (such as Chaum’s mixes), the analysis in [17]

shows that dynamic paths are stronger. However, this analysis does not address the

effects on anonymity degree when multiple messages are sent by the same sender.

In summary, a secure anonymous communication scheme at the eavesdropper,

passive adversary, and active adversary level should either use Buses with replay

protection, DC-Net, or mixes with:

• uniform message size,

• encryption before the first proxy,

• encrypting the message so that only the receiver can decrypt the message,

• constant rate traffic,

• batching,

• probabilistic deferment,

• no anonymous routing table,

• constant rate traffic with dummy messages,

• message delay,

• probabilistic deferment,

• inter-mix detours,

• replay protection,

• path selection by the sender, and
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• dynamic path length (not noticeable send event) or fixed path length (notice-

able send event).

None of the mix schemes discussed in this thesis satisfies these characteristics. DC-

Net is the only secure scheme but it is not scalable, making it impractical. Mixes

with all the required features are difficult to implement correctly, and may lead to

excessive communication (i.e., constant rate traffic with dummy messages). However,

Buses with replay protection defends against all of the attacks and do not depend on

the statistical properties of the traffic (i.e., do not require constant rate traffic with

dummy messages).

3.4 Summary

There are numerous techniques that are used to provide connection anonymity. Re-

routing techniques can improve efficiency at the cost of decreasing anonymity by

allowing more attacks. However, if strong anonymity guarantees are required in

the face of all threat models, a cascade of mixes is better. Thus, there is a direct

correlation between anonymity and overhead for re-routing and mixes anonymous

communication schemes.

However, this is not the case for schemes based on techniques other than mixes or

re-routing. Buses provide an excellent level of anonymity at a manageable overhead

and are susceptible only to replay attacks, which can be easily thwarted. Schemes

such as DC-Net, Xor-trees, and P 5 are interesting from a theoretical point of view,

but the first two are not practical since only one sender can communicate at a time

and they are not scalable. The latter is susceptible to a mob attack launched by one
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adversary with minimal resources.



Chapter 4

A Practical Buses Protocol

This chapter contains an overview of the Practical Buses protocol, a modified version

of the original Buses protocol [4]. In Section 4.1, the selection of Buses as a promis-

ing and practical protocol is provided. In Section 4.2, three new techniques to make

the Practical Buses protocol support a dynamic topology while preserving mutual

anonymity are introduced. Sections 4.3, 4.4, and 4.5 contain a description of the

functionality added to the Buses protocol to enhance security and anonymity, im-

prove fault tolerance, and improve performance. Lastly, an overview of the Practical

Buses protocol is given in Section 4.6.

4.1 Justification for Buses

Our goals for a practical anonymous scheme are for it to be secure against all known

attacks, provide scalability, provide mutual anonymity, and support a dynamic topol-

ogy. The latter requirement is required to support dynamic membership, to recover

from DoS attacks, and to support networks with a dynamic topology such as wire-

less networks. The assessment of each of these criteria identifies Buses as the best

candidate. In addition, the protocol should be designed to sit between the transport

layer and application layer in the protocol stack to provide application independence

transparently to the user.

67
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From Chapter 3, the best candidate for each anonymity technique that resists

the most attacks is:

• mixes— Chaum’s Mixes

• buses— Buses protocol (optimal buffer complexity)

• broadcasting— DC-Net

• re-routing— eliminated as a contender because they improve the performance

of mixes at the cost of being vulnerable to more attacks.

DC-Net is already secure against all surveyed attacks, but Buses and mixes can be

made secure against all surveyed attacks as well. Chaum’s mixes can have inter-mix

detours and delay within the message added to protect against a spam attack. Buses

could include replay protection to protect against a replay attack.

Chaum’s mixes and DC-Net are not scalable but Buses is scalable. Chaum’s

Mixes is not scalable because it requires constant traffic and continuous processing

by all nodes in the network. DC-Net is not scalable because it requires broadcast

communication, continuous processing by all nodes in the network, and only one

sender can send a message at a time. Buses is scalable because it does not require

constant traffic, continuous processing, or broadcast communication. In addition,

the Buses network topology can be clustered. Nodes are only busy once per bus tour

and a bus traverses only one link in the network at a time.

Buses and DC-Net provide mutual anonymity but Chaum’s Mixes does not.

Semantically secure layered encryption is the key to providing mutual anonymity

in Buses. The dining cryptographers problem is the basis of providing mutual
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anonymity in DC-Net. Chaum’s Mixes cannot provide mutual anonymity because

the sender is required to know the receiver’s address, and this can then be correlated

to the identity of the user at that address.

Buses and DC-Net can support a dynamic topology, but mixes cannot. Buses

can support a dynamic topology by having the bus perform a random walk and

improving the protocol as described in Section 4.2 to ensure mutual anonymity is

preserved. DC-Net can support a dynamic topology because messages are not re-

routed, however it remains unresolved how a new node would join the network and

exchange symmetric keys with the other participants without identifying itself as

a sender. Mixes require a static set of mixes to re-route the message; otherwise

messages will be lost before the layered encrypted message is delivered to the receiver

because each hop in the re-routing path is required to remove a layer of encryption

and forward the embedded encrypted message.

Hence, Buses is the only anonymous communication scheme that can meet all

of our design goals. It is secure against all known attacks and provides scalability,

mutual anonymity, and support for a dynamic topology.

4.2 Dynamic Topology Support and Mutual Anonymity

None of the Buses variations proposed in [4] nor any combination can support a

dynamic topology and maintain mutual anonymity. The only Buses variation that

could potentially do so is the optimal buffer complexity variation with layered en-

cryption. All the other variations presented in [4] rely on reserved seats; these do not

provide mutual anonymity because a receiver can identify the sender of the message
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by keeping track of who places messages in which seats. Even if the sender sends

the message indirectly through a chain of nodes, the receiver can trace the message

back to its original sender in a low traffic network. The optimized buffer Buses pro-

tocol requires semantically secure layered encryption on the reverse path of sender

to receiver, but in a dynamic topology it is not possible to know the reverse path

of sender to receiver because the bus route is dynamically changing. To resolve this

contradiction, new techniques presented in Sections 4.2.1 to 4.2.3 are invented and

comprise the core of the Practical Buses Protocol.

4.2.1 Nested Encryption with Indirection

The layered encryption approach is modified to handle dynamic network topologies

with a novel solution denoted nested encryption with indirection. The problem with

using layered encryption in a dynamic network topology is that the path from sender

to receiver is unknown. Nested encryption with indirection chooses at random an

indirection path of random bounded length to the receiver. Then, nested encryption

is performed on the reversed indirection path. Of course, the next node to receive

the bus may not be the first node in the indirection path. Thus, when the next

node to receive the bus decrypts all the seats, any valid messages are forwarded by

copying the decrypted inner layer to one of a set of seats designated as belonging to

that node, and all other seats on the bus are not modified.

One method of determining whether a decrypted message is valid is to add fixed

redundancy to each message that the node will detect upon decryption if the message

was indeed intended for it. When a node decrypts a message intended for it, a flag

is used to indicate whether the data obtained is a message intended for the node
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or a nested encrypted message that the node should forward to the next node in

the indirection path. If the node is the final recipient, it extracts the message and

replaces it with random data. Otherwise, it treats the nested encrypted message

opaquely and simply forwards it.

In this scheme, an adversary can potentially glean information about communi-

cation patterns by observing when and how a node modifies messages intended for it

on the bus. This problem of identifying a sender or receiver is resolved by the next

two modifications to the protocol, respectively.

4.2.2 p-threshold Replacement Back-off Scheme

In order to preserve sender anonymity, the framework required is that each node

owns k seats on the bus which it uses to insert messages to send or forward. The

owner of a seat is identified by a field containing the owner’s public key. In addition

to providing the framework for sender anonymity, owned seats prevent a node from

overwriting a valid message placed by another node. This prevents collisions and

improves performance by preventing a waste of resources.

To prevent an adversary from defeating sender anonymity by observing when and

how a node modifies its seats, the actual message insertions are disguised. Every time

a node receives a bus, it replaces exactly pk seats chosen at random from the k seats

that it owns, where p is a constant fraction of seats to be replaced. Even if the node

has no messages to send, it still replaces pk seats with random data. For this scheme

to work, an adversary must not be able to distinguish between random data and

the encryption of a meaningful message; thus a semantically secure cryptosystem is

required.
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In addition to preserving sender anonymity, the p-threshold replacement scheme

must also address problems related to network topology. Because the bus takes

a random walk through the network, a node cannot assume that the next hop in

the indirection path of a message would receive the bus before the bus returns to

the node. Thus, it is possible that a node sends a message or forwards a nested

encrypted message in one of its seats and then deletes it prematurely upon receiving

the bus, because the node for which it was intended has not yet received the bus.

In the case of forwarding a nested encrypted message, this situation is prevented by

incorporating a 128-bit randomly-generated seat tag into each seat. Each node keeps

a record of the tags of all the seats it has forwarded but have not yet been received,

and does not replace any seats that match tags in this list. As a result, p must be

restricted so that all k seats are not changed as part of the replacement strategy.

In the case of resending a message, yet more precautions are necessary because

multiple resends of a message on a low traffic network can weaken sender anonymity.

If an adversary sees the exact same seat after the bus passes through the node own-

ing that seat m times, then with probability 1− pm the seat contains a meaningful

message being resent. The adversary should not be able to determine if a message

is being sent, even in a low traffic network, nor reduce the possible set of senders.

To solve this problem, after the number of resends exceeds a threshold t, a new in-

direction path for the message is selected and the message is re-encrypted. Random

128-bit salt values are added to the beginning of each indirection layer before en-

cryption to ensure that the new nested encrypted message differs from the previous

one.

The threshold t should be chosen as small as possible to limit the information
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an adversary can obtain about who is sending messages. However, if t is too small,

then resources are wasted by the sender sending multiple disguised messages. Hence,

a back-off on the threshold t is introduced so that the threshold corresponding to a

given message is increased linearly each time it is re-encrypted.

4.2.3 Randomly Delayed Seat Deletion

Finally, a mechanism is required to preserve receiver anonymity while using nested

encryption with indirection and p-threshold replacement back-off scheme. In addi-

tion, a node needs to know when the next hop in the indirection path has received

a seat containing a valid message, so that it can stop forwarding or resending the

nested encrypted message according to the p-threshold replacement back-off scheme.

A node can recognize that the valid seat has been received when it has been deleted

by another node. However, in a low traffic network the receiver of a message can be

identified because it will delete the seat, and if no other messages are currently in

transit, there will be a period of inactivity on the network.

In order to solve this problem, a node only deletes a valid seat in our modified

protocol after it receives the bus a certain, randomly-chosen number of times. Then,

it is possible that any node in the indirection path could also be the last node to

delete a seat before the period of network inactivity. If a stronger guarantee is

needed, the node could send an anonymous message to another node requesting that

it delete the seat. When the node sees that the seat has been deleted, it can stop

sending the deletion request — the deletion implicitly acknowledges the request.
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4.3 Security and Anonymity Enhancing Modifications

To ensure anonymity is preserved, replay protection is incorporated in Section 4.3.1.

In Section 4.3.2, we describe how anonymous acknowledgments are added to the

protocol. Anonymous acknowledgments ensure that a message is delivered to the

receiver. In Section 4.3.3, we explain how digital signatures are added to the protocol.

Digital signatures ensure that an adversary’s tampering of a seat is detected.

4.3.1 Replay Protection

The original Buses protocol is susceptible to a replay attack. The ability to re-

play messages can compromise anonymity because an adversary can replay a valid

message and attempt to determine the intended recipient by observing the seat trans-

formations as it passes through the indirection path to the receiver. The receiver

is identified because its transformation will be the first difference, because it re-

places the valid message with a random data seat. The modifications presented so

far to the Practical Buses protocol also allow for a replay attack, even though a

received message is not replaced with random data. A replay attack in the Practical

Buses protocol can reduce the receiver’s anonymity by observing the set of poten-

tial receivers (the nodes that deleted seats) in a low traffic network and taking the

intersection of these observed sets. Thus, replay protection is still required.

To prevent replays, when a node receives a message, it records the decrypted

inner layer as well as the value of a 128-bit salt field. The salt field is a random

128-bit number included in each layer of the nested encryption. The combination

of the salt and message body uniquely identify a nested encrypted message. To
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prevent a node from indefinitely collecting replay protection entries, they are only

kept until a replay protection time-out elapses. However, we now must prevent

an adversary from resending a seat after the time-out has expired. To accomplish

this, a timestamp field is appended to the seat and a signature is constructed (see

Section 4.3.3 for details on signatures) on the entire seat including the timestamp to

prevent tampering. Received seats with a timestamp predating the replay protection

time-out are immediately deleted and ignored.

Replay protection is also required to prevent a message being received multiple

times by a receiver due to legitimate resends (see Section 4.4.1 for details on resends)

by the sender. Messages received by a receiver utilize the same replay protection

except the message tag field, a random 128-bit number in the inner core of the

nested encrypted message, is recorded instead of the salt field.

4.3.2 Anonymous Acknowledgments

The original Buses protocol uses acknowledgments for handling seat collisions, but

does not indicate how to send an acknowledgment to an anonymous sender, nor

how to tolerate network faults. For example, a network fault could result in a seat

containing a nested encrypted message being corrupted in transmission due to a

network error. As a result, the node for which it was intended would not recognize

it as valid after decryption, and the message would not reach its final destination.

Acknowledgments are used in our modified protocol to address these problems.

A sender incorporates a message tag in the innermost layer of encryption so it can

uniquely identify an acknowledgment to a valid message that may be sent multiple

times, such as ‘yes’ in a chat program. After receiving a message, the receiver sends
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back to the sender an anonymous acknowledgment message that includes the sender’s

128-bit message tag.

The actual acknowledgment message (the innermost layer) must be encrypted

using a different public key than the one used in the sender’s seat owner field. Oth-

erwise, an adversary could correlate the public key to the node that modifies the

seats (with the same public key in the owner field) and defeat sender anonymity. A

separate anonymous public key must be used if a sender wants to remain anonymous

from the perspective of the receiver. The sender generates a second public/private

key pair, and this new anonymous public key is inserted into the anonymous public

key field in the inner core of the nested message. The receiver of the message encrypts

the acknowledgment message using the supplied anonymous public key. While this

scheme does solve the problem of ensuring sender anonymity, it has the unfortunate

consequence that each received seat must be decrypted with both the private key

corresponding to the public key in the seat owner field and the private key corre-

sponding to the anonymous public key, in effect doubling the computations that a

node has to perform upon receiving the bus.

The deletion of an acknowledgment message must be randomly delayed as de-

scribed previously. Otherwise, the receiver could identify the sender in a low traffic

network, based on the last node to delete a seat.

4.3.3 Signed Bus Seats

In order to detect unauthorized modifications to the contents of a seat, malicious or

otherwise, the entire contents of each seat are digitally signed with a signature scheme

with appendix such as RSA-SSA (RSA Signature Scheme with Appendix) [22].
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4.4 Fault Tolerance

The Practical Buses protocol should be able to handle lost or corrupted seats/buses,

whether the losses or corruptions are intentional or not. To handle lost or corrupted

seats, resends are incorporated in Section 4.4.1. To handle lost or corrupted buses,

Section 4.4.3 contains a description of dynamic bus creation and is based upon the

initial bus creation in Section 4.4.2.

4.4.1 Resends and Acknowledgments

The original Buses protocol did not allow for messages to be resent automatically

by the protocol. The Practical Buses protocol provides reliable message delivery. If

a sender does not receive an acknowledgment within a time-out period, it resends

the message via a new indirection path with nested encryption. After a maximum

resend time, the protocol delivers an error to the application that makes the user

aware that the message was not received by the receiver. When a node receives an

acknowledgment, it can stop resending the message. This avoids wasting resources

if the maximum resend time is not reached before the ACK time-out.

4.4.2 Initial Bus Creation

When a node joins the Buses network, it broadcasts an inquiry to a designated

Buses port including the joining node’s IP and public key. A node receiving this

inquiry takes one of two possible actions. If a bus already exists, then it sends the

2-tuple reply {public key, IP} to the sender. If a bus does not exist, in addition to

sending the 2-tuple reply the node initiates a leadership election [25]; a broadcast-
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convergecast of public keys. The leader is the node who has the largest public key

and once elected creates a bus and forwards it. In order to determine if a bus exists,

each node includes in its state a boolean busExists, initialized to false. The boolean

busExists is changed to true upon the receipt of a bus, and changed to false if a bus

time-out lapses and the node has not received a bus.

4.4.3 Bus Loss Tolerance

Bus loss tolerance is handled by the boolean busExists and the bus time-out. If

the bus time-out lapses while a node is waiting for a bus, the busExists is set to

false and a leader election is invoked. If any other node has the busExists boolean

still true, it uses the sentinel value of 2public key size instead of its public key in

the convergecast, and this prevents the node possessing the largest key from being

elected and creating a bus. In the event the bus was actually lost, the node that

received the bus last before the bus was lost initiates the final leadership election

which results in a leader being elected to create a new bus. No other node could

still have busExists set to true, because all other nodes would have received the bus

after the node that received the bus last, and all their busExists time-out would have

lapsed setting busExists to false.

4.5 Performance Modifications

To improve performance, the Practical Buses protocol includes hybrid encryption,

dynamic bus seats, expired bus seats, and reduced seat decryptions. Hybrid decryp-

tion is significantly faster than public key decryption, and this is important because



79

every node that receives the bus must do a decryption for every single seat on the

bus. Dynamic bus seats allows a node to specify how many seats it owns on the bus.

Expired bus seats allow a node to delete a seat that was left by another node that

departed and did not delete its seats. Reduced seat decryptions reduces the number

of seat decryptions required when processing a received bus.

4.5.1 Hybrid Encryption

The Buses protocol requires a semantically secure cryptosystem so that an adver-

sary cannot distinguish seats containing valid nested encrypted messages from seats

containing random data in polynomial time. In practice, semantically secure cryp-

tosystems, and indeed public-key cryptosystems in general, are too slow for bulk

data encryption. Thus, our protocol uses a hybrid encryption scheme. A layer of

the indirected encrypted message in our protocol consists of a session key encrypted

using an asymmetric cipher with Optimal Asymmetric Encryption Padding (OAEP),

such as the 1024-bit RSA-OAEP [21] public-key encryption scheme, followed by the

inner layer encrypted using the session key with a symmetric cipher, such as 128-bit

AES [27]. The salt field at the beginning of each encryption layer doubles as the

symmetric key. Although we cannot prove semantic security for this scheme, it is

unknown how to distinguish symmetric ciphertexts such as AES encryptions from

random data in polynomial time, largely because ciphertexts produced by the AES

block cipher are statistically random [39]. For clarity, even though the hybrid encryp-

tion scheme is modular, for the rest of the thesis assume that the hybrid encryption

scheme consists of RSA-OAEP/CBC-AES. 1024-bit keys are used for RSA-OAEP

and 128-bit keys are used for AES.
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Using RSA-OAEP to encrypt session keys along with the messages themselves

has two important advantages. First, symmetric keys need not be exchanged prior to

communication as the required key is sent along with the message. However, the main

advantage is that the RSA-OAEP cryptosystem is a realization of a plaintext-aware

cryptosystem. Although plaintext-awareness cannot be proved for RSA-OAEP, it is

believed to be computationally infeasible for an adversary to forge a valid cipher-

text [33]. Thus, in order to determine whether a bus seat contains a valid message,

a node only needs to decrypt the session key rather than the entire message. If the

message contains the prescribed redundancy, the node extracts the session key and

decrypts the rest of the message.

4.5.2 Dynamic Bus Seats

The original Buses protocol did not account for users with different resource demands.

The Practical Buses protocol allows a user to specify how many bus seats they own,

up to a predefined limit. With more seats, the bookkeeping and seat replacement

duties increase, but the user can send more messages per bus tour.

4.5.3 Expired Bus Seats

The Practical Buses protocol improves upon the original Buses protocol by checking

for seat timestamps that have expired. This event can occur when a node unexpect-

edly drops out of the protocol and does not delete its seats. To keep the buffer size as

small as possible, if a seat has expired it is deleted by whatever node that currently

has the bus. If the node that owns the deleted seat is still active, when it receives

the bus it inserts new seats to replace the lost seats.
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4.5.4 Reduced Seat Decryptions

The number of seat decryptions required when a node receives a bus can be reduced.

Each time a node receives a bus, it sees approximately (1 − p)% of all the seats

repeated as a result of the p-threshold replacement back-off scheme. A node can

prevent repeatedly decrypting these seats by keeping track of the hashes of each seat

previously received and decrypted. The book-keeping of the list of hashes is reduced

by regularly deleting the list after a time-out lapses. The performance to search for

a hash value can be improved by using a fast access container, such as a hash table.

4.6 Overview of Practical Buses Protocol

The overall operation of the Practical Buses protocol can be described effectively

from two different perspectives. One important perspective is the life cycle of a

message and the other important perspective is transformation of a bus from a node

as it handles the receipt, modification, and forwarding of the bus.

The life cycle of a message involves the creation of a nested encryption of the

message, encapsulation in a seat, and processing. The creation of the initial nested

encrypted message starts with choosing a random indirection path of random but

bounded length. The inner core consists of the actual message prepended with an

anonymous public key (required for the receiver to send an acknowledgment) and

a message tag field. When adding a layer of encryption, a random AES key in

the salt field and a forward flag (true for every layer except the inner core) are

prepended to the current message content. The salt is encrypted with RSA-OAEP

and the rest of the message is encrypted with AES using the value in the salt field
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as the key. Encapsulation in a seat consists of appending the nested encrypted

message to the seat owner’s public key, the seat tag (unique seat identifier), and

the seat timestamp, and appending random data to make the seats uniform in size.

Thereafter, a digital signature is calculated on the seat with the owner’s private key

and appended to the seat. A node processing a nested encrypted message contained

in a seat first tries to decrypt the salt field with its RSA-OAEP private key and

anonymous private key to extract the AES key. This decryption is successful if the

result has the prescribed redundancy, in which case the node removes the outermost

encryption layer by decrypting the rest of the data with the extracted AES key. After

decrypting, the forward field is extracted. If the forward flag is true, then it removes

the salt (and the forward fields) and forwards the rest of the decrypted inner layer.

If the forward flag is false, the node extracts the message from the inner core. In all

cases, the inner core is eventually received by the intended recipient.

The general operation of the protocol consists of a node receiving the bus, mod-

ifying it as required to send or receive messages, and then forwarding it to the next

node in the network. Receiving and forwarding the bus are straightforward. Receiv-

ing the bus consists of caching the entire bus into a receive buffer and checking the

bus for any messages intended for that node by decrypting all the salt fields using

RSA-OAEP and checking for the prescribed redundancy. For each decrypted salt

field with the prescribed redundancy, the AES key is extracted and the rest of the

seat is decrypted. If a message’s forward flag is false, then the contents of the de-

crypted seat are passed to the application layer and an anonymous acknowledgment

message is created and placed in a queue (the send queue) containing messages to be

sent on the bus at the next available opportunity. If the forward flag is true, then the
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contents of the decrypted message are inserted into the send queue. In both cases,

the seat tag is inserted into another queue (the delete queue) containing the tags of

messages to be deleted after a random number of bus visits to that node.

Once the received messages have been extracted, the bus is modified to accom-

modate sending new messages, message forwarding, sending acknowledgments, and

seat deletions. The following processing steps are executed:

1. Any seats containing nested encrypted messages that the node created and sent

but have not yet been acknowledged are processed. If the number of times the

bus has been received with a particular nested encryption has surpassed the

threshold r for that message, or if the acknowledgment time-out has expired, a

new indirection path is chosen and a new nested encrypted message is created

on the reversed indirection path. The seat containing the old nested message

is deleted, ensuring that not more than pk seats are deleted. In addition,

maximum resend time-outs are checked, and if any are expired the node stops

trying to deliver the nested encrypted message and instead delivers an error

message to the application. Before inserting a new nested encrypted message

to be resent, this step must ensure that it does not use more than k − pk

reserved (containing a valid message) seats; otherwise, the node will not be

able to delete enough seats in p-threshold replacement back-off scheme. If the

node is unable to resend the message, it waits until the next pass of the bus

and tries again.

2. Any entries in the delete queue whose random delay has expired are deleted.

The total number of seats deleted in this step and the previous step must not
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exceed pk for a single pass of the bus — any additional seats ready for deletion

are deleted in the next pass of the bus.

3. Any expired seats whose timestamps have expired are deleted. The total num-

ber of seats deleted in this step and the previous two steps must not exceed pk

for a single pass of the bus.

4. If fewer than pk seats have been deleted, seats that are not reserved should

be randomly deleted until a total of pk seats, including those deleted in the

previous three steps, are deleted.

5. As many messages in the send queue as possible (these can be resends of

unacknowledged messages, forwarded nested encrypted messages, acknowledg-

ments, or new messages) are placed in seats on the bus. At most k − pk seats

can be reserved with valid messages in this step; otherwise, the node may not

be able to delete sufficient seats in the next iteration. New messages are placed

on the bus last, so that existing messages from other nodes are forwarded, and

the node does not monopolize the network.

6. If fewer than k − pk messages have been placed on the bus, random data is

inserted into seats so that the total number of modified seats for this iteration

is k − pk.

4.7 Summary

The Practical Buses protocol is the first anonymous communication scheme to pre-

serve mutual anonymity, be secure against all known attacks, provide scalability, and



85

support a dynamic topology. In addition, the Practical Buses protocol is designed to

enhance security and anonymity, as well as improve fault tolerance and performance.

The design of the Practical Buses protocol is based upon the optimal buffer

complexity Buses protocol in [4]. However, numerous changes have been made to

the original Buses protocol to preserve mutual anonymity, be secure against all known

attacks, provide scalability, and support a dynamic topology. To provide scalability

and support for a dynamic topology while preserving mutual anonymity, three new

techniques were designed and incorporated into the Practical Buses protocol: nested

encryption with indirection, p-threshold-replacement back-off scheme, and randomly

delayed seat deletion. To protect against all known attacks, replay protection is

included in the Practical Buses protocol.

To enhance security and anonymity, as well as improve fault tolerance and per-

formance, additional techniques are added to the Practical Buses Protocol. Security

and anonymity are enhanced with the addition of anonymous acknowledgments to

allow the receiver to acknowledge a received message anonymously and the addition

of signed bus seats to prevent seat tampering. Fault tolerance is improved to recover

from lost messages by adding resends and to recover from lost buses by adding bus

loss tolerance. Performance is improved by speeding up the encryptions/decryptions

with hybrid encryption, allowing a user to specify how many seats it owns with

dynamic bus seats, the automatic removal of expired bus seats, and reducing the

number of seat decryptions required for each bus received by a node.



Chapter 5

Prototype Implementation

This chapter contains the design and description of the prototype implementation

of the Practical Buses protocol. A general overview of the prototype is provided

in Section 5.1. The main objects in the prototype and their respective header and

trailer fields are explained in Section 5.2. The division of the prototype into logical

threads and shared objects is explained in Section 5.3. The tunable parameters in

the Buses protocol are summarized in Section 5.4. An example of how the protocol

works is provided in Section 5.5. Lastly, the prototype is summarized in Section 5.6.

5.1 Prototype Overview

Each node runs a bus server, a realization of the Practical Buses protocol, that pro-

vides an interface for anonymous communication. The prototype implementation is a

layer that sits between the TCP layer and the application layer. This position in the

protocol stack is chosen because TCP/IP provides a well-known transport/network

layer service, reliably delivering packets in order. Currently, application support is

only provided for a single chat program that was implemented for testing. Future

versions will provide an interface for additional applications to use the anonymous

communication prototype transparently.

The implementation of the prototype grew quickly and the final prototype con-

tained over 18,000 lines of C++ code with comments. To keep the prototype prac-

86
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tical, unnecessary features were pruned from the prototype during its development.

Specifically, dynamic bus creation in Section 4.4.2 and bus fault tolerance in Sec-

tion 4.4.3 are not supported in the prototype. Also, the prototype deviates from the

design in Section 4.3.2, for simplicity, by having each node own one public/private

key pair that is used for nested encrypted messages, as well as for digital signa-

tures and as the anonymous public key. All other design features in Chapter 4 were

incorporated into the prototype.

The modular encryption components that the prototype uses are RSA-OAEP [21]

with 1024-bit keys, CBC-AES [27] with 128-bit keys, and RSA-SSA (RSA Signature

Scheme with Appendix) [22] with 1024-bit keys. These components were chosen be-

cause they are fast and have withstood vigorous security analyses. The RSA-OAEP

and RSA-SSA components were implemented based on the design documents [21]

and [22], respectively. For SHA-1, a subcomponent of RSA-SSA and RSA-OAEP,

public-domain software was used from RFC 3174 [36]. The CBC-AES component

uses public-domain software written by Stefanek [40]. The GNU Multiple Precision

arithmetic library (GMP) version 4.1.1 [16] is used by the encryption components

for multi-precision arithmetic. GMP was chosen because of its emphasis on fast im-

plementation, support for multiple CPUs, and one of its main target applications is

cryptographic applications and research.

To centralize the testing parameters, all of the alias-public key mappings, pub-

lic/private key pairs, routing tables, and hostnames were stored in a central file.

The bus servers executing on the nodes are distinguished by their aliases and pub-

lic/private RSA key pairs. An alias is used to identify a receiver anonymously, so

that the sender does not have to enter the entire public key of the receiver when
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constructing a chat message.

Obviously, the storage of public/private key pairs in a central table is not secure.

This approach is used only to facilitate the testing of the protocol. In a real deploy-

ment, each bus server must securely store its own public/private key pair. Each bus

server would then learn all of the public keys when it receives the bus and extracts

the unique seat owner fields. This public key pool could then be used when con-

structing an indirection path. A node wishing to communicate with an anonymous

party would have to learn a public key in an anonymous manner (e.g., anonymous

public key and associated alias posted on a Web page).

The setup involves updating the alias-public key mappings, updating the routing

table with the domain names of all the machines in the test, inserting public/private

key pairs into the key table, and adjusting the parameters to reflect the desired

configuration. Each bus server is mapped to one of the aliases to determine its

public/private key pair, after which it is compiled to reflect the updates. The bus

servers are started sequentially on each machine. The bus server corresponding to

the last entry in the alias-public key mapping table is started last, so that it can

create the bus and launch it on the network. Once the bus server is started, the user

can send an anonymous message by entering “receiver message” followed by enter,

where receiver is the alias of the anonymous receiver and message is the message to

be sent to the receiver. The optional command line arguments for a bus server are:

• -tS sendTraceFileName: This creates a trace of all messages sent by the bus

server. The trace is recorded in the file with name sendTraceFileName. Each

line in the trace file contains a receipt of a message sent by the bus server:
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timestamp, message, message tag, and receiver alias. All fields are separated

by spaces.

• -tR recvTraceFileName: This creates a trace of all messages received by the

bus server. The trace is recorded in the file with name recvTraceFileName.

Each line in the trace file contains a receipt of a message received by the bus

server: timestamp, message, and message tag.

• -tA ackTraceFileName: This creates a trace of all messages acknowledged by

the bus server, recorded in the file ackTraceFileName. Each line in the file trace

contains a receipt of an acknowledgment received by the bus server: timestamp

and message tag.

• -w workloadFileName: This changes chat program input to come from the file

workloadFileName instead of standard input (stdin). This allows for repeatable

tests and the generation of workloads. For example, workloads can be generated

a priori with a Poisson arrival process.

5.2 Main Objects

The metaphor of a city bus was realized in a hierarchy of three main objects: bus,

seat, and nested message object. The bus object contains multiple seats, and each

seat object contains exactly one nested message object (may or may not be a valid

nested message). The division of the bus object into these three objects simplified

the code and followed the modular design in Chapter 4. In addition, the division

is logical because each of these objects has a different life cycle and is processed
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differently.

5.2.1 Nested Message

The nested message class performs two main operations: creation of a nested en-

crypted message, and decryption of a nested encrypted message to remove one layer

of encryption. In order for a sender to create a nested encrypted message, the nested

message class constructor requires the public key of the receiver, the message for

the receiver, the message size, a message tag (a random 128 bit number), and a set

of possible indirection public keys. The constructor then chooses a random indirec-

tion path of random bounded length, and iteratively appends a header to each layer

and hybrid-encrypts the layer using the public keys of the reversed indirection path

and randomly generated 128-bit AES keys. In order for a node receiving a bus to

determine if a nested message contained within a seat is destined for the node, the

nested message class requires the private key of the node. The hybrid-decryption

succeeds when the private key decryption of the encrypted symmetric key has the

correct redundancy. The function call returns true and the nested message object

is updated with its decryption. Otherwise, the decryption fails because the correct

redundancy does not exist and false is returned. Let the notation “nested message”

imply a nested encrypted message for the rest of this thesis.

If the nested message is not the innermost core, each layer of nested encryption

has a 144-bit nested message header containing four fields: salt, type, forward, and

message length. The inner core appends to the header two additional fields: message

tag and anonymous PK (see Table 5.1). The inner core nested message header is

(272 + size of anonymous public key) bits long.
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Table 5.1: Nested Message Header

salt (128 bits) type (3 bits) forward ( 1 bit)
message length (12 bits) message tag (128 bits) Anonymous PK (size of public key bits)

The purpose of each nested message header field is as follows:

• The salt field contains a random 128-bit symmetric key for the purposes of

hybrid encryption. This approach improves performance and ensures that a

message resent on a new indirection path produces a different nested message.

To further improve performance, the public key encrypts the largest possible

plaintext that constitutes a block (e.g., 87 bytes for the RSA-OAEP encryption

module with 1024 bit keys) rather then just encrypting only the salt (16 bytes).

Thus, the symmetric key encryption continues to encrypt the plaintext starting

where the public key encryption left off.

• The type field is a 3-bit value used to identify the type of message contained

in the nested message structure. Two values are currently permitted:

1. 0002 — application nested message: contains an application message.

2. 0012 — acknowledgment nested message: contains an acknowledgment

where the message is null and the message tag field contains the message

tag of the message being acknowledged. This type notifies a sender not

to send an acknowledgment after receiving an acknowledgment.

3. All other bit combinations are reserved for future development. If they

are encountered, the nested message is not processed further.
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• The forward field informs a node if the message contained within the nested

message is destined for the node or to be forwarded as a nested message. The

former is the case when the forward field is false and the latter is the case

when forward is true. In addition, if the forward field is false, the header has

two additional fields: message tag and anonymous public key. The forward

field is currently interpreted when the nested message is an application or

acknowledgment nested message.

• The message length field indicates the actual message size in bytes. It is rel-

evant only when the seat type is application. It allows a node to determine

where the message ends and where random data begins.

• The message tag field of an application message uniquely identifies a message.

The message tag of an acknowledgment message uniquely maps the acknowl-

edgment to a message sent. A sender of an application message creates a

message tag by generating a random 128 bit number.

• The anonymous PK field contains the anonymous public key of the sender.

The receiver uses it to create an anonymous acknowledgment to the inner-

most core of an application message. The sender uses an anonymous public

key different from the public key used in the owner field of a seat to prevent

the receiver from correlating the public key to the sender.

All fields in each header are encrypted when the layer is encrypted, in order to

preserve anonymity. Salt is encrypted because it contains the secret symmetric key

used to encrypt the rest of the message. The forward field is encrypted; otherwise
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an adversary could identify a receiver when a nested message sent to them has the

forward field set to false. To prevent size correlation attacks the message length

is encrypted. To prevent marker attacks the message tag is encrypted. Lastly,

the anonymous public key field is encrypted, otherwise sender anonymity would be

defeated when the nested message is first sent by the sender.

5.2.2 Seat

The seat class has one main purpose — to encapsulate a nested message as a seat

to place on the bus. The constructor requires the node’s public key, the nested

message, and the node’s private key. The seat class encapsulates a nested message

to construct a seat by prepending a seat header, appending random data to make

the seat uniform size, and appending a seat trailer.

Each seat header is (160 + size of public key) bits long containing three fields:

owner, tag, and timestamp (see Table 5.2). These are sent as plaintext.

Table 5.2: Seat Header

owner (size of public key bits) tag (127 bits) timestamp (33 bits)

The purpose of each seat header field is as follows:

• The owner field contains the public key of the owner. The field identifies which

seats belong to each node.

• The tag field is used to identify each seat uniquely for purposes such as seat

deletion. A tag is randomly generated upon seat construction.
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• The timestamp field is the number of seconds since midnight January 1970

(UTC time). It is used to determine if a seat’s time-out has expired, resulting

in deletion. Also, it is used to provide replay protection.

It is not necessary to encrypt the owner, tag, and timestamp fields because they

do not provide an adversary with any information that reduces anonymity. Owner,

tag, and timestamp only indicate the predecessor node in the indirection path, not

the sender. An adversary eavesdropping on a node can determine the owner and

timestamp by correlating which seats are replaced by which nodes and when. The

tag is a short identification for a seat. If it were encrypted, the adversary could just

record the hash value of each seat as a short identification for each seat.

Seat Trailer

Each seat has a trailer containing a digital signature (see Table 5.3).

Table 5.3: Seat Trailer

signature (size of digital signature bits)

The signature field contains a signature of three items: the seat header, nested

message, and random data appended to the nested message to make the seat uniform

size. The signature is used to determine if a seat or signature has been altered in

transit by someone other than the owner of the seat.

5.2.3 Bus

The bus class has three main purposes:
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1. Bus creation and resetting — A node can create a bus consisting of a bus

header. When a node receives a bus, it resets its bus object to be the received

bus.

2. Seat insertion and deletion — These functions are necessary for the p-threshold

replacement back-off scheme. The interface allows the insertion of a nested

message, which is encapsulated in a seat by the bus class automatically. The

tag of a seat must be provided to the interface to delete a seat, which returns

true on successful deletion and false otherwise.

3. Seat extraction — A node that receives a bus extracts all the seats that are

destined for it. Each seat is checked for the correct OAEP decryption redun-

dancy, and its signature is verified. An error message is sent to standard error

(stderr) if the signature is incorrect, making the user aware that either there

are network errors occurring below the TCP layer, or an active adversary has

tampered with the signature or seat contents. Thereafter, a tampered seat is

deleted and ignored.

The bus header is 24 bits long and consists of two fields: bus type and number of

seats (see Table 5.4).

Table 5.4: Bus Header

bus type (8 bits) number of seats (16 bits)

The purpose of each bus header field is as follows:
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• bus type — informs a node of what type of message to expect, making the node

aware of the message format. The current valid bus types are:

1. 000000002 — control message. A control message is used to denote a

leader election message. This feature is not supported in the prototype

implementation.

2. 000000012 — bus message. A bus message denotes a bus being sent.

3. All other bit combinations are reserved for future developments.

• number of seats — This field informs a node receiving a bus of the bus size.

5.3 Multi-threading

The bus server is multi-threaded using Pthreads [23], a multi-threaded library that

is simultaneously an IEEE Standard, an ISO/IEC Standard, and an Open Group

Technical Standard [32]. Pthreads was chosen because it is supported by most hard-

ware vendors in their proprietary application programming interface. The bus server

consists of a Bus thread, a Read thread, a Write thread, and an Acknowledgment

thread. These threads provide a logical separation of the work performed by the bus

server, and will facilitate parallel execution of the prototype on shared-memory multi-

processors in future work. Section 5.3.1 contains an overview of all the threads. Then,

in Section 5.3.2 the main thread objects are identified. For the interested reader, the

pseudo-code for the Bus thread, Read Thread, Write thread, and Acknowledgment

thread is provided in Appendices B.1, B.2, B.3, and B.4, respectively.
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5.3.1 Thread Overview

The four threads in the bus server operate as follows. The Bus thread receives

the bus from the network, modifies it as needed, and forwards it to the next hop

on the route. As part of its operation, the Bus thread must store (cache) the bus

temporarily for the Read thread to process it. The Read thread checks the cached

bus for valid seats, and either delivers messages locally for display to the user, or

forwards an appropriately decrypted inner layer to the next hop, as required. In

addition, the Read thread schedules randomly-delayed seat deletions for the Bus

thread, and passes acknowledgment information to the Acknowledgment thread. The

Acknowledgment thread creates acknowledgments for the Bus thread to send. The

Write thread handles user input. It parses chat program messages entered by the

user, and creates a nested message that is queued for the Bus thread to process.

5.3.2 Main Thread Objects

The main thread objects are used to communicate among the threads and keep track

of state. For each object, its purpose, dependencies, and shared state are explained:

1. busQueue (shared) — The Bus thread stores a received bus for later retrieval

by the Read thread.

2. forwardAckQueue (shared) — This queue contains application nested mes-

sages that the Read thread inserts, and acknowledgment nested messages that

the Acknowledgment thread inserts. The Bus thread extracts these nested

messages, deleting them from the forwardAckQueue, and sends them in seats

via the p-threshold replacement back-off scheme, recording their corresponding
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tags in the reservedTagList (described below).

3. sendQueue (shared) — This queue contains nested messages inserted by the

Write thread. The Bus thread extracts these nested messages, deletes them

from the sendQueue, and sends them in seats via the p-threshold replacement

back-off scheme. The sent seat tags are inserted into the reservedTagList.

The sendQueue entries differ from the forwardAckQueue entries because the

necessary information to disguise or resend the seat (e.g., unacknowledged mes-

sage) also appears in the sentList.

4. sentList (shared) — The purpose of this list is to keep track of sender-generated

nested messages and acknowledgments for the purposes of disguising and re-

sending a message that was not acknowledged. The Bus thread inserts infor-

mation into the sentList when it removes a seat from the sendQueue. The

following items are recorded in each element of the sentList:

(a) The seat tag of the seat that the nested message was sent in.

(b) The number of times the nested message has been resent since the last

reset of r (initialized to 1). r is the individual replacement threshold in

the p-threshold replacement back-off scheme.

(c) The value of r for that nested message.

(d) The timestamp when the message was first sent.

(e) The timestamp when the message was last sent/resent by the Bus thread.

(f) The value of the message tag, message, message length, and the receiver’s

public key.
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In addition, the Bus thread updates the sentList entries every time it receives

the bus by checking each tag in the sentList with the bus. The Read thread

is responsible for removing each entry via the message tag upon receipt of an

acknowledgment. The only other way a sentList entry is removed is by the

Bus thread when the maximum send time has elapsed.

5. reservedTagList (not shared) — This list is used by the Bus thread to store

tags of reserved seats, inserted by the Bus thread. Each time the Bus thread

receives the bus, it deletes any of the tags in the reservedTagList that are no

longer on the bus. The Bus thread then uses the list to determine which seats

are eligible to be replaced.

6. delTagList (shared) — The list contains 2-tuple entries {tag, delay} of seats

to be deleted. The Read thread places the 2-tuple in the list. The delay is

a random but bounded delay for seat deletion. The Bus thread processes the

list every time it receives the bus. The delay is decremented by 1, and when

delay ≤ 0 the seat with the corresponding tag is deleted, provided that the

p-threshold-replacement back-off scheme allows it.

7. receivedMessagesList (not shared) — This list is used by the Read thread to

record the 3-tuple {salt, timestamp, embedded nested message} of any nested

messages received with the forward field true. The 3-tuples are recorded in the

list within a time window to prevent replays. To prevent duplicate messages

arriving at the receiver, if the forward field in the nested message is false then

the message tag is recorded instead of the salt as the first entry in the 3-tuple.
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8. ackDataQueue (shared) — The Read thread writes the 2-tuple {anonymous

PK, message tag} to this queue. The Acknowledgment thread extracts the

2-tuple to create an acknowledgment nested message.

9. seatHashTable (not shared) — The Read thread prevents decrypting repeated

seats, by checking if the hash of a seat is already in the seatHashTable. If it

is not in the seatHashTable, it inserts the hash of the seat and proceeds to

decrypt it. Otherwise, it ignores the repeated seat.

5.4 Parameters for the Bus Server

Each bus server has a set of parameters:

1. busServerPort — The port number used for a bus server forwarding a bus to

connect to another bus server to receive the bus. All bus servers must use the

same busServerPort.

2. N — number of bus servers in static routing table.

3. k — number of seats that the node owns.

4. K — upper-bound on k to bound worst case buffer complexity.

5. p — the percentage of seats being randomly replaced in the p-threshold re-

placement scheme. Note that bpkc is used when the product is not an integer.

6. uniformSeatSize — the uniform size in bytes of all seats inserted by the bus

server.
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7. maxBusSize — the maximum input buffer size in bytes that a bus server will

accept without memory error. For a static network with N nodes, this value

should always be ((N ∗K ∗ uniformSeatSize)/8) bytes.

8. maxOldSeat — specifies the time-out before a seat is deleted.

9. maxDuplicateT ime — specifies the time window for which nested messages

are recorded to prevent replay messages.

10. ackT imeOut — specifies how long until a message is resent due to absence of

receiver acknowledgment.

11. maxResendT ime — specifies how large a time window to spend retransmitting

before the bus server gives up and reports an error message to the application.

12. D — range of [0, D − 1] for randomly delayed seat deletion.

13. L — range of [1, L] for random indirection path length.

14. staticL — Set to 1 to have exactly L layers around every inner core. Set to

0 to have the number of random layers around the inner core in [1, L]. This

parameter is set to 1 for scalability analysis of indirection layers; however, it

should be set to 0 for optimal anonymity.

15. R — the initial number of times each sender message can be resent without

being disguised. This initial value for each sender message r may be increased

by the p-threshold replacement back-off scheme.

16. busThreadWait — set to 1 to prevent the Bus thread from forwarding the

bus until the Read thread has removed the last entry from the busQueue.



102

Otherwise, the Bus thread does not wait at all to forward a bus. This parameter

must be set to 1 when decryption of all the seats takes longer on average than

it takes for the bus to perform one bus tour. Otherwise, the busQueue will

grow indefinitely and message latency will increase indefinitely.

17. verifyAllSeats — set to 1 to check signatures on all seats. Otherwise, set to

0 to verify only seats that are valid (correct redundancy in decryption). To

allow a node to determine when a message has been tampered with, set to 1.

Otherwise, for better performance, set to 0. Note that setting to 0 does not

reduce anonymity but allows for a denial of service (DoS) attack which corrupts

all seats so that their decryption does not have the correct redundancy.

18. randomWalk — set to 1 to have the bus server randomly choose the neighbour

to which the bus is forwarded. Otherwise, set to 0 to have bus server use the

next entry in the routing table.

19. reduceDecrypt — set to 1 to have the bus server keep track of previously

received seats to reduce seat decryptions. Before decrypting a seat, the bus

server checks if it was previously received. To disable, set to 0.

20. reduceDecryptInterval — specifies the time interval in seconds for the chained

hash table seatHashTable to be cleared.

Note that the parameters k, p, uniformSeatSize, maxOldSeat, maxDuplicateT ime,

ackT imeOut, maxResendT ime, D, L, staticL, R, verifyAllSeats, reduceDecrypt,

and reduceDecryptInterval can be tuned to improve performance. However, the pa-

rameters maxDuplicateT ime, ackT imeOut, D, L, staticL, R can all affect anonymity
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if set incorrectly, as discussed in Section 6.2.

5.5 Practical Buses Example

To illustrate the operation of the Practical Buses protocol, consider the following

scenario. A sender S wants to send the message ‘Hello’ to a receiver R.

5.5.1 Creation of nested message by S’s bus server’s Write thread

1. The Write thread receives ‘Hello’ from the application.

2. The Write thread chooses a dynamic path length l where l ≤ L. Suppose l = 2

and the random indirection path is K+
1 , K+

2 , K+
R . Let the nodes be denoted

P1, P2, and R, respectively, and S’s anonymous public key by K+
Sanon

.

3. The Write thread creates a nested message L1 using the reverse of the indirec-

tion path by creating LR, L2, L1 as follows:

MessageHeaderR = (saltR, 0002, 0, 6, msgTag, K+
Sanon

)

LR = EK+
R
(MessageHeaderR, ‘Hello’).

Note that since forward is false in MessageHeaderR, there are the additional

fields message tag and an anonymous PK, where message tag contains a random

128-bit number.

L2 and L1 are created as follows:

MessageHeader2 = (salt1, 0002, 1, sizeOf(LR))

L2 = EK+
2
(MessageHeader2, LR)

MessageHeader1 = (salt2, 0002, 1, sizeOf(L2))

L1 = EK+
1
(MessageHeader1, L2).
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Each MessageHeader has different random salt, and its message size is ad-

justed according to the message being sent. Also note that the seat type is an

application seat (0002) for all of the messages and the forward bit is set to true

(1) for every header except for MessageHeaderR intended for the receiver.

4. Bus thread places L1 into the sendQueue.

5.5.2 Placement of L1 onto the Bus by S’s Bus thread

1. Eventually the Bus thread extracts L1 from the sendQueue and records the

appropriate information to the sentList (used later for disguising a message

and processing receiver-end acknowledgments).

2. The Bus thread saves the incoming bus to busQueue.

3. The Bus thread prepends the seat header, adds random data x1 to L1 so that

the seat is of uniform size, and appends a trailer to L1 to create SeatS as

follows:

SeatBodyS = (L1, x1)

SeatHeaderS = (K+
S , tagS, timestampS)

SeatTrailerS = (signature(SeatHeaderS, SeatBodyS))

SeatS = (SeatHeaderS, SeatBodyS, SeatT railerS).

4. The Bus thread places SeatS on the Bus and forwards the bus.

5. If the bus is received r times before the next hop in the indirection path ac-

knowledges it (by deleting the seat), then a new nested message is created with

a new indirection path but the same message tag, anonymous PK, and message

and encapsulated in a seat. In addition, its entry in sentList is updated.
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6. If the receiver-end acknowledgment times out (ackT imeOut), then it is dis-

guised and resent. A new nested message is created with a new indirection

path but the same message tag, mutual PK, and message. If maxResendT ime

elapses, then an error is reported to the application that the message could not

be delivered. In addition, the corresponding entry in sentList is updated.

5.5.3 Receipt of the seat by P1 (owner of K+
1 )

1. The Bus thread saves the incoming bus to busQueue.

2. Eventually the Read thread decrypts SeatBodyS. That is, it decrypts the

nested message salt field with its private key, checks for the correct OAEP

redundancy, and verifies the signature. If the correct OAEP redundancy is

not present, then the nested message is disguised and eventually resent by the

sender due to lack of acknowledgment. If the signature verification does not

pass, then an error message is passed to the application making the user aware

that either there was a network error or a malicious adversary is tampering

with seats. In addition, the nested message is not further processed. The

decryption of SeatBodyS yields

DK−

1
(SeatBodyS) = (MessageHeader1, L2).

3. The Read Thread places the 2-tuple {tag, rand(1, L)} into delTagList for the

Bus thread to process and eventually delete the seat.

4. The Read Thread places L2 into the forwardAckQueue because the forward

bit is set to 1 in the MessageHeader1.

5. Eventually, after a few rounds of the bus, the Bus thread extracts L2 from the

forwardAckQueue.
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6. The Bus thread prepends the seat header, adds random data x2 to L2 so that

the seat is of uniform size, and appends a trailer to the seat and creates Seat1

as follows:

SeatBody1 = (L2, x2)

SeatHeader1 = (K+
1 , tag1, timestamp1)

SeatTrailer1 = (signature(SeatHeader1, SeatBody1))

Seat1 = (SeatHeader1, SeatBody1, SeatT railer1).

7. The Bus thread places Seat1 on the Bus and forwards the bus.

8. Until the next hop in the indirection path acknowledges the seat (by delet-

ing it), P1 keeps resending the seat and never disguises it via the p-threshold

replacement back-off scheme.

5.5.4 Receipt of the seat by P2 (owner of K+
2 )

1. The Bus thread saves the incoming bus to busQueue.

2. Eventually the Read thread decrypts SeatBody1. That is, it decrypts the

nested message salt field with its private key, checks for the correct OAEP

redundancy, and verifies the signature. If the correct OAEP redundancy is

not present, then the nested message is disguised and eventually resent by the

sender due to lack of acknowledgment. If the signature verification does not

pass, then an error message is passed to the application making the user aware

that either there was a network error or a malicious adversary is tampering

with seats. In addition, the nested message is not further processed. The

decryption of SeatBody1 yields

DK−

2
(SeatBody1) = (MessageHeader2, LR).
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3. The Read thread places the 2-tuple {tag, rand(1, L)} into delTagList for the

Bus thread to process and eventually delete the seat.

4. The Read thread places LR into the forwardAckQueue because the forward

bit is set to 1 in the MessageHeader2.

5. Eventually, after a few rounds of the bus, the Bus thread extracts LR from the

forwardAckQueue.

6. The Bus thread appends the seat header, adds random data xR to LR so that

the seat is of uniform size, and appends a trailer to the seat and creates Seat2

as follows:

SeatBody2 = (LR, xR)

SeatHeader2 = (K+
2 , tag2, timestamp2)

SeatTrailer2 = (signature(SeatHeader2, SeatBody2)

Seat2 = (SeatHeader2, SeatBody2, SeatT railer2).

7. The Bus thread places Seat2 on the Bus and forwards the bus.

8. Until the next hop in the indirection path acknowledges the seat (by delet-

ing it), P2 keeps resending the seat and never disguises it via the p-threshold

replacement back-off scheme.

5.5.5 Receipt of the seat by receiver (owner of K+
R)

1. The Bus thread saves the incoming bus to busQueue.

2. Eventually the Read thread decrypts SeatBody2. That is, it decrypts the

nested message salt field with its private key, checks for the correct OAEP

redundancy, and verifies the signature. If the correct OAEP redundancy is

not present, then the nested message is disguised and eventually resent by the
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sender due to lack of acknowledgment. If the signature verification does not

pass, then an error message is passed to the application making the user aware

that either there was a network error or a malicious adversary is tampering

with seats. In addition, the nested message is not further processed. The

decryption of SeatBody2 yields

DK−

R
(SeatBody2) = (MessageHeaderR, ‘Hello’).

3. The Read thread places the 2-tuple {tag, rand(1, L)} into delTagList for the

Bus thread to process and eventually delete the seat.

4. The Read thread places the 2-tuple {anonymous PK, message tag} into the

ackDataQueue, where {anonymous PK, message tag} are extracted from the

MessageHeaderR.

5. The Acknowledgment thread creates an acknowledgment nested message. Its

creation is similar to the generation of the sender’s nested message, except

the inner core has the same message tag as the message being acknowledged,

the inner core is encrypted with the anonymous public key contained in the

anonymous PK field of the sender’s message, the nested message type is ac-

knowledgment (0012), and the message is NULL. The acknowledgment nested

message is inserted into the forwardAckQueue.

6. The Read thread passes message ‘Hello’ to application since the forward bit is

0 in MessageHeaderR.

7. Eventually, the Bus thread sends the acknowledgment nested message. Note

that the forwarding of the acknowledgment nested message is identical to the

process described above to forward the application nested message.
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5.5.6 Receipt of the Acknowledgment by S

1. Eventually, the encrypted inner core of the acknowledgment nested message is

received by S.

2. Eventually the Read thread decrypts the acknowledgment nested message.

That is, it decrypts the nested message salt field with its anonymous private

key, checks for the correct OAEP redundancy, and verifies the signature. If the

correct OAEP redundancy is not present, then eventually a new acknowledg-

ment will be sent in response to the sender’s disguised message being re-sent

due to lack of acknowledgment. If the signature verification does not pass, then

an error message is passed to the application making the user aware that either

there was a network error or a malicious adversary is tampering with seats. In

addition, the nested message is not further processed. The decryption of the

acknowledgment nested message yields

DK−

R
(acknowledgmentSeat) = (MessageHeaderack, NULL).

3. The Read thread places the 2-tuple {tag, rand(1, L)} into delTagList for the

Bus thread to process and eventually delete the seat.

4. The Read thread removes the message with the corresponding message tag

(extracted from MessageHeaderack) from sentList because the nested message

type was acknowledgment.

5.6 Summary

The Practical Buses prototype is an implementation based upon the design in Chap-

ter 4, except dynamic bus creation and bus fault tolerance are not supported. The
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bus server sits between the TCP/IP layer and the application layer in the protocol

stack and currently only supports a chat program written for testing. The modu-

lar encryption components used are RSA-OAEP (1024-bit keys), CBC-AES (128-bit

keys), and RSA-SSA(1024-bit keys).

The prototype is modularized by containing a hierarchy of three main objects and

multi-threading the program into four main threads. The hierarchy of objects is a

bus that contains multiple seats, and each seat contains exactly one nested message.

All of these objects include bit-wise headers and the seat object also includes a bit-

wise trailer. The headers and trailers are used for routing a bus containing seats

and nested messages through the anonymous practical Buses network. The four

main threads are the Bus thread, Read thread, Write thread, and Acknowledgment

thread. Each thread is intertwined with the other threads, and a variety of shared

objects and mutual exclusion variables are used to communicate among the threads.

To facilitate testing, the administration of the anonymous practical Buses network

is centralized and command line arguments are accepted by the bus server. The

central files contain numerous parameters, routing information, public/private key

pairs, and alias-public key mappings. The command line arguments allow the bus

server to produce traces of messages sent, received, and acknowledged as well as read

workloads from a file.



Chapter 6

Evaluation

This chapter contains an evaluation of the Practical Buses protocol from two perspec-

tives. First, the Practical Buses prototype’s functionality, latency, and scalability

are evaluated experimentally in Section 6.1. Second, the Practical Buses protocol’s

anonymity is evaluated theoretically in Section 6.2.

6.1 Experimental Results

The testing of our Practical Buses protocol uses a simple text-messaging application,

similar to chat and electronic mail applications on the Internet. Users can enter

messages using their computers, and view messages sent to them by other users.

Messages are transmitted securely and anonymously between computers using the

Practical Buses protocol. The experimental tests focus on the performance and show

that the Practical Buses protocol works well.

6.1.1 Experimental Setup

We used a Beowulf Cluster consisting of 14 identically-configured dual-processor 2.4

GHz Pentium machines. Each machine has 2 GB RAM and a 512 KB cache. The

operating system is Red Hat Enterprise Linux Workstation release 3 (Taroon Update

2) 2.4.20-19.7. Each machine in the cluster has a 1 Gbps Ethernet connection to a

dedicated Ethernet LAN switch. The prototype uses POSIX threads with libc-2-2.5

111
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and GMP Version 4.1.1, compiled using g++ version 3.2 with flags -g -lgmp -lpthread.

To simplify the analysis of the results, the tests were restricted to use only a single

CPU on each node and the cluster was isolated so that there was no additional load.

The software setup involves updating the central parameter and routing files.

Next, each bus server is recompiled to reflect the updates. Thereafter, the bus

servers are sequentially started on each machine. The bus server corresponding to

the last entry in the alias-public key mapping table is started last, so that it can

create the bus and launch it on the network.

To simplify the presentation of the experimental set-up for each test, assume that

the routing table information is only updated once and that the parameter settings

default to the values in Table 6.1, unless otherwise specified. The justification for

these parameter settings follow. The busServerPort has to be a non-reserved port,

that is busServerPort ≥ 1024. N is the number of nodes in the Buses network.

k is the number of seats owned an individual node node. It is restricted so that

bpkc > 1 and (k − bpkc) > 1. A happy median between bus size and bus tour

latency is k = 4 for our chat program. K should be the maximal k value used by

all the nodes. The parameter p should be no larger than p = 0.5. If p > 0.5 then

a node can insert more seats, but it reduces the number of reserved seats so a node

can only insert more garbage. The optimal value of p to handle bursty traffic (e.g.,

our chat program traffic) is p = 0.5 since this allows the node to insert the maximal

amount of valid seats than can be reserved. If p < 0.5, then the node does not han-

dle bursts as well because it cannot insert as many new seats, but it can sustain a

higher throughput because it can have more reserved seats. The uniformSeatSize

should be large enough to handle the largest expected message. The maximum mes-
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sage size is ((uniformSeatSize − (3240) − (L ∗ (252)) − 2336)/8 − L ∗ 57) bytes

which accounts for the seat and nested message headers and trailer, the number

of layers L, and the ciphertext inflation due to encryption. The maxBusSize =

((N ∗K ∗ uniformSeatSize) + 3) bytes, that is the maximum number of seat bytes

in a bus plus the size of the bus header. The parameter maxOldSeat should be at

least maxResendT ime + RTT + 4RTD where RTT is the average measured round

trip time for the bus and RTD is the measured standard deviation of the round

trip time. RTT and RTD both depend on the number of nodes in the network,

the network hardware, and computer hardware at the nodes. RTT is added to

prevent a premature seat expiration, and 4RTD accounts for the variability. As-

suming a normal distribution, this accounts for 95% of the possible events. The

parameter maxDuplicateT ime should be at least one hour to reduce the threat

of replay attacks. The parameter ackT imeOut should be at least RTT + 4RTD.

maxResendT ime should be x∗ackT imeOut+RTT+4RTD to guarantee a maximum

of x re-sends. L and D should be at least 2 to provide acceptable levels of anonymity.

The parameter staticL should be 0 for optimal anonymity. R should be at least 0, and

scaled up for improved performance at decreased sender anonymity. busThreadWait

should be 1 unless bus processing by the read thread is finished before another bus

is received. verifyAllSeats should be 1 to better identify DoS attacks, and 0 for

better performance. The parameter randomWalk should be 0 unless the network

topology is unknown. reduceDecrypt should be 1 to improve performance, and

reduceDecryptInterval should be larger then the time it takes the bus to tour the

network but small enough to allow efficient look-up in the seatHashTable. For our

testing maxOldSeat, maxResendT ime, ackT imeOut, and maxResendT ime were
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over inflated to simlify analysis of the experimental results.

To obtain consistent results, workloads are generated a priori for each test. The

command line argument -w workloadFileName is used to read the workloads. To

collect experimental timing results, the command line arguments -tS sendTraceFile-

Name, -tR recvTraceFileName, and -tA ackTraceFileName are used for each bus

server.

For the experiments, the random walk bus forwarding feature was disabled and

a statically-configured round-robin tour of the network nodes was used instead. The

protocol would not scale well for a dynamic network using a random walk, because it

would take an expected time of O(N 2) for the bus to circulate the network once in a

completely connected Ethernet network, where N is the number of bus server nodes.

However, the results are still relevant because applications for which the network

topology is known should clearly make use of that knowledge. Testing and utilizing

the dynamic topology functionality to protect against active adversaries and provide

additional fault-tolerance will be the subjects of future research.
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Table 6.1: Default Parameter Settings

busServerPort 1555
N 2
k 4
K 4
p 0.5

uniformSeatSize 1024 bytes
maxBusSize ((N*K*uniformSeatSize) + 3)
maxOldSeat 600 seconds

maxDuplicateT ime 1000 seconds
ackT imeOut 100 seconds

maxResendT ime 400 seconds
D 2
L 2

staticL 0
R 4

busThreadWait 1
verifyAllSeats 0
randomWalk 0
reduceDecrypt 1

reduceDecryptInterval 60
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6.1.2 Latency Tests

The latency tests study the basic operation of the Practical Buses protocol and

the impacts of several configuration parameters on its performance. The primary

performance metric is message latency, defined as the elapsed time between the

sender entering a message for the Write thread and the sender receiving via the Bus

an acknowledgment of that message’s successful delivery. The message delivery time

to the receiver is typically half of the message send-ack latency. These experiments

use a simple two-node configuration in the cluster, with one node as the sender of

messages, and the other node as the receiver. Unless stated otherwise, the message

arrival process is deterministic (constantly spaced in time), with fixed size messages.

Figures 6.1, 6.2, and 6.3, illustrate the mean message latency results for each

parameter value, with the vertical bars showing one standard deviation above and

below the mean. Ten message exchanges were sufficient for each parameter value

since the results were consistent, agreed with the theoretical expectations and were

reproducible. Figure 6.4 contains a time series plot of the message latency for each

message, with message arrival rates of 60, 120, 240, and 360 messages per minute.

The number of message exchanges was increased to fifty for this latter test in order

to demonstrate more clearly the resulting behavior of an overloaded system.

Figure 6.1 illustrates the impact of message size on message latency. Ten mes-

sages, 20 seconds apart, are sent for each message size: 64, 128, 256, 1024, and 4096

bytes. Table 6.2 lists the parameters that are changed from the default parameter

settings in Table 6.1.

Figure 6.1 illustrates that for the set of values tested, message latency is indepen-
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Table 6.2: Relevant Parameter Settings For Figure 6.1

uniformSeatSize 5120 bytes
L 0

staticL 1

0

0.05

0.1

0.15

0.2

0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 in
 S

ec
on

ds

Message Size in Bytes

Message Send-Ack Latency for Buses Anonymous Communication Protocol (Seat Size=5120 bytes)

Figure 6.1: Effect Of Message Size In A Simple Two-Node LAN Configuration

dent of message size. The mean message latency is approximately 0.15 seconds. The

software RSA decryption and signature verification is the bottleneck of the protocol

(this is further investigated later on, see for example Figure 6.7). Each node that

receives a bus must hybrid-decrypt all of the seats. For each seat, the node decrypts

the AES key with the RSA-OAEP private key. If the correct redundancy is present,

the node decrypts the rest of the message with its AES key. Public key decryptions

take significantly longer than symmetric key decryptions. In addition, once a seat is

found to be valid, its signature is verified, requiring a costly RSA encryption. As a

result, the time it takes for the AES decryptions of valid messages do not contribute
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significantly to the message latency.

As a comparison to the message latency in Figure 6.1, let us consider what the

theoretical message latency would be for Figure 6.1 if just the message was sent,

and a one byte acknowledgment was received. The sources of network latency are

transmission delay, propagation delay, queuing delay, and nodal processing delay. Let

us assume that there is no queuing delay (since we would only send one message every

20 seconds over a switched gigabit Ethernet network) and that the nodal processing

delay is 0.001 s for each node (the sender, receiver, and switch). We are left with

the transmission, propagation, and nodal processing delay of the message being

sent and the transmission, propagation, and nodal processing delay of the ensuing

acknowledgment. Any data sent must traverse two hops, one from the sender to the

switch, and one from the switch to the receiver. Per hop transmission delay is equal

to the amount of data sent divided by the rate (109 bps). Per-hop propagation delay

is equal to the distance of the physical medium divided by speed of propagation. A

worst case estimate is a distance of 5 meters between each node and the switch in the

cluster, and that the transmission rate is 2.0 ∗ 108 m/s. Thus the propagation delay

is 5.0∗10−8 s for the message, and 5.0∗10−8 s for the acknowledgment. Transmission

delay for the acknowledgment is 1.6∗10−8 s and 1.024∗10−6 s for a 64 byte message,

2.048 ∗ 10−6 s for a 128 byte message, 4.096 ∗ 10−6 s for a 256 byte message, 1.6384 ∗

10−5 s for a 1024 byte message, and 6.5536 ∗ 10−5 s for a 4096 byte message. Nodal

processing delay is 0.002 s for the message and 0.002 s for the acknowledgment.

Thus, the total theoretical message latency for just the message being sent and the

ensuing one byte acknowledgment under the assumptions above is dominated by the

nodal processing delay. Therefore the theoretical message latency is 0.04 s.
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Figure 6.2 illustrates the effect of seat size on message latency. Ten 128 byte

messages 20 seconds apart are sent for each uniform seat size: 1024, 2048, 4096,

and 8192 bytes. Table 6.3 lists the parameters that were changed from the default

parameter settings in Table 6.1.

Table 6.3: Relevant Parameter Settings For Figure 6.2

uniformSeatSize 1024, 2048, 4096, and 8192 bytes
L 0

staticL 1
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Figure 6.2: Effect Of Seat Size In A Simple Two-Node LAN Configuration

Figure 6.2 shows that for the set of values tested, message latency is linearly

dependent on seat size. However, this linear dependence is quite small and the

average message latency only increases by 0.06 when the seat size is increased from

1024 bytes to 8192 bytes. Increasing the seat size results in a larger seat, more

random data being created to make the seat uniform in size, and a larger bus being
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sent/received over the network. Sending/receiving a larger seat increase the time it

takes for the bus to travel from one node to the next, increasing message latency.

However, changing the seat size does not affect the time it takes to decrypt a seat

containing a message of the same size nor does the generation of more random data

take a significant amount of time.

Figure 6.3 illustrates the effect that the number of indirection layers has on

message latency. Ten 128 byte messages 40 seconds apart are sent for each number

of indirection layers: 1, 2, 3, 4, and 5. Table 6.4 lists the parameters that were

changed from the default parameter settings in Table 6.1.

Table 6.4: Relevant Parameter Settings For Figure 6.3

uniformSeatSize 2048 bytes
L 1,2,3,4,5

staticL 1

Figure 6.3 shows that message latency increases linearly with the length of the

indirection path, as expected. This corresponds with the theoretical analysis because

the expected number of bus tours that a bus has to complete before a message is

delivered is linearly related to the number of indirection layers. For example, consider

the scenario where the sender node1 sends the message m to the receiver node2 and

there are N = 2 nodes in the network. Let the bus traverse the network as a

ring, that is node1, node2, node1, . . .. When the sender chooses a random indirection

path of length 5, the indirection path with the final hop to the receiver node2 could

consist of node2, node1, node2, node1, node2, node2. This results in the bus traversing

on average 1.5 nodes to remove each layer of encryption, during three complete bus
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Figure 6.3: Effect Of Number Of Indirection Layers In A Simple Two-Node LAN
Configuration

tours and one partial bus tour.

Figure 6.4 illustrates the effect that the message arrival rate has on message

latency. Fifty 128 byte messages are sent with message arrival rates of 60, 120, 240,

and 360 messages per minute. Table 6.5 lists the parameters that were changed from

the default parameter settings in Table 6.1.

Table 6.5: Relevant Parameter Settings For Figure 6.4

uniformSeatSize 2048 bytes
staticL 1

Figure 6.4 shows the sensitivity to message load. The system performance is

steady for message arrival rates of 60 or 120 messages per minute. With a message

arrival rate of 240 or 360 messages per minute, a backlog of messages builds up

in the queues, increasing per-message latency. This graph shows that the current
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Figure 6.4: Effect Of Message Arrival Rate In A Simple Two-Node LAN Configura-
tion

implementation can sustain an aggregate message arrival rate of at least 120 messages

per minute.

6.1.3 Scalability Tests

The second set of experiments considers slightly larger network scenarios on the

Beowulf Cluster, to assess the scaling properties of the Practical Buses protocol.

For all these tests, the bus circulates in a statically-configured round-robin tour of

the network nodes. Empirical analysis of scalability was chosen over theoretical

analysis. Theoretical analysis would have been quite complex and would require

simplifying assumptions of the model, but these assumptions would make the model

too unrealistic.

Figure 6.5 shows the average message latency as the number of nodes in the

network is increased from 2 to 8. In this experiment, node1 is always the sender
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and node2 is always the receiver. The additional nodes in the network form part of

the Bus tour, and all nodes are candidate intermediate nodes for indirection. The

message arrival rate is ten 128 byte messages per minute. A total of ten messages

were exchanged since the results were consistent and agreed with the theoretical

expectations and were reproducible. The results plotted in Figure 6.5 show the

average message latency for all messages, and the bar above and beneath depicts

the standard deviation. Table 6.6 lists the parameters that were changed from the

default parameter settings in Table 6.1.

Table 6.6: Relevant Parameter Settings For Figure 6.5

N 3, 4, 5, 6, and 8
uniformSeatSize 2048 bytes

staticL 1
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Figure 6.5: Effect Of Number Of Network Nodes In A Simple Traffic LAN Configu-
ration

Figure 6.5 shows that the average message latency scales approximately linearly
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with the number of nodes in the network. This result makes sense since each ad-

ditional node in the network increases message latency from two perspectives: the

length of the bus tour increases, and the size of the Bus (number of seats) increases.

This result is consistent with the algorithmic analysis of our protocol, and suggests

that the protocol design is scalable to larger networks. The standard deviation of the

message latency also tends to increase, because of the greater choice of indirection

nodes available.

Figure 6.6 illustrates message latency results for a more general workload model in

an 8-node Buses network. The average aggregate message arrival rate is ten 1024 byte

messages per minute, with messages arriving according to a Poisson arrival process.

The sources and destinations for each message are chosen uniformly at random. The

experiment runs for just over half an hour, with 360 messages exchanged. A total

of 360 messages were exchanged for this tests and all subsequent tests because of

the larger variance in the results. The larger sample size increases the confidence

of the statistical analysis. The results plotted in Figure 6.6 show the number of

messages sent by each network node (the integer above each node ID number), as

well as the mean and standard deviation of the message latency experienced by each

node. Table 6.6 lists the parameters that were changed from the default parameter

settings in Table 6.1.

Table 6.7: Relevant Parameter Settings For Figures 6.6 And 6.7

N 8
staticL 1

uniformSeatSize 2048 bytes
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Figure 6.6: Effect Of Poisson Traffic In An Eight-Node LAN Configuration

Two observations are evident from Figure 6.6. First, the Practical Buses pro-

tocol is fair. Each network node experiences comparable latency for its messages,

in terms of mean and standard deviation. Second, the mean message latency and

especially the standard deviation of the message latency are higher for the random

source-destination workload than for the static node1-node2 message workload for

8 nodes in Figure 6.5. This result makes sense because of the Poisson arrival pro-

cess for messages, and the random sender-receiver pairs. These two factors create

burstier traffic for each network node, which can lead to queuing delays for messages.

Recall that the system has a threshold message arrival rate that it can sustain with

steady performance (see Figure 6.4). However, a Poisson arrival process can occa-

sionally cluster messages in time, causing transient queuing effects. Furthermore, the

so-called “birthday paradox” for random sender-receiver pairs can produce a non-

uniform distribution of messages in the network, again leading to queuing. These

queuing delays account for the higher mean and standard deviation for message
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latency.

Figure 6.7 shows results for the Practical Buses protocol with two different RSA

modules. For comparison, there is a slow RSA module and a fast RSA module that

is 6.1 times faster. The purpose of the test is to show that RSA is the bottleneck.

The two RSA modules were benchmarked by encrypting/decrypting 100 random 87

byte messages with newly generated keys for each encryption/decryption. The slow

RSA module was an older version that did not use two standard RSA performance

improvements: a small encryption exponent e = 216 + 1 and the Chinese Remain-

der Theorem for decryption. The fast RSA module used these two improvements

for RSA encryption/decryption primitives in both RSA-OAEP and RSA-SSA. For

comparison, the exact same workloads are used for RSA and RSA 6X; the average

aggregate message arrival rate is ten 1024 byte messages per minute, with messages

arriving according to a Poisson arrival process. Also, the exact same parameter

settings were used for RSA and RSA 6X, as in Table 6.8.

Table 6.8: Relevant Parameter Settings For Figures 6.7

N 8
uniformSeatSize 2048 bytes

reduceDecrypt 0

Figure 6.7 shows that RSA is indeed the bottleneck. RSA 6X reduced the average

message latency by a factor of 7.54 and the standard deviation by a factor of 14.95.

Average message latency was improved by more then a factor of 6.1 because in

addition to improving the speed of decryption of all seats by a factor of 6.1 (RSA-

OAEP), signature generation/verification was improved by a factor of 6.1 as well
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Figure 6.7: RSA Improvement And Effect In A Poisson Traffic Eight-Node LAN
Configuration

(RSA-SSA). Note that signature verification is only checked on valid seats, not all

seats because of the default verifyAllSeats parameter setting of 0.

Even with the small e and Chinese Remainder Theorem improvements, RSA re-

mains as the bottleneck of the protocol. The time it takes for a receiver to receive

a message depends upon how fast the bus travels through the network. Figure 6.2

shows that the gigabit Ethernet network contributes a very small delay when the

bus is sent from one node to the next. Therefore, the majority of the time it takes a

bus to travel through the network is attributed to the bus delay at each individual

node. Each node must process the bus, which requires decryption and verification of

seats, the disguising of nested messages, the insertion of forward or acknowledgment

messages into seats, the insertion of new nested messages into seats, and the gen-

eration of random data messages. Each of these actions requires at least one costly

RSA encryption and/or a RSA decryption for each seat. Note that the bus does not
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wait for the generation of acknowledgments or new nested messages.

Lastly, Figure 6.8 illustrates the scalability of number of network nodes N with

very general network conditions and a heavy traffic load. The mean message latency

is plotted and the bars above and beneath represent one standard deviation. The

average aggregate message arrival rate is 30 messages per minute with random sizes

from 1 to 2048 bytes, arriving according to a Poisson arrival process. The individual

mean for each node when N ∈ [2, 4] is 30/N messages per minute. However, for

N ∈ [5, 14] two heavy traffic nodes (elephants) node1 and nodebN/2+1c average 7.5

messages per minute each and the other nodes average 30/(2 ∗ N) messages per

minute. The number of indirection layers for each message is randomly chosen as

either 1 or 2, to strengthen the anonymity of the protocol [17]. Each run takes 15

minutes, with 360 messages exchanged. Table 6.9 lists the parameters that were

changed from the default parameter settings in Table 6.1.

Table 6.9: Relevant Parameter Settings For Figure 6.8

N 2,3,4,5,6,7,8,9,10,11,12,13,14
uniformSeatSize 3072 bytes

maxOldSeat 150 seconds
maxDuplicateT ime 150 seconds

ackT imeOut 25 seconds
maxResendT ime 100 seconds

maxOldSeat 150 seconds
R 2

The main observation from Figure 6.8 is that the average message latency scales

almost linearly as N increases to 14. The message latency begins to slightly curve

upwards in correlation to the increases in standard deviation. The linear increase
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Figure 6.8: Effect Of Number Of Network Nodes In A General Traffic LAN Config-
uration

in average message latency as N increases is attributed to the linear increase in the

number of hops the bus must do and the number of seats on the bus. However,

the system’s increased sensitivity to bursty traffic as N increases causes the curving

of average message latency. As the number of nodes increases, the time it takes

for a bus to complete one tour of the network increases. As a result, queues are

emptied slower and the Buses network is more sensitive to bursts in traffic. Also, this

increased sensitivity to bursts as N increases results in the standard deviation of the

message latency taking a sudden jump when N = 13. This is confirmed by comparing

Figures 6.9 and 6.10, which contain a node-by-node analysis for the two cases in

Figure 6.8 where N = 12 and N = 13 respectively. For Figure 6.10, the elephant

node1 experiences a higher average and much higher standard deviation of message

latency than in Figure 6.9. Also, node2, node6, node12, and node13 experience a

higher average and standard deviation of message latency. The reason why the other
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nodes, including the elephant node7, do not experience a significant degradation in

performance is two-fold. First, when choosing their random indirection path, they do

not frequently choose a node in their indirection path that is currently experiencing

a significant burst of traffic. Second, they do not frequently experience significant

bursts of traffic when they are trying to send a message. Note that traffic is not only

created by sending a message, but also by the acknowledgment created in response

to a received message.
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Figure 6.9: 12 Network Nodes In A General Traffic LAN Configuration

Two additional observations can be made from Figure 6.8 (Poisson traffic with

two elephants) when comparing the results to Figure 6.6 (Poisson traffic). First the

average message latency increases. Second, the standard deviation increases. Both

of these observations agree with a theoretical analysis. The heavier traffic load of

30 messages per minute would increase the probability of nodes experiencing larger

bursts of traffic. Also, bursts are increased because two nodes are each generating

1/4 of the message traffic instead of 1/8. The chances of these two nodes experiencing
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larger bursts of traffic are significantly increased. As a result, any messages that are

sent, received, or indirected through the two heavy traffic nodes are more likely to

experience queuing delays, increasing both the average and standard deviation of

the message latency.



132

6.1.4 Summary

The experiments demonstrate the functionality of the Practical Buses protocol, and

highlight its performance characteristics. The results show that message latency is

largely independent of message size, but linearly dependent on seat size, the number

of network nodes, and the number of indirection layers used. However, the linear

dependence on seat size does not contribute significantly to the message latency. If

the aggregate message arrival rate exceeds the threshold of messages that can be

handled without queuing delay, the message latency increases sharply. However, if

the high message arrival rate is not sustained, the queues will eventually be emp-

tied and message latency will revert back to normal. In the last test, Figure 6.8,

at least 30 aggregate messages per minute with random size 1 to 2048 bytes could

be sustained in a network of size 2 to 14 nodes. The protocol performs reasonably

in a moderately-sized network with the bus circulating in a round-robin tour. The

bottleneck of the protocol is RSA encryption and decryption; furthermore, improve-

ments to RSA directly improve the performance of the Practical Buses protocol as

shown in Figure 6.7.

6.2 Anonymity Analysis

In this Section, the anonymity of the Practical Buses protocol is evaluated. Due to

the changes to the protocol, all surveyed attacks are re-evaluated in Section 6.2.1.

Then, Section 6.2.2 contains an analysis of the Practical Buses protocol for new

attacks. A possible solution for each new vulnerability discovered is presented.



133

6.2.1 Resistance to Previous Attacks

The design of the Practical Buses protocol differs from the optimal buffer complexity

Buses protocol in [4]. As a result, it is necessary to re-evaluate its susceptibility to

all of the surveyed attacks.

Eavesdropper Attacks

The Practical Buses protocol is not vulnerable to any of the eavesdropper attacks

listed in Section 3.2. The reasons follow:

• Local eavesdropper before proxy attack — Let proxy denote the first node af-

ter the sender. The local eavesdropper cannot identify a sender when it places

a valid seat on the bus, because it is not known how to distinguish between

random data and hybrid RSA-OAEP/CBC-AES nested encryption. Cipher-

texts produced by RSA-OAEP are statistically random [21] and ciphertexts

produced by the AES block cipher are statistically random [39]. The best the

local eavesdropper can do is to monitor the replacement of seats, specifically

multiple bus tours where a seat is not modified. However, the local eavesdrop-

per cannot determine if the seat not being modified is a seat being forwarded or

a seat the sender is sending according to the p-threshold replacement back-off

scheme.

• Local eavesdropper after proxy attack — Let proxy denote the last node in the

indirection path before the receiver. The local eavesdropper cannot identify a

receiver because it is not known how to distinguish between random data and

a single hybrid RSA-OAEP/CBC-AES encryption. RSA-OAEP is believed to

be semantically secure [21] and AES ciphertexts are statistically random [39].
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• Size correlation attack — A global eavesdropper cannot trace a message

through the network based upon size, because all seats have uniform size.

• Time correlation attack — A global eavesdropper cannot trace a message with

a time correlation attack, because a node decrypts every seat on the bus with

its RSA-OAEP private key every time it receives the bus. The reception of a

valid seat introduces the extra timing delay of AES decryption. However, AES

decryptions introduce a very small timing delay and it would be infeasible for an

adversary to determine if the timing delay was the result of an AES decryption.

For example, time slicing among the bus server’s threads and other processes

could cause noticeable delays. Also, the Bus thread only waits for the Read

thread to have received the bus before forwarding its modified bus. Hence, the

Read thread decrypts a variable number of seats which further confuses the

source of any noticeable delays.

• Low load attack — A global eavesdropper cannot identify the receiver in a low

load network. The nodes observed deleting seats due to a message being sent

and its corresponding acknowledgment are {message’s indirection path to the

receiver, receiver, acknowledgment’s indirection path to sender, and sender}.

However, randomly delayed seat deletion ensures that the global eavesdropper

can only reduce the receiver to being in the set {indirection nodes to receiver,

receiver, indirection nodes to sender, and sender}. In a low load network, the

receiver would have seats immediately ready to send the acknowledgment and

the global eavesdropper cannot determine where the message indirection ends

and where the acknowledgment indirection begins. Also, a global eavesdropper
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cannot identify a sender in a low load network because it can’t distinguish

between a hybrid RSA-OAEP/CBC-AES encryption and random data. The p-

threshold replacement back-off scheme also hides when a sender sends/resends

a message. The global eavesdropper can monitor the replacement of seats,

specifically n bus tours where a seat is not modified. The probability of a

seat not being replaced after n times is (1 − pn). Hence as n increases, the

probability of the node being a sender increases. However, this attack can be

eliminated by setting the threshold r (the number of bus tours before a seat

containing the sender’s nested message must be disguised) to 0 and eliminating

the back-off of r in the p-threshold replacement back-off scheme. In addition,

the global eavesdropper can monitor seat deletions of the acknowledgment to

determine who the sender is. However, randomly delayed seat deletion only

lets the global eavesdropper identify the sender as being in the set {indirection

nodes to receiver, receiver, indirection nodes to sender, and sender}.

• Marker attack — Since nested encryption is used, a global eavesdropper cannot

trace the nested message through the network because of the layered encryp-

tion. Also, the seats that contain a nested message before and afterwards do

not contain a common marker.

• Intersection attack — A global eavesdropper can only identify the receiver

and sender belonging to the set {indirection nodes to receiver, receiver, indi-

rection nodes to sender, sender}. However, it cannot correlate which of the

sets belong to the same receiver and sender. The intersection of a subset of

these sets may yield a common indirection node. With each new intersection,
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there is a reduced probability of correctly identifying the sender or receiver

because each intersection increases the probability of incorrectly identifying an

indirection node as the sender or receiver. A further complication is that the

global eavesdropper does not know if it obtains multiple sets for the same party

communicating or different parties communicating. In addition, unless it is a

low load network, the global eavesdropper is not able to determine which set

of deletions belong to the same message being sent and acknowledged. Thus

the intersection attack does not provide the global eavesdropper with any ad-

ditional information to reduce the sender or receiver to a smaller set with

significant confidence.

Passive Adversary Attacks

The Practical Buses protocol is not vulnerable to any of the passive adversary attacks

listed in Section 3.2. The reasons follow:

• Full compromised path attack — A passive adversary that knows the entire

indirection path can identify the predecessor of the first hop in the indirection

path as the sender. However, for a passive adversary to conclude that it con-

trols the entire indirection path requires the adversary to corrupt the sender.

Otherwise, what the adversary thinks is the sender could be forwarding a mes-

sage. Clearly, it must be assumed that the sender is not corrupted when we

analyze sender anonymity. Similarly, receiver anonymity is preserved.

• Timing attack — A passive adversary cannot launch a timing attack, because

the requests for embedded Web objects do not happen immediately, but on

the next bus tour. The passive adversary cannot tell who is the sender if the
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adversary is the first hop in the indirection path because of the p-threshold

replacement back-off scheme hiding insertions of new messages. In addition,

each time a nested message is disguised a new indirection path is used, reducing

the probability that the passive adversary still controls the first hop in the

indirection path.

• Passive traceback attack — Since there are no routing tables for the indirection

paths, an adversary cannot corrupt routing tables on the reversed indirection

path to identify the sender.

Active Adversary Attacks

The Practical Buses protocol is not vulnerable to any of the active adversary attacks

listed in Section 3.2. The reasons follow:

• Replay attack — The Practical Buses protocol incorporates replay protec-

tion. maxDuplicateT ime must be set high enough to prevent an adversary

from replaying a message. If the adversary is patient enough to wait for the

maxDuplicateTime to lapse for each replay, it can only identify the possible set

that a sender and receiver belongs to by observing the randomly delayed seat

deletions. Further complicating the problem, the adversary cannot determine

which seat deletions belong to which send-ack pair.

• Spam attack — The Practical Buses protocol does not use batching, and an

active adversary does not reduce the obfuscation of inputs and outputs of a

node by launching a spam attack.

• Mob attack — The user can reduce their anonymity to improve performance
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with significant effort (re-setting of parameters and recompilation of code),

but the user is able to regain its anonymity at another time. To regain its

anonymity the user resets its parameters, recompiles its code, and using a new

alias and public/private key pair.

• Filtering attack — A filtering attack on the Practical Buses protocol would

allow an adversary to filter the bus to one seat of interest before forwarding

it. However, the active adversary does not gain any new knowledge from this

attack. If it is a valid seat, then the active adversary sees the base case of

a replay attack (the nested message is only sent once) and only observes the

randomly delayed seat deletions. Otherwise, the seat contains random data

and there are no resulting observable events that give the active adversary

additional information.

6.2.2 Vulnerabilities and Solutions

It is necessary to analyze the Practical Buses protocol with respect to new attacks.

The approach to identify these new attacks involves analyzing the protocol from

the perspective of an eavesdropper, passive adversary, and active adversary. The

observable events are listed for each threat model, new attacks are derived based on

analysis of the observable events, and solutions to the attacks are presented. Since

the original objective is to design a Practical Buses protocol that is resistant to all

attacks in the literature, the solutions to these new attacks are not incorporated into

the prototype and are left as future work. Recall, it is assumed that an attacker

cannot tell the difference between a hybrid encryption RSA-OAEP/CBC-AES and
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random data.

Great care was taken when trying to discover all the potential attacks, but it

is next to impossible to prove that a scheme is completely secure. Even if all the

possible scenarios can be enumerated and each scenario is proven to be secure to all

possible attacks, this does not prove that the system is secure. Assumptions may

be incorrect, one or more possible scenarios may have been missed, or one or more

attacks may have been missed. For example, RSA and AES have not been proven to

be secure. It can only be proven that they are not vulnerable to any known attacks

and the trust in their security increases as they withstand scrutiny over time.

New Global Eavesdropper Attacks and Solutions

There are only two observable events, and each allows a global eavesdropper to launch

an attack. In low load networks, a global eavesdropper can identify a superset of

the set {sender, receiver} by observing the randomly delayed seat deletions. These

randomly delayed seat deletions result from the message being sent and the ensuing

acknowledgment. The observable set of nodes that delete seats for a single send-

ack are {indirection nodes to receiver, receiver, indirection nodes to sender, sender}.

This attack reduces the possible set of nodes that a receiver and sender belong to,

but preserves mutual anonymity. Let this attack be denoted deletion observation

attack. Also, an adversary could observe a sender that sends a nested encrypted

message multiple times without it being disguised, increasing the probability that

the node is a sender but preserving unlinkability. Let this attack be denoted resend

observation attack.

Preventing a deletion observation attack is simple. The protocol can be modified
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not to use randomly delayed seat deletion at the sender and receiver. Instead, when

a node receives an application or acknowledgment nested message where the forward

field is false, then it sends an anonymous seat deletion request to another node via a

nested encrypted message. Let us denote this technique as hidden end-points. The

difference of handling an anonymous seat deletion request is that the receiver of

an anonymous seat deletion request does not send an acknowledgment, the deletion

of the seat is an implicit acknowledgment for the sender of the anonymous seat

deletion request. With hidden end-points, the observable set of nodes that delete

seats are {indirection nodes to receiver, indirection nodes for receiver’s anonymous

seat deletion request, receiver of anonymous seat deletion request, indirection nodes

to sender, indirection nodes for sender’s anonymous seat deletion request, receiver of

anonymous deletion request}. Hence, hidden end-points does not allow an adversary

to utilize the observations of seat deletions to reduce the set that the sender and

receiver belong to.

Preventing a resend observation attack is also simple. The observation can be

eliminated by setting the p-threshold replacement back-off scheme’s threshold and

back-off to zero. The protocol already has the sender keep track of all disguised

messages sent in the sentList via their seat tags. Thus the only additional work is

the sender having to disguise the message every bus tour until the first hop in the

indirection path deletes one of the variations or an anonymous acknowledgment from

the receiver is received.



141

New Passive Adversary Attacks and Solutions

A passive adversary can observe the event when a nested message destined for a

corrupted node is received because the decrypted nested message has the correct

redundancy (a valid seat). Thus, when receiving a valid seat, a passive adversary

can identify the predecessor in the indirection path (the owner field of the seat) as

well as the ensuing embedded nested object that it forwards. In conjunction with

a deletion observation attack in a low load network, each node that the passive

adversary controls in the indirection path can be removed from the set of observed

seat deletions. However, hidden end-points can eliminate this attack’s reduction in

anonymity. Hence, receiver anonymity is preserved. The most extreme attack on

sender anonymity is in a low load network where the corrupted node is the first hop

in the indirection path. If no seat deletions occur within an acceptable time window

before this point, as soon as the adversary receives a valid seat it can immediately

identify the sender as the owner of the valid seat. Let the attack be denoted as first

send attack.

To protect against a first send attack, a node should keep track of randomly

delayed seat deletions and record the time since the last observed seat deletion.

If no seat deletions are observed past a certain low load time threshold, a node

is forced to send a dummy nested message. Each node can individually turn these

dummy nested messages on or off depending on whether they want protection against

the first send attack and preserve mutual anonymity or if they want to potentially

improve performance at the cost of unlinkability. Note that one node sending dummy

messages is sufficient to provide enough deletions; no other node would have to

create constant traffic. Even if all the nodes create dummy messages in the absence
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of seat deletions beyond an acceptable time threshold, the one with the lowest time

threshold that first receives the bus would create sufficient dummy messages resulting

in deletions and prevent the other nodes from creating dummy messages. Thus, on

average one out of N nodes would create a dummy message for each bus tour and

as N increases the dummy message overhead approaches zero, preserving scalability.

Note that more than one node could create a dummy message if multiple nodes

reached the low load time threshold on the same bus tour, and each sent a dummy

message which would not result in seat deletions until at least the next bus tour.

Let us denote the scenario where exactly one node sends a dummy message per bus

tour as confusion traffic.

New Active Adversary Attacks and Solutions

An active adversary has the following additional abilities above and beyond a passive

adversary; it can delete, modify, or add messages. This allows it to create new

observable events. The ability to delete seats allows an active adversary to perform

a DoS attack, or to delete seats which may cause a sender to resend a message.

Let the former be called DoS seat deletion attack, and the latter be called a forced

resend attack. The ability to modify seats only allows an adversary to change the

seat fields it owns and create a new signature. The active adversary cannot perform

modifications to a valid nested message without corrupting the OAEP redundancy

nor can it make modifications to a seat it does not own without corrupting the

digital signature. Let us denote the attack where seat fields are changed as seat field

modification attack. Lastly, an active adversary can add messages. Since the active

adversary is the sender it can attack receiver anonymity by spamming the receiver
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with multiple valid messages. Let the attack be denoted as spam receiver attack.

Also, the adversary could insert more than k messages destined for a target node,

to overload the node with nested messages to forward so that it cannot send any

messages of its own. Let the attack be denoted as a overload DoS attack.

The forced resend attack can cause a sender to resend the message with multiple

indirection paths. An active adversary can hope to identify the sender by observing

the sender resending a message multiple times with different nested encryptions.

However, the adversary is required to be consistently on the indirection path to

delete a received valid seat. Otherwise, the adversary must find a ‘needle in a hay-

stack’ by randomly deleting at least one seat in each random indirection path. Hence,

we assume that the adversary is in the indirection path of the first nested message

sent. However, an active adversary cannot guarantee it will be in the indirection

path since the sender chooses a new random indirection path each time. If the

threshold (number of resends for a particular nested message) and back-off are too

high, then a corrupted node on the bus tour can statistically increase the probability

of identifying the sender by observing it resend the same message multiple times.

Thus, the chance of a forced resend attack compromising sender anonymity is very

low. The probability that the node is identified as a sender 1 − p
∑n

i=1
resendsmi

where resendsmi
is the number of times the ith nested message for the same message

is observed being re-sent according to the p-threshold replacement back-off scheme

and n is the total number of observed disguised messages sent. Assuming that the

‘needle in a hay-stack’ analogy restricts the attacker to being on the first indirection

path and hoping that it is on the next indirection path results in the probability of a

node being identified a sender being reduced to 1− p
∑n

i=1
resendsmi

(l/N)i−1

where l is
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the average number of indirection layers and N is the number of nodes participating

in the Practical Buses protocol. However, to defend completely against the attack

the sender can either reduce the threshold and back-off to zero in the p-threshold

replacement back-off scheme or reduce the number of times a message can be resent

due to the absence of an acknowledgment.

The DoS seat deletion attack can cause a DoS attack for a particular node if the

active adversary can delete all the messages a node sends. However, a corrupted

node on the bus tour deleting all received valid seats would not suffice because it

cannot guarantee to be on all of the indirection paths. Nor would a corrupted node

deleting random seats on the bus tour suffice because of the ‘needle in a hay-stack’

problem. This implies that the active adversary has to be between the sender and

receiver and be able to delete the sender’s seat or overcome the ‘needle in a hay-stack’

analogy and delete any of the indirection seats before they are received. Deleting

any of the indirection seats requires the active adversary to analyze each seat on the

bus and try to trace the reversed indirection back to the sender. This would require

the adversary to record each bus transformation and iteratively correlate a nested

message object to the nested message object that contained it. However, without

possessing the private keys of all the outer layers of a nested message object or

breaking the encryption scheme an active adversary cannot trace a seat containing

a nested message back to the sender. Thus, an adversary must be the node that

the sender forwards the bus to, or it can randomly delete seats hoping it deletes an

indirection seat before it is received. The probability of success of the latter would

be very small if enough resends occur but the former would be successful.

A sender cannot prevent a DoS attack but it could determine where the attack is
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taking place. For example, the sender could send a trace application nested message

that would cause each node in the indirection path to send an anonymous acknowl-

edgment to the sender. The sender then sends the trace application nested message

and knows that the message is lost between two indirection nodes. It can then moni-

tor the network between these two indirection nodes to determine where the message

is lost because it knows what each layer of the nested encrypted message should look

like.

The seat field modification attack poses the threat that if an active adversary re-

ceives a valid seat, it can continue to replay the seat by changing the timestamp field,

attacking receiver and sender anonymity by observing the set of nodes performing

seat deletion. Changing the owner field does not allow an attack; it only improves

sender anonymity by making it more difficult to trace the indirection path back to

the sender. Changing the tag field only prevents the seat from being deleted by the

next hop in the indirection path, resulting in resources being tied up for the active

adversary. The ability to launch a replay attack with the timestamp field would only

result in the observable events of randomly delayed seat deletion. Also, the replays

would have to to spaced sufficiently apart to prevent the replay protection from

ignoring the replayed seats. However, hidden end-points would prevent the attack

from identifying the receiver or sender. Hence, the seat field modification attack only

poses a threat in a low load network where hidden end-points are not used.

The spam receiver attack consists of an active adversary sending multiple different

messages encrypted with the receiver’s anonymous public key in order to identify the

receiver and bind the anonymous public key to the receiver. To identify the receiver,

the best the active adversary can do is observe the randomly delayed seat deletions.
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If the active adversary does this with an indirection path of length zero in a low load

network, eventually the intersection of all these sets will result in a set containing only

the receiver and the already known sender since the resulting indirection path for

the acknowledgment is random. To prevent this attack, the receiver can use hidden

end-points and the active adversary can no longer observe the receiver deleting a

seat.

The overload DoS attack consists of an active adversary sending multiple nested

messages destined for the same node, so that it is overloaded with nested messages

to forward. Since the forwardAckQueue has priority over the sendQueue, the ad-

versary will not be able to send any messages. As a side effect, this would decrease k

and reduce the anonymity of the adversary as a sender since it violates the conditions

of the p-threshold replacement back-off scheme. To prevent this attack, any node

that receives a bus ensures that no node owns more than the allowed upper bound of

K seats. If a node owns more that K seats, it can randomly delete seats owned by

the violating node until the node owns K seats. Let us denote this counter-measure

as prune max seats.

6.2.3 Summary

The new attacks reduce anonymity for the sender or receiver, and in the most extreme

case they identify the sender or receiver but preserve unlinkability. However, new

techniques were introduced to defend against these attacks and preserve mutual

anonymity. Table 6.10 lists each new attack, its impact on mutual anonymity, and

the counter-measures used to defend against the attack.

From the analysis of Table 6.10, it is apparent that setting the threshold and
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Table 6.10: New Attacks Against The Practical Buses Protocol And Solutions

Attack Threat Impact On Counter Measure
Model Mut. Anonymity

deletion global evdpr. mutual anonymity: confusion traffic or
observation reduced set for hidden end-points

sender/receiver

resend global evdpr. mutual anonymity: confusion traffic or
observation prob. sender ident. + threshold,back-off=0

first send pass. advsry. identify sender, confusion traffic
unlinkability

forced resend actv. advsry. mutual anonymity: limit resends or
prob. sender ident. + threshold,back-off=0

DoS seat actv. advsry. none, DoS trace application
deletion nested message and

monitor suspect nodes

seat field actv. advsry. mutual anonymity: confusion traffic or
modification reduced set for hidden end-points

sender/receiver

spam receiver actv. advsry. unlinkability hidden end-points
identify receiver

overload DoS actv. advsry. none, DoS Prune Max
attack Seats

back-off to zero, using confusion traffic, using hidden end-points, and prune max seats

will protect against all of these attacks. In addition, all of these improvements are

scalable. However, not all of these improvements are necessary. The improvements

needed depend upon the requirements of the application: what type of anonymity

is to be provided and for what level of threat model the protocol should provide

anonymity. If none of these improvements are made, unlinkability is preserved and

the only attack that can completely identify a sender is first send attack and the

only attack that can completely identify a receiver is a spam receiver attack.

The caveat of the Practical Buses protocol is that mutual anonymity is provided
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from all perspectives only if the public key used to encrypt the inner-most core of a

nested message is not correlated to the receiver. For example, the public key that

identifies a node’s seats is not suitable to encrypt the inner-most core. The sender

can correlate the public key to the node that modifies the seats and defeat receiver

anonymity. Instead, the anonymous public key that is used in the nested message

for an anonymous acknowledgment would preserve mutual anonymity. However, the

sender cannot request this anonymous public key using the Practical Buses protocol,

otherwise the receiver binds the anonymous public key with receiver’s public key

used to send the anonymous public key request. Another means, such as a Web

posting or anonymous certificate, is required to bind the anonymous public key to an

anonymous identity. For example, a psychologist could have an anonymous certificate

identifying it as a psychologist, and this certificate could be signed by a trusted third

party to vouch that the owner of the public key is indeed a psychologist. However,

using the public key to identify seats suffices if a sender-receiver pair requires mutual

anonymity from the perspective of any other node.



Chapter 7

Conclusions and Future Work

This chapter concludes the thesis. In Section 7.1, the work that has been done is sum-

marized. In Section 7.2, the main conclusions are presented. Lastly, in Section 7.3

future directions for research are discussed.

7.1 Thesis Summary

Anonymous communication is required so people can communicate without fear of

retribution. There are numerous applications that need anonymous communication.

Lack of anonymity may suppress communication, resulting in psychological, social,

and financial losses, or even the loss of life.

A robust anonymous communication scheme should meet many design criteria:

security against all attacks in the literature, scalability, mutual anonymity, and sup-

port for a dynamic topology. However, none of the prior anonymous communication

schemes in the literature support all the criteria. A literature survey of anonymous

communication schemes and analysis showed that all schemes except DC-Net are

vulnerable to at least one attack. However, DC-Net is not scalable and Chaum’s

Mixes or Buses could not support all the criteria even if they were made secure by

incorporating the security characteristics as outlined in Chapter 3.

The Practical Buses protocol is a robust solution that supports all the design

criteria. Buses was chosen as the best candidate and re-designed into the Practical

149
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Buses Protocol. Three new techniques are introduced in the core of the design: nested

encryption with indirection, p-threshold replacement back-off scheme, and randomly

delayed seat deletion. The new design enhances security and anonymity, and im-

proves fault tolerance and performance. Security and anonymity were enhanced

with the addition of anonymous acknowledgments and signed bus seats. Fault tol-

erance is augmented with resends and acknowledgments handling lost seats and bus

loss tolerance handling lost buses. Performance was improved by hybrid encryption,

dynamic bus seats, deletion of expired bus seats, and reduced seat decryptions.

To show that the Practical Buses protocol is scalable, the prototype presented

in was implemented. The prototype was experimentally evaluated and it was shown

that the Practical Buses protocol has good performance and scales well for a static

topology. In addition, the anonymity provided by the Practical Buses protocol was

carefully analyzed. This analysis showed that the Practical Buses protocol is se-

cure against all previous attacks. New techniques to defend against a set of newly

discovered attacks are discussed.

7.2 Conclusions

There are three main conclusions from this thesis:

1. The prior analysis of anonymous communication schemes was not sufficient to

provide complete anonymity. 36 new attack vulnerabilities were discovered for

the thirteen anonymous communication schemes analyzed in Table 3.1 and 3.2.

In many cases the analysis of these schemes is done by the inventor, the threat

model is limited, and numerous attacks that exist in the literature are missed.
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A more robust anonymity analysis is presented in this thesis, summarizing

all the attacks in the literature, identifying the characteristics required to de-

fend against each attack, and identifying the characteristics each scheme used.

In addition, the characteristics are identified to protect against all surveyed

attacks for anonymous communication schemes based upon mixes, buses, or

broadcasting.

2. The Practical Buses protocol is a promising anonymous communication scheme.

It is the first anonymous communication scheme in the literature to meet robust

design criteria: provide security against all attacks in the literature, scalability,

mutual anonymity, and support for a dynamic topology. All prior anonymous

schemes including the original Buses protocol do not meet all the design crite-

ria.

3. The Practical Buses prototype is a practical solution with real world uses. Al-

though our prototype can handle a dynamic network topology, the random

walk bus traversal is too inefficient to provide reasonable scabalility. Thus,

our prototype is restricted to static networks. Despite this restriction, there

are numerous real world applications that could have beneficial results. A

static dedicated Practical Buses network could be set-up for group employee

evaluations, group therapy sessions, military communications, scheduled em-

ployee feedback sessions, et cetera. Furthermore, a static dedicated Practical

Buses network could be extended to support additional applications such as

anonymous Web browsing, e-mail, e-voting, e-counseling for victims of abuse,

et cetera. For Internet deployment the prototype would have to be modified
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so that each node securely stores its own private key, the central static routing

table would have to be updated for the static topology, the central public key

table would have to be updated to include all the nodes public keys, and the

central alias-public key mapping would have to updated. In addition, applica-

tion support would have to be added. The sender would send an anonymous

request for a random node in the Practical Buses Network to send the mes-

sage on behalf of the sender and the random node would parse the request,

send the request, and include the reply anonymously within the anonymous

acknowledgment.

7.3 Future Work

The Practical Buses protocol could be extended to improve generality, functional-

ity, performance, scalability, and anonymity. Each improvement could be achieved

by re-designing, implementing, measuring, and evaluating each improvement to the

Practical Buses Protocol.

Generality

To support general networks, the Practical Buses Protocol should efficiently support

a dynamic network topology such as an ad hoc wireless network. The topology of the

network changes rapidly and paths could disappear before an anonymous message

travels its entire route. A random walk would allow anonymous communication in

a dynamic network topology, but would not scale well since the expected number of

hops would be O(mn) per bus tour where m is the number of edges and n is the num-
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ber of nodes. One potential solution that uses random walks is to divide the network

into clusters, have a bus for each cluster, and have seat transfers between clusters.

Using this method, the expensive tail of O(mn) could be cut off before it grows too

quickly but seat transfer, shortest path information, and cluster management would

be needed. Another approach is to create dynamically a static path whenever it is

determined that the network topology has changed. However, the efficiency of the

solution would depend on the overhead of creating a static path dynamically being

compounded by how frequent the network topology changes.

Functionality

The Practical Buses protocol’s functionality could be extended to provide message

fragmentation, application transparency, and DoS counter attack measures. A ma-

licious node (e.g., a node performing a DoS attack) could be detected by a Practical

Buses Protocol layer traceback. Each node in the indirection path would be required

to send an anonymous acknowledgment back to the sender. Then, the sender could

monitor the network between the two indirection nodes where the message is lost

to identify the malicious node, since it knows what each layer of the nested mes-

sage looks like and can verify each seats signature. In addition, the Practical Buses

protocol set-up should be decentralized so as not to require central administrative

set-up.

The functionality should also be extended to include controlled anonymity re-

vocation, otherwise the Practical Buses protocol could be used for illicit purposes.

Anonymity revocation could require all nodes to only use public/private key pairs

provided by a trusted third party. This trusted third party could then try all possible
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private keys on a seat that is having its anonymity revoked, to remove each layer

of indirection. To prevent abuse by a trusted individual, pieces of the private key

could be secretly distributed to a group of individuals so that a certain threshold is

required to reconstruct the private key. However, anonymity revocation contradicts

decentralization and both goals cannot be achieved together. Anonymity revocation

requires centralized trusted parties.

Performance

Improvements to the protocol’s performance are also possible. For example, incom-

parable public keys [46] could obviate the need for a receiver to decrypt all bus seats

with both its private key and anonymous private key. Instead, a single private key

could be used decrypt ciphertexts that are produced with its public and anonymous

public keys. Also, RSA-OAEP remains the performance bottleneck in our proto-

col. Minimizing the number of RSA-OAEP encryptions and decryptions required

would improve the protocol performance. In addition, improving the speed of the

RSA-OAEP encryption/decryption module or replacing it with a faster cryptosystem

such as elliptic curve cryptography would improve the protocol performance. Also,

performance can be improved by exploiting the parallelism available in our protocol

implementation. Lastly, additional performance testing and parameter tuning would

improve performance.

Scalability

Improvements are needed to improve the scalability of the protocol by reducing the

average message latency. Potential scalability improvements are clustering, multiple
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buses on a route, and traffic shaping. Clustering could limit the size of each bus

route to a manageable size. Multiple buses on a route would decrease the time a

node has to wait for a bus to insert a seat. The increased number of buses would also

allow the node to send more messages on the larger amount of seats. However, this

would increase the communication and computational complexities of the protocol.

The burstiness of the traffic could be reduced by using leaky buckets at the traffic

sources. Leaky buckets are used in ATM for constant bit rate and variable bit rate

to shape the traffic.

Anonymity

To defend against the new attacks in Chapter 6, the Practical Buses protocol should

be modified. The threshold and back-off should be set to zero, confusion traffic

should be added, hidden end-points should be added, and prune max seats should

be added. With hidden end-points, the random seat deletion delay could be set to

zero to improve performance, since the set of nodes observed deleting nodes would no

longer include the sender or receiver. However, even with these changes the Practical

Buses protocol could potentially have undiscovered vulnerabilities despite great care

in designing a secure protocol. Potential weaknesses are missed code vulnerabilities

such as buffer overflows, application vulnerabilities, operating system vulnerabilities,

or viruses creating back doors to install software such as key stroke recorders.
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Appendix A

Anonymous Communication Scheme Examples

A.1 Mix Example: Chaum’s Mixes

To further understand mixes, consider the following example based upon Chaum’s

mixes. Assume there are three intermediate mixes to send a message M and receive

a reply M ′ and that the sender S sends the message M to the receiver R.

S begins by choosing a re-routing path, mix1, mix2, mix3, and creates an un-

traceable return address so that R can reply. S creates three random pairs of

public/private keys (R+
1 /R−

1 , R+
2 /R−

2 , R+
3 /R−

3 ) that also act as random salt. The

untraceable address is created recursively using the sender’s re-routing path to the

receiver. AS is recursively prepended with the randomly generated public key R+
i ,

encrypted with the mixes public key K+
i , and appended with the address Ai (for

i = 1, i = 2, i = 3), that is:

AS

EK+
1
(R+

1 , AS), A1

EK+
2
(R+

2 , EK+
1
(R+

1 , AS), A1), A2

EK+
3
(R+

3 , EK+
2
(R+

2 , EK+
1
(R+

1 , AS), A1), A2)

Note that for the final iterative loop, the address A3 is not appended because R

knows which mix sent the message M . However, after the last iterative loop K+
S is
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appended (a public key randomly generated for R’s reply) so that R can encrypt its

reply with K+
S :

EK+
3
(R+

3 , EK+
2
(R+

2 , EK+
1
(R+

1 , AS), A1), A2), K
+
S (A.1)

Let us denote this untraceable return address in Equation A.1 as return.

Once the return address has been created, S prepares the anonymous message

by layering the encryption of (return, m). The layered encryption is done on the

reverse path with R’s public key, then mix3’s public key, then mix2’s public key, and

finally mix1’s public key. Also, before encrypting each layer with K+
i , the address

of the next hop Ai+1 is prepended to the message and random salt Ri is appended

to the message. That is:

(return, m)

EK+
R
(R0, (return, m)) (A.2)

EK+
3
(R3, EK+

R
(R0, (return, M)), AR)

EK+
2
(R2, EK+

3
(R3, EK+

R
(R0, (return, M)), AR), A3)

EK+
1
(R1, EK+

2
(R2, EK+

3
(R3, EK+

R
(R0, (return, M)), AR), A3), A2) (A.3)

Note AR+1 is not appended in Equation A.2 because AR is the last hop. Also, the

address A1 in Equation A.3 is not appended because S knows that the first hop is

A1.

S has prepared the encrypted layered message with the return address and must

remember R−
1 , R−

2 , R−
3 , K−

s as the private keys to decrypt R’s reply M ′. Let A → B
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denote the message that A sends to B. Now let us trace the message as it is sent

from S to R.

S → mix1 EK+
1
(R1, EK+

2
(R2, EK+

3
(R3, EK+

R
(R0, (return, M)), AR), A3), A2)

mix1 → mix2 EK+
2
(R2, EK+

3
(R3, EK+

R
(R0, (return, M)), AR), A3)

mix2 → mix3 EK+
3
(R3, EK+

R
(R0, (return, M)), AR)

mix3 → R EK+
R
(R0, (return, M))

Note that the receiving mixi of a layered message uses its private key K−
i to decrypt

the message, throws away the random salt Ri, and determines the next hop Ai+1.

When R receives the message it decrypts the message with K−
R , saves (R0, return)

to reply, and reads the message M .

R then uses the untraceable return address to send a reply M ′. Recall that K+
S

is found in return (see Equation A.1). R appends its reply M ′ with R0 and encrypts

(R0, M
′) with K+

S . This is appended with EK+
3
(R+

3 , EK+
2
(R+

2 , EK+
1
(R+

1 , AS), A1), A2)

from return (see Equation A.1). Now, R sends (EK+
3
(R+

3 , EK+
2
(R+

2 , EK+
1
(R+

1 , AS),

A1), A2), EK+
S
(R0, M

′) to mix3 and the message arrives at S as follows:

R → mix3 (EK+
3
(R+

3 , EK+
2
(R+

2 , EK+
1
(R+

1 , AS), A1), A2), EK+
S
(R0, M

′)

mix3 → mix2 EK+
2
(R+

2 , EK+
1
(R+

1 , AS), A1), A2), ER+
3
(EK+

S
(R0, M

′))

mix2 → mix1 EK+
1
(R+

1 , AS), A1), A2), ER+
2
(ER+

3
(EK+

S
(R0, M

′)))

mix1 → S ER+
1
(ER+

2
(ER+

3
(EK+

S
(R0, M

′))))

Note that the receiving mixi of a layered message uses its private key K−
i to decrypt

return, uses the public key R+
i to encrypt the reply message, and determines the

next hop Ai−1. Once S receives ER+
1
(ER+

2
(ER+

3
(EK+

S
(R0, m

′)))) it uses the private
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keys R−
1 , R−

2 , R−
3 , K−

s to decrypt the message, uses the random salt R0 to verify that

R sent the reply message, and reads M ′.

A.2 Re-routing Example: Crowds

To further understand how re-routing works, consider the following example based

on Crowds. Let the sender (user web browsing) be denoted S and the receiver (web

server) be denoted R. There are three phases in Crowds, authentication with the

Blender, static-path creation, and anonymous web requests sends/receives.

S first contacts the Blender and authenticates itself with the username and pass-

word so it can become a member of a crowd. If the Blender authenticates S, it adds

S’s IP Address, port number, and account name to the list of crowd members.

S then waits for the next join commit, to create its static re-routing path. Upon

receipt of the join commit, S’s Jondoe forwards to a random Jondoe a randomly

generated 128 bit path key and a randomly generated 128 bit path ID encrypted

with its shared symmetric key. The IP, port, path ID of the first hop in the re-

routing path as well as the path key are recorded by S’s Jondoe so it knows where to

send subsequent web requests tagged with that path ID. Each Jondoe that receives

the re-routing path creation request flips a biased coin. With probability pf the

intermediate Jondoe forwards to a random Jondoe a new random 128-bit path ID

and the same path key encrypted with the random Jondoe and intermediate Jondoe’s

shared symmetric key. In addition, the old and new path ID, along with the IP

address and port number of the predecessor and successor Jondoes are recorded in

the Jondoe’s routing table. If the coin flip indicates not to forward the message, the
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Jondoe records a sentinel value for the successor hop in the routing table so it knows

to decrypt the web request with the path key and forward it to R.

After the static re-routing path is created, web requests are sent by S’s Jondoe by

encrypting the web request with the path key, and the path ID with the symmetric

key shared by the user’s Jondoe and the successor’s Jondoe (recorded in the routing

table). Each intermediate Jondoe in the re-routing path decrypts the path ID with

its shared key, looks up the successor Jondoe, encrypts the new path ID with the

symmetric key shared by the intermediate Jondoe and the successor’s Jondoe, and

forwards the encrypted path ID and still encrypted URL request to the successor

node. If a Jondoe looks up the successor for the path ID in the re-routing table

and discovers the sentinel value for the successor hop, it decrypts the encrypted web

request with the path key and makes the web request on behalf of the sender. It

then sends the response of R on the backwards path similar to the method the web

request was sent.

A.3 Buses Example: Buses

To further understand Buses, let us consider the following example. Since the opti-

mal communication complexity protocol is rather simple and does not provide mu-

tual anonymity, consider the optimal buffer complexity protocol. Suppose a sender

S wants to send a message M to receiver R, the topology consist of five nodes

S, N2, N3, R, N5, and let the route of the bus form the ring S, N2, N3, R, N5, S. In

order for S to send the message to R, the path and transformations on the bus B

consisting of seats s1, s2, s3 are:
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Assume S receives a bus B with all invalid seats:

1. S receives the bus and replaces all the seats with their respective decryptions:

B = DK−

S
(s1), DK−

S
(s2), DK−

S
(s3)

2. S receives no valid messages.

3. S chooses a random seat to forward the layered encrypted message, without

loss of generality, assume it is s1. The construction of the seat is the message

encrypted on the reverse path, i.e., encrypted iteratively with K+
R , K+

3 , K+
2 as

follows:

(a) m

(b) EK+
R
(M)

(c) EK+
N3

(EK+
R
(M))

(d) EK+
N2

(EK+
N3

(EK+
R
(M))

4. S forwards the bus B = EK+
N2

(EK+
N3

(EK+
R
(M)), DK−

S
(s2), DK−

S
(s3) to N2.

N2 receives the bus:

1. N2 receives the bus and replaces all the seats with their respective decryptions:

B = EK+
N3

(EK+
R
(M)), DK−

N2

(DK−

S
(s2)), DK−

N2

(DK−

S
(s3))

2. N2 receives no valid messages.

3. N2 forwards the bus B = EK+
N3

(EK+
R
(M)), DK−

N2

(DK−

S
(s2)), DK−

N2

(DK−

S
(s3)) to

N3.

N3 receives the bus:
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1. N3 receives the bus and replaces all the seats with their respective decryptions:

B = EK+
R
(M), DK−

N3

(DK−

N2

(DK−

S
(s2))), DK−

N3

(D−
KN2

(DK−

S
(s3)))

2. N3 receives no valid messages.

3. N3 forwards the bus

B = EK+
R
(M), DK−

N3

(DK−

N2

(DK−

S
(s2))), DK−

N3

(DK−

N2

(DK−

S
(s3))) to R.

R receives the bus:

1. R receives the bus and replaces all the seats with their respective decryptions:

B = M, DK−

R
(DK−

N3

(DK−

N2

(DK−

S
(s2)))), DK−

R
(DK−

N3

(DK−

N2

(DK−

S
(s3))))

2. R receives a valid message in M and replaces the seat s1 with random data.

3. R forwards the bus

B = s1, DK−

R
(DK−

N3

(DK−

N2

(DK−

S
(s2)))), DK−

R
(DK−

N3

(DK−

N2

(DK−

S
(s3)))) to N5.

A.4 Broadcasting Example: DC-Net

To further understand the broadcasting technique consider the following example

based on DC-Net. Suppose that the network G contain the nodes V = {N1, N2, N3},

that the network is completely connected and contains the bi-directional communi-

cation channels E = {{N1, N2}, {N1, N3}, {N2, N3}}, and that each communication

channel {Ni, Nj} shares a secret key Ki,j: K1,2 = (11001 . . .)2, K1,3 = (01010 . . .)2,

K2,3 = (10101 . . .)2. Let node N1 send the message m = 11012 to N3 and immediately

begins to send the message on the first observed parity.

The sequence of events is:



169

1. Round 1

(a) N1 calculates the parity of the first bit in its shared keys 1⊕ 0 = 1, Xors

in the first bit of the message 1⊕ 1 = 0 and broadcasts 0.

(b) N2 calculates the parity of the first bit in its shared keys 1 ⊕ 1 = 0 and

broadcasts 0.

(c) N3 calculates the parity of the first bit in its shared keys 0 ⊕ 1 = 1 and

broadcasts 1.

(d) All nodes calculate the parity of all broadcasted parities 0⊕0⊕1 = 1 and

every node that knows the first bit is being sent, know the first bit in the

message is 1.

2. Round 2

(a) N1 calculates the parity of the second bit in its shared keys 1 ⊕ 1 = 0,

Xors in the second bit of the message 0⊕ 1 = 1 and broadcasts 1.

(b) N2 calculates the parity of the second bit in its shared keys 1⊕ 0 = 1 and

broadcasts 1.

(c) N3 calculates the parity of the second bit in its shared keys 1⊕ 0 = 1 and

broadcasts 1.

(d) All nodes calculate the parity of all broadcasted parities 1⊕1⊕1 = 1 and

every node that knows the second bit is being sent, knows the second bit

in the message is 1.

3. Round 3
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(a) N1 calculates the observed parity 0 ⊕ 0 = 0, Xors in the third bit of the

message 0⊕ 0 = 0 and broadcasts 0.

(b) N2 calculates the parity of the third bit in its shared keys 0⊕ 1 = 1 and

broadcasts 1.

(c) N3 calculates the parity of the third bit in its shared keys 0⊕ 1 = 1 and

broadcasts 1.

(d) All nodes calculate the parity of all broadcasted parities 0⊕1⊕1 = 0 and

every node that knows the third bit is being sent, knows the third bit in

the message is 0.

4. Round 4

(a) N1 calculates the parity of the fourth bit in its shared keys 0 ⊕ 1 = 1,

Xors in the fourth bit of the message 1⊕ 1 = 0 and broadcasts 0.

(b) N2 calculates the parity of the fourth bit in its shared keys 0⊕ 0 = 0 and

broadcasts 0.

(c) N3 calculates the parity of the fourth bit in its shared keys 1⊕ 0 = 1 and

broadcasts 1.

(d) All nodes calculate the parity of all broadcasted parities 0⊕0⊕1 = 1 and

every node that knows the fourth bit is being sent, knows the fourth bit

in the message is 1.



Appendix B

Bus Pseudocode

B.1 Bus Thread Pseudocode

The Bus thread is the parent of the Read, Write, and Acknowledgment threads.

Thus, it is responsible for instantiating all the main shared thread objects and their

respective mutual exclusion objects in addition to its own main objects. Let the pair

CS-START . . . CS-END denote a critical section that must use mutual exclusion to

prevent data races between the threads for shared objects.

1. Exit with error message if initialization parameter k is larger than upper-bound

K.

2. Instantiate global shared objects busQueue, forwardAckQueue, sendQueue,

sentList, delTagList, and ackDataQueue and initialize them to be empty.

Also, instantiate the global shared objects for mutual exclusion variables. In

addition, instantiate the local reservedTagList and initialize it to be empty.

3. Spawn the Write thread, Read thread, and Acknowledgment thread.

4. while(true)

(a) Wait for incoming bus.

(b) CS-START Save the incoming bus to the busQueue CS-END.

(c) If first bus received, insert k random data seats and go to Step 4p.
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(d) CS-START All entries in the sentList have the field, number of times

nested message sent, incremented by 1. If this exceeds the threshold r

for that message, or if the acknowledgment time-out has expired, a new

indirection path is chosen and a new nested message is created (see Write

thread Steps 1(b)i to 1(b)iv for pseudo-code) on the reversed indirection

path. If the threshold r was exceeded, it is linearly increased. The seat

containing the old nested message is deleted ensuring that not more than

pk seats are deleted. In addition, maximum resend time-outs are checked,

and if any are expired the node stops trying to deliver the nested message,

deletes the corresponding seat ensuring that not more than pk seats are

deleted, and delivers an error message to the application. Before encap-

sulating a new nested message (see step 4j for pseudo-code) in a seat to

be resent, this step must ensure that it does not use more than k − pk

reserved seats (containing a valid message) in total; otherwise, the node

will not be able to delete enough seats according to the p-threshold re-

placement back-off scheme. If the node is unable to resend the new nested

message, it waits until the next pass of the bus and tries again. CS-END

(e) CS-START All entries in the delTagList have their delay field decre-

mented. If any entries have delay ≤ 0, then they are deleted along

with their respective seat on the bus CS-END. The total number of seats

deleted in this step and the previous step must not exceed pk for a single

pass of the bus — any additional seats ready for deletion are deleted in a

future pass of the bus.
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(f) Any seats whose timestamps have expired are deleted. The total number

of seats deleted in this step and the previous two steps must not exceed

pk for a single pass of the bus.

(g) CS-START Update reservedTagList, removing any entries for seats that

no longer appear on the bus CS-END.

(h) If fewer than pk seats have been deleted, seats that are not reserved should

be randomly deleted until a total of pk seats, including those deleted in

steps 4d, 4e, and 4f are deleted.

(i) CS-START As many encrypted nested messages as possible in the

forwardAckQueue are placed in seats on the bus CS-END. At most k−pk

seats can be reserved with valid messages in total; otherwise, the node may

not be able to delete sufficient seats in the next iteration.

(j) To encapsulate the encrypted nested message into a seat and insert on

the bus:

i. A new random 128-bit tag is generated.

ii. The seat constructor is invoked with the new tag, the node’s public

key, and the nested message. The seat is prepended with a seat header

(public key, tag, timestamp) where the timestamp is generated upon

construction. Also, random data is appended to the nested message

to make it uniform in size. In addition, a signature is calculated on the

3-tuple {seat header, nested message, random data} and appended

to the seat.

iii. The entire seat is appended to the bus, and the number of seats field
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for the bus is incremented by one.

(k) CS-START As many encrypted nested messages as possible in the

sendQueue are placed in seats on the bus as in Step 4j CS-END. At most

k − pk seats can be reserved with valid messages in total; otherwise, the

node may not be able to delete sufficient seats in the next iteration.

(l) If fewer than k − pk nested messages have been placed on the bus in all

the prior steps, random data seats are inserted so that the total number

of modified seats for this iteration is k − pk.

(m) Check that the total number of seats deleted is pk and that there are no

more than k − pk reserved seats. Otherwise the p-threshold-replacement

back-off scheme will fail on the next reception of the bus. If these condi-

tions are violated, there is an error in the code and an error message is

delivered to the application.

(n) Ensure that the node still owns k-seats, inserting new random data seats

as necessary.

(o) If busThreadWait == 1, wait for Read thread to signal that all buses

have been taken off the busQueue.

(p) Choose the neighbour to forward the Bus to.

5. end while

B.2 Read Thread Pseudocode

1. Instantiate receivedMessagesList and initialize it to be empty.
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2. while(true)

(a) CS-START Wait until busQueue is not empty.

(b) Extract the next received Bus from the busQueue

(c) If busThreadWait == 1 and the busQueue is now empty, signal the Bus

thread. CS-END.

(d) Decrypt all the seats on the Bus destined for the node.

i. If reduceDecrypt is true, before decrypting each seat in the next step,

check if the seat’s hash is in the chained hash table. If the seat’s hash

is in the chained hash table, ignore the seat and do not decrypt or

verify the seat (next 2 steps). If the seat’s hash is not in the chained

hash table, insert the hash of the seat into the chained hash table.

ii. Apply hybrid decryption to each seat’s encapsulated nested message

with the node’s private key and the anonymous private key and check

for correct redundancy (valid).

iii. Verify each valid seat’s signature and deliver an error message to the

application if a signature is incorrect.

(e) After decrypting all the seats, if reduceDecrypt is true and the time-out

reduceDecryptInterval has lapsed since the last time the chained hash

table was clear, then clear the chained hash table.

(f) Remove any elements in the receivedMessagesList that are older than

maxDuplicateT ime.

(g) Check each of the valid and verified decrypted nested messages for replays.
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That is, if the forward field is true, then check if the 3-tuple {salt, times-

tamp, embedded nested message} is in receivedMessagesList, otherwise

forward field is false so check if the 3-tuple {message tag, timestamp,

message} is in receivedMessagesList.

(h) For each of the decrypted nested messages that are verified, valid and not

a replay:

i. CS-START Add 2-tuple {tag,delay} to delTagList where delay is

randomly in [0, D − 1] CS-END.

ii. If the type of the nested message is an application message and for-

ward is false, CS-START insert 2-tuple {message tag, anonymous

PK} into ackDataQueue CS-END. Then, pass the message to the

application.

iii. If the type of the nested message is an acknowledgment message and

forward is false, CS-START delete the entry from the sentList via

the message tag CS-END.

iv. If forward is true, then CS-START place the embedded nested mes-

sage into the forwardAckQueue CS-END.

3. end while

B.3 Write Thread Pseudocode

1. while(true)

(a) Wait for a message and intended receiver R from node’s application.
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(b) If R exists, message is valid, and message size will not result in a seat

that exceeds the uniformSeatSize, create a nested message.

i. Choose a dynamic indirection path of random length l ∈ [1, L] con-

sisting of the public keys K+
1 , K+

2 , . . . , K+
l , K+

R .

ii. Create MessageHeaderR = (salt, type, forward, message length,

message tag, anonymous PK)

where salt is a random 128 bits, type is application (0002), forward

is false (0), message size is the size of the message being sent by the

application (in bytes), message tag is a random 128-bit number, and

anonymous PK is the anonymous public key of the sender.

iii. Create

LR = EK+
R
(salt), Esalt(MessageHeader′R, message) where

MessageHeader′R is MessageHeaderR without the salt.

iv. For each K+
i for i = (l − 1), (l − 2), . . . , 1 construct

MessageHeaderi and then Li.

MessageHeaderi = (salti, type, forward, message lengthi) where salti

is a random 128 bits, type is application (0002), forward is true (1),

and message lengthi = sizeOf(Li+1) in bytes.

Li = EK+
i
(salt), Esalt(MessageHeader′i, Li+1) where

MessageHeader′i is MessageHeaderi without the salt.

v. CS-START Place nested message into sendQueue CS-END.

2. end while
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B.4 Acknowledgment Thread Pseudocode

1. while(true)

(a) CS-START Wait until ackDataQueue is not empty.

(b) Extract entry from ackDataQueue. CS-END

(c) Create nested message with type acknowledgment utilizing the message

tag and anonymous PK from the ackDataQueue entry:

i. Choose a dynamic indirection path of random length l ∈ [1, L] con-

sisting of the public keys K+
1 , K+

2 , . . . , K+
l , K+

anonymousPK .

ii. Create MessageHeaderR = (salt, type, forward, message length,

message tag, anonymous PK) where salt is a random 128 bits, type

is acknowledgment (001), forward is false (0), message size is 0, mes-

sage is NULL, message tag is from the ackDataQueue entry, and

anonymous PK is the anonymous public key of the node.

iii. Create

LR = EK+
anonymousPK

(salt), Esalt(MessageHeader′R, message) where

MessageHeader′R is MessageHeaderR without the salt.

iv. For each K+
i for i = (l − 1), (l − 2), . . . , 1 construct

MessageHeaderi and then Li.

MessageHeaderi = (salti, type, forward, message lengthi) where salti

is a random 128 bits, type is acknowledgment (001), forward is true,

and message lengthi = sizeOf(Li+1) in bytes.

Li = EK+
i
(salt), Esalt(MessageHeader′i, Li+1) where
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MessageHeader′i is MessageHeaderi without the salt.

v. CS-START Place nested message into forwardAckQueue CS-END.

2. end while


