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Abstract

Privacy is a core concern of online social networks. Probably the corner stone chal-

lenge is the amount of identi�able information contained in social network meta-data:

the underlying graph structure. Sanitized social network information is occasionally

shared with third parties, such as business partners and researchers. Previous research

developed de-anonymization attacks that can re-identify social network users in such

datasets by using public data sources, e.g., obtained by crawling other networks. A

strong class of such attacks considered in this dissertation solely consider structural

information of the social graph, and achieve large-scale re-identi�cation.

This yields the need for solutions protecting user privacy in social networks. In

this thesis, I consider client-side solutions that involve users only, and can be adopted

gradually within existing services. Speci�cally, I investigate the use of an identity man-

agement technique called identity separation as a tool for tackling de-anonymization

attacks, and analyze several settings of the technique. Initially, my experiments focus

on measuring the e�ectiveness of basic, non-cooperative identity separation mecha-

nisms. Then, I experimentally check if multiple cooperation models can improve overall

protection. Finally, I evaluate several strategies where the focus is on protecting the

individual privacy of participants. Some of these strategies provide feasible protection

in case of the state-of-the-art attack, while others have theoretical guarantees.

Besides, I also contribute to the analysis of attack algorithms: I propose methods

for measuring anonymity, and characterize how the initialization of these algorithms

can a�ect the overall performance of the attack.
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Kivonat

A pivátszféra védelme kiemelt fontosságú kérdés a közösségi hálózatokban. Az

egyik legnagyobb kihívást talán a közösségi hálózatok alapját adó gráf struktúra adja,

amely lehet®séget kínál a felhasználók kéretlen azonosítására. Számos esetben el®for-

dul, hogy a közösségi hálózatok üzemeltet®i megosztanak anonimizált adatokat har-

madik felekkel is, mint például kutatókkal vagy üzleti partnerekkel, azonban léteznek

olyan ún. de-anonimizációs algoritmusok, amelyek segítségével újraazonosíthatóak az

ezekben lév® felhasználók, például nyilvánosan elérhet® szolgáltatásokból begy¶jtött

információk segítségével. A disszertációmban ezen támadások egy er®teljesebb típusát

vizsgálom, amely csak a közösségi hálózat struktúrális információt használja, és képes

a felhasználók nagy lépték¶ újraazonosítására.

Ezért szükség van privátszérát er®sít® megoldásokra. Disszertációmban olyan kli-

ensoldali megoldást vizsgálok, melynek alkalmazása csupán a felhasználón múlik, és

nem muszáj a védekezni kívánó felhasználóknak új szolgáltatásba migrálniuk: lehet®ség

van fokozotos átállásra a meglév® szolgáltatásokban is. Egész pontosan az identitás-

menedzsment módszerek közé tartozó ún. identitás szeparáció elnevezés¶ � mint egy, a

de-anonimizáció elleni védekezési módszert � javaslok megoldásként, és ennek számos

alkalmazási módját vizsgálom munkámban. Kezdeti kísérleteimben az együttm¶ködés

nélküli, egyszer¶bb identitás szeparációs stratégiák hatékonyságét mérem, majd meg-

vizsgálom, hogy különféle kooperációs stratégiák alkalmazásával javíthatóak-e az ered-

mények. Végezetül az egyéni védelemre összpontosító stratégiákat vizsgálom, amelyek

között van olyan, amelyik a jelenleg legkorszer¶bb támadással szemben ad megfelel®

védelmet, illetve van olyan is, amelyik elvi korlátot ad még er®sebb támadóval szemben

is.

Mindemellett dolgozatom a támadási módszerek elemzésével kapcsolatban is szolgál

új eredményekkel: javaslok módszereket a felhasználói anonimitás mérésére, illetve

megmutatom, hogy a támadások inicializálása hogyan hat ki a támadás egészének

sikerességére.
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Chapter 1

Introduction and Overview

Social media services are used every day by hundreds of millions, or even more.

However, beside the values these services give to humanity, social media also serves as

an optimal platform for all kinds of surveillance activities, as members can snoop upon

each other, commercial parties can buy vast amounts of private data, and as recent

events con�rm [3], government surveillance is also present as well. Social networks are

de�nitely one of the key ingredients in shaping our societies today, accelerating the

shift from information societies to surveillance societies [4].

Due to the myriad of related privacy problems [5, 6], a large number of privacy-

enhancing technologies (PETs) have been proposed. One of the most challenging tasks

is to make identi�cation by relationship information cumbersome, or even impossible.

There are solutions aiming to solve this by proposing replacement of centralized social

networks with distributed platforms. Other works propose to modify the functionality

social networks in fundamental ways, eventually requiring the migration of users to

novel services to maintain their privacy (e.g., such as Diaspora [7]). Another line of

research constructs techniques that could be put into use by social network providers

to release meaningful but still private data, e.g., by using di�erential privacy [8].

However, we need solutions that can be adopted gradually, thus allow contacting

others who have not yet taken steps to strengthen their privacy, but yet enhance the

users' privacy. As large social network providers can be forced to handle user data to

governments or sell user data to third parties, the control of anonimization need to lie

in the hand of the users.

In addition, there are several systems, where connections between entities are not

considered as an explicit feature, while this kind of meta-data yet provides means of

identi�cation. Such attacks have been demonstrated for location privacy, where it has

been shown that co-location information in spatio-temporal dataset can be used to

reconstruct the underlying social network, and �nally structural information crawled

from social networks can be used to identify users [9�12]. These and similar cases yield

1



Chapter 1. Introduction and Overview

for solutions described above, where the privacy control lies in the hands of users.

1.1 Motivation

Datasets are usually protected by naive anonimization when shared with business

or research partners: explicit identi�ers are removed (such as names, user ids or email

addresses), and the graph structure is slightly perturbed (e.g., a small fraction of edges

are removed or added). Unfortunately, naive data anonymization techniques cannot

provide an acceptable level of protection, as several works have proven that nodes in

sanitizated datasets can be re-identi�ed with high accuracy [2, 10, 12�20]. Most of

these methods are capable of achieving large-scale re-identi�cation of social datasets

consisting even of hundred thousand records or more.

In particular, I consider a strong class of attacks, where de-anonymization is exe-

cuted by using structural information only [2,10,12�16]. The following example demon-

strates the core principles of these attacks, when identities that were not present in the

original datset are recovered [2,12]. It also gives an insight of the privacy threat when

co-location information in spatio-temporal datasets (like mobility traces or check-ins)

are converted into a social network graphs [21] to be re-identi�ed as a social network.

Let us consider an attacker who obtains spatio-temporal data as given in Fig. 1.1a.

For example, the attacker could buy this data from a Wi� service provider of a small

city, who intentionally collects device identi�ers that pass by their access points placed

at di�erent locations (e.g., smartphones with Wi� turned on). After buying the dataset,

the attacker can create an anonymous social graph as Fig. 1.1b based on the co-

occurences of each identi�er at the same place and time slot. From a business point of

view, the resulting dataset would be even more valuable for the adversary if it could

label each node with a publicly known identity.

After crawling social relations from another source, for instance from a publicly

available online social networking site (including only users who claim to live in that

small city), the re-identi�cation process can be done by the attacker in two steps. The

background knowledge, or auxiliary dataset is shown in Fig. 1.1c. First, the attacker

can search for nodes with outstanding properties, like using node degree as in this case.

By searching for unique, high degree nodes the attacker can create a re-identi�cation

match between the nodes vDave ↔ v3 and vFred ↔ v2. As no more of such mappings can

be found, next nodes related to existing mapped ones can be re-identi�ed. For example,

vHarry has two connections (which is not unique globally), and he is connected to both

vDave, vFred; this boils down choices to the re-identi�cation mapping of vHarry ↔ v1.

After deriving conclusions from the results of the attack, the attacker can now

maliciously use the fact that Harry visited the hospital for several hours, such as

2
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temporal data
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auxiliary data)

Figure 1.1: For example, an attacker can buy anonymized spatio-temporal data for business analysis
(a), from which co-occurences can be used to reconstruct a possible underlying social network (b).
Next, structural information crawled from a public social networking site (c) can be used to re-identify
nodes in the sanitized dataset.

blackmailing Harry with publishing this information among his friends or employer, or

can be used for sending unsolicited advertisements with personally-tailored content.

However, there is a considerable number of similar use case scenarios. For example,

such attacks can be used to correlate accounts in two di�erent social networking ser-

vices, even if users try hiding under di�erent pseudonyms. Or an adversary could buy

a sanitized dataset from a social network provider which contains sensitive informa-

tion (e.g., political or religious preferences), and he could use another social network

to reveal the identities within. We could also think of a variety of governmental use

cases that involve matching identities between datasets, e.g., call and social networks.

In addition, there are several works in the emerging �eld of re-identi�cation that pre-

sented the possibilities of exploiting meta-data for identi�cation, e.g.: BitTorent con-

nections [22], group memberships on social networking sites [23], or Bitcoin transaction

history [24].

In order to remedy the present situation, the analysis of a user centered technique

is in the focus of my dissertation, called identity separation. This technique could

be applied to existing services without modi�cation of the service itself, even without

getting the consent of the service provider, and can be deployed gradually. Identity

separation is based on the concept how we use our real identities in everyday life: we

share di�erent information in di�erent situations and with di�erent acquaintances [25].

This can also be applied to social networks to segregate information with di�erent

groups of contacts.

Returning to the previous example, identity separation could be applied by using

di�erent identi�ers in di�erent contexts, e.g., changing the MAC, or using di�erent user

names for check-in services. For example, Harry could change his MAC address when

arriving at the hospital (or turn o� wireless totally), in order to avoid this information

3



Chapter 1. Introduction and Overview

being linked to his identity.

1.2 Results

As I mentioned above, my dissertation focuses on the analysis of identity separa-

tion, but my work also concerns some important aspects of structural re-identi�cation

attacks that have not been addressed previously. My contributions are as follows; I

provide references of corresponding publications and sections providing the details.

Analysis of Structural Re-identi�cation Algorithms

• I proposed a family of measures called Local Topological Anonymity (LTA), that

enable the relative assessment of the risk of re-identi�cation for a single node. I

showed that there is a particular variant called LTAA which provided values that

had strong rank correlation with node re-identi�cation rates for the state-of-the-

art and Grasshopper attacks.

Related publications: [C3,J2,J3], Section 4.1

• I showed that node degree (LTAdeg) is an e�cient, easy to calculate alternative

for LTAA. I additionally showed how degree distribution of networks determines

which metric should be used for the state-of-the-art attack: LTAdeg in networks

where the proportion of low degree nodes are relatively high, and LTAA in others.

Related publications: [J2,J3], Section 4.1

• For the state-of-the-art algorithm, I characterized the importance of initialization.

I showed how the maximum number of re-identi�ed nodes can depend on the

seeding method and its parameters. I have characterized how the minimum

number of seed nodes depends on network properties and the seeding method. I

also characterized seed stability and showed that even an extremely low number

of seed nodes can also lead to large-scale propagation.

Related publications: [C1], Section 4.2

Evaluation of Identity Separation

The concept of how identity separation could be used in social network based ser-

vices is introduced in [C7, C8], and in my work I used a statistical model capturing

possible user behaviors in four sub-models that was originally published in [J4]. These

modeling issues are described in Section 3.5.

• I provided the general formula of failure probability of global identi�cation (seed-

ing) when identity separation is used. Using this formula, I elaborated the lower

4
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estimate of failure probability for clique-based seeding, and for a seeding method

identifying top degree nodes. I showed with numerical analysis that there are ef-

�cient strategies for users to protect themselves with identity separation against

these seeding methods.

Related publications: [J4], Section 5.1

• I measured the sensitivity of the propagation phase of the state-of-the-art attack

against features of identity separation, and showed the attack is quite robust: a

high number of non-cooperating users need to participate to decrease the number

of correctly re-identi�ed nodes signi�cantly.

Related publications: [C2,J3], Section 5.2, 5.3.4

• I characterized several properties of non-cooperative identity separation. In par-

ticular, I showed that even if the attacker changes the seeding method or seed

size, he cannot signi�cantly a�ect his results against identity separation used in

the network.

Related publications: [C2,J2,J3], Section 5.3

• I showed that even for a simple local cooperation scheme, a lower number of par-

ticipants are enough to defeat re-identi�cation compared to the non-cooperative

setting.

Related publications: [J1], Section 5.4

• I showed that by using LTAA and LTAdeg as a global node-selection heuristic for

cooperative identity separation, the required number of participants is a small

fraction compared to the non-cooperative case. In addition, I showed that chang-

ing seeding method or increasing seed set size cannot signi�cantly enhance the

attacker's results.

Related publications: [J1�J3], Section 5.5

• I showed that both for non-cooperative and globally cooperative identity separa-

tion the participation of top degree nodes is crucial. Without their support, the

performance of protection of network privacy degrades rapidly.

Related publications: [C2,J1,J3], Section 5.3.1, 5.6

Evaluation of Individual Strategies

• I showed that even if a handful of users adopt identity separation, their re-

identi�cation results stay proportional to measurements observed in networks

where strategies are adopted homogeneously. I proposed and successfully evalu-

ated a method of targeted information hiding, that uses decoy identities to compel
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the state-of-the-art attack algorithm �nding non-relevant information.

Related publications: [C2,J3], Section 6.1, 6.2

• I provided a method for calculating the lower bound of the probability of the

discovery of partial identities with a simple modi�cation of the state-of-the-art

attack. I showed that even with this modi�cation only a fragment of partial

identities can be found and merged.

Related publications: [J1], Section 6.3

• I proposed (k, 2)-anonymity, a variant of k-anonymity to be adopted individually

for tackling re-identi�cation attacks. By evaluating K-AnonymizeNode, an algo-

rithm that sets a (k, 2)-anonymous setting for a given node, I showed that the

concept of k-anonymity cannot be applied e�ciently within the current context.

Related publications: [J1], Section 6.4.1

• I designed the y-identity model as an alternative solution to k-anonymity. I

proved that di�ering strategies are the best against weak and strong attackers.

I also proved that the game theoretic equilibrium strategy proposed for strong

attackers should be used if the attacker is unknown (i.e., can be either weak or

strong), as it has a feasible higher bound on the expected privacy loss.

Related publications: [J1], Section 6.4.2

1.3 Outline

The outline of the dissertation is as follows. In Chapter 2 I discuss the most

relevant related works regarding the topics of structural re-identi�cation, graph privacy

protection and privacy-enhancing identity management (covering identity separation).

Then, in Chapter 3 I introduce the notation and de�nition I used in my work, and

also how simulation experiments were executed, detailing all important parameters to

maintain repeatability.

The main results of my work are presented in Chapter 4, 5, and 6. In Chapter 4 I

discuss my general �ndings that are related to de-anonymization attacks, as evaluation

of importance measures and seeding. Then in Chapter 5 I provide the general analysis

of identity separation as a possible tool for tackling re-identi�cation attacks. This

evaluation contains the detailed analysis of both non-cooperative, locally and globally

cooperative identity separation. Then in Chapter 6 I evaluate approaches that focus

on maintaining personal privacy, rather than network privacy.

Finally, I discuss how my results could be applied in real life scenarios in Section

7.1, and I specify possible future work task that I �nd most relevant or scienti�cally

interesting in Section 7.2. Finally, I conclude my work in Chapter 8.
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Chapter 2

Related work

'They who can give up essential liberty to obtain a little temporary

safety deserve neither liberty nor safety.' (Benjamin Franklin)

In this chapter, I discuss the most important works related to the topic of my

dissertation which concerns several topics. In Section 2.1 I introduce the main privacy

concerns in social networks, and in Sections 2.1.1 and 2.1.2 I discuss the works on

structural anonymity and attacks against privacy. In Section 2.2 I discuss relevant

privacy-enhancing technologies, and in Section 2.3 I introduce the concept proposed in

my dissertation.

2.1 Identi�cation and De-anonymization Algorithms

Social network services bear a great variety of privacy issues since their begin-

ning [6,26]. For example, lack or inconvenience of privacy controls can lead to unwanted

information leakage, �nally resulting in issues with employment, unintentional fame or

stalking by other users. Furthermore, posted content, pro�le information or relation-

ship information is usually sold to third parties, which also raises privacy concerns.

While most of these problems can be handled by self-censoring or using pseudonyms,

in my work, I focus on how relationship information, a seemingly anonymous, but

sensitive meta-data could be exploited and protected.

There are several scenarios in which such meta-data can be obtained by a malicious

party. Social networks occasionally publish or sell naively sanitized social data, where

explicit identi�ers are removed, and the network structure (or attributes) is slightly

perturbed for privacy protection. Occasionally, other types of meta-data can be used

to reconstruct social relations between users. For example, there are examples where

spatio-temporal data was used to recreate the underlying social network of users, which

was then successfully de-anonymized [10,12].

7
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Having an anonymous network, di�erent approaches exist for re-identi�cation. User

pro�les can be revealed by targeted attacks based on speci�c pro�le attributes [19,27].

These attacks are limited in the number of users they can recover, but can work with

high accuracy: in their work, Vesdapunt and Garcia-Molina provided an example tar-

geted queries reached accuracy of 88.3% [27]. There are other examples when activities

and attributes are used together to correlate user pro�les between social networks at a

larger scale [20, 28]. However, sometimes no attributes are available for making quasi

identi�ers, but only structure. Therefore, there is a variety of attacks that consider

structural information only for revealing user identities [2,10,12�16], while several other

works involve both content, attributes and activites beside structure in the process of

re-identi�cation [17,18,29,30]. In my work, I focus on the strong class of attacks using

only structural information.

Structural anonymity can be characterized both for the whole network, and for a

single node, which can be furthermore speci�ed as global or local identi�cation (i.e.,

the node is unique globally in the whole network or in the neighborhood of some other

nodes). Accordingly, early works focus on how nodes can be identi�ed in their global

context, but the paper of Narayanan and Shmatikov in [2] opened up a new line of

attacks, where large-re-identi�cation could be achieved e�ciently, even for networks

sized larger than tens of thousands of nodes. Related results fertilized other lines of

research that go far beyond social networks; for example, it has been shown that the

algorithm in [2] can be used to re-identify large sets of spatio-temporal data [12], when

node relations are mined from co-occurences of nodes.

2.1.1 Initial Works on Structural Anonymity

The work of Sing and Zhan de�ne a network level structural measure, called topo-

logical anonymity [31]. Their measure describes variance of patterns in the complete

graph with a single, normalized real number, based on node degree anonymity sets.

The following other works rather focused on describing global structural anonymity for

individual nodes.

The term of structural equivalence appeared in sociology before the research of

networks and re-identi�cation attacks [32]. Structural equivalence requires a very high

level of similarity, which is also probably rare: such nodes need to have their incoming

and outgoing edges to the same nodes.

Practical structural node anonymity measures re�ect a node's hiding ability against

certain re-identi�cation schemes, mostly based on global structural uniqueness respect-

ing a given �ngerprinting scheme or similarity measures. Therefore, a node can be

considered anonymous if there are a number of equivalent or su�ciently similar coex-

isting structural facsimiles present [33�35]. The number of such structural alteregos
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can represent the level of anonymity in these cases (as they form an anonymity set

together).

Several variants of global re-identi�cation techniques are derived from the concept

of k-anonymity [36]. Zhou and Pei de�ne that a node is k-anonymous if there are at

least (k-1) other nodes with a similar neighborhood (limited to adjacent nodes) [35].

Liu and Terzi de�ne k-degree anonymity similarly: a node is k-degree anonymous, if

there are at least (k-1) other nodes with the same degree values in the network [33].

Hey et al. de�ne k-candidate anonymity based on multiple types of node �ngerprints:

vertex re�nement queries (a node is identi�ed by the degree values of its neighbors,

or neighbors of neighbors), subgraph queries (a node is identi�ed by a surrounding

subgraph described by the implied edges), hub �ngerprint queries (a node is identi�ed

by its relation to speci�ed hub nodes) [34].

However, structural node anonymity is not explicitly measured in all works. Back-

strom et al. present global re-identi�cation phases (an active and a semi-active) where

an attacker attempt to inject a unique subgraph in the graph prior to anonymiza-

tion [13]. Narayanan and Shmatikov in [2] use a uniqueness criterion for 4-cliques for

global re-identi�cation of nodes, where the degree and the number common neighbors

of clique members are considered for distinguishing the clique structure from others.

It is not possible to objectively measure anonymity in these cases as it depends on the

background knowledge of the attacker.

2.1.2 Large-Scale Structural Re-identi�cation Attacks

The algorithm proposed of Narayanan and Shmatikov in 2009 (to which I later

refer to as Nar09) had a signi�cant novelty compared to the literature discussed so

far: it applied local comparison of nodes based on previously discovered matching of

neighboring nodes [2]. The Nar09 algorithm aims to reveal the identities of nodes

within a sanitized graph (the target graph) by using a social network obtained from an

auxiliary source (the source graph). The authors in their main experiment re-identi�ed

30.8% of nodes being mutually present in a Twitter and a Flickr crawl with a relatively

low error rate of 12.1%.

Works following their approach also used a similar procedure; in most cases these

consist of an initialization phase (or seed phase), which is then followed by a propaga-

tion phase. In general, the seeding identi�es a small set of globally outstanding nodes,

and then the propagation phase extends this set, for instance, by searching locally

outstanding nodes that are connected to the set of already re-identi�ed ones. These

phases can also be named as global and local re-identi�cation phases.

In their original experiment, the seeding is based on 4-cliques. The steps of the

propagation phase are iterated on the neighbors of the nodes already re-identi�ed until
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new matchings can be discovered (i.e., it continuously extends the seed set). Identi�ed

nodes are also revisited. In each iteration, candidates are selected from target graph

nodes, which share at least a common mapped neighbor with the source node being

re-identi�ed. Target candidates are then compared by scoring their similarity to the

source node. If there is an outstanding candidate, the source and target graphs are

exchanged, and a reverse checking is executed in order to verify the proposed mapping.

If the result of reverse checking equals the source node, this is accepted as a valid

mapping. Further details of the algorithm can be found in the psuedo code provided

in Appendix A.1.

Narayanan et al. in 2011 presented another variant of their attack [14] specialized

for the task of working on two snapshots of the same network, that could achieve a

higher recall rate. Another proposal of Wei et al. [15] challenged Nar09; however,

their attack is only evaluated against a light edge perturbation procedure, instead of

the more realistic one proposed in [2]. The latter deletes both nodes and edges from

both networks (resulting overlaps can be as low as 25%), while in [15] perturbation

only adds edges to the target network (up to 3%) without any deletion. For a more

comprehensive evaluation, their algorithms need to be compared with a perturbation

method that includes deletion. In addition, experiments in [15] are performed on two

small graphs consisting only of handful of nodes (graph vertex sizes are 125 and 600)

� if it is feasible for the seed-and-grow algorithm, a comparison on larger datasets need

to be done.

Pedarsani et al. proposed a novel type of attack that can work without any initial

input such as seeds [16]. Their design incorporated seeding into the propagation phase,

as the initial propagation step starts identifying top nodes according to a given node

�ngerprint measure. However, their algorithm requires very high similarity between the

source and target datasets (e.g., αv = 1.0 and αe = 0.85; for explanation, see Section

3.3), which is hard to meet in many cases. Additionally, their work was experimentally

tested only on a single, small network with 2,024 nodes and 25,603 edges.

Danezis and Sharad presented a generic, machine learning-based deanonymization

framework for the evaluation of anonymization schemes [37], which can be trained on a

relatively small set of sanitized data. While their results cannot be directly compared

to global matching algorithms such as [2], their framework can be used for testing

new schemes, such as the one proposed in my dissertation. Using their work to break

identity separation goes beyond the scope of this dissertation, and assigned as future

work.

It has been shown that even a relatively small amount of mobility data can eas-

ily identify users [9], and even short periods of surveillance enable identi�cation [11].

However, it was �rst shown by Srivatsa and Hicks that location traces can also be re-
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identi�ed with similar methods what was used for social networks [10]. In their work

on small datasets (125 nodes and below), they succeeded in identifying circa. 80%

of users by building anonymous networks of location traces, and using explicit social

networks for de-anonymization.

The work of Pham et al. showed that the ability of algorithms using spatiotemporal

data for making social network connections, can be extended to large datasets [21].

Building upon their work, Ji et al. showed that spatiotemporal data at the scale of

hundred thousand entities can be easily re-identi�ed [12]: �rst a social network is

generated based on the inspection of co-occurrences in the spatio-temporal dataset,

then it is re-identi�ed by using a social network as auxiliary data.

In [J2] we have proposed Grasshopper, a structural de-anonymization algorithm

(later referred as Grh) which has some advanced properties compared to Nar09. It

can be initiated with a signi�cantly smaller seed set, and Grh has a negligibly small

error rate compared to Nar09. In terms of its operating principles, one of the key

improvements of Grh is to use a more complex node comparison method that involves

the weighting of existing mappings. While Grh can achieve yield levels higher than

Nar09 when the attacker background knowledge is rather noisy (i.e., there is a lower

overlap ratio between the auxiliary and target datasets), in other cases correct identi-

�cation rates can be signi�cantly smaller. For example, in the Epinions dataset when

the adversary has a perfect background knowledge, Grh could only correctly re-identify

the half of what Nar09 achieved [J2]. Further details of the Grh algorithm is provided

with the pseudo code in Appendix A.2.

None of the works appeared since [2] provided algorithms that were proved to be

generally advanced alternatives to Nar09 (e.g., having higher re-identi�cation rates

generally): some algorithms were proposed to work on di�erent data types (e.g., on

location data [10]), others were crafted to work under speci�c circumstances (e.g., when

the attacker knowledge and the target network is quite similar [14,16]), some could only

provide better results conditionally (e.g., in case of noisy background knowledge [J2]),

or the related analysis was incomplete (e.g., due to small test datasets [15]). Therefore,

the algorithm proposed by Narayanan and Shmatikov in [2] was the one I considered

as the state-of-the-art attack in my work, and I worked with it.

As it is hard to obtain real ground truth labeled datasets (as it was in the orig-

inal experiment in [2]), in my work I used the perturbation algorithm provided by

Narayanan and Shmatikov in [2]. This procedure allows to synthetically create a real-

istic pair of source and target graphs with adjustable strength of attacker knowledge

from a single dataset (I provide more details on this in Section 3.3).
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2.2 Graph Privacy Protection Methods

There are several ways for tackling re-identi�cation attacks, such as proposing alter-

native social networking platforms that circumvent these attacks by nature, or propos-

ing modi�cations to existing social networking services (e.g., novel algorithms for data

sanitization that are applied by service providers). Finally, there is also the possibility

to propose client side applications and other solutions working under the control of the

user.

However, getting mainstream social platform providers to adopt modi�cations is

not an easy task: these parties are �nancially interested in collecting vast amounts of

(sensitive) data, and regarding what we could learn from the Snowden revelations (e.g.,

[3, 38]), it is reasonable to assume that relying on the service provider for protecting

user privacy is not an acceptable idea. In addition, even if service providers would

try to sanitize data, it has been shown that de-identi�cation is a hard problem in

general [39], and preserving graph privacy has limits if utility is also concerned [40].

There were various proposals of new service models that aimed circumventing main-

stream social networking services in order to give back control to users; however, even

initially highly popular and known alternatives (e.g., distributed social networks like

diaspora* [7] and Safebook [41]) were not able to break into the mainstream, despite

the fact they could have provided a higher level of privacy than regular social networks.

Therefore the most viable alternatives are client side solutions that do not need the

consent of service providers or other parties, but can be applied to existing services.

These solutions should be capable of either hiding user information or preventing large-

scale re-identi�ation somehow. For instance, Scramble is a good example for such

solutions: it is independent of the service provider and allows a �ne-grained access

control for managing the sharing process of user data by encryption [42].

However, to the best of my knowledge, only the work of Beato et al. propose a client-

side solution in [1] where a model level evaluation is also provided (beside my works

in [C2, J1�J4]). In their work, they proposed the friend-in-the-middle model (FiM),

where proxy-like nodes act as mediators to hide connections, successfully tackling the

attack when approx. 10% [1] of nodes adopt their model. The viability of the FiM

model is demonstrated on two snapshots of the Slashdot network (obtained from the

SNAP collection [43]). As the friend-in-the-middle model focuses on hiding connections,

it is not possible in their model to hide pro�le attributes, and three-party negotiation

of hiding a single edge also makes the adoption of the technique a little cumbersome.
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2.3 Privacy-Enhancing Identity Management

In Chaper 5 and 6 I propose the use of the privacy-enhancing identity management1,

or PIDM in short, as a solution for tackling re-identi�cation. PIDM allows the user

of a system to create multiple representations of himself, which can be either partially

overlapping at some level or independent, and these are called partial identities. Partial

identities can be virtual identities or pro�les, that can be used for di�erent kinds of

transactions or sharing information. Identity separation is a part of PIDM, where

partial identites are unlinkable to each other.

Before the discussion of applications, it must be noted that identity separation is

already in use in real-world scenarios. There is a long list of authors who used pen

names for several reasons2, e.g., to protect their original identity, or used multiple pen

names to avoid harming the reputation of each identity. Identity separation still has its

uses today, let us just think of the separation of business and private identities (e.g., via

Facebook and LinkedIn). It can be useful also when it is suspected that two businesses

exchange data of their users. Such an exchange could cause economic disadvantages

for the users, thus using di�erent account names, emails can be considered bene�cial

(e.g., using solutions such as Albine's Maskme3).

2.3.1 Brief Literature Survey of Identity Separation

Beside some early applications having functionality that resembled the concept

of using partial identities [44, 45], privacy-enhancing identity management was �rst

described by Clausÿ and Köhntopp in [46] as a standalone concept. This was followed

by several works further developing the concept (e.g., [25, 47�49]), then the PRIME

Project [50] added comprehensive details to emerge it to the framework level. Successor

of PRIME, the PrimeLife Project [51] resulted in ready-to-use applications having

identity management functionality.

To the best of my knowledge, we were the �rst in 2009 to propose the use of identity

separation in social networks in [C7], where we proposed a modi�ed social network

model with a non-�at structure. The works of van den Berg and Leenes in 2010 [52,53]

provided further details on identity partitioning, especially focusing on access control

and division of information shared. The �rst public social network implementation is

called Clique [54], which was developed in the PrimeLife project, and Google+4 was

the �rst mainstream social network adopting a feature resembling the functionality of

1Several alternative terms are used in the literature, from which the following ones are the most
frequent: partial identities, role-based privacy, role-based access control.

2Wikipedia on pen names: http://en.wikipedia.org/wiki/Pen_name
3Albine Maskme providing disposable emails: https://www.abine.com/maskme/
4https://plus.google.com

13



Chapter 2. Related work

identity management in 2011 [55]. The goal of this feature (namely Google Circles) is

to allow proper audience selection for sharing content, which was then adopted widely

in the mainstream as well.

2.3.2 Application of Identity Separation in Social Networks

From a graph privacy point of view, we can think of identity separation as a tool

that simpli�es the creation and management of parallel, unlinkable identities of one

member. When someone adopts identity separation, that will result in multiple nodes

in the observable private graph that the attacker aims to de-anonymize, each partial

identity having a subset of the original contacts, but not necessarily all of the original

acquaintances need to be presented. Here it also need to be assumed that the identity

separation process needs to be hidden from all parties; this could be achieved if partial

identities are also developed in parallel.

Compared to the friend-in-the-middle model [1], the features of identity separation

facilitate hiding pro�le information in addition to making relationships private [25],

with less cooperation (as the model in [1] required the cooperation of three nodes for

hiding a single edge). Identity separation also can enable hiding user identity if the

original identity of such a partial identity cannot be recovered.

In addition to the possible technical advantages, identity separation has deeper

roots that motivates its use in social networks. In real life, we also classify and group

our social contacts rather than simply label all of them as friends [56]. We keep track

of multiple groups of people we know from di�erent stages and roles of our lives (e.g.,

school, workplace, and family), and interact with them in a di�erent fashion concerning

the given context [57]. Privacy issues in social networks in general [58], and the lack of

having a �ne-grained access control yielded for introducing identity management into

social networks.

14



Chapter 3

Methodology and Models

Beside describing the basic notation used in my work, this chapter mainly focuses

on the methodology of simulation experiments, and modeling. I introduce the threat

model in Section 3.1. In Section 3.2 I present the notation and de�nitions, then in

Section 3.3 I discuss the core principles of data selection and perturbation. Then, in

Section 3.4, I provide the settings used in experiments for simulating re-identi�cation

attacks, and �nally I introduce the used identity separation models in Section 3.5.

3.1 Threat Model

In my work I use the following threat model. (The only exception is Section 6.4.2

where di�erences and the model are described in details.) There is an adversary, who

obtains a dataset which is sanitized (i.e., without identi�ers), but contains valuable,

private information (right in Fig. 3.1). If there is a provider of the dataset such as

a social networking service, his actions are considered to be negligible respecting the

privacy of the network (e.g., using light anonymization techniques only). The goal

of the adversary is to re-label the nodes in order to monetize the private information

more e�ciently. As the attacker uses structural information only, he acquires another

social graph where node identities are known (left in Fig. 3.1). Then the attacker runs

a re-identi�cation attack that produces one-to-one mappings between the networks,

revealing (probably) the truth identities of previously anonymous entities.

In my dissertation, I assume that prior the adversary obtained the sanitized dataset,

users had the chance to use identity separation techniques to enhance their privacy. It

is assumed that the separation procedure is done on the client side, and neither the

social networking service provider (if there is any), nor other entities know the details

of it (in case of cooperating users, any related information is held as a secret). The

background knowledge is assumed to be a regular social network without identity sep-

aration; analysis of further settings are assigned as future work. As identity separation
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Figure 3.1: Threat model. The attacker obtains a sanitized dataset (right) that contains valuable,
private information, and then runs a de-anonymization attack to recover the identities by using publicly
available information acquired from other sources (left). Re-labeling is done by mapping known
identities to anonmyous ones (denoted with function µ(·)).

damages network structure, adopting users expect that re-identi�cation would be less

successful afterwards.

3.2 Notation and Measuring Re-identi�cation

In my work, I denote graphs as G = (V,E), a structure consisting of a node and

edge sets. Graphs are assumed to be undirected simple graphs � no loops and no

multiple edges are allowed. I denote a vertex as vi ∈ V , and the set of its neighbors as

Vi = {∀vj : ∃(vi, vj) ∈ E}. (3.1)

Similarly to this, we can denote the vertices that are at a distance of two from vi

(or also known as friends-of-friends), as V 2
i .

Given a sanitized graph Gtar (target graph) to be de-anonymized by using an aux-

iliary data source Gsrc (where node identities are known), let Ṽsrc ⊆ Vsrc, Ṽtar ⊆ Vtar

denote the set of nodes mutually existing in both. Ground truth is represented by map-

ping µG : Ṽsrc → Ṽtar denoting relationship between coexisting nodes. Let us denote a

vertex set V as V ′ after having identity separation adopted (by some or all of its nodes).

I denote the set of nodes before adopting identity separation as Vids ⊆ Vtar, and denote

Ṽids ⊆ Ṽtar the subset coexisting nodes; thus Ṽ ′ids contains multiple identities of nodes

from Ṽids. Let λG : Ṽsrc ⇒ Ṽ ′ids denote the ground truth mappings between coexisting

nodes in Gsrc and the sets of their separated identities in Gtar. Running a deterministic

re-identi�cation attack on (Gsrc , Gtar) initialized by seed set µ0 : Vsrc → V ′tar results
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in a re-identi�cation mapping denoted as µ : Vsrc → V ′tar.

Let denote the corresponding nodes in di�erent networks as vsrcn ∈ Vsrc and vtarn ∈
Vtar. Identity separation of user vtarn ∈ Vids is denoted and modeled as follows1. First,

vtarn creates a total of y new partial identities which are denoted as vn\i ∈ Ṽ ′ids (i ∈
[1, . . . , y]), and then distribute edges between new identities. If there is a single partial

identity that is assumed to be sensitive it is denoted as v?n\i. It is assumed that

the attacker only captures the sanitized dataset after the user committed identity

separation, and knows no information about the identity separation process itself. The

goal of the attacker to obtain mappings of µ(vsrcn ) = vn\i, or to �nd v?n\i in some cases

where more than one of the partial identities are found.

I use two measures for assessing the extent of what the attacker could learn from

µ. The recall rate re�ects the extent of re-identi�cation, describing success from an

attacker point of view. This itself can be used due to small error rates. As identity

separation is a personal information hiding tool, the quantity of information the at-

tacker gained access to should also be concerned, which is quanti�ed by the disclosure

rate . This describes an overall protection e�ciency from a user point of view.

Now we can describe the mode of calculation of these rates. The recall rate is cal-

culated by dividing the number of correct identi�cations with the number of mutually

existing nodes (seeds are excluded from the results). The score of a node vsrc ∈ Ṽsrc
regarding a given re-identi�cation mapping µ can be expressed as:

s(vsrc, µ) =


0 if @µ(vsrc)

1 if µ(vsrc) = µG(vsrc) ∨ µ(vsrc) ∈ λG(vsrc)

−1 if µ(vsrc) 6= µG(vsrc) ∧ µ(vsrc) 6∈ λG(vsrc)

. (3.2)

We can now quantify the recall rate of an attack resulting in mapping µ can be

calculated as

R(µ) =
∑

∀vsrc∈Ṽsrc

s(vsrc, µ) ·max(0, s(vsrc, µ))

|Ṽsrc|
. (3.3)

The maximum of recall is denoted as Rmax.

The disclosure rate can be calculated in a similar manner. As current identity sep-

aration models are bond to structural information, the measure re�ects the average

percent of edges that the attacker successfully revealed (this can be extended for fur-

ther types of information in other experiments, e.g., sensitive pro�le attributes). The

disclosed information can be quanti�ed for an individual node vtarn ∈ Ṽids as

1While this is acceptable for modeling, in real life partial identities should be developed in parallel
in order to retain information on the identity separation process

17



Chapter 3. Methodology and Models

d(vtarn , µ) =

{
deg(vn\i)

deg(vtarn )
if ∃µ(vsrcn ) = vn\i ∧ vn\i ∈ λG(vsrcn )

0 otherwise
. (3.4)

By using this function we can now de�ne the disclosure rate of the attacker over

the nodes applying identity separation w.r.t. mapping µ as

D(µ) =
∑

∀vtarn ∈Ṽids

d(vtarn , µ)

|Ṽids|
. (3.5)

The re-identi�cation rate of a node v in a series of experiments ν is considered in

some cases, which is calculated as

S(v) =
∑
∀µ∈ν

s(v, µ), (3.6)

where s(v, µ) can theoretically take arbitrary values in the series of ν. However,

as the Nar09 algorithm is quite deterministic (I show this in Section 3.4), negative

and positive values of s(v, µ) are typical to occur for the same node in a series of

experiments.

3.3 Data Sources and Perturbation

Data selection for simulational evaluation should be done carefully, at least for two

reasons. The class of structural attacks discussed are capable of achieving large-scale

re-identi�cations rates even in networks signi�cantly larger than tens of thousands

of nodes. Therefore, evaluation of protective measures and novel attack algorithms

can be executed in a plausible way when large networks are involved. Second, network

structure can bias results, therefore evaluation need to be executed on multiple datasets

obtained from di�erent sources. As I highlighted it in Section 2.1, conforming these

rules is not prevalent in the literature, unfortunately; however, data selection in my

work was done with having these considerations in mind.

During most of the experiments (di�erences are marked) I used multiple datasets

with di�erent characteristics in order to avoid biases caused by the structure, and

these were large networks where brute-force attacks are practically not feasible. For

keeping measurements realistic, datasets were obtained from real networks. Unless

otherwise stated these were downloaded from the SNAP repository [43], where details

description and statistics are also available. The �rst network I used was the Slashdot

network crawled in 2009 (82,168 nodes, 504,230 edges). Slashdot is a technology-

related news site where users can specify which others users they know. I also worked

with the Epinions network crawled in 2002 (75,879 nodes, 405,740 edges). The Epinions
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website provides consumer reviews, and the extracted social graph is based on the who-

trust-whom relations. The third dataset is a subgraph exported from the LiveJournal

network crawled in 2010 (at our dept.; consisting of 66,752 nodes, 619,512 edges).

LiveJournal is a blogging service, and its social network graph is based on how blog

owners declare who their friends are within the service. In some cases I also used

two smaller datasets for comparison, one is from the LiveJournal crawl denoted as

LJ10k (10,056 nodes, 231,416 edges), and the other is the Wikivote dataset (7,115

nodes, 100,762 edges) also obtained from the SNAP collection. The Wikivote dataset

contains who-voted-for-who information during the promotion of users to obtain admin

privileges on the website of Wikipedia.

For generating test data, �rst a background knowledge (Gsrc) and a target graph

(Gtar) is derived from the source dataset, having the desired fraction of nodes and

edges overlapping, and then modeled identity separation on a subset of nodes in the

target graph. For creating Gsrc, Gtar, I used the perturbation strategy proposed by

Narayanan and Shmatikov [2], which produces realistic test data. Their algorithm

works as follows: it derives Gsrc, Gtar with the desired fraction of overlapping nodes

(αv) from the source dataset simply by splitting the original vertex set. All original

edges are preserved. Then edges are deleted independently from these copies to achieve

an edge overlap αe. Ground truth µG can be easily calculated during the procedure.

These parameters model the strength of the attacker, as higher overlaps stand for

stronger attackers having relevant background knowledge.

After running several measurements with di�erent settings for αv, αe, I used αv =

0.5, αe = 0.75 in the experiments of the dissertation, unless otherwise stated. This

setting is a good trade-o� at which a signi�cant level of uncertainty is present in the

data (thus noisy and life-like), but it is still possible to identify a large ratio of the

co-existing nodes2. For comparison, in Table 3.1, I provided recall rates for the Nar09

algorithm for di�erent settings for the main datasets.

Next, I modeled identity separation on the target graph. Then nodes are split and

their edges are sorted according to the settings of the currently used identity separation

model (for node sampling methods and models see Section 3.5). By recording these

operation, we can extend the ground truth mapping µG with λG.

The setting I used my work is that the sanitized dataset have identity separation,

while the background knowledge is a regular social network. I used this setting to mea-

sure the viability of identity separation against re-identi�cation. However, in future

work additional settings should be also measured. When the attacker obtains back-

ground knowledge that contains identity separated users, is not automatically means a

2Note: choosing di�erent values would not a�ect results in general, but only determine the maxi-
mum recall rate achieved without having identity separation introduced to the simulations.
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Slashdot Epinions LJ66k
αe αe αe

0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

αv

0.25 0.6 2.6 11.7 19.8 1.1 5.1 10.9 14.8 0.8 6.3 19.5 27.6
0.5 0.4 19.8 36.5 47.5 0.9 17.2 25.9 32.6 0.6 24.8 35.7 54.4
0.75 0.3 33.6 50.7 60.4 0.6 25.3 36.1 44.4 0.7 33.9 57.9 78.7
1.0 0.3 30.1 58.9 68.3 0.4 31.2 43.2 52.5 1.5 37.7 75.2 88.5

Table 3.1: Recall rates were proportional to the overlap between Gsrc and Gtar: the less perturbation
is used (resulting higher overlaps) the higher recall rates are. The table clearly shows that the Nar09
is more sensitive to the proportion of missing edges. Note: it is not possible to achieve 100% recall
as there can be structurally equivalent nodes in the datasets, and low degree nodes are harder to be
re-identi�ed in general (see Fig. 3.4).

full privacy breach. As the identity separation process is assumed to be done secretly,

the attacker could use this background knowledge to reveal hidden attributes in the

identity separated anonymous network, but this information could not be linked to

the real identity of the user. Here, future work should focus on �nding appropriate

strategies for using identity separation in order to prevent such information leaks.

3.4 Working with the Nar09 Algorithm

In this Section I provide the details how I used the Nar09 algorithm in simulation

experiments. In general, I used Nar09 by default for simulations; however, in some well

marked cases I have additionally provided results for comparison with the Grasshopper

attack. In these cases, except using a lower number of seed nodes (100 seeds of the

same type), I used the same parameters as of Nar09 (e.g., for Θ), unless otherwise

stated.

3.4.1 Settings of the Algorithm

In each experiment I created two perturbations, then run simulations two times on

both with another seed node set (di�erent settings are noted). As only minor deviations

were observed in results, usually less than a percent, I found this setting to be suitable.

I have also compared the directed and undirected versions of Nar09, but only negligibly

small di�erences occurred, thus for the sake of simplicity I worked with the undirected

version (pseudo code is provided in Appendix A.1).

Probably the most important parameter of Nar09 is Θ, controlling the ratio of true

positives (recall rate) and false positives (error rate). The lower Θ is the less accurate

mappings the algorithm will accept. As I measured fairly low error rates even for small

values of Θ, I have chosen to work with Θ = 0.01. In the majority of experiments

the ground truth error rate (later referred as the error rate) stayed typically around
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(a) Varying the Θ parameter on perturbed net-
works (with random.25).
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(b) Phase transition property illustrated for the
random.25 seeding method in di�erent networks.

Figure 3.2: Measuring basic properties of the Nar09 algorithm.

a few percents (e.g., Fig. 3.2a). The overall error was around 5% without identity

separation, and decreased signi�cantly when identity separation was applied.

The seeding method and size is another important property of Nar09. To the best

of my knowledge, we were the �rst to elaborate the importance and e�ects of this

property in details, also resulting in providing guidelines in [C1]. For example, the

algorithm has a phase transition property [2, 59], e.g., resulting in network structure

biases on the minimum number of seeds respecting when the given seeding method

could result in large-scale propagation. An example is provided in Fig. 3.2b explaining

this property, and I discuses the relevance of further properties in Section 4.2.

For initializing Nar09, in general, I applied random seed selection of high degree

nodes selected from the top 25% (later this is denoted as random.25). However, as in

my work I also characterize the importance of seeding in Section 4.2, for evaluation I

also use some other seeding methods as well (deviance is clearly stated).

3.4.2 Further Properties Determining Results

I have characterized properties of Nar09 algorithm that were not presented explicitly

in the literature in details. One �nding is related to low error rates, namely that the

distribution of S(v) is quite unique. For the majority of nodes, it is quite deterministic

(regardless of the current instance of seed nodes) which nodes the algorithm can and

which it cannot �nd. For all the experiments enlisted in Table 3.1, 84.63% of nodes

had S(v) = 0 or S(v) = 10, and for cases with higher recall 93.83% of all nodes fall

into this category; for details, see Fig. 3.3.

Node degree is important for the propagation phase of the Nar09 algorithm as it

�ngerprints nodes by their connections: the higher node degree is, with higher con�-
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Figure 3.3: Distributions of node re-
identi�cation score values (S(v)) over the test
results presented in Table 3.1.
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Figure 3.4: Degree distribution of correctly re-
identi�ed nodes in subsequent propagation steps
on the LJ66k dataset (seeds excluded). Re-
identi�cation runs while there is convergence.

dence it can be compared with others. In Fig. 3.4 I displayed the subsequent steps of

a run of the Nar09 algorithm on the LJ66k network with no identity separation. As it

is shown, almost maximum propagation is achieved in the �rst two steps, followed by

a rather slow convergence. However, the �gure also shows that the algorithm performs

signi�cantly better in re-identifying high degree nodes, i.e., while almost all high degree

nodes were re-identi�ed, the recall rate was under 20% for nodes with deg(v) ≤ 3.

3.5 Modeling Identity Separation

For considering identity separation for simulations, basically there are two set-

tings: non-cooperative and cooperative, representing cases when users make decisions

on adopting identity separation on their own or collaborate in some ways. Regarding

simulations, in case of the non-cooperative setting, node are uniformly sampled from

the target graph (where deg(v) ≥ 2), but in case of cooperation nodes are sampled

accordingly to the considered collaboration scheme.

There are several ways how cooperative identity separation can be realized; in my

dissertation I consider cooperation schemes that are organized either locally or accord-

ingly to the global importance of the selected nodes. In local cooperation neighboring

nodes use identity separation together, independently in randomly selected parts of the

network, while in the global case nodes are selected according to a global measure of

importance. However, it must be noted that further schemes could be considered, e.g.,

�nding cuts for separating the network.
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3.5.1 Analyzing Real-life Datasets

It would be desirable base identity separation models on characteristics observed

on datasets obtained from real-life sources. In order to do this, these datasets should

include behavioral patterns on the number of identities users create, how users sort

edges between these identities, and how privacy is preserved in these services. The

latter property eventually results in missing edges and partial identities, which is not

visible in most released datasets. Therefore, to my knowledge, there are no datasets

presenting this property and there are no trivial ways of crawling one (yet). For the

two former properties, there are datasets on ego networks describing these ones.

Ego networks have similar functionality to identity separation, as they represent how

users create partial identities to manage their social connections [56]. There are related

datasets available from Google+, Twitter and Facebook on the SNAP repository [43].

By analyzing this data, I found that the number of circles has a power-law distribution,

for instance in the Twitter dataset I measured α = 2.31 (933 ego networks, xmin = 2,

xmax = 18). Many users did not duplicate any of their connections (44.6%), and only a

fragment of them had more than twice as many connections in their circles compared

to the number of their unique acquaintances (6.07%). While it is not possible to

draw strong conclusions from these observations (as there are no patterns on hiding

information), I believe these indicate the possible nature of identity separation.

3.5.2 Pseudonyms as the Basis of Private Identities

Privacy-enhancing identity management in social networks need to be based on the

use of pseudonyms3, which are the explicit identi�ers assigned to the partial identity of

the user (i.e., pseudo-names). These named identities then can be used within several

contexts, and changed if needed � the given methods were elaborated in great details

in the PRIME Project [50].

In order to achieve identity separation with PIDM, these pseudonyms should be

unlinkable by trivial means, e.g, the user's pseudonyms must not disclose that they

belong to the same user or to the real identity of a user [60]. At the model level,

a social network supporting identity separation should allow the following levels of

identi�cation:

Total identi�cation Within the highest level of identi�cation the user can be iden-

ti�ed with his real identity. For instance, this is the expected case for Facebook,

where only valid identities are permitted for registration4.

3However, an implementation should also consider that individual attributes, behavioral patterns
could also be used as quasi-identi�ers, and such risks need to be mitigated.

4Without any veri�cation.
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Figure 3.5: Di�erent levels of anonymity explained with phone identi�er example. The longer an
identi�er is used (in more situations, for contacting more entities), the more individually identifying
it is.

Pseudonymous identi�cation This level of identi�cation is bounded to a

pseudonym. These identi�ers can have several properties that can limit their

uses. There are di�erent types of pseudonyms such as person, role, relation-

ship, and transaction pseudonyms, which can have di�erent lifetimes and provide

di�erent levels of privacy given by the linkability across contexts [61] (e.g., link-

ability of each pseudonym to past activities). Within the context of identity

separation, personal pseudonyms have the weakest level of privacy, as these are

globally unique identi�ers (sometimes even not changable) linking user actions

on the global scale. Unlinkable pseudonyms have a stronger level of privacy,

where the user may separate his identities by the means of multiple unlinkable

pseudonymous identi�ers.

Anonymity The strongest level of privacy is provided by anonymity, which allows

actions without identi�ers. A similar level of privacy can be achieved when

pseudonyms are used only per transaction (i.e., transaction pseudonyms).

Depending on how long a pseudonym is used, and also considering the number of

actions it was used with, and the number of contexts where it appeared, each type of

pseudonym provide a di�erent level of privacy. The use of pseudonyms is illustrated in

Fig. 3.5 with di�erent levels of phone-related identi�ers.

Using identity identity separation in such a way will be re�ected on the network

structure. Managed, but not separated identities (i.e., those that use linkable pseudony-

mous identi�ers) should appear as a single node, unlinkable separated partial identities
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will appear as separate vertices. As the current model allows users to hide identities

and edges, these should not appear in the network topology at all.

3.5.3 General Model and Formalization

As described earlier, in order to commit identity separation, vtarn creates a total

of y new partial identities which are denoted as vn\i ∈ Ṽ ′ids (i ∈ [1, . . . , y]), and then

sorts edges between new identities according to a given distribution p1, p2, . . . , py. The

number of new identities (y) is modeled with a random variable Y . The distribution of

the edge sorting is P (X1 = x1, . . . , Xy = xy), where Xi is a random variable describing

the degree of vn\i. At this point, there is no presumed distribution for Y , and the

distribution for Xi is de�ned later in coherence with the chosen sub-model.

The model in general is based on the following assertions about the structure of the

network before and after applying identity separation. These assertions are assumed

to be true in all sub-models.

General assertion 1 A new identity can have even zero of the original contacts (i.e.,

the user chooses absolute privacy for that identity).

General assertion 2 A user vtarn may create a maximum of deg(vtarn ) new identities.

While it is not possible limit the number of new identities in theory, it would not

match with the user's expected behavior, and thus it is an acceptable rational

limitation.

General assertion 3 A user may create even 0 new identities (i.e., absolute privacy

for the user).

General assertion 4 No new additional edges are created during identity separation

(e.g., for the purpose of deception). This simpli�es the behavioral model, but

it might be a desirable functionality to be introduced as future work; this could

add useful noise to deceive the attacker.

General assertion 5 Edges are not sorted independently. This is a rational consid-

eration, since all new identities belong to the same user, who sorts the edges in

an intelligent way (or the software agent supporting the PIDM for the user).

Simulation application of the models build on these assertions, however, these will

be even more important in the formal analysis of identity separation.
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3.5.4 Submodels

Dependent on the chosen user behavior, there are further aspects to be considered

in the submodels (with 0 ≤ xi ≤ n):

• Can di�erent identities of the same user have overlapping neighborhood (i.e.,

duplicated edges)? Overlapping allows the overall number of connections to in-

crease, formally, ∃P (X1 = x1, . . . , Xy = xy) > 0, that
∑
xi > n.

• Is edge anonymization permitted? Deleting edges allows the overall number of

connections to decrease, as ∃P (X1 = x1, . . . , Xy = xy) > 0, that
∑
xi < n.

Based on these aspects, new submodels can be introduced that are summarized

in Table 3.2. The names of the submodels require some explanation. I have named

the model with no edge anonymization, and no overlaps the basic model, since this

allows the least functionality for the user (only identity separation itself). Conversely,

the realistic model is just the opposite: it implies the fewest limitations on user ac-

tions. Users of a social network would likely use the functionality of this model (e.g.,

duplication of some edges and the deletion of others); hence the notation realistic.

Overlap No overlap

Edge deletion Realistic model Best model
No edge deletion Worst model Basic model

Table 3.2: Submodels for identity separation with considering possible functionality.

Besides, a worst and a best model also exist, which are also named from the user-

centered point of view. The best model allows a user to only decrease the number

of his contacts, and therefore causing more information loss to the attacker, therefore

preserving more privacy. The worst model is the opposite: it only allows creating

multiple connections between identities and acquaintances, therefore making "backups"

of structural information, and helping identi�cation. According to Table 3.2, further

assertions can be characterized for each model including limitations to edge deletion,

duplication functionality (these are detailed later).

The basic model is simple and easy to work with, as it simply redistributes edges

between the new identities (no edge deletion or duplication allowed). Where this model

is used, edges are sorted with uniform probability between new identities. The realistic

model is used to describe real-life behavior (where both edge deletion and multiplication

allowed), and the best model allows describing privacy oriented user behavior (no edge

duplication, but deletion allowed). While I explicitly omitted the worst model (edge

duplication only), I must note that there are similar experiments in my dissertation:

the behavior patterns from the Twitter network are the closest to this model, as these
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patterns contain duplication but no deletion (see Section 5.3). I provide further details

on how the sub-models are used with the analysis.

3.5.5 Probabilistic Basis for the Models

In the basic model, the user vtarn sorts N = deg(vtarn ) edges among y identities. The

multinomial distribution is a natural choice for describing such a case (also because of

General assertion 5), since it describes N trials when the outcomes can be sorted into

one of y groups. Additionally, group probabilities can be adjusted, and therefore this

model allows �ne-tuning the distribution in a way for describing user behavior in the

desired way. Multinomial distribution is used as

P (X1 = x1, . . . , Xy = xy) ∼Mu(N, p1, . . . , py), (3.7)

where
∑
pi = 1.

The realistic model is more �exible than the basic model, as it allows for edge dele-

tion and also duplication. Due to this �exibility, there is no predetermined distribution

that could be used for conclusive analysis. To be rather realistic (and harmonize obser-

vations presented in Section 3.5.1), the distribution should re�ect that the most likely

case is that the number of all contacts after identity separation is similar to degree of

the node before, i.e., a few deletions and duplications are likely to happen, but major

deviations are not.

For analytic approaches (Section 5.1), I use the sum of binomial distributions as

depicted in Fig. 3.6 to capture the expected behavior of the realistic model. In simu-

lation experiments, the realistic and best models are both used to test the propagation

of Nar09 against edge perturbation added by identity separation. For the experiments

edge sorting probabilities are calculated according to multivariate normal distribution,

denoted as

P (X1 = x1, . . . , Xy = xy) ∼ Ny(η,Σ), (3.8)

where y denotes the current number of identities. The value of η was set to (y)−1

and I con�gured Σ to maintain the overall number of edges during the process, allowing

only a little number of added or removed edges. In the best model, if the sum of new

edges exceeded the original degree, the distribution was simply recalculated.

Based on this, a new edge distribution is randomly selected as (x1, . . . , xy). The

realistic model with minimal deletion, in which every edge is assigned to one identity,

and if there is still ample space left for edges, new copies of edges are assigned randomly.

In this setting edges are not deleted unless it is necessary. In the setting of the realistic

model with random deletion new identities take a portion of edges proportional to
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Figure 3.6: Concept for the distribution of realistic models with Y = 2, and some examples. On the
left part of the �gure, the darker areas have higher probabilities (these values are outstanding on the
right part).

(x1, . . . , xy), leading to delete unassigned edges proportionally to
∏

(1 − xi
deg(vtarn )

). I

also included a setting with the best model called the best model with random deletion.

However, it should be emphasized that none of these settings capture aggressive edge

deletion, but it might be interesting to investigate such settings in the future.
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Analysis of Structural

De-anonymization Attacks

'Friends don't spy; true friendship is about privacy, too.' (Stephen King)

In Section 3.4 I discussed several parameters of the Nar09 attack, including ones

that were not mentioned or detailed in the literature before. In this chapter I provide

the analysis of two novel �ndings related to these types of attacks that bear greater

importance. In Section 4.1 I propose a class of anonymity measures that can be used

within the current context, and then evaluate instances of this anonymity class for the

Nar09 and Grasshopper attacks. Then in Section 4.2 I argue the importance of seeding,

and I show for the Nar09 algorithm how initialization e�ects the overall performance

of the algorithm.

4.1 Measuring Structural Anonymity

In cases when structural �ngerprint of a node is considered globally, it is trivial

(but not necessarily e�ective) to measure the anonymity level of a node: the level

of anonymity is proportional to the number of nodes with the same �ngerprint, i.e.,

number of nodes being in the same anonymity set. However, in case of attacks like

Nar09 nodes are compared locally, and therefore anonymity sets cannot be considered

in such sense, and also cannot be calculated explicitly by trivial means. Furthermore,

without possessing explicitly the background knowledge of the attacker, anonymity can

be only estimated.

However, local anonymity measures are useful from a privacy-oriented point of

view, as these can express the node's resistance level against local re-identi�cation

techniques, but bene�cial in other ways as well. These can help users to decide how to

apply privacy-enhancing software to strengthen their privacy status, more accurately
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than simply considering their global structural re-identi�ability. These measures can

support data providers and attackers to make (lower) estimates of the possible success

of attacks. In my work I focus on measuring the level of anonymity for nodes, and

leave the detailed analysis on how measures over the entire network could be used as

future work.

Here I propose a general concept for measuring anonymity, and provide the analysis

of two main approaches that could be used for Nar09. In the �rst case I provide non-

trivial anonymity measures based on how the propagation phase of Nar09 and similar

attacks work, then I show that degree can also serve as a simple anonymity measure.

Finally I show that the prior measures are signi�cantly better in several cases than

node degree, and I also discuss when.

4.1.1 Local Topological Anonymity

Large-scale structural re-identi�cation attacks compare nodes against their 2-

neighborhoods in their local re-identi�cation phase, therefore, the more similar a node

is to its neighborhood, the lower chance it has for being re-identi�ed. This property

need to be captured by anonymity measures. Therefore, we can now introduce Local

Topological Anonymity (LTA), which is a measure that predicts the level of anonymity

against re-identi�cation attacks based on local comparison of nodes, such as Nar09.

There can be numerous variants for node �ngerprints in attack algorithms. Nar09

simply compares the sets of neighbors of nodes (ofGsrc) to the neighbors of their friends-

of-friends (in Gtar). While in other attacks node neighborhood may be inspected more

deeply at the expense of larger node �ngerprints and increased run-time. Therefore,

the concept of LTA need to be easily adoptable for these cases. Based on this, we can

now de�ne LTA:

De�nition 1. A Local Topological Anonymity measure is a function, denoted as

LTA(·), which represents the hiding ability of a node in a social network graph

against attacks considering solely the structural properties of the node limited to its

d-neighborhood1.

Then LTA variants tailored for speci�c attacks or based on speci�c principles can

also be de�ned:

De�nition 2. A Local Topological Anonymity measure variant α is a function, denoted

as LTAα(·), which is an LTA measure that is based on the node �ngerprint function

fα(·) representing the structural �ngerprint of a node in a social network graph.

1In my work I used d = 2 as using larger distances are not feasible due to small network diameter.
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As LTA is de�ned to be calculated on a limited neighborhood size (by parameter d),

it should give a fast way to calculate an aposteriori anonymity measure regardless of

the background knowledge of the attacker. By having smaller values for d, it requires

inputs that can be reasonably assumed to be available for users in most services: the

neighbors and neighbors of neighbors of nodes.

Node Fingerprint and Similarity

However, in order to propose speci�c measures, node �ngerprint functions need to

be characterized �rst. In case of the Nar09 algorithm this is a simple task: nodes

within the distance of d = 2 are compared by checking their neighbors. Thus the node

�ngerprint function gives the set of neighbors as a result:

fNar09(vi) = Vi = {∀vj : ∃(vi, vj) ∈ E} (4.1)

The next question is how the comparison should be done. While Nar09 compares

nodes in a way of resembling cosine similarity, there are yet a great variety of other

similarity measures that could be check as alternatives (especially when LTA is tailored

for another algorithm). In case of the evaluation of similarity measures, we need to

consider also that good candidates need to meet the following properties:

• Symmetric: can be compared both directions (background knowledge and sani-

tized data)

• Normalized and positive values : independent of network size, can be easily com-

pared.

• Fast to calculate and non-recursive. Ease (and speed) of calculation and requires

little knowledge.

Although I initially considered a great variety of measures (e.g., Jaccard [62],

IDF [63], Adamic/Adar [64], Pearson [32], Simrank [65], topological overlap [66], Lo-

gOdds [67]), and also run comparative measurements with them, most did not meet

the previously enlisted properties or had very di�ering results compared to cosine sim-

ilarity. Fortunately, there is other comparative evaluation in the literature that helped

in the selection.

Spertus et al. [67] conducted a comparative evaluation of similarity measures that

could be used for recommendation. In their experiment, similarity of users was calcu-

lated based on their community subscriptions regarded as sets, which is quite similar

to our current case, where a node can be �ngerprinted as a set of its neighbors, and

two nodes can be compared accordingly. Finally, they found that cosine similarity is
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the best measure for such purposes. Due to these reasons, and the fact that cosine sim-

ilarity is both used in [2, 14], I chose cosine similarity for the proposed LTA variants.

This can be written as

CosSim(vi, vj) =
|Vi ∩ Vj|√
|Vi| · |Vj|

, (4.2)

where vi, vj represents nodes, and Vi, Vj represents the sets of their neighbors re-

spectively.

Proposal of LTA Variants

Based on the previous discussion, I propose three variants based on CosSim(·)
(which can be replaced if needed). LTAA speci�es the average similarity of a node

compared to others in its 2-neighborhood (i.e., friends-of-friends). LTAB uses a di�erent

normalization scheme than LTAA, i.e., the degree of the node, but at least two. Here,

the intuition on the normalization is to penalize higher degree nodes, as they can be re-

identi�ed more easily. LTAC further divides LTAA with the standard deviation of the

di�erence in degree values between vi and members of V 2
i (i.e., capturing the divergence

of the context), which is the set of the neighbors within two hops.

These variants can be written as follows:

LTAA(vi) =
∑
∀vk∈V 2

i

CosSim(vi, vk)

|V 2
i |

, (4.3)

LTAB(vi) =
∑
∀vk∈V 2

i

CosSim(vi, vk)

max(|Vi|, 2)
, (4.4)

LTAC(vi) =
∑
∀vk∈V 2

i

CosSim(vi, vk)

|V 2
i | ·max(σdeg(∆V 2

i ), 1)
. (4.5)

Within these cases LTA measures are expected to indicate level of identi�cation as:

the lower the LTA value is, the higher the chances are that the node will be re-identi�ed.

As I showed in Fig. 3.4 in Section 3.4, node degree is also an important property

regarding re-identi�cation rates; for example, less than 20% of nodes with deg(v) ≤ 3

were correctly re-identi�ed, while this was around 80% for high degree nodes. Therefore

I additionally propose to evaluate node degree as an anonymity measure:

LTAdeg(vi) = deg(vi). (4.6)

In case of LTAdeg(vi) assessment of node anonymity works di�erently compared to

the other measures, as one can expect: that the higher the node degree is, the higher
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Variant αv αe Clique overlap

WV-1000vA 0.5 0.60 117
WV-1000vB 0.5 0.75 469
WV-1000vC 0.5 0.90 1,403
WV-1000vD 0.4 0.75 115
WV-1000vE 0.6 0.75 1,264
EP-1000vA 0.4 0.45 1,536
EP-1000vB 0.4 0.60 2,093
EP-1000vC 0.4 0.75 12,271
EP-1000vD 0.5 0.60 10,495
EP-1000vE 0.6 0.60 27,227
SD-1000 0.5 0.85 1,844
LJ-1000 0.5 0.90 2,085
LJ-10k 0.4 0.60 2,422
WV-Full 0.5 0.60 4,699

Table 4.1: Initially, for the evaluation of LTA measures I used these datasets with the provided
perturbation parameters. The size of each dataset is included in its name, ranging from a thousand
nodes up to ten thousand. Ground truth strength between Gsrc and Gtar is provided in the number
of overlapping 4-cliques; the more the better for the attack.

the chance is that it can be de-anonymized. For the other measures high the anonymity

values indicates lower chances of re-identi�cation.

4.1.2 Evaluation of Measures

These measures can be evaluated by measuring the correlation between the

anonymity values and recall rates. Throughout this section, 10 rounds of simulation

is used in the measurements. In case of variants LTAA,LTAB,LTAC anonymity values

should rank recall rates in a decreasing order, and in an increasing order in case of

LTAdeg.

Initial Evaluation

For initially testing the concept of LTA, I carried out some preliminary exper-

iments on smaller and mid-sized networks (up to 10k nodes) with the variants of

LTAA,LTAB,LTAC . The main data sources to create these small datasets were the

Epinions, the Slashdot, the LJ66k networks including the Wikipedia vote and the

LJ10k datasets also. Perturbation parameters of datasets created for the initial testing

is shown on Table 4.1.

Simulation experiments on datasets shown in Table 4.1 were initialized with random

4-cliques. Due to the small size of these network, propagation here appeared to be more

sensitive to seeding than in large networks. Thus 10 rounds of simulation turned out to

be essential to give a good average of re-identi�cation rates. In each round, a network
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Figure 4.1: Pearson correlation coe�cient values
for di�erent LTA measures in small and mid-sized
networks. (dataset descriptions provided in Table
4.1)
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Figure 4.2: S(v) ordered by LTAA scores
(LJ66k). This visualization shows that LTAA

is a promising measure of importance.

dependent number of coexistent 4-cliques are selected randomly (typically 7− 10). To

�nd a clique, �rst an arbitrary node is selected, and then a coexistent clique is chosen

from its neighborhood.

The evaluation here was done by using Pearson correlation (denoted as ρP ) [32],

where we could expect negative correlation values if measures is correct. Simulations

results are depicted in Fig. 4.1. In general, all measures proved to be at least somewhat

e�ective as all correlation values were signi�cantly deviating from 0. Average correlation

values were −0.421,−0.344,−0.269 for each measure respectively. In mid-sized network

clearly LTAA had the best results where correlation values were between −0.5 and −0.6.

Evaluation of Measures in Large Networks

In the following experiments I measured correlation between node re-identi�cation

rates (S(v)) and anonymity measure values (LTAi(v)) in two test sets. In the �rst

set, I created 32 perturbations for the Slashdot, Epinions and LJ66k networks (with 16

di�erent perturbation settings). Table 3.1 contains the recall rates of the measurements

by running the attack with similar parameters as before. In the second experiment, I

run identity separation with the basic (Y = 2) and the best models (Y = 5, random

edge deletion) and measured correlation values afterwards.

For the correlation measurement here I used the Spearman's rank correlation (de-

noted as ρS) [68] instead of Pearson correlation, as it is more important to see if an LTA

metric correctly orders nodes in a decreasing or increasing order according to S(v), but

the exact di�erence between rankings is not important. An example for the ranking

is shown in Fig. 4.2. The mean value clari�es the trend that the majority of results

follow.

The results of the test sets are shown in Fig. 4.3. As both correlation values closer
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Figure 4.3: Results of the �rst set of experiments depicted on (a) with di�erent perturbation settings
(see Table 3.1), and results of the second set of experiments plotted on (b) with di�erent ratio of users
applying identity separation. While LTAA and LTAdeg both have the most competitive correlation
values as shown in (a), in some cases LTAA is clearly the best choice as shown in (b).

to 1.0 (for LTAdeg) and to −1.0 (other measures) are considered to be appropriate,

I displayed the absolute value of the correlations. This could be done as correlation

values were consequently positive or negative for each measure.

While clearly LTAA and LTAdeg stand out as the most competitive measures in

Fig. 4.3a, results in Fig. 4.3b shows a case where LTAA provides signi�cantly better

results. It can be further observed that correlation values are constant-like (0.3 ≤
ρS ≤ 0.8) when recall rates achieve a fair level (e.g., 5% ≤ R(µ)). One should also

note that I omitted LTAB from these �gures as it had signi�cantly worse correlation

values compared to the others, and results were almost randomly scattered around zero

correlation.

When recall rates are low, only a handful of nodes are re-identi�ed that are con-

nected to seeds. These can have a wide range of LTA values, and this issue should

account for the randomness on the lower end of recall rates (for all measures). On the

higher end, the drop in correlation is caused by the fact that the majority of nodes

re-identi�ed with all kinds of LTA values; however, measured correlation values are still

satisfactory as being around 0.3-0.4.

Comparison of Degree versus LTA

While comparing the two most competitive measures (which seem to have a rather

high proportion of overlap as shown in Fig. 4.4a), I found that it is not the perturba-

tion setting that seem to di�er for the correlation values, but the network structure.

LTAdeg has better results in Slashdot, Epinions, while LTAA proved to have better

correlation values in LJ66k. Thus I calculated the di�erences on the �rst test set as
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Figure 4.4: Important structural properties we considered in our experiments.

|ρS(S(v), LTAA(v))|− |ρS(S(v), deg(v))|, and plotted results in Fig. 4.5a, now indicat-

ing the network as well. In cases with 5% ≤ R(µ) the LTAA measure is better in 13

cases with the average di�erence of 0.0821, while the LTAdeg is better in 22 cases with

the average di�erence 0.0270.

I compared the structure of the di�ering networks, and found that in Slashdot and

Epinions the vast majority of nodes have very low degree values, e.g., the ratio of

nodes with deg(v) ≤ 3 is 58.8% and 69.6% respectively. While the degree distribution

of LJ66k seem to be more balanced, and the ratio of such low degree nodes is just

33.9%. The hypotheses for interpreting the di�erence was that in networks with a

degree distribution similar to LJ66k, LTAA captures the di�erence between nodes more

precisely than node degree. Therefore, for veri�cation, I aimed to compare results in

additional networks that have similar degree distribution to LJ66k.

In order to do this, additional datasets were downloaded from the SNAP [43] and

the Koblenz [69] collections. I used an export of the Pokec social network denoted

as PKC30k (30,002 nodes, 245,790 edges), which is the most popular online social

networking site in Slovakia. I furthermore used an export of the Facebook social net-

working site denoted as FB30k (30,002 nodes, 593,476 edges). Finally, I also included a

fragment of the DBLP co-author network denoted as DBLP80k (80,002 nodes, 602,096

edges). DBLP is bibliography website on computer science, and relation between enti-

ties are citations between di�erent works. The degree distribution of all the included

networks are plotted in Fig. 4.4b, and the results on comparing the di�erence of LTAA

and LTAdeg after running the same simulations are displayed in Fig. 4.5b.

These measurements verify the intuition on why LTAA provides better performance

in LJ66k dataset, as results are similarly better also in the DBLP80k, FB30k, PKC30k

networks. To put the di�erence between LTAA and LTAdeg into another perspective,
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Figure 4.5: Di�erence between the correlation values of LTAdeg and LTAA. From (a) it is visible
that in LJ66k LTAA has better results than in the other networks. Comparing correlation in further
networks having similar degree distribution to LJ66k is shown on (b). In these cases LTAA proves to
be again a better measure for anonymity.

we could interpret the LTA measures as node �ngerprints. Node degree is a �rst level

node �ngerprint with a limited information on the node neighborhood, while LTAA is

a second level node �ngerprint that incorporates information from the neighborhood of

the node at a distance of d = 2. Looking from this perspective, we can expect LTAA to

perform better in cases where the degree distribution is more balanced, and di�erences

in degree values are less prominent.

Evaluation of Measures for the Grasshopper algorithm

With the Grasshopper attack, I measured the ranking property of the LTAA and

LTAdeg variants on the same datasets used to provide the results in Table 3.1. The

results are shown in Fig. 4.6, where each dataset is distinguished by color and variants

are plotted with di�erent marker (absolute value of correlation results are displayed).

Recall clearly has a signi�cant e�ect on the correlation; however, the �gure shows

that both evaluated variants had acceptable correlation rates, and LTAdeg had better

results in general except for a few cases. Here, the network structure did not bias the

results as in the case of Nar09. In summary, these measurements revealed that the

concept of LTA can be applied for other algorithms as well.

4.1.3 Conclusion

Regarding the proposed measures presented in this section and related experiments,

we can conclude that both LTAA and LTAdeg can be used as apriori relative anonymity

measures without knowing the background knowledge of the attacker. In addition,
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these measures are designed to be �exible and can be changed in the future, e.g., when

being used with novel attacks. Comparative experiments with these measures showed

that in distinguished cases each is better; however, in general, it seems to be more

feasible to work with LTAA, as in life-like networks with a biased degree distribution

is has signi�cantly better correlation rates with re-identi�cation than node degree.

4.2 Measuring the Importance of Seeding

Related to the e�ect of seeding on propagation, Narayanan and Shmatikov highlight

in [2] that seeding has a phase transition property regarding the number of seeds [59]:

at some point while increasing the number of seeds, there is only a little di�erence

when the output of propagation rises signi�cantly, reaching the maximum (example

provided in Section 3.4 in Fig. 3.2b). They also note (without details) that transition

boundaries depend from networks structure and seeding method. Seeding stability is

also mentioned in their paper as the probability of large-scale propagation with respect

to the number of seeds. However, beside their �ndings related works focusing on seeding

is only of a few papers, and in most papers with simulations the chosen seeding method

is not justi�ed.

Yartseva and Grossglauser provide further analysis of seeding [70], and they propose

two simpler, but similar algorithms to Nar09, that allow formal analysis. In their work,

the existence of phase transition is formally proven w.r.t. the seed set size for random

graphs generated by the Erd®s-Rényi model G(n, p). Phase transition is also veri�ed

by simulations both for synthetic and real-life social networks. Their work discusses

the essential seed set size for propagation as a function of the network parameters and

the propagation settings, but neglects how seeds were obtained, i.e., the seed selection

38



Chapter 4. Analysis of Structural De-anonymization Attacks

method.

While seed size and phase transition are studied aspects of the attacker model in

the literature, there are still several questions left open. For instance, how strong is

the di�erence between di�erent seeding methods, e.g., w.r.t. minimum seed size and

seeding time? Is there a globally best seeding method? We analyzed analyzed these

and other related questions in our works in [C1,C3], and these results are presented in

this section.

4.2.1 Review of Seeding Methods for Evaluation

The seeding method re�ects the strength of the attacker, who is often limited by

the quality of the background knowledge he has. However, a well-informed attacker

may have the opportunity to choose between di�erent seeding methods.

Before to our evaluation in [C1], there were several seeding methods appearing in

the literature. The original paper used high-degree nodes for seeding that formed 4-

cliques [2], and in addition to this, in their main experiment they used seed nodes

with at least a degree of 80. Several other seeding methods appeared in the literature,

as matching top nodes [1, 14], (presumably) sampling random nodes in [15], and seed

selected randomly from top 25% high degree nodes [C2]. In their work of Srivatsa and

Hicks they used betweenness centrality for seed selection in Gsrc and proposed a similar

probabilistic variant of a distance measure to �nd corresponding nodes in Gtar [10].

In the current experiments I generalized clique based methods, where seed nodes

were requested to form k-cliques (k ∈ {4, 5, 6}). Furthermore, I had cases where node

degree was not considered (later referred to as e.g., 4cliques), while in other cases

seeds were sampled from the top 20% by degree (e.g., 4cliques.2). In order to see the

magnitude of the e�ect of the clique structure, I also compared these results against k-

neighborhood seeding (with corresponding parameters), where nodes are collected with

breadth-�rst search starting from a random node (e.g., 4bfs, 6bfs.2).

In order to see how degree itself in�uence overall results, I included using k-

top degree nodes (top), and sampling from random high degree nodes in the top

10%, 25%, 50% subsets (e.g., random.25), and from all nodes (random), for the sake

of completeness.

I also analyzed more complex measures than node degree, namely betweenness (e.g.,

betwc.2, seeds that had the highest betweenness in the set of the top 20% by degree)

and closeness centrality (e.g., closec.2). These measures can be calculated together as

being based on shortest paths: betweenness re�ects centrality respecting the number

of shortest paths the node is on, while closeness gives the average distance from all

other nodes in the network. Betweenness was used only for small networks in [10],

thus its utility in larger networks was uncertain until our paper in [C1]. In addition,
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calculating betweenness and closeness is very costly for large networks, hence we also

analyzed if the number of nodes involved in the calculation process can be decreased

(by using degree as a heuristic).

I included two additional exotic seeding measures. As it was discussed recently, Lo-

cal Topological Anonymity values are calculated according to the structural uniqueness

of nodes in their 2-neighborhoods: the lower the value the more unique the node is.

Thus, the intuition was that nodes with low LTAA values are likely to be good seeds

(marked as lta). I also tested seeding with nodes having the highest Local Clustering

Coe�cient (LCC) values in the network (lcc). Here, I had the intuition that probably

not the nodes with the most dense neighborhood are providing the better seeds, hence

I measured high LCC (lcch), where highest LCC nodes were selected after skipping

the top 20% of LCC.

4.2.2 Evaluation of Seeding Methods

During the evaluation I calculated measures on Gsrc, and to keep the focus on

comparison of measures, I used the ground truth to map selected seed nodes to their

pairs in the Gtar; instead of constructing new methods that could be used in realistic

situations. However, these methods can be implemented to work without background

knowledge, there are several examples of such implementations in the literature [2,10,

14].

Within the experiments, I was looking to �nd the minimum number of seeds grant-

ing large-scale propagation in all measurements (which can be called as stable seeding),

and measured runtime of the seed selection phase (or in other words, time resource re-

quirements). It could be interesting to compare recall rates for di�erent methods, but

I could only �nd minor di�erences in those. I used seed size stepping granularity as 5

in simulations executed on LJ10k and 60 in larger networks (or lower for competitive

techniques in order to get more detailed measurements).

These experiments were run on a 2.0GHz Intel Core i7 processor with 8GB RAM,

and my framework was implemented in Java (having almost 8,000 lines of code). How-

ever, it must be noted that I intended to show di�erences between measures and high-

light trends, and not to provide razor-sharp results; thus I caution drawing conclusions

from subtle di�erences in results (e.g., minimum seed set sizes of betwc.1 and betwc.25

in Slashdot in Fig. 4.8b).

It must be noted regarding runtimes that some measures require signi�cant pre-

liminary calculations to seeding: betweenness and closeness centrality (these can be

calculated in parallel), LTA, and LCC. I did not include these preparations into seed

timings, as although they may run longer, yet these are still computationally feasible

(e.g., within a few hours of computation time), and need to be done once. Nevertheless,
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Figure 4.7: Di�ering characteristics of seeding strategies in LJ10k.

an attacker may consider this when choosing the seeding method.

Large-Scale Propagation

Initial simulations were performed on LJ10k. Results revealed that node degree

takes an important position as a secondary measure of seed selection. For all k-clique

and k-neighborhood based methods it could be observed that when using high degree

seeds, less nodes are needed for large-scale propagation, and more importantly, Nar09

was able to access the network more widely. For instance, compare 4bfs and 4bfs.2

in Fig. 4.7 � there is a clear limit for propagation when using 4bfs seeding. Thus I

used only high-degree variants of the k-clique and k-neighborhood seeding methods in

the analysis related to larger networks. Fortunately, this has additional bene�ts, as it

speeds up seeding.

Degree dependent node selection for other measures also lead to di�erences in re-

sults, although it did not limit the maximum level of propagation. The examples shown

for betweenness centrality in Fig. 4.7 illustrate how degree de�nes the number of seed

nodes that are required for successful propagation.

Other factors can in�uence results also. While lcc could not reach an acceptable

level of re-identi�cation in these measurements (resulting recall rates at most around

20%), the lcch variant produced better rates, though it was also incapable of reaching

recall rate signi�cantly higher than 70%, similarly to 4bfs (this is clearly visible in Fig.

4.7).

Additionally, measurements in Fig. 4.7 con�rm that phase transition property of the

propagation phase depends on the seeding measure (as also mentioned in [2]): phase

transition start- and endpoints, steepness di�er for various methods. For example,

while phase transition both for 4bfs and 4bfs.2 start early, and have a mild increase,

for the top method it can be rather characterized as a sharp jump.
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Seed Stability

Example for 4bfs.2 on the LJ10k network provides insight on seeding stability in

Fig. 4.7. While it allows propagation reaching high-end of recall for |µ0| ∈ [20, . . . , 50],

it can even achieve an average recall of 20% for 5 seed nodes. By including the variance

besides (normalized by multiplying it with 10−2), a notable variance can be noticed

initially, taking values between 1000-1300. As seeding gets stable, it apparently dis-

appears as it takes values between 0.1-23.3 for |µ0| > 15 (other experiments showed

similar behavior, but these are not displayed for keeping the �gure clear). This happens

for a simple reason: in case of such a small amount of seeds the current instance of seed

nodes determines signi�cantly the overall outcome of Nar09, e.g., in these experiments

propagation achieved recall rates of 0.26% or 78.1% for di�erent seed sets.

As the error rate is low by design, an attacker can settle with a low number of

seeds that leads to large-scale propagation. This even works in larger networks: with

only a single 5-clique seeding (5cliques.2) where I could achieve recall rate as high

as 84.33% having the error rate at 5.62%.

Degree as a Heuristic

The summary of the measurements for LJ10k and the main three networks is shown

in Fig. 4.8, including methods that resulted in large-scale propagation, and where

runtimes and the number of required seeds were su�ciently low. With accordance of

the results in LJ10k, where these measures with higher degree nodes resulted better

recall rates, I only calculated betweenness and closeness centrality on high-degree nodes

to reduce runtimes (top 10%, 25%). For all three networks results showed that the

higher degree nodes were used, the lower the seeding time was.

k-cliques and k-neighborhoods

The network structure determines which seeding methods could be used or not.

Using cliques were not feasible in the Slashdot network: although it was possible to

�nd enough seeds with 4cliques.2, this was a less prominent result. In addition, for

5cliques.2 and 6cliques.2 the seeding algorithm timed out (2 mins) before �nding

enough disjoint cliques. These methods were more competitive in the Epinions network,

best results were measured in the LJ66k dataset, as these were capable of stable seeding

with the least number of seeds.

For reaching unstable large-scale propagation in the networks originated from Live-

Journal, cliques provided also very competitive results. This is likely due to the fact

that the connectivity of these networks is more balanced than in the others, as they

have proportionally less low degree nodes than in the others (see Fig. 4.4b in Section
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Figure 4.8: Performance of propagation phase vary as di�erent seeding methods are used. While
some methods performed equally well in all cases (e.g., betwc.1), some methods produced di�erent
results according to the size of the network (e.g., top), to structural di�erences (e.g., 4cliques.2),
or according to the relationship between seed nodes (e.g., 4cliques.2 compared to 4bfs.2).

4.1.2). For example, a single clique (of any size) was enough in LJ10k to have large-

scale propagation, and Nar09 could achieve the highest recall level by simply using two

cliques. In LJ66k, a single 4cliques.2 was enough to reach recall of 33.32% with an

error rate of 4.34%. Comparing these results to 4bfs.2, 5bfs.2 and 6bfs.2 shows that

structure between seed nodes can make a perceptible di�erence in the performance of

propagation. In addition, the latter techniques were not sensitive to network struc-

ture: these had low runtimes in all large test networks, but also had an average score

regarding seed sizes.

Most E�ective Methods

Comparing results plotted in Fig. 4.8, clearly top and betwc.1 seeding methods

led to best results, that were additionally independent of network structure (in larger

43



Chapter 4. Analysis of Structural De-anonymization Attacks

networks). The discovery of betwc.1 in this context is important, e.g., as a protec-

tive method may aim preventing de-anonymization by targeting top nodes, either by

removing or modifying them. Thus betwc.1 allows the attacker choosing seeds from a

larger candidate set. The random.1 method is slightly less e�ective, but it could also

be used alternatively. Additionally, closec.1 provided remarkably good results in the

densest test network.

Exotic Seeding Measures

None of the exotic seeding methods could be emphasized for providing good results.

Regarding the minimum number of nodes required for stable seeding, the lta measure

produced fair results in large networks, but due to the large number of nodes it worked

with it had high runtimes. The lcc and lcch seeding methods had even worse results;

both only led to noticeable propagation in LJ66k, and had long runtimes. However, we

could not include these results as their highest recall rate was less then the maximum

(as in LJ10k).

4.2.3 Conclusion

The evaluation of multiple seed selection methods on the Nar09 algorithm showed

that the chosen method can signi�cantly in�uence and limit the possible outcome of

the propagation. Experiments showed that both the global role of the seed nodes

(measured with betweenness, closeness, degree) and the local structure between them

(clique structure vs. k-neighborhood) can solely and jointly determine the success

of propagation with the given seeding. In addition, results indicate that the seeding

procedure should be chosen regarding network size and structure, as not all methods

worked equally well for all datasets: phase transition boundaries also depend on the

chosen method and datasets.

However, these results have greater importance and not limited to this dissertation.

I believe my �ndings are essential for works aiming to compare novel attack techniques

to others and for papers including simulation evaluations of defense methods. For the

prior, it is needed to synchronize attacker models, including the seeding method in

order to settle down on the same ground for comparing results. In the latter case,

seeding methods represents another aspect of the attacker model that can be tuned

for alternative (and stronger) attacks. For example, an attacker can react by choosing

another seeding procedure in order to decrease the performance of the users of a given

privacy-enhancing technique.

Therefore I used multiple seeding mechanisms in the evaluation of identity sepa-

ration, as a part of the attacker model. By default, I applied random seed selection
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with high degree nodes, where nodes are selected from the top 25% by degree (denoted

as random.25). For the simulation of stronger attackers I used seeding methods that

proved to be the most e�ective: sampling from higher degree nodes (random.1), accu-

rately selecting top degree nodes (top), and nodes with the highest betweenness values

also having degree in the top 10% (betwc.1).
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Chapter 5

Analysis of Identity Separation

'Privacy is an inherent human right, and a requirement for maintaining

the human condition with dignity and respect.' (Bruce Schneier)

In this chapter I analyze the e�ect of the identity separation technique on structural

re-identi�cation, both regarding global node identi�cation and propagation phases of

Nar09. In the �rst case, I show suitable strategies for two seed identi�cation techniques

that lead to high failure probabilities for the attacker even when users do not cooperate.

Similarly as provided, models proposed in Section 3.5 can be used for the evaluation

of other seeding and node re-identi�cation methods, also. For the propagation phase

I both consider the non-cooperative and multiple cooperative settings for adopting

identity separation, and analyze with simulation experiments their e�ect regarding

user and network privacy.

The outline of this chapter is as follows. I present the analysis of seeding with respect

to identity separation in Section 5.1. Then, in Section 5.2 I analyze the sensitivity of

the propagation phase to di�erent features of identity separation, then continue my

analysis when the technique is adopted in a non-cooperative fashion in Section 5.3.

Then I analyze when neighboring users cooperate in Section 5.4, and the e�ciency of

globally organized cooperation in 5.5. Last, but not least, I highlight the importance

of the participation of top degree nodes in Section 5.6 for most of the discussed cases,

and the chapter is �nally concluded in Section 5.7.

5.1 Characterizing Failure Probability for Seeding

In this section I show examples how seed methods can be analyzed by using the

probabilistic identity separation models in Section 3.5.5. Thus, I provide formal analy-

sis of the two seeding methods: clique based seed selection introduced in [2] and another

one based on top nodes that is used in multiple works (e.g., [1,14]). These results can
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serve as a guideline extending the underlying principles to other cases of global node

identi�cation, too. Here I consider the seed candidate nodes to be using identity sepa-

ration independently � as with cooperation these nodes could achieve their goal more

easily. For example, cliques could be more easily destroyed with cooperation.

Here, I use the basic and the realistic models, which are the closest to real user

behavior: users are expected to have roughly the same number of contacts before and

after the identity separation (not including new contacts). However, the analysis could

be extended to the worst and best models also, and results for the best model could

be deducted from the results of the realistic model, as higher failure can be expected.

5.1.1 Active Seeding and Identity Separation

Backstrom et al. describe two attacks, a semi-passive and an active attack, in which

both the attackers are able to modify the network prior to the sanitization [13]. In both

attacks the attackers' goal is to insert a speci�c structure (a subgraph) into the social

graph that can be revealed later only by the attackers but no one else � this is what

they call structural steganography. This subgraph is connected to the social graph by

creating new edges to a small number of targeted users. A similar approach including

the injection of a subgraph constructed by the attacker is proposed for seeding the

seed-and-grow attack [15].

These works reveal one the disadvantages of active seeding: it only allows revealing

the identity of a small number of users, who are willing to play along with the attacker

during the injection phase. In addition, for some networks active and semi-passive

seeding cannot be executed at least for one of the following reasons:

• The modi�cation of the network structure may be expensive (e.g., phone calls).

• The modi�cation may not be executable (e.g., network created from observed

e-mails).

• To insert the structure too many modi�cations would be required (e.g., a valid

e-mail address must be provided for the registration).

• The attacker is not always able to in�uence connections (e.g., connections require

two-way con�rmation).

All these problems inspired the research of passive seeding methods, such as the

clique based one proposed in [2]. As passive methods can be considered more lifelike,

and could be used in a wider range of scenarios, the following analysis focuses on those.

However, from the viewpoint of identity separation, it is easier to protect the privacy

of a user against active seeding methods. While active attacks cannot be prevented,
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one can use identity separation to separate sensitive information from suspicious users.

Even a complete neighborhood can be separated to prevent possible identi�cation of a

sensitive partial identity.

5.1.2 Generic Formula for Failure Probability

It must be noted that di�erent actors have di�erent views on the measuring success.

The adversary is interested in discovering the correct mapping for several nodes. As

such, he is likely to be interested in the probability of success in identifying a set of

|µ0| seed nodes. The point of view of a user is, on the other hand, that he himself

should not be vulnerable to the attack, and other users are more or less irrelevant to

his. Also, a user is rather interested in the failure probability of the attacker. This is

why I have focused on calculating failure probability of single users; however, based on

my analysis, attacker success rates could be also estimated.

The probability of failure of seeding for a node vtarn (with N = deg(vtarn )), based on

the previously discussed notation and assertions, can be described by using the law of

total probability as

P ("failure") = P (Y = 0) +
N∑
y=1

P ("failure"|Y = y) · P (Y = y). (5.1)

The �rst member is the probability of the case where the user has 0 identities in

the exported graph, i.e., all of his edges are anonymized and thus removed. The other

part is the sum that incorporates General Assertion 2, namely that the user can create

at most as many identities as many contacts he has. The results for the di�erent sub-

models of user behavior mainly deviate in the de�nition of the conditional probability

P ("failure"|Y = y). Note that the formula for the sum may slightly also di�er in

some cases, e.g., in that of the basic model, where it does not include probabilities for

Y = 1, as in that case the attack should not fail, as the original identity is impeccably

preserved in all cases.

In the general case, the conditional failure probability P ("failure"|Y = y) can be

unfolded as

P ("failure"|Y = y) =

=
∑
∀X

P ("failure"|X1 = x1, . . . , Xy = xy) · P (X1 = x1, . . . , Xy = xy),

(5.2)

where X = (x1, . . . , xy) represents a given layout for identity separation. Failure
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probability can be furthermore characterized depending on the seeding method and

the identity separation submodel.

5.1.3 Clique-Based Seeding Method

The �rst passive seeding method that required no background knowledge, was in-

troduced in [2]. First, the attacker picks a 4-clique from Gsrc, then computes the degree

of each vertex and the number of common neighbors for each pair of nodes. Next, he

looks for similar 4-cliques with similar values (within a factor of 1 ± ε) in the target

graph. The error factor is considered for mapping each vertex (in the case of degrees)

and each pair of vertices (in the case of common neighbor counts). This can be further

generalized for k-cliques.

Structural modi�cations within the cliques are thus disallowed; identi�cation fails

if any of the edges are removed from the clique. While the original algorithm compares

common neighbor counts as well, the following analysis shows that even these two

criteria can be violated e�ectively with identity separation (i.e., the following is a

lower bound for the failure probability).

Although here only the failure probability of a single node is de�ned, but for a

clique it can be calculated simply by giving the probability of the union of failure

events for members. Therefore the calculation does not take actions of other users in

the clique into account, meaning that it is assumed that they neither perform identity

separation, nor anonymize any of their edges. If we take these e�ects into account,

the failure probability would be higher in most cases, and at least equal, since other

users could also destroy the clique or change the degrees of the vertices thereof, making

identi�cation less probable.

Preliminary Naïve Analysis on 4-cliques

The goal of this preliminary analysis is to determine the possible e�ect of identity

separation on cliques in the network. Cliques can be destroyed if:

• One of the members separates himself totally from the clique. This is equivalent

to the removal of the representing node.

• One of the members removes at least one internal edge from the clique.

• One of the members separates at least an edge from the clique (but this edge will

not be deleted).

I executed simulation experiments to determine how e�ectively identity separation

removes 4-cliques from the network. For the experiments, I sampled 10, 000 nodes from
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the Slashdot network containing 1, 816, 110 4-cliques, and 1, 000 nodes were sampled

containing 2, 102, 842 4-cliques from the Epinions network. For comparison, a full graph

of 100 nodes (with 3, 921, 225 4-cliques) was also included.

The basic model with uniform edge sorting probabilities and Y = 2 were used for

the simulation. We can de�ne a theoretical limit to show the expected number of

cliques a�ected by identity separation. Adding more privacy-enhancing functionality

to the simulation (compared to the basic model), such as edge and node removal, the

number of cliques would be furthermore decreased, closer to the theoretical limits.

Given a k-clique Ck = {v1, · · · , vk} ∈ Gtar, the probability if there are any identity

separations is

P ('id.sep. in Ck') = P (∃vi ∈ Ck : yi > 1) =

= 1− P (∀vi ∈ Ck : yi = 1) = 1− P k(Y = 1),
(5.3)

where yi denotes the number of identities created by vi.

Therefore, the expected number of cliques remaining intact can be calculated as

the expected value of the binomial distribution Nintact ∼ B(Ncliques, P
k(Y = 1)), where

Ncliques denotes the number of 4-cliques in the original graph. The expected value of

Nintact is

E[Nintact] = Ncliques · (1− P ('id.sep. in Ck')) = Ncliques · P k(Y = 1) (5.4)

The relative values of E[Nintact] with k = 4 are denoted in Fig. 5.1 as the ex-

pected number of cliques remaining intact by identity separation (denoted as Theoreti-

cal limit). It is possible that the clique remains a clique, but the probability of recovery

depends on further errors regarding the compared degree and common neighbor count

values.

According to the experiments, as the number of users who use identity separation

increases, the number of 4-cliques decreases fast and almost in the same pace for all

test datasets (see Fig. 5.1). For instance, in both test networks for P (Y = 2) = 0.2

the number of remaining cliques was almost halved: the percentage of intact 4-cliques

was 52.26% for the Slashdot sample, 51.27% for the Epinions sample, and 55.22% for

the full graph. It is also visible in Fig. 5.1 that graphs having more 4-cliques degrade

slightly faster, for a simple reason: usually several 4-cliques overlap in a single node,

and therefore splitting it causes the deletion of multiple 4-cliques. We can conclude the

naïve analysis is in that identity separation erodes network structure e�ectively, thus

it needs to be furthermore analyzed.

51



Chapter 5. Analysis of Identity Separation

0.0 0.1 0.2 0.3 0.4

|Vids|

0

20

40

60

80

100
P
e
rc

e
n
t 

o
f 

re
m

a
in

in
g
 c

liq
u
e
s

Slashdot 10k

Epinions 1k

Full 100

Theoretical limit

Figure 5.1: Simulation results (including the the-
oretical limit) show the degradation in clique
numbers in case of allowing identity separation.

5 10 50 250

deg(v tarn )

0.4

0.5

0.6

0.7

0.8

0.9

Fa
ilu

re
 p

ro
b
a
b
ili

ty

Bn(n, 0.5)

Sum of 5 Bn

Sum of 13 Bn

Figure 5.2: Failure probabilities in the realistic
model, with clique seeding, for di�erent distribu-
tions with Y = 2, for di�erent sizes of deg(vtarn ).

Modeling Clique-based Seeding

As identity separation can have di�erent e�ects on the resulting error depending

whether internal or external edges were separated or removed, this should be included in

the model. Node vtarn ∈ Vids is a user who is part of a k-clique Ck, and has N = deg(vtarn )

neighbors in Gtar, and therefore node vtarn has k−1 internal and n−k+1 external edges,

as seen from the viewpoint of the clique. For the inner edges, the distribution of the

edge sorting is described as P (X1 = x′1, . . . , Xy = x′y), with no prede�ned distribution

included (distributions are de�ned with the chosen model). For the outer edges, the

distribution is described similarly as P (X ′′1 = x′′1, . . . , X
′′
y = x′′y). X

′
i and X

′′
i are random

variables describing the number of edges between the ith identity and the members of

the original clique, and those between the ith identity and the neighbors of the original

node, respectively.

The clique based seeding involves an error parameter ε for the seed identi�cation,

and an error measure based on it: the compared node degree values need to match

within an error factor of 1 ± ε. Based on this, we can now de�ne an error measure

function that can be used in the calculation of the failure probability for node vtarn in

the clique Ck:

e(x′i, x
′′
i ) =

1 if (
x′i+x

′′
i

N
< 1− ε ∧ x′i = k − 1) ∨ x′i < k − 1

0 otherwise
(5.5)

where x′′i denotes the number of outer, and x′i the number of inner edges for a given

identity.

The original node degree value N , the clique size k, and the error parameter ε

are assumed to be known constants. The clique size and the error parameter are
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new attacker-dependent parameters, who can manipulate these in order to achieve

better results, and also several attacks with di�erent values can be executed for these

parameters, without any limitations.

Formula of Failure Probability for Clique Based Seeding

Here I provide the calculation of the lower estimate of failure probability for a single

clique. Fortunately, there are user settings of pi, where this is so high that even if the

user is member of multiple cliques, failure is yet expected to happen.

Continuing the elaboration of (5.2), probability P ("failure"|X1 = x1, . . . , Xy = xy)

can be calculated di�erently for two cases. First, we need to distinguish between

internal edges as X' = (x′1, . . . , x
′
y) and external edges as X� = (x′′1, . . . , x

′′
y), where

counts originally are respectively |X'| = k − 1 and |X� | = n− k + 1. In the �rst case

∀x′i < k − 1, the clique is always destroyed, since all edges are sorted in groups having

less than k − 1 edges, then Pclique("failure"|X ′1 = x′1, . . . , X
′
y = x′y) = 1 always. In the

other case, where ∃x′i = k − 1, Pclique("failure"|X ′1 = x′1, . . . , X
′
y = x′y) is calculated as

Pclique("failure"|X ′1 = x′1, . . . , X
′
y = x′y) =

= P
( ⋃
∀X′′

(X ′′1 = x′′1, . . . , X
′′
y = x′′y | e(x′i, x′′i ) = 1)

)
.

(5.6)

By knowing that these events are mutually exclusive, this equals to

Pclique("failure"|X ′1 = x′1, . . . , X
′
y = x′y) =

=
∑
∀X′′

(
P (X ′′1 = x′′1, . . . , X

′′
y = x′′y) · e(x′i, x′′i )

)
.

(5.7)

Therefore, in general for cliques, the failure probability for node vtarn with y identities

can be described as

Pclique("failure"|Y = y) =
∑

∀X′:@x′i=k−1

P (X ′1 = x′1, . . . , X
′
y = x′y)

+
∑

∀X′:∃x′i=k−1

P (X ′1 = x′1, . . . , X
′
y = x′y)

·
(∑
∀X′′

(
P (X ′′1 = x′′1, . . . , X

′′
y = x′′y) · e(x′i, x′′i )

)) (5.8)
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Analysis of the Basic Model

In this case, the basic model can be evaluated by using Multinomial distribution

as proposed in Section 3.5.5. The formula for failure probability can then be derived

similarly to (5.8) as:

PB
clique("failure"|Y = y) =∑

∀X′:@x′i=k−1

P (X ′1 = x′1, . . . , X
′
y = x′y)

+
∑

∀X′:∃x′i=k−1

(
P (X ′1 = x′1, . . . , X

′
y = x′y)

·
( n−k+1∑

x′′1=0

· · ·
n−k+1−

∑j=y−2
j=1 x′′j∑

x′′y−1=0

P
(
X ′′1 = x′′1, . . . , X

′′
y = n− k + 1−

j=y−1∑
j=1

x′′j
)
· e(k − 1, x′′i )

))
(5.9)

where
∑
x′i = k − 1 is in each sum. Using the formula and properties of the

multinomial distribution this can be simpli�ed as:

PB
clique("failure"|Y = y) =

1−
∑

∀i∈[0,...,y]

pk−1i +
∑

∀i∈[0,...,y]

(
pk−1i ·

·
( n−k+1∑

x′′1=0

· · ·
n−k+1−

∑j=y−2
j=1 x′′j∑

x′′y−1=0

P (X ′′1 = x′′1, . . . , X
′′
y = n− k + 1−

j=y−1∑
j=1

x′′j ) · e(k − 1, x′′i )
))

(5.10)

This can be further simpli�ed as:

PB
clique("failure"|Y = y) =

1 +
∑

∀i∈[0,...,y]

pk−1i ·

( ∑
x′′1+···+x′′y=n−k+1

((n− k + 1)!

x′′1! · . . . · x′′y!
· px

′′
1

1 · . . . · p
x′′y
y · e(k − 1, x′′i )

)
− 1

)
(5.11)

Then, the overall failure probability can then be derived easily. We know that for

PB
clique("failure"|Y = 1) the neighborhood of the node would remain the same, and

therefore would not introduce any error in the seed identi�cation. Using this, the
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Figure 5.3: Basic model parameter analysis of
deg(vtarn ): PB

clique("failure"|Y = 2) as a function
of p1, with �xed k = 4 and ε = 0.05 with di�erent
values for degree.
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Figure 5.4: Basic model analysis of ε:
PB
clique("failure"|Y = 2) as a function of p1, with

�xed k = 4 and deg(vtarn ) = 100 with di�erent
values for ε.

probability failure formula now can be deduced from the general formula (5.1), with

the exclusion of the case for Y = 1.

Fig. 5.3 describes how failure probability changes with di�erent values for parameter

N , while parameters Y = 2, k = 4 and ε = 0.05 are �xed. The results have several

interesting consequences. First of all, it can be seen that the failure probability is

conveniently high even for small N -s (e.g., N ≥ 10). Secondly, users are given a

relatively wide range of options for making their identi�cation fail. Even if they use

identity separation for just two identities, and the probability of using the second

identity is small, the failure probability still remains high (e.g., for p1 = 0.1, N = 100:

PB
clique("failure"|Y = 2) = 0.949).

Fig. 5.4 describes how the failure probability changes in the function of ε while

parameters Y = 2, N = 100 and k = 4 are �xed. The curves do not deviate signi�cantly

for other N values either. The shape of the curve suggests that if a user adopts

identity separation in a reasonable way, the adversary cannot in�uence the success of

the seeding. According to the original paper [2], the value of ε should be around 0.05,

and a practical limitation of 0 < ε ≤ 0.1 applies. For these values, users should choose

p1 and p2 such that 0.2 ≤ p1, p2 ≤ 0.8 (with p1 + p2 = 1), because this marks failure

probabilities that are likely to be beyond the control of the attacker. Finally, I have also

analyzed the e�ect of clique sizes (parameter k), which turned out to have no notable

bias on the failure probability, even for di�erent neighborhood sizes (with ε = 0.05).

In general, it cannot be stated that using a larger number of identities will eventually

lead to higher failure probability. We can think of Y = 3 with p1 = 0.001, p2 =

0.001, p3 = 0.998 as a counterexample, where it is likely that the original node will

be almost preserved, and therefore can be re-identi�ed. However, during numerical
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analysis, I have found that in this model for a �xed pi, the failure probability for two

identities is the lower bound for failure probabilities with a higher number of identities

that include pi:

PB
clique("failure"|Y > 2) ≥ P ("failure"|Y = 2) (5.12)

I measured this to be true for Y = 3, Y = 4 and Y = 5, and it is likely to be true

for Y ≥ 6; I leave the formal proof as future work. However, if this can be proven to

be true in general, that would be important for two reasons. On the one hand, the

current analysis provides a lower bound for failure probability. On the other hand, it

could facilitate the estimation of the overall failure probability as well, as based on

(5.1) and (5.12) we can state the following (in the basic model):

PB
clique("failure") =

N∑
y=2

PB
clique("failure"|Y = y) · P (Y = y)

≥
N∑
y=2

PB
clique("failure"|Y = 2) · P (Y = y)

≥ PB
clique("failure"|Y = 2) · (1− P (Y = 0)− P (Y = 1))

(5.13)

To sum it up, we can conclude that if the users use identity separation rationally,

considering the in�uencing power of di�erent parameters as discussed, the attacker has

a low probability of identifying the nodes within cliques. This means that users need to

separate their contacts into larger, but not necessarily equally sized groups. Therefore,

this user behavior model can be suggested for users as a practical way to use identity

separation, since it o�ers powerful protection if applied widely throughout the network.

Analysis of the Realistic Model

In this section, I discuss the analysis of the realistic model, which allows the user

to make multiple copies of his contacts, beside also letting his to delete some of them.

Here I used the binomial distribution, a distribution re�ecting that it is likely that the

number of all contacts after the identity separation is similar to that before, i.e., a few

deletions and copies are likely, but major deviations are not. These distributions are

detailed in Section 3.5.5.

Accordingly to the given distributions and the generic formula for failure probability,

I have done the parameter analysis numerically. Its characteristics are similar to that

of the basic model, and the preliminary results are satisfactory for this model, too (see
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Fig. 5.2). We can conclude that the results are satisfactory even for small N 's in all

distributions under examination. However, it can also be seen that the higher variance

we have, the larger the failure probability is. For this model it should also apply, that

the higher number of identities one uses, the higher the failure probability should be

(with the restriction that the chances of duplication of edges is not too high).

5.1.4 k-top Seeding Method

In this section I provide another example how probabilistic identity separation

models can be used to calculate failure probability of seeding. Let us now consider

a seeding method that considers the top k nodes and matches them for seeding (e.g.,

[1, 14]).

We could state that the attack fails, if node vtarn falls out of the top k nodes after

adopting identity separation. In addition, it should be far enough from the top k

according to the degree-based ranking of the nodes so that even if the attacker tries

another parameter k′ > k (e.g., k = 50 and k′ = 200), he should not be able to �nd vtarn .

However, such a global matching of k nodes should not be feasible for large numbers of

k, otherwise this approach could be used for network alignment instead of propagation.

Based on a threshold κ limiting the largest expected size of k (P (k > κ) < ε), term "far

enough" can be de�ned depending on the network size and degree distribution. For

partial identities of vtarn ∈ Gtar, we can say that the attack fails if ∀vn\i : deg(vn\i) <

dborder where P (d > dborder) ' κ
|Vtar| , where P (d) denotes the degree distribution in Gtar

and dborder denotes the degree that separates a given proportion of high degree nodes

from the rest of the network.

Based on this, we can introduce a function measuring error as

f(xi) =

1 if xi < dborder where P (d > dborder) ' κ
|Vtar|

0 otherwise
(5.14)

Then failure probability can be calculated as

Ptop("failure"|Y = y) =
∑
∀X

(
P (X1 = x1, . . . , Xy = xy) ·

y∏
i=0

f(xi)
)

(5.15)

Regarding failure probabilities, the k-top seeding method has some signi�cant dif-

ferences compared to the clique based seeding. First, this seeding method only concerns

a handful of nodes of the network. Second, it is harder for a node to make the seeding

fail. This is for a simple reason: it is hard to decrease the degree of all partial identities

under the desired threshold. For example, for a top node with deg(v) = 1000 that uses
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(a) Failure probability for k-top with the basic
model, Y = 2.
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Figure 5.5: Failure probability in the k-top seeding method, in the basic model. Even with Y = 2, for
80.4% of the top nodes (165 ≤ deg(v) ≤ 311 with κ = 1000) have a signi�cant failure probability for
at least some settings (LJ66k network).

the basic model to have all node degrees under 300, should use at least Y = 4 to have

the chance to succeed. However, these rates can be enhanced when deleting edges are

also allowed (best model).

As an example, I have provided failure probabilities in the LJ66k network over the

top nodes κ = 1000 in Fig. 5.5. Fig. 5.5a shows that even with Y = 2, for 80.4%

of the top κ nodes (165 ≤ deg(v) ≤ 311) have a signi�cant failure probability for at

least some settings, and the lower node degree is, the higher failure probability values

can be measured. Fig. 5.5b shows how average failure probability values increase pro-

portionally with y1. As a conclusion, these examples shows how the formula provided

in (5.15) can be used to �nd the proper user strategy under the given circumstances.

However, it must be noted that this is a lower estimate of failure probability: if a node

still gets into the k-top that only means the possibility of re-identi�cation, which is not

necessarily to be successful.

5.2 Sensitivity Measurement of Propagation

In order to discover the strongest privacy-enhancing identity separation mecha-

nisms, I investigated the e�ciency of features in di�erent models against the Nar09

algorithm. Initially measurements for recording recall rates with di�erent perturba-

tion as shown in Table 3.1 shown that the algorithm seems to be more sensitive to

edge deletion than to node deletion, as the matrices for each dataset are not diagonal

symmetric. Thus, in the following experiments, I analyzed these features of identity

1Granularity for the measurements was p = 0.01 for Y = 2, and p = 0.1 for Y = 3.
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Figure 5.6: Experimental results using the basic identity separation model.

separation to see their e�ect separately.

5.2.1 Characterizing Sensitivity to the Number of Identities

First, I tested the Nar09 algorithm against the basic model with uniform edge sorting

probability on all networks having a ratio of users applying identity separation of |Vids| ∈
{0.0, . . . , 0.9}. For the selected users a �xed number of new identities were created

(Y ∈ {2, 5}). Results are summarized in Fig. 5.6, and while results for Y ∈ {3, 4} not
displayed, these can be easily interpolated.

Against my expectations, the basic model with Y = 2 and uniform edge sorting

probability turned out not to be e�ective in stopping the attack. For the Epinions and

Slashdot networks the recall rate mildly decreased until the ratio of privacy-protecting

users reached circa |Vids| = 0.5. For the LiveJournal graph the recall rate shows relevant

fault tolerance of the attack (probably because of network structure, see Fig. 4.4b),

e.g., 15.36% are still correctly identi�ed for |Vids| = 0.7. When participating users had

�ve new identities, recall rates dropped below 10% at |Vids| = 0.5 for all networks.

Edges sorting was also tested with a power-law distribution having Y = 5. These

experiments resulted in a slightly higher true positive rate, which is understandable:

if edges are not uniformly distributed it is more likely for an identity to have more of

the original edges than the others (with higher chances to be re-identi�ed). In another

comparative experiment I modeled a variable number of new identities with power-law-

like distribution with Y ∈ {2, 5} and uniform edge sorting probability. Results were

properly centered between cases Y = 2 and Y = 5 as the LiveJournal example shows

in Fig. 5.6a.

Although by inspecting recall rates the basic model seems ine�ective in impeding
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Figure 5.7: E�ect of edge deletion comparied to the basic model (Epinions dataset).

the attack, the disclosure rates yield better results. As shown in Fig. 5.6b, disclosure

rates are signi�cantly lower compared to recall rates2. From this point of view using

the basic model with Y = 5 and uniform edge sorting probability provides strong

protection for even a small ratio of applying users: the disclosure rate is at most 7.56%

when |Vids| = 0.1. By comparing the results of the two measures, we can conclude

that by using the basic model it is not feasible to repel the attack, however, by using a

higher number of identities the access of the attacker to information can be e�ectively

limited.

5.2.2 Sensitivity to Edge Deletion

For testing the Nar09 against additional edge perturbation by identity separation,

the realistic and best models were used with three di�erent settings in the experiments:

realistic model with minimal deletion, realistic model with random deletion, best model

with random deletion (see Section 3.5.5). I executed simulations for these models

with Y = 2, and found that recall rates strongly resemble results of the basic model

(although being slightly better); thus, these methods are also incapable of repelling

the attack on the network level (see Fig. 5.7a). Fortunately, disclosure rates are better

compared to the basic model, e.g., results for the Epinions network are depicted in

Fig. 5.7b. We can conclude that while these models are also incapable of stopping

large-scale propagation, they yet perform better in privacy protection.

2Note: as the disclosure rate is measured for ∀v ∈ Ṽids, results start from |Vids| = 0.1.
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5.3 Non-Cooperative Identity Separation

Here I analyze the limits of non-cooperative privacy-enhancing identity separation,

how these e�ect overall results.

5.3.1 Why the Use of the Basic Model with Y = 2 Should be

Reconsidered

While conducting the analysis, I found a case when the recall rate was notably

higher for users of identity separation (∀v ∈ Ṽids) compared to the overall recall (∀v′ ∈
Ṽsrc). For low values of |Vids| this di�erence in the recall was almost constant and

decreased for higher values (see values for regular seeding in Fig. 5.8).

Eventually, this turned out to be caused by the seeding strategy. Throughout my

experiments I used seeds that were not a�ected by identity separation, but after chang-

ing to mixed seeding with an equal ratio of seeds selected from Ṽsrc and Ṽids, while the

overall recall rate remained unchanged, the di�erence disappeared for the LiveJournal

and Slashdot networks, and signi�cantly decreased for the Epinions (examples showed

in Fig. 5.8). From the user perspective, the disclosure rates did not vary much by

changing the seeding strategy.

This �nding has an interesting impact for the attacker on choosing the seeding

strategy. Using a regular seeding mechanism is a natural choice, and building fault

tolerance into it against identity separation is not a trivial task. Therefore, by using

the natural choice of seed identi�cation, the attacker will also have a higher rate of

correct identi�cation for nodes protecting their privacy. However, I note that the

seeding mechanism should be chosen with caution; as the analysis in Section 5.1 shows

that some seeding method are not resistant to identity separation.

The core message of this �nding for users aiming to protect their privacy is that

they should use higher number of new identities. As examples in Fig. 5.8 shows that

recall rates for users with Y = 5 was lower than the network average, and even if an

attacker uses a mixed seeding mechanism it is also counterproductive. This advice is

further strengthened by the �ndings of the Grasshopper algorithm. Using the basic

model with Y = 2 against this robust attack, neither network, nor user privacy could

be preserved e�ciently (see Fig. 5.9a). However, using the best model with Y = 5

minimization of data disclosure can be achieved (see Fig. 5.9b).

5.3.2 Recall Rate Comparison for Multiple Models in Parallel

In previous experiments di�erent identity separation models were used homoge-

neously. I investigated if the observed di�erences remain when multiple settings are
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Figure 5.8: Comparison of recall rates for all nodes and ones using identity separation shows that
using a low number of new identities leads is counterproductive and leads to higher recall rates than
average (Y = 2). Therefore users should be advised to use a higher number of new identities as results
suggest.
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Figure 5.9: The Grasshopper algorithm is quite robust against features of identity separation. For
the basic model with Y = 2 the attack could not be defeated even with |Vids| = 0.9. In case of the
best model with Y = 5, Grasshopper can be defeated only with a very large fraction of participants;
however, for the adopters of the technique user privacy is preserved in this case.
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Figure 5.10: (a) When multiple models are used in parallel, users get results accordingly to the model
they use. (b) Even the best model with Y = 5 cannot repel the attacker on a network level, just by
involving the majority of users; however, privacy-enhancing users still achieve low disclosure rates.

allowed in the same network. The following models were used on the given proportion of

users: basic model with uniform edge sorting probability (34% of Vids), realistic model

with random deletion (33% of Vids), best model with random deletion (33% of Vids).

Results show that for the users of each setting was proportional to results measured in

previous experiments, for instance, users of the best model achieved the lowest recall

and disclosure rates. Simulation results in the LiveJournal graph are plotted in Fig.

5.10a for demonstration (results were measured for homogeneous groups consisting of

nodes having the same setting).

5.3.3 Applying Patterns from the Twitter dataset

For measuring real-life like user behavior with identity separation-like features, I

proposed two strategies to apply real-life patterns from the Twitter dataset, to see how

the use of these patterns can eliminate re-identi�cation (from dataset mentioned in

Section 3.5.1). In the case of the Twitter patterns strategy, for a given node patterns

were randomly selected from nodes with a similar degree, which determines the number

of new identities and how edges need to be sorted. For an example, see Table 5.1a.

In the case of the Twitter circle strategy, �rst the number of new identities y was

calculated of node v in coherence with the distribution of new identities observed in

the data, where Y was limited for rational considerations (see Table 5.1b). Next, the

pattern is selected randomly, with a probability proportional to its relative frequency

in the dataset we used. Patterns distributed similarly as in Table 5.1a.

Simulation experiments proved these strategies to be less useful against de-

anonymization. However, this is not surprising, as there is no edge deletion, but only
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P (X0, X1) x0 = 0 x0 = 1
x1 = 0 0.00 0.16
x1 = 1 0.82 0.02

(a) Edge sorting distribution for a
node v′ picked from the Twitter sam-
ple, to be used with the Twitter

patterns strategy. The node had
deg(v′) = 50, yv′ = 2.

y = 2 y = 3 y = 4 y = 5
P (Y = y) 0.49 0.27 0.14 0.08

(b) Distribution of the number of new identities ap-
plied from the Twitter dataset. Such distributions
were used with the Twitter circle strategy.

Table 5.1: Characteristics for applying patters from the Twitter ego network dataset.
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Figure 5.11: User patterns in the Twitter egonet dataset are closer to the worst model, thus also
results in the Epinions dataset are worse than the basic model.

duplication, using these patterns resemble using the worst model. Examples of my

results are summarized for the Epinions dataset in Fig. 5.11. In addition, it should

also be considered that these results show a higher level of privacy-protection based

on the Twitter dataset than expected in reality (with the same patterns). Users were

reckoned to have a separated identity for each circle in the dataset, however, this is an

overestimation of the use of identity separation.

5.3.4 Applying the Best Model with Y = 5

While none of the previously analyzed defense strategies can e�ectively stop the

attack, identity separation can reduce disclosure rates e�ectively. It also turned out

that increasing the number of new identities has a powerful impact on the disclosure

rate, while edge perturbation has little, but notable e�ect. Therefore, from the user

point of view, the best model with a high number of identities seems to be a quite

e�ective setting for enhancing privacy.

I run the best model with Y = 5 on all test networks. Results show that even

this strategy cannot prevent large-scale re-identi�cation when only minority of users
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Figure 5.12: Comparison of advanced seeding methods against random.25. In most cases, using other
seeding measures did not lead to signi�cantly di�erent results.

apply the technique. Instead, for all networks the re-identi�cation rate constant

monotonously decreased as |Vids| increased (see Fig. 5.10b). Fortunately, the setting

had more convincing results for disclosure rates: even for |Vids| = 0.1 the disclosure

rates topped at 2.33%, but were typically around or under 1%. Disclosure values also

continued to fall as the ratio of defending users increased.

These �ndings are similar to experiments with the Grasshopper algorithm, where

also large adoption rates were required for protecting network privacy, although dis-

closure rates were equal or lower to 1.51% (see Fig. 5.9b). Results for Nar09 and Grh

both suggest that using the best model with Y = 5 is a feasible strategy for protecting

privacy individually against currently known modern attacks.

5.3.5 Using Di�erent Seeding Methods

In coherence with the discussion of Section 4.2, the used seeding methods should

also be analyzed as a part of the attacker model. Basically, I used the random.25

method, and compared others in order to see if those are more robust against the

perturbation caused by identity separation. The compared ones were the betwc.1,

random.1 and top (I refer these as the advanced seeding methods). For these only

a handful of seed nodes are enough for large-scale propagation. Here I also used a

constant seed size of a thousand nodes, similarly to previous experiments.

Results in the Epinions network (with basic model Y = 2) are show in Fig. 5.12a.

Only minor di�erences could be observed when using di�erent seeding methods. How-

ever, it should be noted that advanced methods seem to be a better choice when a

higher ratio of users apply identity separation (|Vids| ≥ 0.6). This was also true for

the recall rates in Slashdot network, and for the disclosure rates in both networks, but
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Figure 5.13: If the number of seeds is only 200 nodes (considered stable for |Vids| = 0.0), top turned
out to be more resistant against identity separation than random.25 (a). Probability measurements
on (b) show that for larger perturbation more seeds are needed for stable seeding, and this aspect
top is more redundant than the other. Experiments were run on the LJ66k dataset with basic model
(Y = 2) in both cases.

only when using the basic model with Y = 2.

In case when I modeled identity separation with the best model and Y = 5 (in any

of the datasets), or if I considered the LJ66k network with either Y = 2 or Y = 5,

recall and disclosure rates resembled the results shown in Fig. 5.12b. In these cases

the random.25 seeding method seemed to provide only slightly better results than the

others, but essentially there were no di�erences.

These results alone would not justify the use of seeding methods other than

random.25. However, when it is not possible to re-identify a large number of seeds ini-

tially, advanced methods should be considered. As Fig. 5.13a shows, the top method

was more robust against identity separation than random.25 when only 200 seeds were

available. Results with higher seed number are also plotted for comparison, and the

results are from the LJ66k dataset, using basic model with Y = 2. Here, top had

enough seeds even for large |Vids| values, while random.25 would need more nodes for

seeding as the level of perturbation increases

This is for a simple reason: the greater the level of perturbation is in the current

experiment, the more seed nodes are required to have stable seeding. In Section 4.2 I

showed that the top selection method needs signi�cantly less nodes for stable seeding

than the random.25 method. I demonstrate the connection between the number of

seeds and stability for various |Vids| in Fig. 5.13b. Each experiment was run 25 times

with di�erent random seed sets for balanced results. Here, we can consider seeding to

be stable, when the probability of large-scale propagation is approximately 1.0, and
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Figure 5.14: The random.25 method was tested with higher seed values on the LJ66k dataset against
di�erent levels of perturbation created by the basic model with Y = 2 and Y = 2. Higher numbers of
seeds led to better results when |Vids| was also large.

propagation can be considered large-scale when R(µ) ≥ 0.75 · Rmax, i.e., recall rate

reaches 75% the highest observed recall for the given |Vids|. By running measurements

with identical parameters and datasets with |Vids| = 0.0, in Section 4.2, I measured

the minimum seed set size required for stable seeding ca. 80 for top, and ca. 180 for

random.25 for the LJ66k network. This is coherent with current measurements.

Further corollary of this �nding is that another type of attackers should be also

considered: an attacker can search for a seed set consisting of a low number of nodes

on a trial-and-error basis until large-scale propagation appears. Even in this case, due

to the design of Nar09, the error rate is likely to be low. For example, I managed to

reach R(µ) = 27.88% (Rmax = 36.41%) with only 20 nodes selected by random.25 in

the LJ66k network (and had another similar case). Considering this aspect, another

type of attacker should also be considered who can successfully re-identify a large

fraction of nodes even if the majority users not used identity separation.

5.3.6 Increasing the Seed Size

Another possibility of the attacker to have better results is to use larger seeds sets.

Thus I tested the random.25 seeding method with higher number of seeds (2000 nodes)

on the LJ66k dataset against the basic model with Y = 2 and Y = 5. Results are shown

in Fig. 5.14a and Fig. 5.14b.

Increasing the number of seed nodes only helps when the seeding method is unstable

at the given perturbation rate (see Fig. 5.13b for details), e.g., when using random.25

with only 200 seed nodes in the LJ66k network (Fig. 5.13a). However, it must be

noted that a seed size of 2000 nodes is irrationally large in proportion to the overlap
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Figure 5.15: The e�ect of local cooperation
compared to the non-cooperative settings in the
LJ66k dataset.
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Figure 5.16: Local cooperation with di�erent
groups sizes (basic model, Y = 2) in two di�erent
networks. Even small groups sizes show signi�-
cant di�erence to non-cooperation.

between the anonymized and known datasets in these experiments. For example, in

the Y = 2 case the overlap size is just around 6000 nodes, which is only three times

larger than the seed size.

5.4 Evaluation of a Local Cooperation Scheme

Previous measurements showed that non-cooperative identity separation cannot

prevent the attack on the network level e�ectively. Therefore I investigated multiple

cooperative models, focusing on the analysis of local cooperation �rst.

Modeling a simple local cooperation scheme including a sizing parameter n can be

considered as follows. First a node is randomly selected, and then n − 1 nodes are

sampled from its neighborhood. Initially, I expected this scheme to provide similar

results as non-cooperative identity separation, due to a simple reason: the scale of the

e�ect of such cooperation is small and limited regarding from a global point of view.

Thus it should not a�ect the attack seriously.

Nevertheless, I evaluated this scheme for n ∈ {5, 10, 25} with the basic model with

Y = 2 and the best model with Y = 5, and results surprisingly showed signi�cant

progress compared to the non-cooperative case. Fig. 5.15 shows that having local

cooperation with identity separation (n = 10) decrease the required number of partic-

ipants for tackling the attack from |Vids| = 0.9 to |Vids| = 0.3 even with the simplest

model (basic, Y = 2). With the best model even less participants are enough, namely

|Vids| = 0.2 (here, disclosure rates were also similar in shape to recall).

Fig. 5.16 gives �ner-grained details how cooperation size n a�ects results. While

even having small sized (n = 5) cooperation improves results compared to the non-
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cooperative setting, and after the size of the local collaboration reaches a su�cient

value (here n = 10), further increases has a lighter e�ect (example given for n = 25).

5.5 Globally Cooperative Identity Separation

Introducing local cooperation improved results compared to the non-cooperative

identity separation. In the following experiments I experimentally examined if global

cooperation can provide further improvements regarding recall rates from the defending

point of view.

For global cooperation, I used measures of node importance to select which nodes

are reckoned to be cooperating, as these can suggest how important a node is for an

attacker. In the current scenario, such a property could be compared with how re-

identi�able a node statistically is within the network. Therefore I used two predictive

measures on re-identi�cation, LTAA and LTAdeg measures discussed in Section 4.1.

5.5.1 Global Cooperation Based on LTAA

In this section I evaluate an LTA-based cooperative method that considers involving

nodes that have low LTAA values.

Analysis of LTA-based Cooperation

First, I run simulated cooperation on the basic large datasets that were used in

previous experiments. In these measurements nodes using identity separation were not

selected randomly, but the ones that had lowest LTAA values. Thus |Vids| = 0.01 means

that 1% of nodes were selected to apply identity separation that had the lowest LTA

scores among all nodes (this is maintained for overlapping nodes).

First, I applied this scheme with the basic model (Y = 2, uniform edge sorting)

and also the best model (Y = 5, random edge deletion). Results are displayed in Fig.

5.17a. The �gure shows that in this case the attack fails even for a signi�cantly lower

number of users are involved. For example, when users were selected randomly in the

experiments, in the Slashdot dataset 60% of them needed to use identity separation

in order to defeat the attack, while in the cooperative case only |Vids| = 4% is enough

(basic model). For the LJ66k network, this was as high as 90% in the non-cooperative

case, while in the cooperative case for |Vids| = 15% recall rates drop as R(µ) < 7%.

Disclosure rates for the LJ66k network are displayed in Fig. 5.17b; I note that

disclosure rates are the quite promising here from the attacker point of view. It is

clearly visible from the �gure that disclosure rates are highest for the bottom LTA

nodes. I also included the recall rates for these nodes, that is R(µ) ≥ 95% when
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Figure 5.17: After targeting users with lowest LTAA values a signi�cantly lower number of users is
enough to stop the attack, e.g., the recall rate in the Slashdot network drops below 5% even when only
3− 4% of users participate (this is 50− 60% in the non-coordinated case). However, disclosure rates
are rather high compared to the non-cooperative case: high degree nodes using identity separation
are easier to be identi�ed even despite defensive measures.

|Vids| ≤ 5%, and remains rather high even after. This is likely because that identity

separated nodes retain strong similarity with their matches in the auxiliary dataset

causing one of the new identities always to be found. However, it is important to note

that the disclosure rates are less important in the cooperative case, as the goal of the

users here is to minimize recall rate.

In addition, the seeding method also plays a signi�cant role in this case as well

(similarly as described in Section 5.3.1). For a mixed seeding method recall rates

dropped for nodes using identity separation, while still staying high due to the ease

of identi�cation (as large nodes retain a large fragment of their �ngerprint even after

identity separation). For these reasons discussed above, disclosure rates stayed similarly

high to this case throughout the cooperative experiments.

Enhancing the Seeding Method Against Cooperative Defense

Similarly to experiments in the non-cooperative case, I compared the random.25

seeding method to others in order to measure their robustness against identity separa-

tion. Here, the betwc.1, random.1 and top was also used for comparison with a seed

set size of a thousand nodes. Additionally, I tested random.25 with larger seed set

sizes of 1250, 1500, 1750 and 2000.

Highlighted examples of the results of these experiments are shown in Fig. 5.18;

similar behavior were observed in other cases. Results indicated on the �gures clearly

show that the attacker has only a little control over the overall results: neither using
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Figure 5.18: The attacker has little control over results. Neither using other seeding methods (a), nor
increasing the seed set size (b) can signi�cantly improve recall rates. (examples from the Epinions
dataset, using LTAA based global cooperation)
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Figure 5.19: Experiments with low seed numbers;
recall dependency on seed set size is displayed in
the LJ66k dataset. These results also show that
lower seed numbers cause greater instability, too
(using LTAA based global cooperation).
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Figure 5.21: Re-identi�cation recall rates in various settings when participants cooperate according
to the degree-based global cooperation scheme.

di�erent seeding methods (Fig. 5.18a), nor increasing the seed set size could improve

recall rates signi�cantly (Fig. 5.18b).

The drop in the recall rate of random.25 after |Vids| = 0.05 in Fig. 5.18a is also

caused by the sensitivity to the number of seeds, which is further detailed with an

example in Fig. 5.19. In this cooperative case the seed stability also depends on the

number of seeds, similarly to the case of 200 seeds in Fig. 5.13b: with a higher number

of seeds, large-scale propagation can be achieved with a higher probability for each

perturbation settings (i.e., di�erent values of |Vids|). Thus, we can conclude that this

seed size dependency causes this minor di�erence between the results measured.

5.5.2 Degree-Based Global Cooperation

I also implemented global cooperation as having the top nodes committing identity

separation according to the given model (i.e., top |Vids| ratio of the network). Main

results displayed in Fig. 5.21a show that global cooperation is quite e�ective method

compared to the non-cooperative setting, local cooperation (comparison with LTAA is

discussed in the following section). For example, in the case of the Slashdot network

only 2% of the whole network needs to participate in order to stop the attack, which is

50− 60% in the non-cooperative case, and 20− 30% when local cooperation is applied.

Results in other datasets show similarly improved results.

Simulation were also run to see if a stronger attacker with enhanced seeding can be

more robust against identity separation, thus being able to achieve higher recall rates
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Figure 5.22: Comparison of results between cooperation organized by LTAA and LTAdeg. Dashed
lines represent results for LTAA, and solid ones are for LTAdeg.

(for results see Fig. 5.21b). According to the simulations, even an attacker having a

higher quality seed set or with a larger one cannot commit a signi�cantly more robust

attack, as the required minimum of participants only increase from 13% (random.25

seeding method) to 18% (top) in the LJ66k network. Experiments also showed that if

the attacker has less seed nodes, much lower participation rates can cause the attack to

fail. For example, if the attacker only has 200 seed nodes with random.25 |Vids| = 0.04

is enough for forcing low recall rates as R(µ) ≤ 5%.

5.5.3 Comparison of Degree- and LTA-based Schemes

For the comparison of the results of LTAA and LTAdeg organized cooperation I

plotted the results on the same �gures as shown in Fig. 5.22. For �rst sight, the �gure

shows that LTAdeg is slightly better in general, but interestingly this is not the case for

the LJ66k dataset, where LTAA also had better correlation rates (see Section 4.1.2 for

more details). We could think this might be true in other networks, but interestingly

this is not the case.

Accordingly to Fig. 5.23, LTAA could produce better results in the DBLP80k

dataset, but not in the FB30k dataset (in the PKC30k dataset none had obviously

better results). However, results in the FB30k network, has two interesting character-

istics showed in Fig. 5.23b. First, recall rate was initially as high as R(µ) ' 79.5%,

which is more than the double than in other networks (second highest value was mea-

sured in the PKC30k network with R(µ) ' 48%). Second, this network proved to be

rather robust against identity separation, as even global cooperation with Y = 5 could

hardly decrease recall rates even with |Vids| = 0.4.

In simulation experiments of the Grasshopper algorithm I checked if the minimum
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(a) Results from the DBLP80k network.
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(b) Results from the FB30k network.

Figure 5.23: Comparison of results between cooperation organized by LTAA and LTAdeg in further
datasets. The advantage of LTAA in networks having a similar degree distribution to LJ66k cannot
be stated generally.

adoption rate can be decreased with global cooperation (see Fig. 5.20). Compared to

the results of the non-cooperative case, we can observe progress, and the Grh attack

proved to be more robust than Nar09. However, di�erences between results of LTAA

and LTAdeg are not outstanding, thus we can conclude that each method is feasible

for tackling the Grasshopper attack by using a globally cooperative strategy (results

of LTAA is only subtly better).

5.6 Characterizing the Importance of Top Nodes

Cases analyzed until this point are based on the assumption that all users cooperate

to stop the attack. However, in a real life scenario it is likely that only a subset of the

selected users would participate. Furthermore, the high degree nodes are the ones that

are more likely to refuse cooperation, e.g., because such users do not want to divide

their audience. On the contrary, we could expect that these users to use less visible

solutions, such as decoys to hide their more privacy-sensitive activities.

Thus I analyzed how it a�ects the overall results if a given percent of the top degree

nodes do not cooperate with others. Results are shown in Fig. 5.24 for both global

cooperation strategies. Compared to when all users participate, it turns out that even

if only 1% of top degree users denies cooperation a signi�cantly larger ratio of users

need to be involved for successfully tackling the attack.

Comparing the results of non-cooperative behavior to the cases when a large fraction

of top nodes avoid (global) cooperation, the importance of top degree nodes becomes

clear. For example, in case of LTAA driven global cooperation (see Fig. 5.24a), when

5%, 10% of top degree users are excluded from identity separation, overall results get
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Figure 5.24: Results of globally cooperative identity separation when di�erent ratio of top degree
nodes are excluded (basic model with Y = 2 in both cases). Even slight slight absence of top degree
nodes favors heavily the attacker.

quite close to the non-cooperative case. Furthermore, for |Vids| ≥ 0.4 recall rates rise

above the non-cooperative case.

Results are similar for degree based cooperation (see Fig. 5.24b), as this scheme

reacts also sensitively even to loosing the top 1% of participants. If top 10% rejects

cooperation, results are roughly equal compared to the non-cooperative setting. Results

get even worse than the non-cooperative case after |Vids| reaches 0.40− 0.45.

Due to these �ndings, I revisited the non-cooperative setting by running measure-

ments when top nodes are excluded similarly. Results are shown in Fig. 5.25, detailing

both recall and disclosure rates in the Slashdot network. The �gure clearly shows that

the commitment of top nodes is also essential when there is no cooperation. In this

case I also provided details on disclosure rates, and for the best model these rates stay

rather low regardless of the proportion of top users refusing participation.

5.7 Conclusion

In Section 5.1 I provided examples for analyzing the failure probability of global

identi�cation of nodes, which is usually used for seeding (or initializing) the propagation

phase of algorithms such as Nar09. In particular, I have shown how failure probability

can be estimated for two seeding methods. I provided suitable strategies that could

be adopted against k-top seeding which concerns high degree nodes (e.g., basic model

Y = 2 with p1 = 0.5), and also a �exible strategy set could be applied for tackling

clique based seed identi�cation (e.g., 0.2 ≤ p1, p2 ≤ 0.8 with the basic model and

Y = 2). Similarly to these results, models proposed in Section 3.5 can be used for the

evaluation of other seeding and node re-identi�cation methods, also.
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Figure 5.25: Recall and disclosure rates in the Slashdot network with the non-cooperative setting.
When top degree nodes do not participate, results signi�cantly decline; however, using Y = 5 pays o�
even in those cases, as the disclosure rates are very low, around 0.4 − 1.0% (see Disclosure rates on
(b)).

Subsequently in Sections 5.2 - 5.6 I analyzed the e�ect of identity separation on the

propagation phase. Non-cooperative identity separation turned out to be ine�ective in

tackling the attack on the network level, while from a personal point of view the best

model (with random deletion and Y = 5) showed to be e�ective in hiding personal

information. I furthermore analyzed several cooperative methods, which turned to be

e�ective in tackling the attack even when almost a small group of users adopt identity

separation. However, I concluded in Section 5.6 that cooperation only works e�ciently

when top nodes also adopt the technique.

This �nding leads to a notable conclusion over all results in this chapter, i.e., iden-

tity separation depends on a strong constraint to defeat structural re-identi�cation

successfully. From the user point of view this means that the best strategy to seek

individual privacy protection (e.g., using the best model with a large number of identi-

ties) as high degree nodes may not participate. This is also for the bene�t for the whole

network, as the more users adopt the technique the more likely that de-anonymization

would fail over the network. Due to this �nding, in the following work I focused on

researching individual strategies that enable a higher level of information hiding.
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Evaluation of Individual Strategies

'All human beings have three lives: public, private, and secret.' (Gabriel

García Márquez)

Previously I have shown that it is hard to defeat the attack on a network level.

Therefore, for a single user, it is more desirable to focus on preserving individual

privacy, even if network privacy is breached. In this chapter, I analyze individually

applicable strategies that require no cooperation, but can be expected to provide strong

privacy.

In Section 6.1 I analyze if a small number of participants (or even theoretically a

single person) can use identity separation to achieve disclosure rates similar to the cases

when a larger fraction of users adopted the technique. Then, in Section 6.2, a decoying

technique is introduced that allows for selectively hiding information from the prying

eye of an adversary, as aforementioned methods did not allow determining which iden-

tity should be perceived more sensitive than others. In Section 6.3, I show an example

how Nar09 can be modi�ed to �nd even multiple identities, and with simulations of this

modi�ed attack I characterize lower estimates for the �nding probabilities of identities.

In Section 6.4 I provide analysis of techniques which can have theoretical guarantees

on privacy. One of these techniques is based on a k-anonymity variant �tting the current

context, and the other is a novel technique proposed �rst in our work in [J1]. Finally,

I conclude in Section 6.5.

6.1 Can Small Groups and Individual Users Protect

Their Privacy?

When looking for individual privacy-enhancing strategies for identity management,

�rst we need to know if a small users or a single user can use identity separation

to preserve privacy. In case of the current measurements, this means that it should
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Figure 6.1: In the search of the most e�ective privacy-enhancing strategies when applied by a few.
Recall and disclosure rates in the best model is quite competitive, even when only a handful of users
apply identity separation in such a way (left), but also if only a single users protects his privacy that
way (right).

be tested that if a node applies identity separation then disclosure rates should stay

low. Therefore, I also examined disclosure rates for cases when participation rates

|Vids| were low such as 1h of Vtar, meaning only a few tens or around a hundred of

users using identity separation from Ṽtar. As seen in Fig. 6.1a, experiments resulted in

approximately constant disclosure rates for all models. Due to the low number of users,

simulations were run 15 times on each dataset; yet visible variability for |Vids| < 0.01

is likely to be due to the small sample sizes of nodes.

Furthermore, I analyzed the case when only a single user uses identity separation

(best model with random deletion) or a decoy identity. Within these experiments 20

di�erent perturbed datasets were created in which only a single user was chosen to be

using privacy protection measures (with the constraint of deg(vi) ≥ 30). The attack

algorithm were run with 15 di�erent seed sets on each. (N.b. this is only a hypothetical

measurement, as within these cases the di�erence delta is only a single node, this could

be found very e�ciently if the public identity of the node is known in Gsrc.)

Results are summarized in Fig. 6.1b. For the nodes using identity separation

the disclosure rate was somewhat proportional with the number of identities used in

all networks (decoy related experiments are discussed in the following Section 6.2).

Therefore we can conclude that even if only a few users use the best model with

Y = 5, their privacy is protected as the attacker can reveal only a few percent of

sensitive information, but for controlled information hiding the use of the decoy model

is advised, which provided the best results.
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6.2 Using Decoys: Placing the User in the Decision-

Making Position

Strategies discussed so far work on statistical basis, and lack user control: the

user cannot decide what he wishes to hide from the attacker. Regarding an attacker

capable of achieving large-scale re-identi�cation this limits the possibilities of the user in

protecting his data. For evaluating a simple scheme that put the user into the position

of control, I propose a simple method by utilizing decoy identities. Methods used in

real-life situations can be adapted to hypothetical attacker strategies and to the type

of information for hiding, e.g., using structural steganography for hiding nodes [13];

however, in forthcoming section I propose more sophisticated strategies.

The decoy strategy on nodes vi ∈ Ṽtar were applied if deg(vi) ≥ 30. This criteria

resulted in having a signi�cantly smaller set of applicable nodes, e.g., in LJ66k, even for

|Vids| = 0.9 meant only ∼ 11.2% of Ṽtar. In order to apply the decoy strategy, �rst we

need to create a decoy node vPi (public pro�le) representing non-sensitive connections

with the goal of capturing the attention of attacker algorithm. Node vPi is assigned 90%

of the acquaintances vi has. Next, a hidden node vHi is created having the rest 10%

of neighbors for modeling sensitive relationships, and an additional 10% that overlaps

with the neighbors of vPi .

Simulations with this method were run with 15 times on each generated perturbed

dataset. The decoy method showed promising results. From the attacker point of view

the algorithm achieved misleadingly high recall rates until large number of decoys ap-

peared (see Fig. 6.2a), while error rates constantly stayed lower than 5%. From the

user perspective, privacy-protecting nodes achieved of revealing little sensitive infor-

mation as shown in Fig. 6.2b, which is even lower than using the best model with

Y = 5 (compare results with Section 6.1 or 5.3.4). Recall rates were typically small

for hidden nodes, less than 0.25% within all test networks. The visible variability is

negligible, and likely due to small sample sizes, as only a few nodes used the decoy

method.

This simple method can be defeated when the attacker optimizes for this speci�c

user strategy. For instance the attacker may create a new algorithm that is always able

to discover both vPi and vHi , or at least one of them. In that case, given the background

knowledge, the attacker then may be able to distinguish between the discovered par-

tial identity nodes, and as a result, able to derive conclusions regarding the sensitive

attributes. This can be done by decreasing the certainty of the sensitive attribute;

methods such as k-anonymity can do that.
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Figure 6.2: The use of decoy nodes only a�ected de-anonymization when it was used in large-scales,
and only a tiny fraction of hidden nodes was re-identi�ed.

6.3 Measuring the Probability of Node Discovery and

Reversibility of Identity Separation

One of the drawback of the Nar09 algorithm, that it is not designed to �nd multiple

identities. Related to this question, it would be interesting to see how hard it is to

recover multiple identities which would signi�cantly increase disclosure rates. In order

to resolve these issues, I present a method for estimating the discovery probabilities

of nodes. This works with a slightly modi�ed version of Nar09 that provides lower

estimates of discovery probabilities (as other algorithm might work more accurately).

The drawback of Nar09 is that it can only assign a single identity of vn\i ∈ Gtar

to vn ∈ Gsrc as a match, and according to my measurements, the algorithm is quite

deterministic in this: if it gives µ(vn) = vn\i once, then it will yield the same match

with high probability in subsequent runs (see Fig. 3.3 in Section 3.4); thus we would

not have any information on the �nding probability of other identities.

In order to circumvent this problem, I committed the following modi�cation to

Nar09. For a given node vtarn , measurements were run iteratively for ∀vn\i ∈ λG(vn). In

each round ∀j 6= i : vn\j were removed, and then Nar09 were run 10 times. Node dis-

covery score S(vn\i) are monitored through the experiment for each separated identity.

This resulted in an accurate lower estimation how easily each identity can be found;

obviously, this can be topped by future algorithms or attackers using a wider range of

auxiliary information than topology.

In the experiments, these measurements were run on perturbed datasets of two

types, that were derived for all three networks (resulting in six datasets). In the �rst

case I applied the basic model with Y = 2 (uniform edge sorting), and in the second

80



Chapter 6. Evaluation of Individual Strategies

100 50 0 50 100
Re-identification frequency of v1  (%)

100

50

0

50

100
R

e
-i

d
e
n
ti

fi
ca

ti
o
n
 f

re
q
u
e
n
cy

 o
f 
v 2

 (
%

)

random.25

192

28
38

top

213

43

43

(a) For the case of using two identities (Y = 2),
re-identi�cation frequency was measured by ini-
tializing with the random.25 and the top meth-
ods. The �gure shows that results depend on the
seed method used by the attacker, as in the case
of the top method re-identi�cation rates were
higher and results were more consistent. As it
is shown, identity separation could be reversed
certainly only in less than 15% of all cases.

v1 v2 v3 v4 v5

vi

100

50

0

50

100

R
e
-i

d
e
n
ti

fi
ca

ti
o
n
 f

re
q
u
e
n
cy

 o
f 
v i

 (
%

)

22/300
(∀i :vi≥0)

6/300
(∀i :vi 0)

mean value

(b) Seeding method random.25 was used on the
datasets with Y = 5. Nar09 could re-identify
correctly identities only in 7.3% of all cases (with
no error), and in 2% re-identi�cations were false
matches (with no correct ones). The �gure shows
results having the values in the score vector in a
descending order; corresponding values are con-
nected with lines. Marker sizes are proportionate
to the number of cases we had.

Figure 6.3: Results for �nding partial identities. In both cases 100 identities were selected from the
Epinions, Slashdot and the LJ66k networks having (a) Y = 2 and (b) Y = 5 separated identities. The
�gures indicate the relative frequency of �nding each identity.

case I applied the best model with Y = 5 (random deletion) for |Vids| = 0.1. Next,

I randomly selected 100 nodes from all six datasets having exactly Y = 2 or Y = 5,

and run the aforementioned simulations regarding the selected nodes. The results are

summarized in Fig. 6.3.

For testing the e�ect of seeding also, I used random.25 and the top seeding methods

for the re-identi�cation of users having two identities. Fig. 6.3a shows that results

depend on the seed method, and the top method produced more consistent results,

resulting in more cases when both identities were always found (14.33% of all). While

the random.25 method had less of such cases (12.6%), it was able to �nd both identities

for more nodes, but not consistently (17.6%). All in all, identity separation could be

reversed approx. 15% of all cases, which ratio is worth considering.

The best model setting with Y = 5 provided more privacy friendly results. The

modi�ed Nar09 (initialized with random.25) could correctly re-identify identities only

in 7.3% of all cases, and in 2% re-identi�cations were false matches. In the current

experiments, no mixed cases could be observed, where some identities were correctly,

and others were falsely identi�ed several times (i.e., for vtarn : ∃vn\i, vn\j that S(vn\i) <

0, S(vn\j) > 0). These results shed further light on the reason behind why identity

separation with 5 identities produced good results in previous measurements: these

cases have very low re-identi�cation rates and even if there is correct one, only a
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fraction of the identities are likely to be found. To be exact, the probability that a

partial identity was found at least once was 2.83% (S(vn\i) > 0), and only 1.72% of

identities was always found (S(vn\i) = 10).

These results indicate that using �ve identities is strong enough against naive at-

tackers (using Nar09). However, this is problematic: the user rarely knows the whole

network, and results can also depend on the used seeding method, which cannot be

certainly known apriori to the attack. Thus, it would be rational to limit the required

user knowledge to a two-hop neighborhood for the measurements, but unfortunately,

using only such a limited knowledge, I managed to succeeded in approximating these

probabilities only in small networks (e.g., few thousand nodes), which cannot be con-

sidered lifelike. Fortunately, one does not necessarily need to know these probabilities

in order to have signi�cant protection (such as the ones proposed in the subsequent

sections).

These measurements are also interesting from an adversarial point of view, too.

Theoretically the attacker can also work along the modi�ed version presented here:

run the modi�ed version of Nar09 once, then after �nding an identity, it is removed

from the network, and the attack is run again. This could be iterated until there is no

match for the selected node. After �nding all such matches identity separation could be

(partially) reversed. According to my measurements (shown in Fig. 6.3), with Nar09,

this can be done only to a very small fragment of the nodes using identity separation,

but this �nding can open an interesting line of future work.

6.4 Advanced Strategies for Protecting Individual

Privacy

Using the best model or even the proposed simple decoying scheme can statistically

provide some privacy protection, but have no guarantees, e.g., a stronger attacker in the

future using a more advanced algorithm or obtaining a better background knowledge

could �nd the proper identity regardless of user e�orts. In previous sections I have also

shown that cooperative identity separation techniques are e�cient from the network

point of view, but require the cooperation of high degree nodes, which cannot be

guaranteed, and likely to fail in many cases.

Therefore, the need emerges for analyzing non-cooperative techniques being able to

provide privacy guarantees on an individual level. The �rst technique I discuss is k-

anonymity [36], a simple model that is able to provide a given level of privacy limited

by parameter k. In case of k-anonymity, the user aligns one of his identities to its

neighbors for hiding the assigned sensitive attribute in an anonymity set size of k. I
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Figure 6.4: The k-anonymity and the y-identity models illustrated by examples on the karate network
[71]. Colors represent privacy sensitive values published in the sanitized network.

propose a novel technique called y-identity that is based on the idea that the user can

create y new identities and hide the sensitive information in one of those randomly,

resulting in an anonymity set size of y (analogously to the parameter k in k-anonymity).

These two approaches are presented in Fig. 6.4 on the karate network [71]. The

original karate club network is shown on the left, resembling a sanitized network, having

the colors representing hypothetical sensitive attributes of nodes (which are otherwise

inaccessible). In case of using identity separation with k-anonymity (middle of Fig.

6.4), the sensitive attribute of node v18 assigned to new identity v35 is now protected

with P (S = 'blue') = 1
6
, as there 5 other nodes with the same structural �ngerprint

fNar09 = {v9, v14}. For using the y-identity model (right of Fig. 6.4), if the attacker

can even reveal all partial identities related to v18 (which are v18, v35, v36), the sensitive

attribute can be guessed with P (S = 'blue') = 1
3
. Please also note that here y-identity

is used in combination with k-anonymity, as node v35 is also part of an anonymity set.

While the subtle di�erences are highly visible in this example, this should not be

the case in real-life scenarios, as the background knowledge of the attacker should

strongly di�er from the sanitized datasets. In the case of the y-identity model, even

if the attacker could reveal the fact that λG(v18) ⇒ {v18, v35, v36}, the attacker could

only learn a distribution P18(S) of the sensitive attribute. This distribution can be

harmonized with P (S), the distribution over the whole network, to have the attacker

learn nothing by this discovery.
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6.4.1 Evaluation of k-anonymity

The de�nition of k-anonymity is based on the concept of quasi-identi�ers, which

are constructed from attributes of a data entity (e.g., user as a database row or a web

browsing agent). Attributes of a quasi-identi�er are not reckoned as explicit identi�ers,

but being used together can enable identi�cation. For example, based on 1990 US

Census data, Sweeney showed that 87% of the US population can be uniquely identi�ed

with the quasi-identi�er of {5-digit ZIP, gender, date of birth} [72].

De�nition 3. k-anonymity. A dataset is k-anonymous if for all entries there are at

least k-1 other entries with the same quasi-identi�ers [36].

Despite it has been shown that the concept of k-anonymity is inappropriate for

anonymizing data with high dimensionality [73], it is applied and analyzed in many

contexts even for the sanitization of social network structural data [74]. There are

also known weaknesses of k-anonymity, for example that despite of anonymization the

attacker can still learn information as the distribution of the sensitive attributes in the

k-anonymous groups can signi�cantly deviate from the global distribution. Subsequent

models aim to patch this vulnerability, such as l-diversity and t-closeness [75].

I �nd using overall network anonymization methods unrealistic as they require con-

sent and interaction on the behalf of the service provider. Due to this reason, I analyze

a method for applying k-anonymity individually to tackle structural re-identi�cation

attacks (which might be later replaced with advanced methods like t-closeness). As

discussed earlier, re-identi�cation algorithms such as Nar09 compare nodes to their

friends-of-friends (the 2-hop neighborhood), and therefore the concept of k-anonymity

to can be extended to identity separation if the quasi identi�er, or the �ngerprint

function fNar09(·), of a node is based on his neighbors.

De�nition 4. (k, 2)-anonymity. A user vn ∈ G is (k, 2)-anonymous if there are at

least k-1 other (non-adjacent) users having exactly the same neighborhood, i.e.,

∃Ak = {vi : ∀vi ∈ V 2
n , Vi = Vn} → |A| = k,

where Vi denotes the neighbor set of vi, and V 2
i denotes the neighbors-of-neighbors of

vi.

This de�nition can be extended to allow edges between the members of the

anonymity set Ak. In this case only the edges going out of Ak need to be identical,

and the internal structure need to be a subgraph that is a symmetric graph. Before

extending the de�nition, �rst my goal was to test if the simpler de�nition works.

Therefore I have constructed an algorithm (Alg. 1), called K-AnonymizeNode, for

�nding (k, 2)-anonymous settings for users planning to apply identity separation. The
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(b) These experiments indicate that the �ndings
discussed related to (a) are also true for other
networks even for di�erent sizes. It is additionally
shown that if we increase k the situation rapidly
develops into an even worse scenario.

Figure 6.5: (k, 2)-anonymity with edge modi�cation in action. Results shows this method is not
feasible as an individual privacy-enhancing strategy due to the great diversity in network structure.

algorithm assumed to know the network structure in a 2-hop distance; in the description

I noted this knowledge as graph G. Beside parameter k the algorithm also takes an

input of c that gives the desired neighborhood size of the new identity. Then the

algorithm seeks if there are k two-hop neighbors that have exactly c common neighbors

with the user. If there are no users to propose, the algorithm seeks alternatives where

new friendships need to be created in order to meet the criteria of (k, 2)-anonymity.

With K-AnonymizeNode, I measured the possibility of (k, 2)-anonymity in the three

networks on 1, 000 nodes randomly sampled from each (with deg(v) ≥ 30) for c ∈
{3, 5, 10, 20}. The results of my experiments are shown in Fig. 6.5. I selected results

from Epinions dataset with k = 2 for explanation in Fig. 6.5a. While in almost half of

the cases with c = 2 it was possible to achieve anonymity without adding edges, this

was rather not possible for larger values of c. Similar results can be observed in other

networks, and also when analyzing whether this property di�er as the network size

change � see Fig. 6.5b. For greater (and practical) values of k achieving anonymity

required adding even more edges if at all it was possible to reach.

Therefore, I concluded that (k, 2)-anonymity is not a valid option for individually

protecting privacy, as the structure of social networks is not making such techniques

feasible. As a continuation of the research, I analyzed an alternative method called

y-identity. However, this is a not a surprising result. It has been previously shown that

in general, k-anonymity fails when there is a high dimensionality in the data [73]. This

is obviously true for social networks, and has been the feature exploited in the line of

85



Chapter 6. Evaluation of Individual Strategies

de-anonymization attacks capable of large-scale re-identi�cation [2, 76]. The current

�nding reveals that individually using this technique is also a hard problem.

Algorithm 1: (k, 2)-anonymity with edge modi�cation. It takes as input: the graph structure G, a
node vi selected for identity separation, c denoting the number of connections to anonymize, and
parameter k of k-anonymity.

1: procedure K-AnonymizeNode(G, vi, c, k)
2: Calculate Vi, V 2

i

3: c′ ← c, Vk ← {}, Ek ← {}
4: while c′ ≥ 1 and |Vk| = 0 do
5: κ← {} . Groups having c′ common neighbors with vi
6: for all vj ∈ V 2

i do

7: Vi∩j ← Vi ∩G.nbrs(vj)
8: if |Vj| = c and |Vi∩j| = c′ then
9: κ[Vi∩j]← κ[Vi∩j] ∪ {vj}
10: end if

11: end for

12: for all κ[Vi∩j] if |κ[Vi∩j]| ≥ k − 1 do
13: if c = c′ then . k-anonymity without modi�cation

14: Vk ← κ[Vi∩j]
15: break

16: end if

17: ψ ← {} . Get new neighbors related to the k-group

18: for all vj ∈ κ[Vi∩j] do
19: Vj\i ← G.nbrs(vj) \ Vi \ κ[Vi∩j] \ {vi}
20: for all vl ∈ Vj\i do
21: ψ[vl]← G.nbrs(vl) ∩ κ[Vi∩j]
22: end for

23: end for

24: η ← {} . Filter applicable groups and neighbors

25: for all ψ[vl] do
26: for all γ ⊆ ψ[vl] if |γ| = k − 1 do
27: η[γ]← η[γ] ∪ {vl}
28: end for

29: end for

30: if ∃η[γ] that |η[γ]| ≥ c− c′ then
31: pick η[γ] where |η[γ]| ≥ c− c′
32: Vk ← γ
33: Ek ← η[γ]
34: break

35: end if

36: end for

37: c′ = c′ − 1
38: end while

39: return Vk, Ek . Existing and new neighbors for k-anonymity

40: end procedure
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6.4.2 Analysis of the y-identity Model

Owing to the failure of k-anonymity led to the proposal and analysis of the y-

identity method. Here, the user creates y new identities and randomly assigns the

privacy sensitive information to one of the identities randomly. Parameter y is used

in a similar sense as k in the k-anonymity model is used: this parameter bounds the

privacy the user can have. It is assumed the user is rational and optimizes for the best

applying privacy-preserving settings, thus he would always choose a single identity

for storing the sensitive value among all identities in all datasets; meaning that here

identity separation is not limited to a single dataset.

Such an attribute can be either sensitive personal attributes (e.g., religious or polit-

ical preferences), free-text pro�le information (e.g., link to a website) or the content the

user shares (e.g., wall messages). In real-life scenarios this process should be supported

by an identity manager software (e.g., Scramble is such a proof-of-concept utility [42]),

by which the user could be able to reveal the secret information for the selected audience

with ease. An important constraint for the attribute to be hidden is that alternatives

need to be credible to maintain plausibility, otherwise the attacker can easily rule out

false data and learn the sensitive one. As a result, for the attacker, the social network

platform and the other users separated identities would be represented as separate

users with di�ering attributes.

De�nition 5. y-identity. A users is considered to be acting according to the y-identity

model if he creates y separated identities (either in one or in multiple datasets), and

assigns randomly a privacy-sensitive attribute to only one of the identities, determined

by a given distribution.

In addition, instead of attacks targeting a single node (or a small group of nodes),

I consider mass-attacks that aim to re-identify thousands of nodes in some sanitized

networks, like attacks as Nar09 [2]. I assume that the attacker is rational, and aims for

revealing quality private information at large in two sequential steps. First, the attacker

uses a structural re-identi�cation algorithm for discovering the mappings between the

public identities of users and their separated identities in sanitized datasets (in Section

6.3 I provided an example for �nding multiple separated identities by utilizing Nar09).

Then, after �nding these mappings for a given user, the attacker makes a decision and

Figure 6.6: Subsequent steps the participants take within the y-identity model.
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either selects none, or picks one of the partial identities to be valid (i.e., learn the

sensitive information). This process is illustrated in Fig. 6.6.

Formal Description of the Attack

Focusing on a given user and the attacker, we can formally describe this process

similarly as a game; however, I did not always model it as a game (see the attacker

model for details). Therefore, the player set P contains the user and the attacker.

Initially, the user vn creates a total of y new identities (in a single or even in multiple

services) denoted as vn\i, and the one having the sensitive attribute denoted v?n\i. The

whole strategy set S can be de�ned as selecting one of the identities the user has,

either for storing the sensitive attribute (user) or for selecting it to be valid (attacker).

In some cases the attacker only has access to S ′ ⊂ S, limiting its possible decisions.

It is important to note that strategic steps are taken only once. The attacker could

repeatedly make decisions in several rounds; however, as he cannot verify the currently

accepted attribute, this would not contribute anything to the learning process itself.

The user decision is modeled with P (R = i) = ri, where
∑
∀i ri = 1 (n.b. this

includes the possibility of a deterministic decision, where ∃rj = 1). After these steps,

in some way, the attacker obtains some of the anonymous datasets of the networks that

contain these identities, and by using some background information run a structural

re-identi�cation algorithm to �nd all vn\i. I assume that the attacker only captures the

sanitized dataset after the user committed identity separation, and knows no informa-

tion about the identity separation process itself. At this point, attacker decisions are

modeled with P (Q = i) = qi, the probability for accepting the sensitive attribute of

vn\i to be valid. For the attacker we can allow
∑
∀i qi ≤ 1, as some attackers might not

accept any attributes to be valid at all, for instance, because all of them are in con�ict

the background knowledge of the attacker.

Finally, we can introduce utility values (or payo�s) denoted as U . Let denote u+n as

the utility for the user in case of avoiding a privacy breach (false information is learned

by the attacker), and u−n for private information leakage. Similarly, we denote u+A and

u−A for the attacker learning valid or false information. The example of considered cases

is provided in Table 6.1 for y = 2 identities within a single dataset.

Payo�s can be strongly asymmetric. For instance, a single node may not be very

User
v?n\1 v?n\2

Attacker
v?n\1 u+A;u−n u−A;u+n
v?n\2 u−A;u+n u+A;u−n

Table 6.1: Utility matrix (U) for the case of y = 2.
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important for the attacker (as being only one of hundreds of thousands), while the

targeted private value can be very important for the user.

Attacker Model

In the attacker model, we can de�ne two types of attackers:

1. Strong attackers, who are able to discover all y identities of a given user vn. The

attacker knows he has access to all identities of vn. As both the attacker and

the user knows all possible choices each other could make (both players know

S), a game-theoretic approach can be conveniently used for searching the best

strategies.

2. Weak attackers, who are able to reveal some of the identities (even all of them),

but are uncertain if there are any additional identities (e.g., as there might be

further unknown datasets that the adversary is unaware of). More formally, while

the user knows S, the attacker only has access to S ′ ⊆ S, and does not know

if S ′ = S. Although there are missing possible pure strategies of the user, this

case could also be formalized as a game with signi�cantly increased complexity.

However, we can also model the attacker as making decisions according to a given

distribution on the discovered identities. In this case, for searching the best user

strategy, I use an optimization approach for minimizing the expected privacy loss,

where the user is assumed to be able to approximate the attacker's probabilistic

decision function.

For example, the distribution used for decision making by the weak attacker type

can be determined by the background information they have (e.g., comparing the sen-

sitive attributes to the background knowledge or global statistics of the network), by

analyzing the validity of the information provided (e.g., consistency checking of sensi-

tive attributes of all vn\i with their neighborhood), or simply based on how the algo-

rithm works (as naive algorithms are quite deterministic in this for a given background

knowledge). In case of strong attackers, I assert that they always make a choice, i.e.,∑
∀i qi = 1.

As future work, it would be interesting to extend the attacker model with another

type of weak attacker who can assess the probability that the sensitive information is

stored in an identity that has not been found. Currently, this does not seem to be a

reasonable assumption, however, this might be a subject to change in the future. It can

be also interesting to consider the re-identi�cation algorithm as a part of the decision

making process (instead of an initialization), and to see how the whole process could

be analyzed as a game.
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Evaluation of Strong Attackers

I model this problem as a single-round game between the attacker and the user

(P), where none of the players know the steps the other might have taken before. This

identity partitioning game works as follows. The user assigns the sensitive information

to vn\i with probability ri (resulting in v?n\i). The attacker obtains the concerned

sanitized datasets, and by running a re-identi�cation algorithm, he �nds all identities,

and accepts the sensitive attribute of one of them with probability qi. Here the utility

matrix is a diagonal matrix with the size of (y × y), having values as (u+A;u−n ) in the

diagonal, and (u−A;u+n ) in all other places. Thus pure strategies S of the players, and

utilities U are as discussed before.

The Nash equilibrium [77] of this game is a pair of strategies when none of the

players can increase their payo� by modify only their strategy alone. It can be easily

concluded that no pure strategy equilibrium exists in this game. If the user constantly

chooses the ith identity as his strategy, the attacker can respond by choosing the corre-

sponding identity, modifying the payo�s as u+A;u−n favoring himself. Having any kind of

response of the user, the attacker could always have a response leading to an equivalent

situation.

Fortunately, John Nash have proven that in �nite games a mixed strategy equilib-

rium should always exist [78], and here I prove the exact probabilities of the mixed

equilibrium strategy.

Theorem 1. A mixed strategy Nash equilibrium exists in the identity partitioning game

(with a user having y separated identities), where the equilibrium strategy probabilities

are qi = 1
y
, ri = 1

y
(∀i).

Proof. In order for the strategy of the user to be part of a Nash equilibrium, the

expected payo� for each action of the attacker need to be indi�erent. Comparing the

expected payo� of the �rst strategy to all other strategies describes this criteria in the

form of y − 1 equations. These equations can be given as:

u−Ari +
∑
∀k 6=i

u+Ark = u−Arj +
∑
∀l 6=j

u+Arl, (6.1)

where i 6= j. We can additionally use
∑
∀i ri = 1 as the yth equation. Using the

latter, prior equations in the form of (6.1) can be simpli�ed as:

u−Ari + u+A(1− ri) = u−Arj + u+A(1− rj) (6.2)

Using all of these equations, we have now a linear system of y equations, with the

coe�cient matrix is:
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

u−A − u
+
A u+A − u

−
A 0 · · · 0 0

u−A − u
+
A 0 u+A − u

−
A · · · 0 0

...
...

...
. . .

...
...

u−A − u
+
A 0 0 · · · u+A − u

−
A 0

1 1 1 · · · 1 1


(6.3)

As all equations contribute a coe�cient that is excluded from the others, we have a

linear independent equation system. As we have y linearly independent equations and

y variables, this system has a solution.

Equations in the form of (6.2) can be reduced to

ri = rj. (6.4)

With
∑
∀i ri = 1 the only valid solution of the equation system is ri = 1

y
(∀i).

The equilibrium strategy can also be calculated for the attacker, which calcula-

tion will be identical due to the symmetry of the payo� matrix. Therefore, the Nash

equilibrium strategy is at when both parties use a mixed strategy with probabilities

qi = 1
y
, ri = 1

y
(∀i).

Theorem 1 proves the intuitive approach to be the most e�cient one somebody could

�nd against strong attackers: the best strategy is to use random, equal assignment

probabilities. However, as shown later, it is not necessarily also the best for other

types of attackers.

Evaluation of Weak Attackers

Here, I assume that the user can assess Pi, the discovery probabilities respectively

of vn\i (∀i ∈ [1, y]). I work with Pi in a general sense, but Pi can be derived at least of

two factors: the probability that the attacker can access the dataset that includes vn\i,

and additionally the probability of �nding that identity. (In case of strong attackers,

using these probabilities would not make sense, as the attacker is more likely to be able

to calculate and use these.) In Section 6.3 I shown how lower estimates with Nar09 can

be calculated for discovery probabilities within a single dataset. However, calculating

Pi values precisely can be a hard task in some cases; thus in such a case, I propose to

stick to the solution proposed for unknown attackers (see below).

Let us calculate the expected privacy loss. Let start with a speci�c case when the

attacker discovers some given identities of the user vn. The fact of the discovery is

stored in the discovery vector m (size of y), where mi ∈ m represents whether the ith

identity (vn\i) was discovered or not (mi ∈ [0, 1], mi = 1 indicating the identity was
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found, and vice versa). Then, the privacy loss depends if the sensitive information was

put into one of the discovered identities, and the right one is accepted as valid.

Generally, the attacker decision can even vary depending which identities were dis-

covered (i.e., based on m). Therefore, we can re�ne the attacker decision distribution,

and introduce distribution vector denoted q
m
, containing probabilities for a given in-

stance of m. For instance, the attacker may decide to choose uniformly between all

discovered identities leading to di�erent distributions depending on m. Here qmi ∈ qm
denotes the probability that respecting mi ∈ m the attacker accepts the sensitive

information stored in vn\i (n.b. mi = 0 implies qmi = 0).

The probability that the attacker obtains valid information in this case is ri · qmi for

each discovered identity. Then we can describe the expected cost of privacy loss for a

given m as:

u−n ·
(∑
∀i

ri · qmi ·mi

)
,∀i ∈ [1, y] (6.5)

As mi = 0 implies qmi = 0, and otherwise mi = 1, we leave mi out from the formula

in the following. The probability of having an instance ofm can be described as follows:

Pm =
∏
∀j

((1−mj) + (−1)(1−mj) · Pj),∀j ∈ [1, y] (6.6)

The expected privacy loss, iterating through the all available possibilities of m is

as follows:

Ew[un] =
∑
∀m

((∏
∀j

((1−mj) + (−1)(1−mj) · Pj)
)
·
(∑
∀i

ri · qmi
))
· u−n (6.7)

where i, j ∈ [1, y].

However, this formula leads to an interesting advice regarding the best user strategy.

Theorem 2. Given a weak attacker with known q
m

vectors (for all m), a set of pure

strategies S ′ ⊆ S exists which should be used in order to minimize the expected privacy

loss Ew[un]. Strategies in S ′ can be used either as pure strategies or as mixed strategies.

Proof. The formula in (6.7) can be rewritten in the following way:

Ew[un] = u−n ·
∑
∀m

(
Pm ·

∑
∀i

ri · qmi

)
= u−n ·

∑
∀i

(
(
∑
∀m

qmi · Pm)︸ ︷︷ ︸
αi

·ri
)

(6.8)
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Here term αi is a known constant, thus we seek the minimum value of a linear sum

with non-negative coe�cients. This value is minimal when:

∑
∀j∈argminj αj

rj = 1, (6.9)

which means one of the following cases:

• If | arg minj αj| = 1. Setting rj = 1 where j = arg minj αj, which is the equivalent

of using a pure strategy.

• If | arg minj αj| > 1. Setting
∑
∀j∈argminj αj

rj = 1, which is the equivalent either

of using multiple speci�ed strategies in an arbitrarily mixed way, or selecting one

pure strategy from them.

The conclusion of Theorem 2 is that in the case of weak attackers (w.r.t. the

attacker model), in general it is advised to use pure strategies instead of mixed ones.

In some speci�c cases, when there are multiple, equally good choices, mixed strategies

can be based based on those strategies. I have provided examples on using this model

for assessing strategies in Appendix A.3.

The model can be further extended by allowing a third state with a positive prob-

ability r0, when the sensitive information is not included any of the datasets. This

extension would appear in decreasing all other ri values (∀i > 0) that appear are in

(6.7), implicitly decreasing the expected privacy loss value, too. Introducing such a

state would mathematically suggest that one should maximize r0, which is consistent

with the common sense saying that if you want to have maximal privacy do not publish

any sensitive content.

Most Likely Scenario: Attacker Strategy Unknown

In case of the k-anonymity setting, ideally (in Section 6.4.3, I discuss why this is

not often the case), the expected privacy loss is

Ek[un] ≤ u−n
k
, (6.10)

as according to the k-anonymity de�nition there should be at least k entities with

the same quasi-identi�er (including the user). The more of such entities there are, the

more Ek[un] is likely to decrease.

Now, let us seek an appropriate user strategy for the y-identity model against

unknown attackers. From this strategy, we can reasonably expect at least a similar
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level of expected privacy loss compared to k-anonymity. In order to have that, I

propose to use the equilibrium strategy ri = 1
y
; the following part proves why that is

an appropriate choice.

Theorem 3. Given the attacker model but with no restrictions to the attacker type,

using ri = 1
y
(∀i) as a mixed strategy has a threshold for the expected privacy loss as

E[un] ≤ u−n
y
.

Proof. In order to satisfy the theorem, the following criteria needs to be satis�ed for

strong and weak type of attackers:

Es[un] ≤ u−n
y

and Ew[un] ≤ u−n
y
. (6.11)

The expected privacy loss in case of strong attackers can be easily calculated, and

it satis�es this criteria as it is:

Es[un] =
u−n
y
. (6.12)

Let us check the expected privacy loss for weak attackers by substituting ri = 1
y
to

(6.7):

Ew[un] =

(∑
∀m

(∏
∀j

((1−mj) + (−1)(1−mj) · Pj) ·
∑
∀i

qmi

))
· u
−
n

y
(6.13)

However, due to
∑
qmi ≤ 1, an upper estimate can be given when

∑
qmi = 1:

Ew[un] ≤ u−n
y
·
∑
∀m

(∏
∀j

((1−mj) + (−1)(1−mj) · Pj)
)

(6.14)

Due to the construction of m, the sum adds up all possible combinations of Pj and

(1− Pj) (∀j), which eventually sums up to 1. Therefore we have:

Ew[un] ≤ u−n
y
, (6.15)

which, with (6.12), satis�es the criteria for the theorem according to (6.11).

Theorem 3 shows that despite generally pure strategies are proposed in case of weak

attackers, it is yet worth following the equilibrium strategy proposed against strong

attackers, as the expected privacy loss would still have a feasible higher bound.
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6.4.3 Comparison of k-anonymity and y-identity

In the k-anonymity model, there were k seemingly identical users (as they are

structurally equivalent), therefore choosing one can be approximated with the same

probability 1
k
. While the expected loss of the y-identity model can be upper bounded

with the expected loss for k-anonymity, for some identities the risk can be signi�cantly

higher than compared to others. Let us demonstrate this on a simple example. Let

us suppose there is a user who has y = 5 identities, which have di�erent discovery

probabilities as ∀i ≤ 4 : Pi � P5. The user then randomly assigns the sensitive

attribute to one of the identities with the same probability, r = 1
5
. However, while

vn\5 also has r as the other identities, getting v?n\5 is a risky business: due to the

high discovery probability it has, it is very likely that even a naive attacker could

compromise the privacy of the user vn.

These kind of risk can be easily mitigated if Pi values are known. For instance

by creating multiple identities for arti�cially establishing k-anonymity with a lower

k setting for the related identities; e.g., doubling the identity (k = 2) for vn\5 by

introducing a structurally equivalent vn\6 but with di�erent sensitive attribute.

Or, if possible, k-anonymity could be established by aligning partial identities to

their neighborhood. The di�erence here to Algorithm 1 is that parameter c would be a

constraint de�ned by the neighborhood, not chosen by the user. Fortunately, according

to my measurements described in Section 6.3 simply using a high number of identities

can help to keep all Pi values signi�cantly low.

However, there is a serious problem with the k-anonymity model that I managed to

eliminate in the y-identity model. As in the k-anonymity model it is not the user who

controls sensitive values, this can cause problems. For example, if there are m users in

the k set with the same sensitive attribute, the probability of privacy loss increases from
1
k
up to m

k
. Generally speaking, the if the attacker has an apriori general distribution

on the possible values of the sensitive value, this can be �ne-tuned by the distribution

observed in the k set of users. In the y-identity model the user is allowed to set an

arbitrary distribution for the sensitive values where such problems can also be taken

into account.

6.5 Conclusion

In this section I discussed identity separation from an individual point of view:

how this technique can be used to minimize personal information disclosure. I have

shown that using a relatively high number of identities and deleting a low fraction of

edges (best model with random deletion, Y = 5) provide a statistically appropriate

protection in case of the state-of-the-art attack, Nar09: even regarding recall rates
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for privacy-defending users or the chanches the attacker has for recovering multiple

identities of a user. I have also proposed a simple algorithm where decoy identities

are used to bait Nar09. This technique is the �rst where the user has some control in

choosing which identity the attacker should �nd.

However, the attacker can adopt his algorithm to the discussed techniques. There-

fore, my goal was to provide strategies that have guarantees regarding what the adver-

sary can discover. As possible additional improvement, I analyzed an applied variant

of k-anonymity, and found that this model cannot be implemented e�ectively in the

current context due to the diversity of network structure. As an alternative, I proposed

the y-identity model, which introduced several improvements compared to k-anonymity,

beside the fact that it can be applied e�ectively within the context of our discussion.

I also introduced a reasonable attacker model for the problem, and proved that even

if the attacker type is not known (as this is likely to happen in real life) and the user

acts according to the proposed strategy, the expected privacy loss will be lower or

equal compared to the case when k-anonymity can be ideally applied. I additionally

discussed that the y-identity model �xes a serious vulnerability of k-anonymity.

Finally, it should be mentioned that the y-identity model can be combined with

the k-anonymity model. This can be done similarly as provided with the example in

Fig. 6.4, i.e., new identities created within the y-identity model can be chosen in a way

to have k-anonymity with some of their neighbors-of-neighbors. This could provide

additional privacy, however, it heavily depends on the structure of the neighborhood

of the node if the techniques can be combined or not.
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Applications and Future Work

7.1 Application of New Results

The goal of my work is to �ll the gap on protecting structural information in social

network based services, by providing a deep analysis of a technique that intuitively is

capable of tackling such attacks: identity separation. However, adopting the proposed

strategies manually is di�cult, and users can not be expected to manage several partial

identities on their own. As there are also several technical issues to be handled in

parallel, identity management should be supported by an identity management tool,

implemented as a browser extension or as a standalone application. For example, such a

software could be providing anonymous access to the concerned service; e.g., including

the use of anonymous web browsers [79,C9] in case of web-based social networks.

Beside, there are additional important features, such as providing a uni�ed user

interface for managing information sharing via partial identities, support for inviting

users for cooperation, and having crypto protocols implemented which are necessary

for operating privately. Designing such a system is possible and feasible, but a complex

engineering and research task; the detailed elaboration is beyond the scope of this work.

However, the design of such a system could heavily utilize results of my work; I provide

some insights below how.

Results of my work showed that forcing the adoption of such an identity manage-

ment tool in a top-down fashion has risks: if top nodes do not cooperate the privacy

vulnerability of the whole network increases. Therefore dissemination of such a tool

should be done for all participants, and personal bene�ts and incentives should be

emphasized. I have shown that there are several suitable strategies that could work

on a personal level, such as using a relatively high number of separated identities and

hiding some edges. Based on results, local cooperation seems to be a suitable strategy

for promotion, bene�cial both for participants and the network. I have also shown

that node degree and LTA can be used for assessing privacy risks, which can help in
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motivating users to adopt identity separation; however, in future work, these need to

be normalized and transformed into objective measures.

Many people use social networks with false identities or under pseudonyms that

are not related to their personal identity; while many others maintain multiple pro�les

for di�erent activities. This shows a need for identity management, and I believe that

there is an even greater market gap for tools that allow maintaining a valid pro�le and

friend list available only for the desired audience, while keeping everyone else away

from accessing sensitive information. Many tools can help in hiding content and pro�le

information, but for a single exception (in [1]), there are no evaluated proposals for

hiding structural meta-data. Results described in this dissertation can help within

these cases, where content is hidden with tools such as Stegoweb [C5], and graph data

is obscured according to the proposed strategies (e.g., best model with high number of

identities). In addition, companies could also use identity separation in their software

(for managing identi�ers as MAC addresses) or for social network sanitization.

7.2 Future Work

In my work I found several interesting issues that should be investigated as future

work. One of the core concerns is related to reversing identity separation. The simple

scheme I provided in Section 6.3 could reverse identity separation in small fraction

of all cases; this could be increased with further modi�cations. In addition, machine

learning techniques could also be put to reverse identity separation, schemes such as

proposed by Danezis and Sharad [37].

It would also be interesting to analyze further settings of the evaluation I provided.

Within the settings I used in my work only the sanitized dataset had identity separation,

while the background knowledge was a regular social network. Strategies need to be

proposed to cases where the auxiliary information may also contain identity separation

(n.b. as the identity separation process is assumed to be done secretly, such background

knowledge could only reveal hidden attributes in the identity separated anonymous

network; it would not allow linking private properties to real identities). It would also

be interesting to see how the identity separation model could be extended when adding

edges for deception is possible, or a larger proportion of edges can be deleted.

While my work utilized simple game theory, it could be investigated if this analysis

method could be used to evaluate network protection schemes, i.e., extending the

analysis to the whole network at the cost of increasing complexity signi�cantly. In

addition, the re-identi�cation attack could also be part of the game under consideration.

Further research should also reveal how objective individual privacy assessment can

be done with LTAA and node degree.
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Conclusion

In this dissertation I analyzed structural re-identi�cation attacks, and evaluated

identity separation, which can be reckoned as a gradually adoptable, client side privacy-

enhancing technology that could remedy the status quo.

First, I provided new details of the state-of-the-art attack. While measuring

anonymity is an easy task for global identi�cation nodes, it is not trivial for attacks

capable of large-scale re-identi�cation of networks. Therefore, I presented a way of con-

structing methods for measuring anonymity, and I have provided an exact measure that

could be used e�ciently to characterize the relative risk of re-identi�cation of nodes

within a given network. Besides I have also showed the importance of the initialization

of these attacks, and experimentally analyzed how di�erent seed selection algorithms

perform compared to each other. I highlighted signi�cant di�erences emerging even in

the same or in structurally divergent networks.

Second, based on behavior models I proposed, I analyzed how identity separation

can tackle the problem of re-identi�cation. I presented the formula of failure proba-

bility for two seeding methods, and I analyzed using these formulas how di�erent user

strategies can be used to avoid re-identi�cation. Results proved the major proportion

of possible settings of identity separation to be e�ective. The method of evaluation

can be used for additional global identi�cation (or seeding) methods to evaluate the

proposed privacy-protection technique in those cases, too. In the following part of my

analysis, I showed that if there are enough seed nodes, without cooperation, identity

separation is ine�ective in limiting the attack to smaller scales. At least information

leakage of nodes adopting the technique was su�ciently low. Then I evaluated mul-

tiple cooperation models, which showed that even when neighboring nodes cooperate,

network privacy can be preserved more e�ectively, and when globally important nodes

cooperate (e.g., the ones that are the most likely to be re-identi�ed), the number of

required participants becomes a fraction compared to the non-cooperative case. How-

ever, the majority of these nodes were hub nodes, and I have also showed that in all
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cases their participation is crucial to maintain anonymity in the network.

Third, due to the cumbersome protection of privacy of the network, I dealt with

strategies that focus on the protection of the individual user. I showed multiple strate-

gies that enable e�cient information hiding from adversaries using the state-of-the-art

algorithm. I also showed that using this algorithm it is hard to undo identity separa-

tion, which could only be done in a fraction of the cases, especially for users having

a larger number of identities. I have also dealt with a variant of k-anonymity that

could be used to have some guarantee on anonymity, however, I showed that it cannot

be e�ciently used against these attacks due to network diversity. In order to redress

the problem, I introduced the y-identity model, and proved that there are suitable

strategies enabling privacy protection with statistical guarantees.

Overall, I believe my results �ll a signi�cant gap in the research of privacy-enhancing

technologies against structural re-identi�cation attacks, as are only a very few contri-

butions proposing (and analyzing) user centered approaches, that could be applied

to existing services. These results can be used to formulate the core principles for

designing privacy-enhancing systems which support identity separation in social net-

work based services. As there are already known individual uses of identity separation

(e.g., separating business and private identities), and also a considerable number of

privacy-conscious users, I believe that there would be a potential demand for such a

software.

In addition, these result can serve as a basis for further research as attacks evolve.

While I proposed strategies that go beyond the capabilities of the state-of-the-art at-

tack, there are certainly a variety of practical approaches that remained for future

research. Personally, I think it would be important to �nd solutions that provide both

theoretical guarantees while they are also easy to use; however, that might be harder

than it �rst sounds.

My results also provide interesting insights for the research community. Protecting

privacy is hard in general [39]: for many types of applications, it is hard to �nd an

acceptable trade-o� between the level of privacy and utility. As in my work I focused

on user-centered client-side solutions, I could a�ord neglecting utility in the hope of

achieving a sound level of privacy. Surprisingly, it turned out that even in this case

tackling the state-of-the-art attack is hard in general, and only individual privacy could

be protected e�ciently with identity separation. These �ndings should encourage other

researchers putting more emphasis on designing and evaluating individually applicable

privacy-enhancing solutions.
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Appendix for Further Details

A.1 Pseudo code for the undirected Nar09 algorithm

Algorithm 2: Pseudo code of the undirected Nar09 propagation phase [2].

Require: Θ . Threshold for accepting new matches.

1: function Propagate(Gsrc, Gtar, µ0)

2: µ← µ0

3: repeat

4: (µ,∆)← PropagateStep(Gsrc, Gtar, µ)

5: until ∆ = 0

6: end function

7:

8: function PropagateStep(Gsrc, Gtar, µ)

9: ∆← 0

10: for all vsrc ∈ Vsrc do
11: S ← MatchScores(Gsrc, Gtar, vsrc, µ)

12: if Eccentricity(S.values()) ≥ Θ then

13: vc ← pick(∀v′ ∈ S.keys() : S[v′] = max(S.values()))

14: Sr ← MatchScores(Gtar, Gsrc, vc, µ
−1)

15: if Eccentricity(Sr.values()) ≥ Θ then

16: vrc ← pick(∀v′′ ∈ Sr.keys() : Sr[v
′′] = max(Sr.values()))

17: if vsrc = vrc then

18: µ[vsrc]← vc

19: ∆← ∆ + 1

20: end if

21: end if

22: end if
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23: end for

24: return (µ,∆)

25: end function

26:

27: function MatchScores(Gsrc, Gtar, vsrc, µ)

28: for all vj ∈ Gtar do

29: S[vj]← 0

30: end for

31: for all vi ∈ Gsrc.nbrs(vsrc) if ∃µ(vi) do

32: for all vj ∈ Gtar.nbrs(µ(vi)) if @µ−1(vj) do
33: S[vj]← S[vj] + 1.0/sqrt(vj.degree())

34: end for

35: end for

36: return S

37: end function

38:

39: function Eccentricity(S)

40: . Returns the di�erence of the highest and the second highest values divided by the standard deviation.

41: return (max(S)−max2(S))/σ(S)

42: end function

A.2 Pseudo code for the Grasshopper algorithm

Algorithm 3: Pseudo code of the Grasshopper propagation phase [J2].

Require: Θ . Threshold for accepting new matches.

1: function Propagate(Gsrc, Gtar, µ0)

2: µ← µ0

3: repeat

4: (µ,∆)← PropagateStep(Gsrc, Gtar, µ)

5: until ∆ = 0

6: end function

7:

8: function PropagateStep(Gsrc, Gtar, µ)

9: ∆← 0

10: ωsrc ← {∀vsrc ∈ Vsrc : vsrc → 1.0} . Initialize weights.

11: ωtar ← {∀vtar ∈ Vtar : vtar → 1.0}
12: for all vsrc ∈ Vsrc if ∃µ(vsrc) do

13: for all v′src ∈ Gsrc.nbrs(vsrc) do

102



Appendix A. Appendix for Further Details

14: if ∃µ(v′src) ∈ Gtar.nbrs(µ(vsrc)) then

15: α← sqrt(vsrc.degree() ∗ µ(vsrc).degree())

16: ωsrc[vsrc]← ωsrc[vsrc] + 1.0/α

17: ωtar[µ(vsrc)]← ωtar[µ(vsrc)] + 1.0/α

18: end if

19: end for

20: end for

21: η = µ

22: for all vsrc ∈ Vsrc do . Seek new possible matches.

23: vtc ← BestMatch(Gsrc, Gtar, ωtar, vsrc, µ)

24: if vtc 6= None then

25: vsc ← BestMatch(Gtar, Gsrc, ωsrc, vtc, µ
−1)

26: if vsc = vsrc and (@µ(vsrc) or ∃µ(vsrc) 6= vtc) then

27: η[vsrc]← vtc

28: ∆← ∆ + 1

29: end if

30: end if

31: end for

32: µ = η

33: return (µ,∆)

34: end function

35:

36: function BestMatch(Gsrc, Gtar, ω, vi, µ)

37: S ← {}
38: for all v′i ∈ Gsrc.nbrs(vi) if ∃µ(v′i) do

39: for all v′j ∈ Gtar.nbrs(µ(v′i)) do

40: if v′j 6∈ S.keys() then
41: S[v′j]← 0

42: end if

43: S[v′j]← S[v′j] + ω[v′j]

44: end for

45: end for

46: if S.size() = 0 then

47: return None

48: end if

49: if Eccentricity(S.values()) ≥ Θ then

50: vc ← pick(∀v ∈ S.keys() : S[v] = max(S.values()))

51: return vc
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52: end if

53: return None

54: end function

55:

56: function Eccentricity(S)

57: return (max(S)−max2(S))/σ(S)

58: end function

A.3 Examples for Calculating the Estimated Privacy

Loss

In case of the y-identity model.

Table A.1: The qm vectors for the �rst ex-
ample (Section A.3.1) for allm = [m1,m2].

m 0 1
0 q[0 0] = [0 0] q[1 0] = [q1 0]
1 q[0 1] = [0 q2] q[1 1] = [q3 q4]

Table A.2: The qm vectors for the sec-
ond example (Section A.3.2) for all m =
[m1,m2].

m 0 1
0 q[0 0] = [0 0] q[1 0] = [1 0]
1 q[0 1] = [0 1] q[1 1] = [P1 P2]

A.3.1 Example 1: Minimizing Cost in a Simple Case

Within the following examples we assume that the cost u−n does not di�er for

identities, and for keeping calculations simple we use the cost uniformly as u−n = 1

(using a negative payo� would only modify our calculation in searching for maximum

points along the same principles).

Now we demonstrate the use of Eq. (6.7) in a simple example, in which there is a

user with two identities (y = 2) in a single dataset.

For all combinations of m, the qm vectors can be de�ned as in Table A.1. By using

Table A.1 and Eq. (6.7), the cost of privacy loss is characterized as:

Ew[un] = P1 · (1− P2) · r1 · q1 + (1− P1) · P2 · r2 · q2 + P1 · P2 · (r1 · q3 + r2 · q4) (A.1)

Next let us calculate user strategy for the case of q1 = q3 = q and q2 = q4 = 1− q,
i.e., the probability for the attacker choosing an identity is constant if it is discovered.

As we have only two identities in this example, the user decision can be modeled as

r1 = r, r2 = 1− r, leading to:
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Ew[un] = P1·(1−P2)·r·q+(1−P1)·P2·(1−r)·(1−q)+P1·P2·(r·q+(1−r)·(1−q)) (A.2)

This can be simpli�ed to:

Ew[un] = (P1 · q − P2 + P2 · q)︸ ︷︷ ︸
A

·r + P2 − P2 · q (A.3)

Eq. (A.3) reveals advised user strategies. As it is a linear function of r, thus the

minimum points can be calculated depending on A: it is either at r = 0 if A > 0, at

r = 1 if A < 0, or at any points if the function is constant (A = 0). The latter case

means that regardless of defense strategy there is no privacy breach. For example this

happens if q = 0 ∧ P2 = 0, i.e., vn\2 can not be found but the attacker never chooses

vn\1. Two similar cases exist: P2 = 0 ∧ (q = 0 ∨ P1 = 0), and P1 = 0 ∧ q = 1.

Given the calculation above, the user can compute his strategy for setting r if he

knows (or at least have an approximation) of the parameters.

A.3.2 Example 2: Minimizing Cost Against Naive Attackers

Let us consider a user strategy against an attacker that uses a naive algorithm with

a user having two identities (y = 2) in a single dataset. For this case we give the

example qm vectors in Table A.2. Here, for the sake of simplicity, we assumed that

P1 + P2 ≤ 1, but otherwise we could use P1

P1+P2
and P2

P1+P2
.

Modeling user decisions as r1 = r, r2 = 1 − r the cost of privacy loss can be given

as:

Ew[un] = (P1 − P2) · (1 + P1 · P2)︸ ︷︷ ︸
B

·r + P2 − P1 · P2 + P1 · P 2
2 (A.4)

The sign of B depends only on P1−P2, as the second term is always positive. Thus

when P1 > P2 the minimum point is at r = 0 and the sensitive information should be

always assigned to vn\2. For P1 < P2 it should be assigned to vn\1 (r = 1). Strategies

proposed by this model also follows the common sense: hide he information in the

identity that is harder to be recovered.

Let us take another simple example where the attacker decision is made accordingly

to a coin �ip in the case of m = [1 1]. This modi�es Table A.2 as q[1 1] = [0.5 0.5].

Here the expected cost of privacy loss is as follows:

Ew[un] = (P1 − P2)︸ ︷︷ ︸
C

·r + P2 −
1

2
· P1 · P2 (A.5)
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Having term C, the decision cases are the same as in the previous example with

B.
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