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Abstract. A system that protects the unlinkability of certain data items
(e. g. identifiers of communication partners, messages, pseudonyms, trans-
actions, votes) does not leak information that would enable an adversary
to link these items. The adversary could, however, take advantage of hints
from the context in which the system operates. In this paper, we intro-
duce a new metric that enables one to quantify the (un)linkability of
the data items and, based on this, we consider the effect of some simple
contextual hints.

1 Introduction

A number of privacy-preserving systems, such as mix networks, anonymous cre-
dential systems, and secret voting schemes, protect the unlinkability of certain
data items of interest. Mix networks, in particular, protect the unlinkability of
the messages that enter the network with respect to their recipients, the messages
that leave the network with respect to their senders, and, hence, the identifiers
of communicating parties with respect to communication sessions. Since their
introduction [9], a number of different mix network variants have been proposed
(see, for example, [4, 19, 26, 33, 34]), some of which have also been implemented
and deployed. Anonymous credentials, on the other hand, protect the unlink-
ability of the pseudonyms and the transactions with respect to the users they
correspond to. Since their introduction into the digital world [10], a number of
anonymous credential systems have been proposed (see, for example, [7, 8, 11–14,
29, 32, 38]). Secret voting schemes protect the unlinkability of votes with respect
to the users that cast them. Such schemes have evolved from ostracism [24] to
sophisticated cryptosystems; for an overview of the current state of the art the
reader is referred to [1].

The problem of analysing how well the above types of system protect unlink-
ability has received some attention during recent years. The focus of most works
is, however, on mix networks (see, for example, [2, 15, 16, 25, 27, 30]). This is not
surprising since mix networks provide the basis for anonymous communication



and are, as such, necessary for preserving privacy in a number of settings, in-
cluding the setting of anonymous credentials [17] and, sometimes, the setting of
voting systems (see, for example, [6]).

An adversary that wishes to link the protected items may use information
that is leaked by the system during its operation, or hints from the environment
in which the system operates. In contrast to existing literature, the focus of this
paper is on the latter. That is, we study a number of simple contextual hints
and their effect on unlinkability. Our results apply to all types of unlinkability-
protecting system, including mix networks, anonymous credentials, and secret
voting schemes. The rest of the paper is organised as follows. Section 2 introduces
the metric for unlinkability that is used throughout the paper. Section 3 examines
seven different types of hint and their effect on unlinkability. Finally, Section 4
concludes.

2 Measuring unlinkability

Consider a set of elements A and a partition π ` A of that set. Note that we do
not distinguish between π and the equivalence relation it defines. In the sequel,
we write a1 ≡π a2 if the elements a1, a2 ∈ A lie in the same equivalence class
of π, and a1 6≡π a2 otherwise. Let τ ` A denote a ‘target’ partition, chosen
uniformly at random. We use entropy as a metric for unlinkability. That is, the
unlinkability of the elements in a set A against an adversary A is defined as

UA(A) = −
∑

π∈Π

Pr(π = τ) log2(Pr(π = τ)),

where Π = {P : P ` A} denotes the set of partitions of A and Pr(π = τ)
denotes, in A’s view, the probability that π is the target partition τ . We further
define the degree of unlinkability of the elements in A against an adversary AH

with access to a hint H about τ as

DA(AH) =
UA(AH)
UA(A∅)

,

where A∅ denotes the adversary without any hints. That is, A∅ knows A but
has no information about τ . The set of candidate partitions for A∅ is there-
fore ΠA(A∅) = Π, i. e. the set of all partitions of A. The number |ΠA(A∅)| = B|A|
of such partitions, a Bell number [3, 35], is given by the recursive formula

Bn+1 =
n∑

k=0

(
n

k

)
Bk (1)

where B0 = 1.3 Since τ is chosen uniformly at random, the unlinkability of the
elements in A is therefore at its maximum, i. e. UA(A∅) = log2(B|A|) bits. This

3 The first few Bell numbers are 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147.



is the best case from a privacy point of view: all partitions of A are equally likely
to be the target partition τ .

Remark 1: In the setting of unlinkability-protecting systems, the goal of the
adversary is to identify a target partition from an ‘anonymity set’ of candidate
partitions. The fact that the information-theoretic metric we use for unlinkability
is identical to the metric introduced for anonymity in [18, 36], is therefore natural.

Remark 2: UA is a measure of the information that is contained in the prob-
ability distribution that the adversary assigns to the set of all partitions of A.
Since we assume that τ is selected uniformly at random, this distribution is, a
priori, uniform. However, a hint may enable the adversary to change his view
such that, a posteriori, some partitions are more likely than others. The hints
we consider in this paper enable the adversary to exclude a number of candidate
partitions (i.e. to reduce the size of the ‘anonymity set’) while the remaining
partitions remain equally likely.

Example: Consider an anonymous help line where a clerk offers advice over
the telephone. Suppose that, one day, the clerk receives four calls, denoted A =
{λ1, λ2, λ3, λ4}. Without any additional information, all B4 = 15 partitions of A
constitute valid ways to link these calls. Since without any additional information
all these partitions are equally likely, the unlinkability of the calls is, in this case,
log2(15) ' 3.9 bits, and the degree of unlinkability is log2(15)/ log2(15) = 1.

The clerk, however, has some additional information: he realised that the calls
λ1 and λ2 were made by men, and that the calls λ3 and λ4 by women (however,
the clerk does not know whether or not the same person called twice). This
hint effectively rules out all partitions where λ1 or λ2 appears in the same equi-
valence class as λ2 or λ4. In particular, only four partitions remain valid, namely
{(λ1, λ2), (λ3, λ4)}, {(λ1, λ2), (λ3), (λ4)}, {(λ3, λ4), (λ1), (λ2)}, and {(λ1), (λ2),
(λ3), (λ4)}. Since these four partitions are equally likely, the unlinkability of
the calls is, in this case, log2(4) = 2 bits, and the degree of unlinkability is
log2(2)/ log2(15) ' 0.52.

3 The importance of context

In this section, we examine seven types of hint that an adversary may obtain
from the operational context of the system. In particular, we examine hints
that reveal to the adversary (a) the number of equivalence classes in τ , (b) the
cardinality of equivalence classes in τ , (c) the fact that all equivalence classes in
τ have a given cardinality, (d) a ‘reference partition’ the equivalence classes of
which have exactly one representative in each equivalence class in τ , (e) a set
of element pairs that are equivalent in τ , (f) a set of element pairs that are not
equivalent in τ , and (g) a combination of (e) and (f).



3.1 The number of equivalence classes

Consider an adversary AH1 with a hint H1 = (α), where α ∈ N and 1 ≤ α ≤ |A|,
that reveals how many equivalence classes τ has. AH1 can restrict its attention
to ΠA(AH1) = {P : P ` A, |P | = α}, i. e. the partitions that divide A into
exactly α equivalence classes. The number of such partitions, which is a Stirling
number of the second kind [22], is given by

|ΠA(AH1)| =
1
α!

α∑

k=0

(−1)k

(
α

k

)
(α− k)|A|.

Since τ is chosen uniformly at random, the unlinkability of the elements in A
is UA(AH1) = log2(|ΠA(AH1)|) bits. Figure 1 shows the degree of unlinkability
DA(AH1) as a function of |A|.
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Fig. 1: Degree of unlinkability DA(AH1) of elements in a set A as a function of |A|, if
it is known that they must be divided into α equivalence classes.

How to obtain this hint: The number α typically is the number of users in
a system. In the setting of mix networks, this number may be known to the
operator of the network if users are required to register themselves or pay a
fee. Otherwise, obtaining such a hint may be tricky due to the possibility of
sybil attacks [20]. Whether or not it is straightforward to obtain this hint in
the setting of anonymous credentials depends on the application. In the case
of cash, for example, the financial institution is very likely to know how many
users participate in the system. Similarly, in the case of demographic or personal
credentials (such as age certificates or driving licences), the issuing authority is
also likely to know the number of users in the system. In the setting of secret
voting, there exist multiple ways to obtain the number of voters. The number of
casted ballots, for example, may be conclusive about the number of voters.



3.2 The cardinality of equivalence classes

Consider an adversary AH2 with a hint H2 = (β1, β2, . . . , βα), where
∑α

i=1 βi =
|A| and 1 < α < |A|, that reveals the sizes of the equivalence classes in τ . That is,
if τ = {T1, T2, . . . , Tα} ` A, H2 reveals that |T1| = β1, |T2| = β2, and so on. AH2

can restrict its attention to ΠA(AH2) = {P : P = {T1, T2, . . . , Tα} ` A, ∀1 ≤ i ≤
α, |Ti| = βi}, i. e. the partitions that divide A into exactly α equivalence classes
with cardinalities β1, β2, . . . , βα. The number of such partitions is given by

|ΠA(AH2)| =
|A|!∏α

i=1(βi!)
∏|A|

i=1(γi!)
(2)

where, for all 1 ≤ i ≤ |A|, γi = |{β ∈ H2 : β = i}| (for a proof see Appendix B).
That is, γi is the number of equivalence classes in τ that have cardinality i.
Since τ is chosen uniformly at random, the unlinkability of the elements in A
is UA(AH2) = log2(|ΠA(AH2)|) bits. It is perhaps worth noting that there exist
hints of type H2 which do not reveal any information as to whether any two given
elements are equivalent or not. This is in contrast to what is claimed in [37] (see
Appendix A).

As a special case, consider an adversary AH3 with a hint H3 = (α), where
α ∈ N divides |A|, that reveals the fact that τ has α equivalence classes of
the same cardinality |A|/α. AH3 can restrict its attention to ΠA(AH3) = {P :
P ` A,∀p ∈ P, |p| = |A|/α}, i. e. the partitions that divide A into exactly α
equivalence classes of equal cardinality |A|/α. The number of such partitions is
given by

|ΠA(AH3)| =
|A|!

α!((|A|/α)!)α
(3)

(for a proof see Appendix B). Since τ is chosen uniformly at random, the unlink-
ability of the elements in A is UA(AH3) = log2(|ΠA(AH3)|) bits. Figure 2 shows
the degree of unlinkability DA(AH3) as a function of |A|.
How to obtain this hint:4 In the setting of mix networks, this hint may be
obtained if it is known how many messages each user sends in each session. In
the setting of anonymous credentials, it is possible to obtain this hint if it is
known how many pseudonyms each user has. In the setting of secret voting, this
hint may be obtained if it is known how many ballots each user casted.

3.3 A reference partition

Consider an adversary AH4 with a hint H4 = (ρ), consisting of a ‘reference
partition’ ρ = {R1, R2, . . . , R|A|/α} ` A such that, for all 1 ≤ i ≤ |A|/α, |Ri| = α
(note that α divides |A|), and that reveals the fact that each of the equivalence
classes of τ contains exactly one element from Ri. AH4 can restrict its attention
to ΠA(AH4) = {P : P ` A,P is a transversal of ρ}, i. e. the partitions that

4 This paragraph refers to hints of both type H2 and H3.
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Fig. 2: Degree of unlinkability DA(AH3) of elements in a set A as a function of |A|, if it is
known that they must be divided into α equivalence classes of equal cardinality |A|/α.

divide A into α equivalence classes of equal cardinality |A|/α, where each class
contains exactly one element from each of R1, R2, . . . , R|A|/α. The number of
such partitions is given by

|ΠA(AH4)| = (α!)(|A|/α)−1 (4)

(for a proof see Appendix C). Since τ is chosen uniformly at random, the unlink-
ability of the elements in A is UA(AH4) = log2(|ΠA(AH4)|) bits. Figure 3 shows
the degree of unlinkability DA(AH4) as a function of |A|.
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Fig. 3: Degree of unlinkability DA(AH4) of elements in a set A as a function of |A|, if it is
known that they must be divided into α equivalence classes of equal cardinality |A|/α,
such that each class contains exactly one element from each equivalence class of a given
partition.



How to obtain this hint: In the setting of mix networks this hint may be
obtained if each of the α users sends exactly one message through the network
in β communication sessions. An adversary that wishes to divide the set of
messages that leave the network (there are α ·β of them) into α subsets of equal
cardinality β, such that each subset contains the messages sent by a single user,
can construct a reference partition R1, R2, . . . , Rβ by grouping the messages that
leave the network according to communication sessions (i. e. such that, for all
1 ≤ i ≤ β, Ri contains the messages that leave the network in session i). In the
setting of anonymous credential systems, this hint may be obtained if each user
has established exactly one pseudonym with each organisation in the system;
an adversary that controls the organisations knows the reference partition as a
side effect of normal operation. In the setting of secret voting, this hint may be
obtained in special cases, such as the case of a combined election where each
of the α voters is asked to answer β different questions on separate ballots.
An adversary that wishes to divide the set of casted ballots (there are α · β of
them) into α subsets of equal cardinality β, such that each subset contains the
ballots casted by a single user, can construct a reference partition by grouping
the ballots according to the question they correspond to.

3.4 Breach of privacy: linking case

Consider an adversary AH5 with a hint H5 = (L), where the set L consists of
distinct pairs {a1, a2} ⊆ A, and that reveals the fact that, for all {a1, a2} ∈ L,
a1 ≡τ a2. Note that |L| ≤ |A|(|A| − 1)/2. AH5 can restrict its attention to
ΠA(AH5) = {P : P ` A,∀{a1, a2} ∈ L, a1 ≡P a2}. That is, the adversary
can restrict its attention to those partitions that divide A such that, for all
{a1, a2} ∈ L, a1 and a2 are equivalent. The number of such partitions is given
by

|ΠA(AH5)| = BΦ(A,L) (5)

where Φ(A,L) denotes the number of connected components in the graph (A,L)
with vertices the elements in A and edges the elements in L. For a fixed L,
and since τ is chosen uniformly at random, the unlinkability of the elements
in A is UA(AH5) = log2(|ΠA(AH5)|) bits. If, on the other hand, L is chosen at
random, then the expected value of (5) is given by

E(|ΠA(AH5)|) = E(BΦ(A,L)) =
|A|∑

k=1

Bk Pr(Φ(A,L) = k)

where Pr(Φ(A, L) = k) denotes the probability that the graph (A,L) consists of
exactly k connected components. Figure 4 shows the expected degree of unlink-
ability E(DA(AH5)) = log2(E(BΦ(A,L))/ log2(B|A|) as a function of |A| and |L|,
for the case where the elements in L are selected uniformly at random. Note
that, in this case, the graph (A,L) is a random graph with |L| edges,5 and the
5 See, for example, [5, 23] for a treatment of such graphs.



probability Pr(Φ(A, L) = k) depends only on |A| and |L|. Due to lack of an exact
formula for Pr(Φ(A,L) = k) (but see [21, 28]), the values shown in the figure are
based on simulation. It is, of course, by no means necessary that the elements
in L are selected uniformly at random; depending on the context and the power
of the adversary, these elements may be selected by some other process that may
lead to a faster or slower decrease in unlinkability.
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Fig. 4: Expected degree of unlinkability E(DA(AH5)) as a function of the number of
elements |A| and the number of privacy breaches (linking case) |L|. The elements in L
are selected uniformly at random.

How to obtain this hint: Each element {a1, a2} ∈ L can be seen as a privacy
breach that tells the adversary that a1 and a2 are linked. In the setting of mix
networks, a1 and a2 could be messages that leave the network; an adversary can
link them based on e. g. their content or recipient. In the setting of anonymous
credential systems, a1 and a2 could be transactions; an adversary can link them
based on contextual information such as credential type [31], timing, location,
or an identical piece of information that is attached to both transactions, e. g. a
telephone number or an email address. In the setting of a combined election, a1

and a2 could be ballots; an adversary can link them based, for example, on the
handwriting they may contain.

3.5 Breach of privacy: unlinking case

Consider an adversary AH6 with a hint H6 = (U), where the set U consists of
distinct pairs {a1, a2} ⊆ A, and that reveals the fact that, for all {a1, a2} ∈ U ,
a1 6≡τ a2. Note that |U | ≤ |A| · (|A| − 1)/2. AH6 can restrict its attention to
ΠA(AH6) = {P : P ` A,∀{a1, a2} ∈ U, a1 6≡P a2}. That is, the adversary
can restrict its attention to those partitions that divide A such that, for all
{a1, a2} ∈ U , a1 and a2 are in different equivalence classes. The number of such
partitions is given by

|ΠA(AH6)| =
∑

U ′⊆U

(−1)|U
′|BΦ(A,U ′) (6)



where Φ(A, U ′) denotes the number of connected components in the graph (A,U ′)
with vertices the elements in A and edges the elements in U ′ (for a proof see
Appendix D). For a fixed U , and since τ is chosen uniformly at random, the
unlinkability of the elements in A is UA(AH6) = log2(|ΠA(AH6)|) bits. If, on
the other hand, U is selected at random, the expected value of (6), for a given
number n of elements in U , is given by

E(|ΠA(AH6)|) =
∑

U⊆Z
|U |=n

Pr(U)
∑

U ′⊆U

(−1)|U
′|BΦ(A,U ′) (7)

where Z denotes the set of all distinct pairs {a1, a2} ⊆ A and Pr(U) denotes the
probability that U is selected. Figure 5 shows the expected degree of unlinkability
E(DA(AH6)) = log2 E(|ΠA(AH6)|)/ log2(B|A|) as a function of |A| and |U |, for
the case where the elements in U are selected uniformly at random.6 It is, of
course, by no means necessary that the elements in U are selected uniformly
at random; depending on the context and the power of the adversary, these
elements may be selected by some other process that may lead to a faster or
slower decrease in unlinkability.
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Fig. 5: Expected degree of unlinkability E(DA(AH6)) as a function of the number of
elements |A| and the number of privacy breaches (unlinking case) |U |. The elements in
U are selected uniformly at random.

How to obtain this hint: Each element {a1, a2} ∈ U can be seen as a privacy
breach that tells the adversary that a1 and a2 are not linked. In the setting of mix
networks, a1 and a2 could be messages that enter the network; an adversary can
unlink them based on e. g. their content or sender. In the setting of anonymous
credential systems, a1 and a2 could be transactions; an adversary can unlink
them based on contextual information such as credential type,timing, location,
or a piece of information that is attached to both transactions, e. g. two differing
telephone numbers or email addresses. In the setting of a combined election, a1

6 Since evaluating (7) takes time exponential in |U |, the results shown in Figure 5
were obtained by simulation.



and a2 could be ballots; an adversary can unlink them based, for example, on
the handwriting they may contain.

Example: Let us briefly revisit the example from Section 2 at this point. Since
the clerk knows that the calls λ1 and λ2 were made by men, and the calls λ3

and λ4 by women, he can effectively unlink λ1 and λ2 from λ3 and λ4. That
is, he has a hint H6 = (U) = ({(λ1, λ3), (λ1, λ4), (λ2, λ3), (λ2, λ4)}). In order to
evaluate (6) the value of Φ(A,U ′) must be determined for each subset U ′ ⊂ U .
In this example, we have

– the case where U ′ = U and Φ(A,U ′) = 1,
– four cases where |U ′| = 3 and Φ(A,U ′) = 1,
– six cases where |U ′| = 2 and Φ(A,U ′) = 2,
– four cases where |U ′| = 1 and Φ(A,U ′) = 3, and
– the case where U ′ = ∅ and Φ(A, ∅) = 4.

That is, (6) evaluates to B1− 4B1 + 6B2− 4B3 + B4 = 1− 4 + 12− 20 + 15 = 4,
which coincides with the result from the trivial approach in Section 2.

3.6 Breach of privacy: combined case

Consider an oracle which answers questions of the form ‘are the elements (a1, a2)
linked?’ by either ‘yes’ or ‘no’, depending on whether a1 ≡τ a2 or a1 6≡τ a2. An
adversaryAH7 with access to such an oracle obtains, in effect, a hint H7 = (L,U),
where L and U are as described above. Note that L∩U = ∅ and |L|+ |U | ≤ |A| ·
(|A|−1)/2. AH7 can restrict its attention to ΠA(AH7) = {P : P ` A, ∀{a1, a2} ∈
L, a1 ≡P a2 ∧ ∀{a1, a2} ∈ U, a1 6≡P a2}, i. e. to those partitions that divide A
such that, for all {a1, a2} ∈ L, a1 and a2 are equivalent and, for all {a1, a2} ∈ U ,
a1 and a2 are not equivalent. The number of such partitions is given by

|ΠA(AH7)| =
∑

U ′⊆Ũ

(−1)|U
′|BΦ(Ã,U ′) (8)

where Ã denotes the set of components of the graph (A,L), the set of edges Ũ
contains the edge {c1, c2}, where c1, c2 ∈ Ã and c1 6= c2, if and only if U contains
a pair {a1, a2} such that either (a1 ∈ c1 and a2 ∈ c2), or (a1 ∈ c2 and a2 ∈ c1),
and Φ(Ã, U ′) denotes the number of components in the the graph (Ã, U ′) with
vertices the elements in Ã and edges the elements in U ′. In effect, the difference
between equations (6) and (8) lies in the fact that the latter operates on a
quotient graph — induced by L — of the graph on which the former operates.

For a fixed set of oracle calls, i. e. a fixed L and U , and since τ is cho-
sen uniformly at random, the unlinkability of the elements in A is UA(AH7) =
log2(|ΠA(AH7)|) bits. If, on the other hand, τ and the oracle calls are selected
at random, the expected value of (8), if exactly n = |L| + |U | oracle calls are
made, is given by

E(|ΠA(AH7)|) =
∑

L,U⊆Z
|L|+|U |=n

Pr(L ∧ U)
∑

U ′⊆Ũ

(−1)|U
′|BΦ(Ã,U ′) (9)



where Z denotes the set of all distinct pairs {a1, a2} ⊆ A and Pr(L∧U) denotes
the probability of selecting τ and oracle calls such that L and U are the results
of the oracle’s answers. Figure 6 shows the expected degree of unlinkability
E(DA(AH7)) = log2 E(|ΠA(AH7)|)/ log2(B|A|) as a function of |A| and |L ∪ U |,
for the case where τ and the elements in L∪U are selected uniformly at random.7

It is, of course, by no means necessary that τ and the elements in L ∪ U are
selected uniformly at random; depending on the context and the power of the
adversary, these elements may be selected by some other process that may lead
to a faster or slower decrease in unlinkability.
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Fig. 6: Expected degree of unlinkability E(DA(AH7)) as a function of the number of
elements |A| and the number of privacy breaches |L ∪ U |. The target partition τ and
the elements in L ∪ U are selected uniformly at random.

How to obtain this hint: See sections 3.4 and 3.5.

4 Conclusion

In this paper, we considered the setting of a system that protects the unlinkability
of certain elements of interest, and an adversary with the goal to nevertheless
link these elements. We studied how a number of contextual hints, if disclosed
to the adversary, affect its ability to link the elements. We conclude that, an ad-
versary that knows only the number or the cardinality of the equivalence classes
that the elements must be divided into (or a ‘reference partition’ as described in
Section 3.3), is, in most cases, unable to link the elements with certainty. How-
ever, as Figures 1, 2, and 3 demonstrate, such knowledge nevertheless reduces
the degree of unlinkability of the elements to a significant extent.

By contrast, an adversary that breaches privacy by linking and/or by un-
linking pairs of elements, is able to identify the target partition (i.e. uniquely
link all elements) after a certain number of breaches have occurred. However, if

7 Since evaluating (9) takes time exponential in |U |, the results shown in Figure 6
were obtained by simulation.



the adversary is limited to linking (resp. unlinking), then this required number
of privacy breaches can occur only in the extreme case where all elements are
equivalent (resp. if each element constitutes a separate equivalence class) in the
target partition. Figures 4, 5, and 6 demonstrate the significance of such breaches
in an ‘average’ case, i.e. in the case where randomly selected pairs are linked or
unlinked. Note that linking (Figure 4) has a significantly more dramatic effect
on unlinkability compared to unlinking (Figure 5). This however, is not surpris-
ing, since ‘belonging to the same equivalence class’ is a transitive relation, while
‘belonging to different equivalence classes’ is not.

Finally, note that the list of hints studied in this paper is by no means
exhaustive and that some types of hint may be of more practical relevance than
others. Identifying other, practical types of hint that help an adversary to link
otherwise unlinkable elements, and studying their effect on unlinkability, is a
direction for further research.
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A Counterexample to the theorem in [37]

Theorem 1 in [37] claims that it cannot be reached that, for all arbitrarily chosen
pairs {a1, a2} ⊆ A, Pr(a1 ≡τ a2) = Pr(a1 6≡τ a2) = 1/2, from the point of view
of AH2 .

8 This is wrong as the claim does not hold, for example, if |A| = 4 and
H2 = (1, 3). We remark that, more generally, the claim does not hold for all
solutions of the system of equations

∑

β∈H2

β = |A|
∑

β∈H2

β2 = (|A|2 + |A|)/2.

B Proof of (2) and (3)

Consider the task of dividing the elements in a set A into α subsets such that,
for all 1 ≤ i ≤ α, the ith subset contains exactly βi elements. One can perform
this task by first ordering the elements in A, and then putting the first β1

elements into the first subset, the next β2 elements into the second subset, and
so on. If one performs this task for all |A|! orderings of A, one ends up with only

8 The claim has been rephrased in order to fit our notation.



|A|!/(β1! ·β2! · · ·βα!) different outcomes, because permuting the elements in each
subset does not make a difference. Moreover, since the equivalence classes of a
partition are not ordered, i.e. one can permute the equivalence classes of the
same size without changing the partition, the number of distinct partitions that
divide A into α subsets of cardinality β1, β2, . . . , βα, is given by (2). Equation (3)
follows as a special case. ut

C Proof of (4)

Consider a set A, a partition {R1, R2, . . . , Rβ} ` A that divides A into β =
|A|/α subsets of equal cardinality α, and the task of dividing A into α sub-
sets of equal cardinality β, such that each subset contains exactly one element
from R1, R2, . . . , Rβ . For ease of presentation, assume that, for all 1 ≤ i ≤ β,
there exists an ordering on the elements in Ri. Then one can perform this task by
grouping the first element in each of R1, R2, . . . , Rβ into Q1, the second element
in each of R1, R2, . . . , Rβ into Q2, and so on. By doing this, one ends up with a
partition {Q1, Q2, . . . , Qα} ` A that meets the requirements.

It is possible to construct another partition {Q1, Q2, . . . , Qα} ` A that meets
the requirements by permuting the elements in R1, R2, . . . , Rβ and then repeat-
ing the above procedure. Indeed, one can construct all partitions that meet the
requirements by repeating the above procedure for all combinations of permuta-
tions of the elements in R1, R2, . . . , Rβ . If one does this for all such combinations,
of which there exist κ = |R1|! · |R2|! · · · |Rβ |! = (α!)β , each of the resulting κ par-
titions will appear exactly α! times, namely once for each permutation of the
sets Q1, Q2, . . . , Qα. Thus, the number of distinct partitions that divide A into α
subsets of equal cardinality β, such that each subset contains exactly one ele-
ment from R1, R2, . . . , Rβ , is given by (4). ut

D Proof of (6)

Let (A,U) denote an undirected graph without loops, Φ(A,U) the number of
connected components of (A, U), Bn the number of partitions of a set with n
elements (see (1)), and Ψ(A, U) the number of partitions of A which are such
that no edge e ∈ U connects two vertices in the same equivalence class. That is,
Ψ(A, U)

def
= |{P : P ` A, ∀{a1, a2} ∈ U, a1 6≡P a2}|. We prove (6), i. e.

Ψ(A, U) =
∑

U ′⊆U

(−1)|U
′|BΦ(A,U ′),

by induction over |U |. We actually prove a stronger result, namely that the above
equation holds not only if (A,U) is a simple graph, but also if it is a multigraph
without loops.

Proof. If U = ∅, then Ψ(A,U) = B|A| in accordance with (6). For U 6= ∅, let e
denote an edge in U , and Y = U \ {e}. We distinguish between the following
two cases.



Case 1. There exists an edge e′ ∈ Y connecting the same pair of nodes as e. In
this case,

Ψ(A,U) = Ψ(A, Y )

by definition of Ψ ,

=
∑

Y ′⊆Y

(−1)|Y
′|BΦ(A,Y ′)

by induction since |Y | = |U | − 1,

=
∑

Y ′⊆Y

(−1)|Y
′|BΦ(A,Y ′)

+
∑

U ′⊆U\{e′}
e∈U ′

(
(−1)|U

′|BΦ(A,U ′) + (−1)|U
′∪{e′}|BΦ(A,U ′∪{e′})

)

because (−1)|U
′∪{e′}|BΦ(A,U ′∪{e′}) = −(−1)|U

′|BΦ(A,U ′), and, finally,

=
∑

U ′∈U

(−1)|U
′|BΦ(A,U ′)

since for all U ′ ⊆ U it holds that either e /∈ U ′, e ∈ U ′ and e′ /∈ U ′, or e ∈ U ′

and e′ ∈ U ′.

Case 2. There exists no edge in Y connecting the same pair of nodes as e. In
this case, by definition of Ψ ,

Ψ(A,U) = Ψ(A, Y )−X,

where X denotes the number of partitions of A such that the nodes connected
by e are equivalent, but no edge in Y connects equivalent nodes. That is, X =
|{P : P ` A, ∀{a1, a2} ∈ Y, a1 6≡P a2 ∧ ae ≡P a′e}|, where ae and a′e denote the
nodes connected by e.

We now define (Ã, Ũ) as the graph obtained from (A,U) by merging the
nodes connected by e. Note that the edges in Ũ are in one-to-one correspondence
with those in U \ {e} = Y , in particular |Ũ | = |U | − 1. Also note that due
to the merging, even if (A,U) is a simple graph, (Ã, Ũ) may be a multigraph
(although, since e is removed, without any loops). By construction of (Ã, Ũ), we
have X = Ψ(Ã, Ũ) and, therefore,

Ψ(A, U) = Ψ(A, Y )− Ψ(Ã, Ũ)

=
∑

Y ′⊆Y

(−1)|Y
′|BΦ(A,Y ′) −

∑

Ũ ′⊆Ũ

(−1)|Ũ
′|BΦ(Ã,Ũ ′)



by induction, since |Y | = |U | − 1 and |Ũ | = |U | − 1,

=
∑

Y ′⊆Y

(−1)|Y
′|BΦ(A,Y ′) −

∑

U ′⊆U
e∈U ′

(−1)|U
′|−1BΦ(A,U ′)

because Φ(Ã, Ũ ′) = Φ(A,U ′) for the subset U ′ ⊂ U containing the nodes corre-
sponding to those in Ũ ′ and additionally e,

=
∑

U ′∈U

(−1)|U |BΦ(A,U ′).

This completes the proof. ut
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26. D. Kesdogan, J. Egner, and R. Büschkes. Stop-and-go-mixes providing probabilistic
anonymity in an open system. In D. Aucsmith, editor, Information Hiding, Second
International Workshop, Portland, Oregon, USA, April 14–17, 1998, Proceedings,
volume 1525 of Lecture Notes in Computer Science, pages 83–98. Springer Verlag,
Berlin, 1998.

27. M. Klonowski and M. Kutylowski. Provable anonymity for networks of mixes. In
M. Barni, J. Herrera-Joancomart́ı, S. Katzenbeisser, and F. Pérez-González, edi-
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