
A Framework for the Analysis of Mix-Based
Steganographic File Systems

Claudia Diaz, Carmela Troncoso, and Bart Preneel

K.U.Leuven/IBBT – ESAT/COSIC, Belgium
{Claudia.Diaz, Carmela.Troncoso, Bart.Preneel}@esat.kuleuven.be

Abstract. The goal of Steganographic File Systems (SFSs) is to pro-
tect users from coercion attacks by providing plausible deniability on
the existence of hidden files. We consider an adversary who can monitor
changes in the file store and use this information to look for hidden files
when coercing the user. We outline a high-level SFS architecture that
uses a local mix to relocate files in the remote store, and thus prevent
known attacks [TDDP07] that rely on low-entropy relocations. We de-
fine probabilistic metrics for unobservability and (plausible) deniability,
present an analytical framework to extract evidence of hidden files from
the adversary’s observation (before and after coercion,) and show in a
experimental setup how this evidence can be used to reduce deniability.
This work is a first step towards understanding and addressing the secu-
rity requirements of SFSs operating under the considered threat model,
of relevance in scenarios such as remote stores managed by semi-trusted
parties, or distributed peer-to-peer SFSs.

1 Introduction

Steganographic File Systems (SFSs) were first proposed by Anderson et al.
in [ANS98]. The goal of these systems is to conceal not just the content of
the files they store, but the very existence of some of those files. Steganogra-
phy is required to protect users from coercion attacks, where they are forced
(e.g., under the threat of violence) to disclose their cryptographic keys to the
attacker if the existence of files is known. To protect against these attacks, SFSs
typically provide the user with several security levels, each associated with a
cryptographic key. In case of coercion, the user provides keys to some security
levels (thus revealing some files) without leaking information on the existence of
hidden security levels (containing hidden files that are undistinguishable from
random data.)

Some of the previous SFS proposals [ANS98,MK99] were designed to pro-
tect against attackers who obtain a few snapshots of the file store sufficiently
spaced in time (e.g., customs inspection performed when entering and leaving
a country.) However, adversaries who permanently monitor the file store are of
practical relevance. For example, the model in [ZPT04] considers a shared multi-
user file store where a malicious user or system administrator monitors store ac-
cesses. And this threat model is particularly relevant for distributed peer-to-peer

SFSs [GL04,HR02], given that any eavesdropper in the vicinity of the user can
monitor her connections to other peers (each storing some file blocks,) and use
the traffic information to obtain evidence of hidden files.

StegFS [ZPT04] is, to the best of our knowledge, the only previous pro-
posal of SFS that implements measures to protect against this adversary model.
StegFS avoids simple location access frequency analysis by continuously gener-
ating dummy accesses to random locations in the store, and by relocating file
blocks every time they are accessed. In spite of these measures though, previ-
ous work [TDDP07] has shown that the low-entropy block relocation technique
used in [ZPT04] enables very powerful traffic analysis attacks capable of un-
covering virtually any “hidden” files. In order to counter these traffic analy-
sis attacks, SFSs subject to continuous surveillance require some form of high-
entropy block relocation strategy. Such relocation strategy can be achieved using
mixes [Cha81], a well-known mechanism for implementing anonymous email ser-
vices [DDM03,MCPS03]. Besides cryptographically changing the appearance of
messages, mixes alter the message flow to prevent traffic analysis attacks based
on input and output order, a useful property to introduce uncertainty in the
block relocation process. This paper develops a framework for analyzing mix-
based SFSs, and its purpose is to serve as basis for their design and evalua-
tion. We define probabilistic metrics that characterize the security of an SFS
by its unobservability and (plausible) deniability, present methods to analyze
whether evidence of hidden files is leaked to the adversary, and validate our
analysis through experiments. Our results highlight the power of traffic analysis
techniques and the challenge of achieving acceptable levels of security against
adversaries who can monitor SFS accesses.

The rest of the paper is organized as follows. Section 2 outlines MixSFS, a
high-level SFS architecture that uses a local pool mix for relocating data blocks
in a remote store. The adversary model is described in detail in Sect. 3. The
probabilistic metrics used to characterize the security of MixSFSs are defined
in Sect. 4; and Sect. 5 shows how they can be used to evaluate the security of
MixSFS architectures. Finally, we present our conclusions in Sect. 6.

2 MixSFS architecture

We assume the user has a set UK of secret keys, UK = {uks : s = 1 . . . S}, where
each key uks corresponds to a security level s. Files in the system are classified
according to their security level, such that a file fs in level s is encrypted under
key uks. For convenience, we assume that user keys are hierarchical [AT83], such
that a key uks decrypts all files in security levels s and lower. The view of the
user on the MixSFS file system contents depends on the level of security with
which she logged in. For a security level s, we call visible files those files in
level s or lower, and hidden files those (if any) in levels s′ higher than s. The
design goal of MixSFS is to make it impossible to distinguish whether or not
s is the highest existing security level—and thus, whether or not there are any
hidden files in addition to the visible ones. Transparently to the user, MixSFS

stores files in blocks of fixed size: large files occupy a few blocks and small files
of the same security level are packed together in one block. We call file blocks
the blocks that contain (encrypted) file data (file blocks can belong to visible or
hidden files,) and dummy blocks empty blocks filled with random data.

Main architectural components. MixSFS has an architecture as depicted
in Fig. 1. The system comprises two separate parts: the user local computer
(accessible to the attacker only when coercing the user) and a remote store
(always visible to the attacker,) which is divided in N blocks of equal size. The
user local computer contains three main MixSFS components, namely:

– An agent that runs the MixSFS software and provides the user with an
interface for file management. The agent translates the user’s file requests
into block-level operations, and generates automatic (dummy) accesses when
the user is idle.

– A memory pool with capacity for P blocks. The pool is used by the agent
to mix blocks and relocate them in the store.

– A table with N + P entries (one per block storage location,) containing
block meta-data. The table is used (and updated) by the agent to keep track
of blocks and to manage files. Both the pool and the table are available to
the attacker when she coerces the user.

Fig. 1. MixSFS architecture

Table. The table is indexed by location, and each entry contains the following
fields (as shown in Fig.2):

– A location index i, with 1 ≤ i ≤ N for (remote) block store locations, and
N + 1 ≤ i ≤ N + P for (local) pool locations.

– A hash H (A) of the block A stored in that location, used to check that no
error or active attack has corrupted the block since it was last stored.

– A randomly generated, one-time block key bkA that is updated every time
the block is accessed, and whose purpose is to provide forward and backward
security. When coercing the user, the adversary obtains the current list of
block keys from the table. Previous block keys however, are unavailable,
meaning that old versions of the blocks cannot be decrypted. Future block
keys will be randomly generated, so backward security is also provided.

– A metadata field that contains a random vector IVA and MA = random
data if A is an empty block. If A contains file data of security level s, this
field contains MA = Euks

(IVA, metadataA||rA), a randomized encryption
of the metadata needed by the agent to manage A’s content. The metadata
is padded to a fixed length with a random string rA, and encrypted under
key uks using IVA as initialization vector. Note that this is the only table
field that is encrypted, and a secure mode of operation (e.g., CBC) must
be used to ensure that it leaks no information on blocks that share similar
metadata encrypted under the same key.

– The last field contains HA = random if A is empty; if A belongs to a file fs
then HA = H(Duks

(IVA,MA)) is a hash of the decryption of MA.

We assume that the table is locally stored securely, and only accessible to
the adversary while coercing the user. When the user logs into MixSFS with
uks, the agent loads the table and trial-decrypts every MA field. If HA =
H(Duks(IVA,MA)), then A is a file block and the decryption of MA provides
metadataA. If HA 6= H(Duks(IVA,MA)), then A is considered empty (this hap-
pens either because A is a dummy block, or because it belongs to a hidden file
fs′ in level s′ > s.)

Fig. 2. Table entries (left) and storage blocks (right)

Agent. Upon login, the user provides uks to the agent, with which the agent
obtains the metadata of files in levels s and lower. The agent provides the user
with an interface to operate (read, write, create and delete) on visible files,

while making block-level operations transparent. To execute the file opera-
tions, the agent assembles and disassembles files into blocks, taking care of the
block redundancy ; decides which block to access next, and it cryptographically
transforms and relocates blocks in each access cycle . We assume the agent can
securely generate random numbers, and securely delete any session data in RAM
at log out.

Block redundancy and file operations. A user logged in with security level
s that increases the size of a visible file fs or creates a new one, risks overwriting
the blocks of a hidden file fs′ in security level s′ > s, as these blocks appear
empty. In order to improve file resilience towards block losses, MixSFS adds
redundancy to file blocks with an erasure code [Rab89,Riz97] that is applied on
the plaintext file. A (n,m) optimal erasure code converts an original m-block
file into n > m encoded blocks, such that any combination of m encoded blocks
suffices to recover the file (i.e., up to n − m file blocks may be lost) and the
surviving blocks can be used to regenerate the lost ones. For multi-block files,
the individual coded blocks do not follow any order of have any meaning by
themselves. For single-block files, the coding relies on pure replication for block
redundancy purposes. The agent translates files into encoded blocks and vice
versa.

We classify operations on a file fs of size (n,m) in two categories: file read
and file update (which includes file creation, file deletion and file write opera-
tions.) For file reads, any subset Bf = {b : b ∈ fs} of |Bf | = m blocks is sufficient
to complete the operation; while |Bf | = n are needed to complete a file update
(requires updating all redundant blocks.) Let us call P the set of blocks avail-
able locally in the pool. For any b ∈ Bf such that b ∈ P, b is immediately (and
unobservably) operated on, and B = {b ∈ Bf : b 6∈ P} is the set of blocks in Bf
that need to be fetched from the store to complete the file operation.

File and dummy block access strategies. Once the agent has determined
the set B of remote blocks it needs to complete a file operation, it could sequen-
tially fetch every b ∈ B, to finish the operation as fast as possible, but this would
also facilitate the traffic analysis presented in Sect. 5. Instead, MixSFS uses a
file access strategy that completes the operation in |B| · e−1 access cycles on
average, where e is the operation efficiency : for each of the blocks b ∈ B the
agent flips a biased coin, and with probability e it fetches b from the store; with
probability 1 − e, it performs a dummy access on a store location selected at
random, and flips the coin again, until b has been accessed.

When the agent does not have any pending file operation, it generates au-
tomatic dummy accesses to the store. The agent’s strategy for deciding which
store locations to access while the user is idle is very important for concealing ac-
tual file operations. In this paper, we have tested a uniform dummy strategy
(i.e., the agent selects the next remote block location i : 1 ≤ i ≤ N uniformly at
random) in order to better understand how file accesses generate evidence that
is distinguishable from white noise, and how this can be used by the adversary

to coerce the user. More sophisticated dummy access strategies that emulate
file operations can be designed and tested extending the analysis presented in
Sect. 5, but for reasons of space limitation they are not included in this paper
and are left as a subject of future work.

Access cycle. Whenever MixSFS is running, the agent accesses store locations
at a rate independently of user activity, so that user file requests cannot be
inferred from fluctuations in the access rate. All types of access cycles (read,
update, or dummy) consist of the same basic steps, the only exception being
the third step, that is performed if the block is part of a file (read or update)
operation, but skipped in dummy accesses. Figure 3 illustrates the steps of an
access cycle:

1. Read block from store location. The agent chooses, according to its
access strategy, a storage location i (1 ≤ i ≤ N ,) and reads its content
{A} = EbkA

(A). If A ∈ fs, then A = Euks
(data). And A = random if it is a

dummy block (or a hidden file block,) as shown in Fig. 2 (right.)
2. Decrypt block. The agent decrypts {A} with the one-time block key bkA,

and verifies its integrity by computing the hash H(A) and comparing it to
the value stored in table entry i.

3. [Optional] File operation. If the block access is part of a file operation,
then A is either (1) part of a file read: A is further decrypted with uks,
and the file data is passed in plaintext to the user; or (2) part of a file
update: A is overwritten with an (encrypted) updated version of the data.
Additionally, H(A) is updated and the same applies to MA and HA if A’s
metadata has changed with the update. These operations are internal to the
user’s computer and unobservable to the adversary.

4. Encrypt block. The agent generates a new random bk′A, and uses it to
encrypt A (which is unchanged unless it is part of a file being updated,) so
that the new {A}′ = Ebk′

A
(A) cannot be linked through its appearance to

its old version {A}.
5. Place block in the pool. The pool contains P − 1 blocks and an empty

location p : 1 ≤ p ≤ P , where {A}′ is placed. The table entry for pool
location p (table index N +p) is updated with {A}′ metadata, including the
new bk′A, and updates in H(A), MA, and HA if appropriate.

6. Select new block from pool. The agent chooses uniformly at random a
pool location p′ : 1 ≤ p′ ≤ P , and reads the block {B}′ it contains.

7. Write new block to store location. {B}′ is written to location i of the
store, and the table entries i and N + p′ are updated; i.e., B’s information
is moved to table entry i, and pool position p′ becomes the empty space in
the pool for the next cycle. Note that the pool contains P − 1 blocks at all
times except for step 5 of the access cycle, where it contains P blocks.

Fig. 3. Access cycle

3 Adversary model

The goal of an SFS is to protect the user against coercion attacks by providing
plausible deniability on the existence of files. In a coercion attack , the adver-
sary forces the user to disclose the keys to access her data. The user willingly
provides key uks and reveals s security levels, and the adversary inspects the
system and uses any available information (obtained both before and after co-
ercion) to determine if there are any remaining (hidden) files. We say an SFS
provides plausible deniability if with all available information the adversary
is not able to determine the existence of hidden files. We propose in the next
section a metric for plausible deniability, and develop in Sect. 5 a method to test
the protection offered by MixSFS against this attacker.

Previous SFSs [ANS98,MK99] are designed to protect against coercive at-
tacks where the only information available to the adversary are a few snapshots
of the store contents taken under coercion, and sufficiently spaced in time. These
systems however, fail to protect the user if the adversary is allowed take as many
snapshots as desired, separated by arbitrarily small amounts of time, prior to
coercion: the analysis of which locations had their content modified in between
snapshots provides the attacker with valuable evidence on the existence and lo-
cation of hidden files—depriving the user of plausible deniability. This paper
considers a rather strong adversary model, similar to [TDDP07,ZPT04], that
passively monitors the store to accumulate evidence prior to coercion (note that
our system is secure towards the weaker adversary considered in previous work.)
We assume the adversary records the (encrypted) contents of the store at all
moments, as well as the (temporal) sequence of accessed locations, on which she
performs traffic analysis in real-time.

Active attacks that compromise the integrity of blocks are detectable by
MixSFS: if a block A has been modified, its hash no longer matches the H(A)
stored in the table. We assume that the adversary has incentives to stay unde-
tected before coercion, and therefore, only passive attacks are taken into account.

4 Security metrics

We characterize the security of MixSFS by two properties that we define prob-
abilistically, unobservability (see [PH01] for a more general definition) and
plausible deniability . To formalize these notions, let us first introduce the
notation:

– Let Ψ be the set of all possible sequences of store location accesses; and
ψ ∈ Ψ be a particular sequence seen by the adversary (evidence obtained
prior to coercing the user.)

– Let Φ denote the set of all possible internal states of MixSFS’ pool and table;
and φ ∈ Φ be a particular state seen by the adversary after coercing the user
and obtaining key uks.

– Let H0 and H1 be, respectively, the hypotheses that the observed MixSFS
activity was generated by dummy cycles (H0); or by file operations (H1.)

– Let U denote unobservability, and let D denote deniability.

Definition 1. We define Ψ0 ⊂ Ψ as Ψ0 = {ψ : Pr(ψ|H0) > Pr(ψ|H1)}; and
Ψ1 ⊂ Ψ as Ψ1 = {ψ : Pr(ψ|H1) > Pr(ψ|H0)}. Note that Ψ0 ∪ Ψ1 = Ψ , and
Ψ0 ∩ Ψ1 = ∅

Definition 2. We define Φ0 ⊂ Φ as Φ0 = {φ : Pr(φ|H0) > Pr(φ|H1)}; and
Φ1 ⊂ Φ as Φ1 = {φ : Pr(φ|H1) > Pr(φ|H0)}. Note that Φ0 ∪ Φ1 = Φ, and
Φ0 ∩ Φ1 = ∅

We say that file operations are unobservable if they generate evidence ψ that
the adversary believes is most likely the result of dummy activity (i.e., ψ ∈ Ψ0.)

Definition 3. We define unobservability as the probability of a file operation
being undetected by the adversary:

U = Pr(ψ ∈ Ψ0|H1) = 1− Pr(ψ ∈ Ψ1|H1) (1)

At any point in time, the adversary may coerce the user and obtain evidence
φ from inspecting MixSFS’ pool and table. The goal of the attacker is to use ψ
and φ to check if there is any hidden file fs′ for which the user has not provided
the keys. We say the user has plausible deniability if under coercion she can
prove that ψ and φ are plausibly consistent with her claim that no fs′ exists.
To evaluate plausible deniability in MixSFS we examine the worst-case scenario,
in which coercion happens just as the user has made an operation on fs′ that
provided the adversary with ψ and φ. We then analyze whether the user can
plausibly claim that ψ and φ are the result of dummy activity.

Definition 4. Given evidence ψ and φ, we define deniability as the scaled
posterior probability (obtained with Bayes’ theorem) that ψ and φ have been
generated by dummy activity:

D = min{1, 2 · Pr(H0|ψ, φ)} (2)

We define a plausibility threshold δ, 0 < δ ≤ 1, such that deniability is
plausible if D ≥ δ. We define plausible deniability as PD = Pr(D ≥ δ).

We scale Pr(H0|ψ, φ) by multiplying by two so that D = 1 when there is per-
fect undistinguishability; i.e., Pr(H0|ψ, φ) = Pr(H1|ψ, φ) = 0.5. In cases where
ψ and φ seem most likely the result of dummy activity (i.e., Pr(H0|ψ, φ) >
Pr(H1|ψ, φ),) we also consider that D = 1.

The value of δ depends on the security needs of the user. In some cases (e.g.,
evidence in court,) it may be enough for the user to prove that there is a small
chance (e.g., δ = 0.01) that no fs′ exists for the attacker to fail; while in others
she may need higher values of δ to be safe (e.g., if the adversary is willing to use
torture if fs′ is more likely to exist than not, then δ = 1.) The security goal of
MixSFS is to ensure that PD = 1 for the δ required by the user. The analysis
presented in the next section can be used to determine the configuration and
conditions under which MixSFS provides PD = 1.

Note that the values of U and D are independent, even if only evidence ψ
is taken into account. Consider two cases where, for simplicity, we assume that
φ does no provide any information (i.e., Pr(φ|H0) = Pr(φ|H1).) In case (a) the
attacker obtains ψa ∈ Ψ1 with Pr(ψa|H0) = 0.1 and Pr(ψa|H1) = 0.2. While in
case (b) the attacker obtains ψb ∈ Ψ1 with Pr(ψb|H0) = 0.5 and Pr(ψb|H1) = 1.
Applying the definitions (1) and (2,) we obtain that Ua = 0.8 and Ub = 0, while
in both cases the deniability is Da = Db = 2/3. The intuition behind this is the
following: in the first case, the adversary only detects 20% of the file operations,
and once suspicious evidence ψa ∈ Ψ1 is detected, there are 33% chances that
ψa was generated by dummy traffic. In the second case, every time the user
operates on a file the adversary gets ψb ∈ Ψ1 (i.e., no unobservability,) but half
the dummy-generated sequences are also classified as ψb ∈ Ψ1, so the level of
deniability is the same as in the first case.

5 Evaluation of traffic analysis resistance

5.1 How to extract the information from ψ

The starting point for performing traffic analysis is the evidence ψ obtained by
the adversary prior to time tc, the moment of coercion. We consider time discrete,
with each time unit corresponding to an access cycle, and refer to Sect. 2 for the
steps of the access cycle. ψ is the sequence of accesses to block locations in the
remote store, and we denote by ψ(t) : 1 ≤ ψ(t) ≤ N , the store location accessed
in cycle t, with 0 ≤ t ≤ tc. In previous work [TDDP07] it was shown that the
analysis of ψ(t) can reveal the location of hidden files in StegFS [ZPT04] (in
spite of constant rate dummy accesses to the store) due to low-entropy block
relocations.

MixSFS introduces high-entropy block relocation by using its local pool to
mix blocks, and therefore methods such as [TDDP07] are not powerful enough
to analyze MixSFS’ relocation mechanism. Pool mixes have been analyzed in
the context of anonymous communication, and we draw on the literature [DP04]
as base for our probabilistic analysis of mixes. In anonymous communication
however, a potentially infinite number of messages pass once through the mix;

while in MixSFS a finite number N of locations in the store are repeatedly
accessed. In this paper we extend existing mix analysis techniques to capture the
feedback induced by repeatedly accessing locations, and show that our function
qψ(t)(t) is a useful tool to detect correlations induced by file operations. We first
define the following notation:

– Let B be a set of blocks of interest of size |B|.
– Let qloc(t) be the probability that at the end of cycle t, any block b ∈ B is

in the remote store location loc, and qψ(t)(t) denote this probability for the
location loc = ψ(t) accessed in cycle t.

– Let Epool(t) be the expected number of blocks b ∈ B in the pool (of size P)
at the end of cycle t, 0 ≤ Epool(t) ≤ min(|B|, P − 1).

Let us assume that before cycle t, location loc = ψ(t) contains any block of
interest b ∈ B with probability qψ(t)(t−1). In the first step of cycle t the block in
ψ(t) is read, and placed in the pool (in step 5 of access cycle t.) If ψ(t) contained
a block b ∈ B with probability qψ(t)(t − 1) before t, the expected number of
blocks b ∈ B in the pool increases by qψ(t)(t− 1). At the end of cycle t, a block
b′ is chosen uniformly at random from the pool and stored in ψ(t). The updated
probability of ψ(t) containing b′ ∈ B is given by:

qψ(t)(t) =
1
P

[Epool(t− 1) + qψ(t)(t− 1)] (3)

And the variation of Epool(t) from cycle t− 1 to cycle t is:

Epool(t) = Epool(t− 1) + qψ(t)(t− 1)− qψ(t)(t) (4)

Analysis for one block. Let us consider B with |B| = 1, such that the only
block b ∈ B is known to be in location loc = ψ(t0) until it is accessed in cycle
t0. At t0 − 1, the initial probability distribution describing the location of b is
qψ(t0)(t0− 1) = 1 for position ψ(t0), and qψ(t)(t0− 1) = 0 for ψ(t) 6= ψ(t0). Note
that qloc(t) = qloc(t−1) if the location is not accessed in t (i.e., if loc 6= ψ(t),) thus
when location ψ(t) is accessed for the first time in cycle t > t0, qψ(t)(t − 1) =
qψ(t)(t0 − 1). Let us assume that the sequence ψ of accesses between t0 and
t1 − 1 is such that no location is accessed more than once; i.e., ψ(t) 6= ψ(t′),
∀t 6= t′ : t0 ≤ t, t′ < t1. Applying equations (3) and (4,) and taking into account
that qψ(t0)(t0 − 1) = 1, and qψ(t)(t− 1) = 0 for t0 < t < t1 we obtain:

qψ(t)(t) =
1
P

(
P − 1
P

)t−t0 , t0 ≤ t < t1

Intuitively, the meaning of qψ(t)(t) is the following: b enters the pool in t0,
and with probability 1

P it is written to ψ(t0), while it stays in the pool until
t0 + 1 with probability P−1

P . If ψ(t0 + 1) 6= ψ(t0), then qψ(t0+1)(t0) = 0 (i.e.,
nothing is added to Epool(t0 + 1),) and the block written to ψ(t0 + 1) contains
b if b stayed in the pool in cycle t0 (with probability P−1

P ,) and was selected in

step 6 of cycle t0 + 1 (with probability 1
P .) The block b is in the pool at the end

of t0 + 1 with probability (P−1
P)2.

Let ψ(t1) be the first location that is accessed twice since t0; i.e., ∃t′, t0 ≤
t′ < t1 : ψ(t1) = ψ(t′). When ψ(t1) = ψ(t′) is accessed in cycle t1, it contains
b with probability qψ(t1)(t1 − 1) = qψ(t′)(t′), and therefore after reading ψ(t1)’s
content the probability that b is in the pool increases by qψ(t′)(t′). Consequently,
at the end of cycle t1, location ψ(t1) contains b with probability:

qψ(t1)(t1) =
1
P

[(
P − 1
P

)t1−t0 +
1
P

(
P − 1
P

)t
′−t0]

The next cycle t2 > t1 when location ψ(t2) = ψ(t1) = ψ(t′) is accessed a
third time, the probability that is added to the pool is qψ(t2)(t2−1) = qψ(t1)(t1).
The effect of feeding qψ(t)(t − 1) back to the pool is that qψ(t)(t) grows when
accessing locations that contain b with probability qψ(t)(t− 1) > qψ(t−1)(t− 1).
Figure 4 (left) shows an example for MixSFS with N = 951 remote blocks and
a pool of size P = 50; i.e., total capacity of N + P − 1 = 1000 blocks (these are
the default N and P used in all our experiments.) We can see that until t1 = 70,
qψ(t)(t) follows a geometric distribution. At t1, the same location ψ(t′) that was
accessed at t′ = 33 is chosen for the second time since t0 = 0, causing a bump
in qψ(t)(t). As t → ∞, b disperses across locations becoming more uniformly
distributed, and it stabilizes when:

qψ(t)(t) = qψ(t)(t− 1) = qψ(t−1)(t− 1) =
1

N + P − 1
, t→∞

Epool(t) = Epool(t− 1) =
P − 1

N + P − 1
, t→∞

Analysis for file operations. Let us now consider a file operation that starts
at t0 and requires fetching |B| > 1 blocks of interest from the store (i.e., initially
Epool(t0 − 1) = 0,) and let e be the efficiency of the operation (see file access
strategy in Sect. 2.) We assume that |B|, e and t0 are known, but not the locations
of the blocks b ∈ B. If the efficiency e = 1, then the agent selects the blocks
b ∈ B sequentially, thus the adversary can infer that the blocks of interest are
those in locations ψ(t0) . . . ψ(t0 + |B| − 1). In this case, qψ(t)(t0 − 1) = 1 for
ψ(t) : t0 ≤ t < t0 + |B|, and qψ(t)(t0 − 1) = 0 otherwise. We now examine the
case where the file operation efficiency is 0 < e < 1.

Let us define n(t), a function that counts the number of fresh, distinct loca-
tions accessed before cycle t, with t ≥ t0:

n(t) =


0 if t = t0
n(t− 1) + 1 if ∀t′ : t0 ≤ t′ < t, ψ(t) 6= ψ(t′)
n(t− 1) if ∃t′ : t0 ≤ t′ < t, ψ(t) = ψ(t′)
N if t→∞

For cycles t such that ψ(t) is fresh, the probability qψ(t)(t − 1) depends on
the number n(t) of fresh locations that have already been accessed since t0. If

n(t) < |B|, not all the blocks in B have yet been read, and the agent selects
locations containing b ∈ B with probability equal to the efficiency e of the file
operation. At t1 such that ψ(t1) is fresh and n(t1) = |B|, the agent has already
succeeded in getting all blocks of interest from the store with probability e|B|,
and the probability that ψ(t1) was selected because of containing a block of
interest is qψ(t1)(t1 − 1) = e · (1 − e|B|). In general, a location ψ(t) accessed for
the first time in cycle t, has probability qψ(t)(t− 1) of the form:

qψ(t)(t− 1) =
{
e if n(t) < |B|
e ·

∑|B|−1
k=0

(
n(t)
k

)
ek(1− e)n(t)−k if n(t) ≥ |B|

Figure 4 (right) shows the evolution in time of qψ(t)(t) when two operations
with e = 0.5 are made on a file of |B| = 40 blocks. The first operation on B starts
at time t0 = 0 (finishes at t1 = 94,) and the second starts at t2 = 294 (finishes
at t3 = 360,) and the agent performs dummy accesses in cycles t1 < t < t2 and
t > t3. We can clearly see how qψ(t)(t) grows as the blocks in B are accessed for
the second time in cycles t2 ≤ t ≤ t3. The intuition is that there is a correlation
between the destinations of b ∈ B in the first file operation, and the locations
ψ(t2) . . . ψ(t3). And the function qψ(t)(t) detects this correlation even if the exact
locations of the blocks b ∈ B are not known at any point.

When the attacker guesses correctly that at t0 the user operates with ef-
ficiency e on a file of |B| blocks, she assigns high probabilities qψ(t)(t) to the
locations ψ(t) which are likely to contain any of those blocks b ∈ B. When the
file is accessed for the second time starting at t2, their locations ψ(t) feed back
to the pool probabilities qψ(t)(t − 1) > qψ(t−1)(t − 1), such that the function
qψ(t)(t) grows (see (3)) in the time interval corresponding to the second file op-
eration. The correlation becomes stronger when the efficiency e or the file size
|B| increase, and it is most visible when the two file operations are separated by
two or three hundred cycles. When the two operations are closer in time, many
blocks from the first operation are still in the pool, and can be obtained without
accessing the store; and when the two operations are too far apart, the corre-
lation becomes weaker (due to multiple relocations per block) and eventually
disappears.

As illustrated by this example, qψ(t)(t) can be used by the attacker to de-
tect correlations when files are accessed several times, and therefore distinguish
between sequences ψ generated by dummy traffic and file operations, as shown
in the next section. The computation of qψ(t)(t) requires knowing (or guessing)
t0, e, and |B|. The efficiency e is a known system parameter, but the adversary
would need to try all possible file sizes up to a certain maximum size, and start
computing a few new qψ(t)(t) functions (one per file size) for every cycle t. Our
experiments indicate that the required memory and computing power to do so
are moderate, and that it would be feasible for the adversary to perform this
type of analysis in real-time on a standard PC.

Fig. 4. Function qψ(t)(t) for a single block accessed at t0 = 0 (left); and for two oper-
ations with e = 0.5 on a file of size |B| = 40, at t0 = 0 and t2 = 294 (right.)

5.2 Example of test prior to coercion

Prior to coercion, the only information available to the attacker is the sequence
ψ of accesses to the remote store, and its function qψ(t)(t). In order to use ψ as
evidence of hidden files, the attacker first needs a way to distinguish whether ψ
is (most likely) a sequence of dummy accesses (i.e., ψ ∈ Ψ0,) or it contains file
operations (i.e., ψ ∈ Ψ1.) We assume that the adversary runs her own MixSFS
system, and learns the typical shapes of qψ(t)(t) corresponding to dummy traffic
(H0) and to operations on files of different sizes (H1.) She uses this information
to compute Pr(ψ|H0) and Pr(ψ|H1) as illustrated by the rest of this section.

The adversary first tests a large number of dummy sequences ψ0. Given that
dummy traffic selects remote locations uniformly at random, its sequence ψ0

generates functions qψ0(t)(t) that fluctuate as white noise around a “baseline.”
Let βx(t) be a baseline function such that in cycle t, qψ0(t)(t) > βx(t) only in a
percentage x of cases; i.e., β100(t) is the lower bound, β0(t) the upper bound, and
β50(t) represents the median of all the experiments (computed independently for
each point t.) As shown in the previous section, file operations generate increases
in qψ(t)(t) that are unlikely to happen at random. In order to exploit this feature
to distinguish file and dummy sequences (ψ1 and ψ0, respectively,) the adversary
compares how much qψ0(t)(t) and qψ1(t)(t) go over the baseline functions.

Let us denote as α the largest area defined by function qψ(t)(t) going above a
given baseline βx(t), as shown filled in black in Fig 5 (left) (the light background
shows many dummy functions qψ0(t)(t) superimposed.) Fig. 5 (right) shows the
probability density functions f1(α) and f0(α), computed for small and large
files with a large amount of file (H1) and dummy (H0) sequences. As we can see,
dummy sequences ψ0 produce smaller α than sequences ψ1 containing operations
on big files. On the other hand, sequences ψ1 that contain operations on small
files are hard to distinguish from dummy. The adversary constructs Ψ0 and Ψ1

using α as a distinguisher as follows:

Fig. 5. Area α defined by qψ(t)(t) going over β10(t) (left); and distributions of f0(α)
(dummy traffic) and f1(α) (file operations) for files of sizes |B| = 6 (upper right,) and
|B| = 20 (bottom right.)

– Let αt be the threshold area such that f0(αt) = f1(αt).
– We say ψ ∈ Ψ0 if qψ(t)(t) produces α such that α < αt, and ψ ∈ Ψ1 if α > αt.
– Dummy traffic (H0) generates ψ ∈ Ψ0 with probability Pr(ψ ∈ Ψ0|H0) =∫ αt

0
f0(α), and ψ ∈ Ψ1 with probability Pr(ψ ∈ Ψ1|H0) =

∫ ∞
αt
f0(α).

– Similarly, file operations (H1) generate sequences ψ that are unobservable
with probability U = Pr(ψ ∈ Ψ0|H1) =

∫ αt

0
f1(α), and observable with

probability Pr(ψ ∈ Ψ1|H1) =
∫ ∞
αt
f1(α).

The quality of the distinguisher α depends strongly on the baseline βx(t)
chosen by the attacker. To select the optimal βx(t), the adversary computes
f0(α) and f1(α) for several baseline functions βx(t), x ∈ (0, 100), and chooses
as optimal the one that minimizes the probabilities Pr(ψ ∈ Ψ0|H1) =

∫ αt

0
f1(α),

and Pr(ψ ∈ Ψ1|H0) =
∫ ∞
αt
f0(α). For our experiments, we have implemented an

adaptive algorithm that finds the optimal βx(t) for each file size.

5.3 Example of test after coercion

Consider a setting where a fraction 0 < σ < 1 of all locations are occupied
by visible blocks (i.e., blocks that belong to files of security level s or lower, as
explained in Sect. 2,) and let φ(t) = φ (with 0 ≤ φ ≤ P − 1) be the number
of visible blocks in the pool at time t. If MixSFS has been performing dummy
traffic in the cycles preceding t, then Pr(φ|H0) is given by the probability mass
function f0(φ) of a binomial distribution with parameters φ, P − 1, and σ:

Pr(φ|H0) = f0(φ) =
(
P − 1
φ

)
σφ(1− σ)P−1−φ

Let us assume that the adversary coerces the user at time tc, and finds
φ(tc) = φ visible blocks in the pool. Intuitively, the fraction φ

P−1 of visible
blocks in the pool provides the adversary with the following information:

– If φ
P−1 is similar to σ, then it is likely that MixSFS was performing dummy

traffic for a period of time before coercion, and no evidence of hidden files is
available.

– If it is significantly higher than σ, then evidence φ suggests that operations on
visible files may have recently taken place. Note that this evidence reinforces
the claim of the user that all files are visible and no hidden files exist, meaning
that the user has perfect deniability.

– And finally, an abnormally high number of empty blocks in the pool (i.e.,
proportion of visible blocks much lower than σ,) could be the result of recent
operations on hidden files.

For any file size |B|, the adversary can run experiments to determine the
distribution of Pr(φ|H1) = f1(φ). Figure 6 shows the probability mass functions
f0(φ) and f1(φ) corresponding to dummy and file operations (on files of two
sizes,) respectively. We have experimentally computed f1(φ) assuming a worst-
case scenario in which a hidden file operation finalized at tc − 1, the cycle prior
to coercion. As we can see, operations on large hidden files may result in values
of φ rarely generated by dummy traffic. On the other hand, the φ resulting from
operations on small hidden files follows the same distribution as dummy traffic
(to the extent that at coercion, φ provides nearly no information on whether
small files exist.)

Analogously to the previous section, we can define a threshold φt such that
f0(φt) = f1(φt). We say that φ ∈ Φ0 if φ > φt, and φ ∈ Φ1 if φ < φt, and
compute the probabilities Pr(φ ∈ Φ0|Hi) =

∑P−1
φ=dφte fi(φ) and Pr(φ ∈ Φ1|Hi) =∑bφtc

φ=0 fi(φ), associated to dummy (i = 0) and hidden file operations (i = 1.)

Fig. 6. Probability mass functions f0(φ) and f1(φ), for σ = 0.5, and hidden file sizes
|B| = 6 (left) and |B| = 20 (right.)

5.4 Results for unobservability and deniability

We have implemented a MixSFS simulator to validate our analysis. This section
describes the experimental setup of our implementation, and presents the results
we have obtained for unobservability and deniability in the studied configuration.
The results are meant to be illustrative and optimizations of MixSFS parameters
are out of the scope of this paper.

Experimental Setup. We considered a MixSFS with N = 951 remote storage
locations and a pool of capacity P = 50 (i.e., N + P − 1 = 1000 blocks in
total.) Files occupy between one and ten blocks, and block redundancy ensures
that, for σ = 0.5, the probability of losing a hidden file is smaller than 10−6

even if visible files grow by 10%. This redundancy is proportionally larger for
smaller files (one block files are converted to (n,m) = (6, 1), and ten block files to
(n,m) = (20, 10).) The efficiency of read and update operations are, respectively,
er = 0.75 and ew = 0.25. In each experiment files are accessed twice, and we
have tested the four combinations of read and update operations (‘rr’, ‘rw’,‘wr’,
and ‘ww’,) where the two operations are separated by a minimum of 50 and a
maximum of 800 cycles.

Unobservability. Figure 7(left) shows the results for unobservability (U) in
this setup, depending on file size and type of file operations. We can see that
consecutive file read operations are always unobservable for files of size up to
(n,m) = (14, 6); and that even for sizes (n,m) = (20, 10), file reads are unobserv-
able 90% of the times. Consecutive file updates however, are observable much
more often: over 10% of the times for the smallest files ((n,m) = (6, 1) blocks,)
and over 70% of the times for the largest files ((n,m) = (20, 10) blocks.) File
reads have higher unobservability because a random subset of m blocks is chosen
for each read operation (i.e., erasure codes have the side effect of substantially
reducing correlations between file read operations.) For file updates however, the
redundancy introduced by erasure codes causes more blocks to be updated, and
effectively increases the file size for update operations.

Deniability. We have analyzed deniability (D) in worst-case scenarios, where
the adversary coerces the user right after an operation on a hidden file has taken
place (whether or not the operation was observable.) We show in Fig. 7(right)
our results (boxplots of the distribution of D) for three file sizes and pairs of read
and update operations. We have classified the results depending on whether the
operations were or not unobservable, and we can see that generally, observable
operations result in lower D. This implies that an adversary who can choose
to attack the user after observing a file operation has an advantage for finding
evidence of hidden files at coercion. We can also see that D is much higher if
hidden files are just read and rarely or never updated: in this case MixSFS offers
plausible deniability PD with threshold δ = 1 for small and medium files, and
with δ = 0.01 for big files. If files are meant to be regularly updated however,
this configuration of MixSFS can only guarantee plausible deniability for small
files and δ = 0.01, even if only a small percentage (12%) of small file update
operations have a risk of providing low D.

6 Conclusions

This work studies the security of Steganographic File Systems (SFSs) intended
to protect the user against adversaries who monitor accesses to the store. We

Fig. 7. Results for unobservability (left) and deniability (right)

have presented an architecture of SFS that uses pool mixes to achieve high-
entropy block relocation, and prevent known vulnerabilities to traffic analysis
attacks [TDDP07] that exploit low-entropy relocation algorithms [ZPT04].

We have defined probabilistic metrics to quantify the unobservability and
(plausible) deniability provided by SFSs against coercion attacks. Building on
existing mix analysis techniques [DP04], we have presented novel traffic analysis
methods to evaluate the security of SFSs subject to continuous observation. In
order to validate our approach we have implemented a MixSFS simulator, exam-
ined each step of the attack process, and computed results for unobservability
and deniability in a experimental setup. Although we use as example in our
analysis a particular type of pool mix, it is trivial to adapt our analysis to other
probabilistic relocation mechanisms. The methods introduced here serve as basis
for further work on the design and evaluation of traffic analysis resistant SFSs.
We note that previous designs have given little or no attention to preventing
these types of attacks, in spite of sometimes relying on architectures that use
distributed peer-to-peer storage [GL04,HR02], or remote stores observable by
third parties, and are thus vulnerable to the adversary and attacks described
here.

To better illustrate our contribution, we have considered a very simple dummy
access strategy, that chooses blocks uniformly at random amongst all blocks in
the store. Our results show that this naive strategy can only conceal accesses
to small files. The design of more sophisticated dummy access strategies that
offer better unobservability and deniability remains as an open line for further
research. Similarly, a fully functional MixSFS implementation would require the
specification of additional operations, such as regenerating files after some blocks
have been lost or changing user keys after coercion.

Acknowledgements. This work was partially supported by the IWT SBO ADAPID

project, the Concerted Research Action (GOA) Ambiorics 2005/11 of the Flemish

Government and by the IAP Programme P6/26 BCRYPT (Belgian Science Policy.) C.

Troncoso is funded by a research grant of the Fundación Barrié de la Maza (Spain.)

Peter Fairbrother should be credited for the idea of using mixes in the context of SFSs.

References

[ANS98] Ross J. Anderson, Roger M. Needham, and Adi Shamir. The steganographic
file system. In Proceedings of the Second International Workshop on Infor-
mation Hiding, LNCS 1525, pages 73–82. Springer-Verlag, 1998.

[AT83] Selim G. Akl and Peter D. Taylor. Cryptographic solution to a problem
of access control in a hierarchy. ACM Trans. Comput. Syst., 1(3):239–248,
1983.

[Cha81] David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 4(2):84–88, 1981.

[DDM03] George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion: De-
sign of a type iii anonymous remailer protocol. In Proceedings of the 2003
IEEE Symposium on Security and Privacy, pages 2–15, 2003.

[DP04] Claudia Diaz and Bart Preneel. Reasoning about the anonymity provided
by pool mixes that generate dummy traffic. In Information Hiding, pages
309–325. Springer, LNCS 3200, 2004.

[GL04] Charles Giefer and Julie Letchner. Mojitos: A distributed steganographic
file system. Technical Report, University of Washington, 2004.

[HR02] Steven Hand and Timothy Roscoe. Mnemosyne: Peer-to-peer stegano-
graphic storage. In Revised Papers from the First International Workshop
on Peer-to-Peer Systems, LNCS 2429, pages 130–140. Springer-Verlag, 2002.

[MCPS03] Ulf Moller, Lance Cottrel, Peter Palfrader, and Len Sassaman. Mixmaster
protocol - version 2. http://www.abditum.com/mixmaster-spec.txt, 2003.

[MK99] Andrew D. McDonald and Markus G. Kuhn. Stegfs: A steganographic file
system for linux. In Proceedings of the Third International Workshop on
Information Hiding, LNCS 1768, pages 462–477. Springer-Verlag, 1999.

[PH01] Andreas Pfitzmann and Marit Hansen. Anonymity, Unobservability and
Pseudonymity – A Proposal for Terminology. In Designing Privacy En-
hancing Technologies, pages 1–9. Springer-Verlag, LNCS 2009, 2001.

[Rab89] Michael Rabin. Efficient dispersal of information for security, load balancing,
and fault tolerance. Journal of ACM, 36(2):335–348, 1989.

[Riz97] Luigi Rizzo. Effective erasure codes for reliable computer communication
protocols. Computer Communication Review, 27(2):24–36, 1997.

[TDDP07] Carmela Troncoso, Claudia Diaz, Orr Dunkelman, and Bart Preneel. Traffic
analysis attacks on a continuously-observable steganographic file system. In
T. Furon et al., editor, Information Hiding, 9th International Workshop,
volume 4567 of Lecture Notes in Computer Science, pages 220–236, Saint-
Malo,FR, 2007. Springer-Verlag.

[ZPT04] Xuan Zhou, HweeHwa Pang, and Kian-Lee Tan. Hiding data accesses in
steganographic file system. In Proceedings of the 20th International Confer-
ence on Data Engineering, pages 572–583. IEEE Computer Society, 2004.

