
Compact E-Cash

Jan Camenisch
IBM Research

Zurich Research Laboratory
CH-8803 Rüschlikon
jca@zurich.ibm.com

Susan Hohenberger
CSAIL

Massachusetts Inst. of Technology
Cambridge, MA 02139, USA

srhohen@mit.edu

Anna Lysyanskaya
Computer Science Department

Brown University
Providence, RI 02912, USA

anna@cs.brown.edu

March 27, 2006

Abstract

This paper presents efficient off-line anonymous e-cash schemes where a user can withdraw
a wallet containing 2` coins each of which she can spend unlinkably. Our first result is a
scheme, secure under the strong RSA and the y-DDHI assumptions, where the complexity of
the withdrawal and spend operations is O(` + k) and the user’s wallet can be stored using
O(` + k) bits, where k is a security parameter. The best previously known schemes require at
least one of these complexities to be O(2` · k). In fact, compared to previous e-cash schemes,
our whole wallet of 2` coins has about the same size as one coin in these schemes. Our scheme
also offers exculpability of users, that is, the bank can prove to third parties that a user has
double-spent.

We then extend our scheme to our second result, the first e-cash scheme that provides
traceable coins without a trusted third party. That is, once a user has double spent one of the
2` coins in her wallet, all her spendings of these coins can be traced. We present two alternate
constructions. One construction shares the same complexities with our first result but requires
a strong bilinear map assumption that is only conjectured to hold on MNT curves. The second
construction works on more general types of elliptic curves, but the price for this is that the
complexity of the spending and of the withdrawal protocols becomes O(` · k) and O(` · k + k2)
bits, respectively, and wallets take O(` · k) bits of storage. All our schemes are secure in the
random oracle model.

1 Introduction

Electronic cash was invented by Chaum [27, 28], and extensively studied since [31, 40, 32, 11, 24,
12, 54, 39, 55, 5]. The main idea is that, even though the same party (a bank B) is responsible
for giving out electronic coins, and for later accepting them for deposit, the withdrawal and the
spending protocols are designed in such a way that it is impossible to identify when a particular
coin was spent. I.e., the withdrawal protocol does not reveal any information to the bank that
would later enable it to trace how a coin was spent.

As a coin is represented by data, and it is easy to duplicate data, an electronic cash scheme
requires a mechanism that prevents a user from spending the same coin twice (double-spending).
There are two scenarios. In the on-line scenario [28, 29, 30], the bank is on-line in each transaction
to ensure that no coin is spent twice, and each merchant must consult the bank before accepting
a payment. In the off-line [31] scenario, the merchant accepts a payment autonomously, and later

submits the payment to the bank; the merchant is guaranteed that such a payment will be either
honored by the bank, or will lead to the identification (and therefore punishment) of the double-
spender.

In this paper, we give an off-line 2`-spendable unlinkable electronic cash scheme. Namely, our
scheme allows a user to withdraw a wallet with 2` coins, such that the space required to store
these coins, and the complexity of the withdrawal protocol, are proportional to `, rather than to 2`.
We achieve this without compromising the anonymity and unlinkability properties usually required
of electronic cash schemes. This problem is well-motivated: (1) communication with the bank is
a bottleneck in most electronic cash schemes and needs to be minimized; (2) it is desirable to
store many electronic coins compactly, as one can imagine that they may be stored on a dedicated
device such as a smartcard that cannot store too much data. This problem has also proved quite
elusive: no one has offered a compact e-cash solution (even for a weaker security model) since the
introduction of electronic cash in the 1980s.

In addition, a good e-cash scheme should allow one to expose double-spenders to outside third
parties in an undeniable fashion. I.e., assuming a PKI, if a user U with public key pkU spent a coin
more times than he is allowed (in our case, spent 2` + 1 coins from a wallet containing 2` coins),
then this fact can be proven to anyone in a sound fashion. This property of an e-cash scheme is
satisfied by numerous schemes in the literature. Our solution has this property as well.

Finally, it may often be desirable that an e-cash scheme should allow one to trace all coins
of a cheating user. It was known that this property can be implemented using a trusted third
party (TTP) [54, 15], by requiring that: (1) in each withdrawal protocol a user gives to the bank
an encryption under the TTP’s public key of a serial number S which will be revealed during
the spending protocol; and (2) in each spending protocol, the user submits to the merchant an
encryption of the user’s public key under the TTP’s public key. Then, should a coin with serial
number S ever be double-spent, the TTP can get involved and decrypt the serial number of all of
this user’s coins. But the existence of such a TTP contradicts the very definition of electronic cash:
to the TTP, the user is not anonymous! Therefore, another desirable and elusive property of an
electronic cash scheme was traceability without a TTP. Our scheme achieves this property as well.

Recently, Jarecki and Shmatikov [44] also made a step in this direction. Although their work
is not explicitly about electronic cash, it can be thought of in this way. Their scheme allows to
withdraw and linkably (linkability is actually a feature for them) but anonymously spend a coin
K times; but should a user wish to spend the coin K + 1 times, his identity gets revealed. As far
as electronic cash is concerned, our solution is better for two reasons: (1) their scheme does not
achieve unlinkability; and (2) in their protocol, each time a user spends a coin he has to run a
protocol whose communication complexity is proportional to K, rather than logK, as we achieve.
In 1989, Okamoto and Ohta [49] proposed an e-cash scheme with similar functionality, without
achieving unlinkability or compact wallets.

Our work can also be viewed as improving on the recent traceable group signatures by Kiayias,
Tsiounis, and Yung [45]. In their scheme, once a special piece of tracing information is released,
it is possible to trace all group signatures issued by a particular group member; otherwise this
member’s signatures are guaranteed to remain anonymous. Normally, in a group signature setting,
this piece of information must be released by a TTP, as there is no equivalent of a double-spender
whose misbehavior may automatically lead to the release of the tracing information; however, if a
limit is placed on how many signatures a group member may issue, then our e-cash scheme can
be viewed as a bounded group signature scheme, where a group member can sign a message by

2

incorporating it into the signature proof of a coin’s validity. A group manager may allocate signing
rights by acting as a bank allocating coins; and if any member exceeds their allocation, the special
tracing information is revealed automatically, and all signatures produced by that group member
may be traced. Our tracing algorithm is more efficient than that of Kiayias et al. [45]; in our
scheme, signatures can be tracked by a serial number (that appears to be random until the user
double-spends), while in theirs, all existing signatures must be tested, one-by-one, using the special
tracing information provided by the TTP, to determine if a certain signer created it or not.

Our results. Let us summarize our results. We give a compact e-cash scheme with all the features
described above in the random-oracle model, under the Strong RSA and Decisional Diffe-Hellman
Inversion (y-DDHI) [6, 37] assumptions in combination with either the External Diffie-Hellman
(XDH) [42, 53, 46, 7, 3] or the Sum-Free DDH [36] assumption for groups with bilinear maps. The
trade-off between these later two assumptions is that we achieve a more efficient construction using
the XDH assumption, but the Sum-Free DDH assumption is conjectured to hold in a wider class
of bilnear groups (e.g., those over supersingular curves).

Using the Sum-Free DDH assumption, the communication complexity of the spending and of
the withdrawal protocol is O(` · k) and O(` · k+ k2) bits, respectively; it takes O(` · k) bits to store
all the coins. Alternatively, using the XDH assumption, we give a scheme where the withdrawal
and the spending protocols have complexity O(` + k), and it takes O(` + k) bits to store all the
coins. These schemes are presented in Section 4.2.

We also give a scheme where the withdrawal and the spending protocols have complexity only
O(` + k), and it also takes only O(` + k) bits to store all the coins, based on only the Strong
RSA [41, 4] and the y-DDHI [37] assumptions in the random-oracle model. This scheme under a
reduced set of assumptions does not allow traceability, however. If a user over-spends his wallet,
only his public key is recovered. This scheme is presented in Section 4.1.

Furthermore, in the model where the bank completely trusts the merchant (this applies to,
for example, a subscription service where the entity creating and verifying the coins is one and
the same), we have solutions based on the same set of assumptions but in the standard model.
Sections 4.1 and 4.2 containing our random-oracle-based schemes also explain how these security
properties are obtained once the random oracle is removed.

Overview of our construction. Our schemes are based on the signature schemes with protocols due
to Camenisch and Lysyanskaya [18, 19]. These schemes allow a user to efficiently obtain a signature
on committed messages from the signer. They further allow the user to convince a verifier that she
possesses a signature by the signer on a committed message. Both of these protocols rely on the
Pedersen commitment scheme.

To explain our result, let us describe how single-use electronic cash can be obtained with CL-
signatures, drawing on a variety of previously known techniques [14, 18].

Let G = 〈g〉 be a group of prime order q where the discrete logarithm problem is hard. Suppose
that a user U has a secret key skU ∈ Zq and a public key pkU = gskU . An electronic coin is a
signature under the bank B’s public key pkB on the set of values (skU , s, t), where s, t ∈ Zq are
random values. The value s is the serial number of the coin, while t is the value blinding of this
coin. A protocol whereby a user obtains such a signature is called the withdrawal protocol.

In the spending protocol, the user sends the merchant a Pedersen commitment C to the values
(skU , s, t), and computes a non-interactive proof π1 that they have been signed by the bank. The
merchant verifies π1 and then picks a random value R ∈ Zq. Finally, the user reveals the serial

3

number s, and the value T = skU +R · t mod q. Let us refer to T as a double-spending equation for
the coin. The user must also compute a proof π2 that the values s and T correspond to commitment
C. Finally, the merchant submits (s,R, T, π1, π2) for payment.

Note that one double-spending equation reveals nothing about skU because t is random, but
using two double-spending equations, we can solve for skU . So if the same serial number s is
submitted for payment twice, the secret key skU and therefore the identity of the double-spender
pkU = gskU can be discovered.

Now, our goal is to adapt single-use electronic cash schemes so that a coin can be used at
most 2` times. The trivial solution would be to obtain 2` coins. For our purposes, however, it is
unacceptable, as 2` may be quite large (e.g., 1000) and we want each protocol to be efficient.

The idea underlying our system is that the values s and t implicitly define several (pseudoran-
dom) serial numbers Si and blinding values Bi, respectively. In other words, we need a pseudoran-
dom function F(·) such that we can set Si = Fs(i), and Bi = Ft(i), 0 ≤ i ≤ 2` − 1. Then the user
gets 2` pseudorandom serial numbers with the corresponding double-spending equations defined
by (s, t). Here, the double-spending equation for coin i is Ti = gskU (Bi)R, where R is chosen by
the merchant. This leaves us with a very specific technical problem. The challenge is to find a
pseudorandom function such that, given (1) a commitment to (skU , s, t); (2) a commitment to i;
and (3) the values Si and Ti, the user can efficiently prove that she derived the values Si and Ti

correctly from skU , s, and t, i.e., Si = Fs(i) and Ti = gskU (Ft(i))Ri for some 0 ≤ i ≤ 2` − 1 and
public value Ri provided by the merchant.

Recently, Dodis and Yampolskiy [37] proposed the following discrete-logarithm-based pseudo-
random function (PRF): Fs(x) = g1/(s+x+1), where s, x ∈ Zq, and g is a generator of a group G of
order q in which the decisional Diffie-Hellman inversion problem is hard. (In the sequel, we denote
this PRF as FDY

(·) (·).) Using standard methods for proving statements about discrete-logarithm
representations, we obtain a zero-knowledge argument system for showing that a pair of values
(Si, Ti) is of the form Si = FDY

s (i) and Ti = gskU (FDY
t (i))Ri corresponding to the seeds s and t

signed by bank B and to some index i ∈ [0, 2` − 1].
Note that if Si and Ti are computed this way, then they are elements of G rather than of Zq.

So this leaves us with the following protocol: to withdraw a coin, a user obtains a signature on
(skU , s, t). During the spending protocol, the user reveals Si and the double-spending equation
Ti = gskU (Bi)Ri , where skU is the user’s secret key and pkU = gskU the corresponding public key.
Now, with two double-spending equations T1 = gskUBR1

i and T2 = gskUBR2
i we can infer the value

(TR2
1 /TR1

2)(R2−R1)−1
= (pkR2

U BR1R2
i /pkR1

U BR1R2
i)(R2−R1)−1

= (pkR2−R1
U)(R2−R1)−1

= pkU . This is
sufficient to detect and identify double spenders. We describe this construction in more depth in
Section 4.1.

However, the above scheme does not allow the bank to identify the other spendings of the coin,
i.e., to generate all the serial numbers that the user can derive from s. Let us now describe how we
achieve this. For the moment, let us assume that the technique described above allows us to infer
skU rather than pkU . If this were the case, we could require that the user, as part of the withdrawal
protocol, should verifiably encrypt [1, 16, 22] the value s under her own pkU , to form a ciphertext
c. The record (pkU , c) is stored by the bank. Now, suppose that at a future point, the user spends
too many coins and thus her skU is discovered. From this, her pkU can be inferred and the record
(pkU , c) can be located. Now that skU is known, c can be decrypted, the seed s discovered, the
values Si computed for all 0 ≤ i < 2`, and hence the database of transactions can be searched for
records with these serial numbers.

4

Let us now redefine the way a user’s keys are picked such that we can recover skU rather than
pkU . Suppose that G is a group with a non-degenerate bilinear map e : Ĝ1 × G̃2 7→ G. Let skU
be an element of Zq. Let pkU = e(ĝ1, g̃

skU
2). Using ideas from identity-based encryption [8, 2], we

know how to realize a cryptosystem that uses pkU as a public key, such that in order to decrypt it
is sufficient to know the value ĝskU

1 . So, in our scheme, the user U would encrypt s under pkU using
the cryptosystem as described by Ateniese et al [2]. From the double-spending equations, the same
way as before, the bank infers the value ĝskU

1 . This value now allows the bank to decrypt s.
This is almost the solution, except for the following subtlety: if Ĝ1 has a bilinear map, then the

decisional Diffie-Hellman problem may be easy, and so the Dodis-Yampolskiy construction is not a
PRF in this setting! We have two solutions for this problem.

First, we can hope that there are bilinear maps where DDH remains hard in Ĝ1 (e.g., there
is not an efficiently-computable isomorphism from G̃2 to Ĝ1), apply one of these bilinear groups,
and keep using the Dodis-Yampolskiy PRF. In fact, this idea is already formalized as the External
Diffie-Hellman (XDH) [42, 53, 46, 7, 3] assumption, and there is growing evidence that it may hold
for bilinear groups instantiated with either the Weil or Tate pairings over MNT curves [47, 3][7,
Sec. 8.1], even though this is known to be false for supersingular curves [43].

As a second, less risky, solution, we instead assume Sum-Free Decisional Diffie-Hellman [36],
which is believed to hold for all bilinear groups, and slightly change the construction. This is why
this variant of our scheme is a factor of ` more expensive than the others. The details of this
construction are given in Section 4.2.

One of the big open problems for electronic cash which this paper does not address is that
of efficiently allowing for multiple denominations in a non-trivial way; i.e., without executing the
spending protocol a number of times.

2 Definition of Security

Notation: if P is a protocol between A and B, then P (A(x), B(y)) denotes that A’s input is x
and B’s is y.

Our electronic cash scenario consists of the three usual players: the user, the bank, and the
merchant; together with the algorithms: BKeygen, UKeygen, Withdraw, Spend, Deposit, Identify,
VerifyGuilt, Trace, VerifyOwnership. Let us give some input-output specifications for these protocols,
as well as some informal intuition for what they do.

– The BKeygen(1k, params) algorithm is a key generation algorithm for the bank B. It takes
as input the security parameter 1k and, if the scheme is in the common parameters model, it
also takes as input these parameters params. This algorithm outputs the key pair (pkB, skB).
(Assume that skB contains the params, so we do not have to give params explicitly to the bank
again.)

– Similarly, UKeygen(1k, params) is a key generation algorithm for the user U , which outputs
(pkU , skU). Since merchants are a subset of users, they may use this algorithm to obtain keys as
well. (Assume that skU contains the params, so we do not have to give params explicitly to the
user again.)

– In the Withdraw(U(pkB, skU , n),B(pkU , skB, n)) protocol, the user U withdraws a wallet W of n
coins from the bank B. The user’s output is the wallet W , or an error message. B’s output is
some information TW which will allow the bank to trace the user should this user double-spend

5

some coin, or an error message. The bank maintains a database D for this trace information, to
which it enters the record (pkU , TW).

– In a Spend(U(W,pkM),M(skM, pkB, n)) protocol, a user U gives one of the coins from his wallet
W to the merchant M. Here, the merchant obtains a serial number S of the coin, and a proof
π of validity of the coin. The user’s output is an updated wallet W ′.

– In a Deposit(M(skM, S, π, pkB),B(pkM, skB)) protocol, a merchantM deposits a coin (S, π) into
its account held by the bank B. Whenever an honest M obtained (S, π) by running the Spend
protocol with any (honest or otherwise) user, there is a guarantee that this coin will be accepted
by the bank. B adds (S, π) to to its list L of spent coins. The merchant’s output is nothing or
an error message.

– The Identify(params, S, π1, π2) algorithm allows to identify double-spenders using a serial number
S and two proofs of validity of this coin, π1 and π2, possibly submitted by malicious merchants.
This algorithm outputs a public key pkU and a proof ΠG. If the merchants who had submitted
π1 and π2 are not malicious, then ΠG is evidence that pkU is the registered public key of a user
that double-spent coin S.

– The VerifyGuilt(params, S, pkU ,ΠG) algorithm allows to publicly verify proof ΠG that the user
with public key pkU is guilty of double-spending coin S.

– The Trace(params, S, pkU ,ΠG, D, n) algorithm, given a public key pkU of a double-spender, a
proof ΠG of his guilt in double-spending coin S, the database D, and a wallet size n, computes
the serial numbers S1, . . . , Sm of all of the coins issued to U along with proofs Π1, . . . ,Πm of
pkU ’s ownership. If VerifyGuilt(params, S, pkU , ΠG) does not accept (i.e., pkU is honest), this
algorithm does nothing.

– The VerifyOwnership(params, S,Π, pkU , n) algorithm allows to publicly verify the proof Π that a
coin with serial number S belongs to a double-spender with public key pkU .

We will now informally define the security properties for the casual reader. The more interested
reader will want to skip to the more elaborate formal definitions given in Section 2.1.

Correctness. If an honest user runs Withdraw with an honest bank, then neither will output an
error message; if an honest user runs Spend with an honest merchant, then the merchant accepts
the coin.

Balance. From the bank’s point of view, what matters is that no collection of users and merchants
can ever spend more coins than they withdrew. We require that there is a knowledge extractor
E that executes u Withdraw protocols with all adversarial users and extracts un serial numbers
S1, . . . , Sun. We require that for every adversary, the probability that an honest bank will accept
(S, π) as the result of the Deposit protocol, where S 6= Si ∀1 ≤ i ≤ un, is negligible. If S1, . . . , Sn

is a set of serial numbers output by E when running Withdraw with public key pkU , we say that
coins S1, . . . , Sn belong to the user U with pkU .

Identification of double-spenders. Suppose B is honest. SupposeM1 andM2 are honest merchants
who ran the Spend protocol with the adversary, such thatM1’s output is (S, π1) andM2’s output
is (S, π2). This property guarantees that, with high probability, Identify(params, S, π1, π2) outputs
a key pkU and proof ΠG such that VerifyGuilt(params, S, pkU ,ΠG) accepts.

Tracing of double-spenders. Given that a user U is shown guilty of double-spending coin S by a proof
ΠG such that VerifyGuilt accepts, this property guarantees that Trace(params, S, pkU ,ΠG, D, n) will

6

output the serial numbers S1, . . . , Sm of all coins that belong to U along with proofs of ownership
Π1, . . . ,Πm such that for all i, with high probability, VerifyOwnership(params, Si,Πi, pkU , n) also
accepts.

Anonymity of users. From the privacy point of view, what matters to users is that the bank, even
when cooperating with any collection of malicious users and merchants, cannot learn anything about
a user’s spendings other than what is available from side information from the environment. In order
to capture this property more formally, we introduce a simulator S. S has some side information
not normally available to players. E.g., if in the common parameters model, S generated these
parameters; in the random-oracle model, S is in control of the random oracle; in the public-key
registration model S may hold additional information about the bank’s keys, etc. We require
that S can create simulated coins without access to any wallets, such that a simulated coin is
indistinguishable from a valid one. More precisely, S executes the user’s side of the Spend protocol
without access to the user’s secret or public key, or his wallet W .

Exculpability. Suppose that we have an adversary that participates any number of times in the
Withdraw protocol with the honest user with public key pkU , and subsequently to that, in any
number of legal Spend protocols with the same user. I.e., if the user withdrew u wallets of n coins
each, then this user can participate in at most un Spend protocols. The adversary then outputs
a coin serial number S and a purported proof Π that the user with public key pkU is a double-
spender and owns coin S. The weak exculpability property postulates that, for all adversaries, the
probability VerifyOwnership(params, S, pkU ,Π, n) accepts is negligible.

Furthermore, the adversary may continue to engage the user U in Spend protocols even if it
means U must double-spend some coins of her choosing (in which case the state of her wallet is
reset). The adversary then outputs (S,Π). The strong exculpability property postulates that, for
all adversaries, when S is a coin serial number not belonging to U , the weak exculpability property
holds, and when S is a coin serial number not double-spent by user U with public key pkU , the
probability that VerifyGuilt(params, S,Π, pkU , n) accepts is negligible.

This ends the informal description of our security definition. This informal description should
be sufficient for a general understanding of our security guarantees. We now include more precise
definitions.

2.1 Formal Definitions

Our goal is to give a formal definition for electronic cash. We want to obtain a definition which
would make sense independently on whether a given scheme is realized in the plain model, common
random string model, common parameters model, random-oracle model, or any other variety of a
model.

From the informal definitions, the reader may recall that our definition of e-cash relies on
the existence of a knowledge extractor E that extracts the serial number of all the coins that an
adversarial user withdraws in a given Withdraw transaction; and the existence of the simulator S
which simulates the malicious merchant’s view of the Spend protocol without access to any users’
keys or wallets.

Usually, the way that knowledge extractors and zero-knowledge simulators are defined depends
on the model in which security is proven (e.g., plain model, common random string model, common
parameters model, random-oracle model).

7

In order to obtain a definition that works equally well in any model, we require that a particular
protocol is a proof of knowledge or a zero-knowledge proof in the model in which security of the
construction is proven. For example, we require that part of the Withdraw protocol is a proof of
knowledge of the serial numbers of the coins withdrawn by the user, or part of the Spend protocol
is a zero-knowledge proof.

In whatever model we are working, however, we will need concurrently composable proofs of
knowledge and concurrently composable zero-knowledge proofs.

Let us explain how to specify a knowledge extractor EProt,l for a proof of knowledge protocol Prot
for language l, (resp., zero-knowledge simulator SProt,l for protocol Prot for proving membership in
language l) in a (relatively) model-independent fashion. First, note that in some models, such as a
public-parameter model, an extractor or simulator is allowed access to some auxiliary information
not provided to a participant in the protocol. We denote denote these by auxext and auxsim,
respectively.

Another resource that a knowledge extractor or zero-knowledge simulator must receive, is access
to the adversary. This includes many possibilities; here are a few examples:

• (IO) Input-output interaction with the adversary. This is typical in the UC-framework.

• (BB) Black-box interaction with the adversary. This means that the adversary can be reset
to a previous state.

• (NBB) Non-black-box access. This means that we are given the description of the adversary.

Each of these access models can be further augmented with the random-oracle model. For
example, the IO-RO model includes input-output access to the adversary’s hash function module.

Let X-Y (A) be our access model to the adversary A, where, for example, X ∈ {IO ,BB ,NBB},
and Y ∈ {ε,RO}. By AlgX-Y (A) we denote that the algorithm Alg has this type of access to the
adversary A.

So, for example, if Alg is an algorithm interacting with adversary A in the X-Y model, running
on input x, then we denote it by AlgX-Y (A)(x).

In the sequel, by “proof protocol,” we mean a protocol between a prover and a verifier.
Thus, a knowledge extractor for proof protocol Prot for language l in the X-Y model would be

denoted as EX-Y (A)
Prot,l (params, auxext , x). By definition of what it means to be a knowledge extractor,

for property formed (params, auxext), EX-Y (A)
Prot,l (params, auxext , x) will, with high probability, in

expected polynomial time, output a w such that (x,w) ∈ l whenever the probability that the
verifier accepts x when interacting with A in the X-Y model, is non-negligible.

Similarly, a zero-knowledge simulator for proof protocol Prot for language l in the X-Y model
would be denoted as SX-Y (A)

Prot,l (params, auxsim, x). By definition of what it means to be a zero-

knowledge simulator, SX-Y (A)
Prot,l (params, auxsim, x) will, when interacting with A in the X-Y model,

produce a view that is indistinguishable from the view A obtains when interacting with the prover.

Balance. Let a Withdraw protocol be given. Recall that the bank’s input to this protocol includes
the user’s public key pkU . Let us break up the Withdraw protocol into three parts: Withdrawb,
Withdrawm, and Withdrawe (“b,” “m,” and “e” stand for “beginning,” “middle,” and “end,”
respectively). Withdrawb is the part of the protocol that ends with the first message from the

8

user to the bank. Withdrawe part of the protocol is the last message from the bank to the
user.

The middle of the protocol is denoted Withdrawm. Let us think of Withdrawe as a proof
protocol, where the user is the Prover, and the bank is the Verifier. The Verifier’s output
of Withdrawm can be thought of as the bank’s decision for whether or not to proceed to
Withdrawe and send the last message from the bank to the user.

Let m1 denote the first message that the user sends to the bank in this protocol. Let b1
denote the state information of the bank at the moment that m1 was received.

The balance property requires that:

1. In whatever model the scheme is given, there exists an efficiently decidable language lS
and an extractor EX-Y (A)

Withdrawm,lS
(params, auxext , pkU , b1,m1) such that for all b1 computed

by the bank, and for all m1, it extracts w = (S1, . . . , Sn, aux) such that (b1,m1, w) ∈ lS
whenever the probability that the bank accepts in the Withdrawm part of the protocol
is non-negligible. We say that the extractor outputs (b1,m1, w) ∈ lS in that case.

2. (If we are in the public parameters model, assume that the values params and auxext
are fixed. Assume that pkB was generated appropriately.)
On input (params, pkB), the adversary A plays the following game: A executes the
Withdraw and Deposit protocols with the bank as many time as it wishes. (It can
simulate running the Spend protocol with itself.) Let (b1,i,m1,i, wi) ∈ lS be the output of
EX-Y (A)

Withdrawm,lS
(params, auxext , pki, b1,i,m1,i) if the ith withdrawal protocol was successful.

Recall that wi = (Si,1, . . . , Si,n, aux) is a list of n serial numbers; we say that these
belong to pki. Let Af = {Si,j | 1 ≤ i ≤ f, 1 ≤ j ≤ n} be the list of serial numbers after
f executions of the Withdraw protocol. A wins the game if for some f , in some Deposit
protocol, the honest bank accepts a coin with serial number S /∈ Af . We require that
no probabilistic polynomial-time adversary succeeds in this game with non-negligible
probability.

Identification of double-spenders. This property guarantees that no PPT adversary has a non-
negligible probability of winning the following game:

(If we are in the public parameters model, assume that the values params and auxext are
fixed; assume that pkB was generated appropriately.)

On input (params, pkB), the adversary A plays the following game: A executes the Withdraw
protocol and Spend protocol with the bank as many time as it wishes. Let (b1,i,m1,i, wi) ∈ lS
be the output of EX-Y (A)

Withdrawm,lS
(params, auxext , pki, b1,i,m1,i) if the ith withdrawal protocol

was successful. Recall that wi = (Si,1, . . . , Si,n, aux) is a list of n serial numbers; recall that
we say that these belong to pki. Let Ai be the list of serial numbers that belong to public
key pki. A wins the game if for some f , in some Spend protocol, the bank, simulating an
honest merchant, accepts a coin with serial number S ∈ Af twice, i.e. outputs (S, π1) and
(S, π2), and yet Identify(params, S, π1, π2) output a public key pk and a proof ΠG such that
VerifyGuilt(params, S, pk,ΠG) does not accept.

Tracing of double-spenders. Here, we play the same sort of game with the adversary as above,
but we are more generous as to what constitutes the adversary’s success. Suppose that

9

for some f , in some Spend protocol, the honest merchant accepts a coin with serial num-
ber S twice, i.e. outputs (S, π1) and (S, π2), and computes Identify(params, S, π1, π2) →
(pkU ,ΠG). Let {Si} be the set of serial numbers and {Πi} be the set of ownership proofs
output by Trace(params, S, pkU ,ΠG, D, n). A wins if (1) there exists some serial number
S′ ∈ Af such that S′ 6∈ {Si}, or (2) there exists a serial number Sj ∈ {Si} such that
VerifyOwnership(params, Sj ,Πj , pkU , n) does not accept.

Anonymity of users. (If we are in the public parameters model, assume that the values params
and auxsim are fixed; auxsim is a value available to a simulator but not available to regular
participants in this system.)

Here, let us consider an adversary A that forms the bank’s public key pkB and then issues
the following queries, as many as it wants, in any order:

PK of i In this query, A may request and receive the public key pki of user i, generated
honestly as (pki, ski)← UKeygen(1k, params).

Withdraw with i In this query, A executes the Withdraw protocol with user i:

Withdraw(U(pkB, ski, n),A(state, n))

where state is A’s state; let us denote the user’s output after the j’th Withdraw query
by Wj ; note that Wj may be an error message, in that case we say that Wj is an invalid
wallet.

Spend from wallet j In this query, if wallet j Wj is defined, A executes the Spend protocol
from this wallet: Spend(U(Wj),A(state)), where state is the adversary’s state.

We say that A is legal if it only spends from valid wallets, and never asks to spend more than
n coins from the same wallet Wj .

We require the existence of a simulator SX-Y (·)(params, auxsim, ·) such that for all pkB, no
legal adversary A can distinguish whether he is playing Game R(eal) or Game I(deal) below
with non-negligible advantage:

Game R The queries A issues are answered as described above.
Game I The PK and Withdraw queries A issues are answered as described above, but in

the Spend query, instead of interacting with U(Wj), A interacts with the simulator
SX-Y (A)(params, auxsim, pkB).

(The reason this captures anonymity is that the simulator does not know on behalf of which
honest user he is spending the coin.)

Exculpability. Recall that the exculpability property guarantees that only users who really are
guilty of double-spending a coin can ever get convicted of being a double-spender. Excul-
pability comes in two flavors: weak exculpability means that only users who double-spent
some coin can be convicted; while strong exculpability means that a guilty user would only
be responsible for the coins that he indeed double-spent, i.e., his guilt can be quantified and
he can be punished according to guilt.

To define weak exculpability, we have the adversary A launch the following attack against a
user U (assume n is fixed):

10

Setup The system parameters params are generated and the user’s keys (pkU , skU) are cho-
sen. The adversary chooses the bank’s public key pkB in an adversarial fashion.

Queries The adversary A issues queries to interact with the user U , as follows:

Withdraw wallet j The adversary plays the bank’s side of the Withdraw protocol with
the U . The user outputs the wallet Wj .

Spend from wallet j The adversary plays the merchant’s side of the Spend protocol
where U ’s input is wallet Wj . For each wallet, the adversary is allowed to execute
this query up to n times.

Success criterion In the end, the adversary A outputs the values (S,Π)and wins the game if
VerifyOwnership(params, S,Π, pkU , n) accepts.

We say that an electronic cash scheme guarantees weak exculpability if the probability that
the adversary wins this game is negligible.

To define strong exculpability, we first insist that corresponding to any wallet W obtained
by an honest user even from an adversarial bank, there exist at most n valid serial numbers.
Denote the set of serial numbers corresponding to W by AW .

The strong exculpability game is somewhat similar to the weak exculpability game: the setup
and the withdraw query are the same. The only things that are different are as follows:

Queries The adversary issues queries to interact with the user U , in addition to Withdraw
above, as follows:

Spend from wallet j The adversary plays the merchant’s side of the Spend protocol
where U ’s input is wallet Wj . For each wallet, the adversary is allowed to execute
this query as many times as he wishes. Recall that the wallet keeps state information
about how many coins have already been spent, and a wallet where n coins have
been spent is not well-defined. To make this query well-defined in that case, let us
say that once n coins are spent from a wallet Wj , the state information is reset such
that it is the same as it was before any coins were spent.
As a result of this query, the user may produce a serial number that she had already
produced before. Let Aj be the set of all serial numbers that the user has produced
in a Spend protocol for wallet j so far. If for any j, |Aj | > n, then the adversary
is given the sets of serial numbers AWj′ for all wallets Wj′ . (This is what the
adversary is entitled to because of the traceability requirement.) Let A′

j be the set
of serial numbers for wallet Wj that are known to the adversary. Thus A′

j = Aj if
no double-spending has ever occured, and A′

j = AWj otherwise.
Let Ads be the set of serial numbers that the user has produced more than once
(i.e., double-spent) so far.

Success criterion In the end, the adversary outputs the values (S,Π) and wins the game if
one of the following conditions is satisfied:

1. The adversary made up a bogus serial number and managed to pin it on the
user; i.e., for all j, S /∈ A′

j and yet (a) VerifyOwnership(params, S,Π, pkU , n) or
(b) VerifyGuilt(params, S, Π, pkU , n) accepts.

2. The user has spent fewer than n coins from all of his wallets, and yet the adversary
managed to produce proof that the user owns or double-spent some coin in wallet j;

11

i.e., |Aj′ | < n for all j′, S ∈ Aj for some j, and yet (a) VerifyOwnership(params, S,Π,
pkU , n) or (b) VerifyGuilt(params, S,Π, pkU , n) accepts.

3. The adversary successfully accuses the user of double-spending a coin which was not
in fact double-spent: S /∈ Ads and VerifyGuilt(params, S,Π, pkU , n) accepts.

In our model, a person is their secret key skU , so any coins obtained by a party in possession
of skU belong to pkU , and any coins double-spent with knowledge of skU were double-spent
by pkU . For our particular construction in System Two, where one part of skU is revealed
after double-spending, we define party U as those persons in possession of both parts of skU .

Strengthening the definition: the UC framework. Even though our definition of security is
not in the UC framework, note that our definition would imply UC-security whenever the extractor
E and simulator S are constructed appropriately. In a nutshell, an ideal electronic cash functionality
would allow an honest user to withdraw and spend n coins. In this case, if the merchant and bank
are controlled by the malicious environment, the simulator S defined above creates the merchant’s
and bank’s view of the Spend protocol. At the same time, the balance property guarantees that the
bank gets the same protection in the real world as it does in the ideal world, and the exculpability
property ensures that an honest user cannot get framed in the real world, just as he cannot get
framed in the ideal world.

3 Preliminaries

Our e-cash systems use a variety of known protocols as building blocks, which we now briefly review.
Many of these protocols can be shown secure under several different complexity assumptions, a
flexibility that will extend to our e-cash systems. The notation G = 〈g〉 means that g generates
the group G.

3.1 Bilinear Maps

Let Bilinear Setup be an algorithm that, on input the security parameter 1k, outputs the parameters
for a bilinear mapping as γ = (q, ĝ1, ĥ1, Ĝ1, g̃2, h̃2, G̃2, G, e). We follow the notation of Boneh,
Lynn, and Shacham [9]:

1. Ĝ1, G̃2 are both (multiplicative) groups of prime order q = Θ(2k);

2. each element of Ĝ1, G̃2, and G has a unique binary representation;

3. the setup algorithm provides two generators for both groups where Ĝ1 = 〈ĝ1〉 = 〈ĥ1〉 and
G̃2 = 〈g̃2〉 = 〈h̃2〉.

4. ψ is an efficiently computable isomorphism from G̃2 to Ĝ1, with ψ(g̃2) = ĝ1 and ψ(h̃2) = ĥ1;

5. e is an efficiently computable bilinear map e : Ĝ1 × G̃2 → G such that:

• (Bilinear) for all ĝ1 ∈ Ĝ1, g̃2 ∈ G̃2, and a, b ∈ Zq, e(ĝa
1 , g̃

b
2) = e(ĝ1, g̃2)ab;

• (Non-degenerate) if ĝ1 is a generator of Ĝ1 and g̃2 is a generator of G̃2, then e(ĝ1, g̃2)
generates G.

12

3.2 Complexity Assumptions

The security of our e-cash systems is based on the following assumptions:

Strong RSA Assumption [4, 41]: Given an RSA modulus n and a random element g ∈ Z∗
n,

it is hard to compute h ∈ Z∗
n and integer e > 1 such that he ≡ g mod n. The modulus n is of a

special form pq, where p = 2p′ + 1 and q = 2q′ + 1 are safe primes.

y-Decisional Diffie-Hellman Inversion Assumption (y-DDHI) [6, 37]: Given a random
generator g ∈ G, where G has prime order q, the values (g, gx, . . . , g(xy)) for a random x ∈ Zq, and
a value R ∈ G, it is hard to decide if R = g1/x or not.1

External Diffie-Hellman Assumption (XDH) [42, 53, 46, 7, 3]: Suppose Bilinear Setup(1k)
produces the parameters for a bilinear mapping e : Ĝ1 × G̃2 → G. The XDH assumption states
that the Decisional Diffie-Hellman (DDH) problem is hard in Ĝ1. This implies that there does not
exist an efficiently computable isomorphism ψ′ : Ĝ1 → G̃2.

Sum-Free Decisional Diffie-Hellman Assumption (SF-DDH) [36]: Suppose that g ∈ G
is a random generator of order q. Let L be any polynomial function of |q|. Let O~a(·) be an
oracle that, on input a subset I ⊆ {1, . . . , L}, outputs the value gβI

1 where βI =
∏

i∈I ai for some
~a = (a1, . . . , aL) ∈ ZL

q . Further, let R be a predicate such that R(J, I1, . . . , It) = 1 if and only if
J ⊆ {1, . . . , L} is DDH-independent from the Ii’s; that is, when v(Ii) is the L-length vector with
a one in position j if and only if j ∈ Ii and zero otherwise, then there are no three sets Ia, Ib, Ic
such that v(J) + v(Ia) = v(Ib) + v(Ic) (where addition is bitwise over the integers). Then, for all
probabilistic polynomial time adversaries A(·),

Pr[~a = (a1, . . . , aL)← ZL
q ; (J, α)← AO~a(1|q|); y0 = g

Q
i∈J ai ; y1 ← G;

b← {0, 1}; b′ ← AO~a(1|q|, yb, α) : b = b′ ∧R(J,Q) = 1] < 1/2 + 1/poly(|q|),

where Q is the set of queries that A made to O~a(·).

3.3 Known Discrete-Logarithm-Based, Zero-Knowledge Proofs

In the common parameters model, we use several previously known results for proving statements
about discrete logarithms, such as (1) proof of knowledge of a discrete logarithm modulo a prime [52]
or a composite [41, 35], (2) proof of knowledge of equality of representation modulo two (possibly
different) prime [33] or composite [21] moduli, (3) proof that a commitment opens to the product
of two other committed values [20, 25, 13], (4) proof that a committed value lies in a given integer
interval [26, 20, 20, 10], and also (5) proof of the disjunction or conjunction of any two of the
previous [34]. These protocols modulo a composite are secure under the strong RSA assumption
and modulo a prime under the discrete logarithm assumption.

When refering to the proofs above, we will follow the notation introduced by Camenisch and
Stadler [23] for various proofs of knowledge of discrete logarithms and proofs of the validity of
statements about discrete logarithms. For instance,

PK{(α, β, δ) : y = gαhβ ∧ ỹ = g̃αh̃δ ∧ (u ≤ α ≤ v)}
1Others [6, 37] have used a stronger bilinear version of the y-DDHI assumption, where, given the same input in

〈g〉y+1 it is hard to distinguish e(g, g)1/x from a random R in 〈e(g, g)〉.

13

denotes a “zero-knowledge Proof of Knowledge of integers α, β, and δ such that y = gαhβ and
ỹ = g̃αh̃δ holds, where u ≤ α ≤ v,” where y, g, h, ỹ, g̃, and h̃ are elements of some groups G =
〈g〉 = 〈h〉 and G̃ = 〈g̃〉 = 〈h̃〉. The convention is that Greek letters denote quantities of which
knowledge is being proven, while all other values are known to the verifier. We apply the Fiat-
Shamir heuristic [38] to turn such proofs of knowledge into signatures on some message m; denoted
as, e.g., SPK{(α) : y = gα}(m).

3.4 Pseudorandom Functions

A useful building block of our e-cash systems is the pseudorandom functions recently proposed by
Dodis and Yampolskiy [37], which they expand to verifiable random functions using bilinear maps.
Their construction is:

For every n, a function f ∈ Fn is defined by the tuple (G, q, g, s), where G is group of
order q, q is an n-bit prime, g is a generator of G, and s is a seed in Zq. For any input
x ∈ Zq (except for x = −1 mod q), the function fG,q,g,s(·), which we simply denote as
fDY

g,s (·) for fixed values of (G, q, g), is defined as fDY
g,s (x) = g1/(s+x+1).

This construction is secure under the y-DDHI assumption in G. As mentioned in the intro-
duction, we could instead substitute in the Naor-Reingold PRF [48], and replace the y-DDHI
assumption with the more standard DDH assumption, at the cost of enlarging our wallets from
O(`+ k) bits to O(` · k) bits.

3.5 CL Signatures

Recall the Pedersen commitment scheme [50], in which the public parameters are a group G of
prime order q, and generators (g0, . . . , gm). In order to commit to the values (v1, . . . , vm) ∈ Zq

m,
pick a random r ∈ Zq and set C = PedCom(v1, . . . , vm; r) = gr

0

∏m
i=1 g

vi
i .

Camenisch and Lysyanskaya [18] came up with a secure signature scheme with two protocols: (1)
An efficient protocol between a user and a signer with keys (pkS , skS). The common input consists
of pkS and C, a Pedersen commitment. The user’s secret input is the set of values (v1, . . . , v`, r)
such that C = PedCom(v1, . . . , v`; r). As a result of the protocol, the user obtains a signature
σpkS

(v1, . . . , v`) on his committed values, while the signer does not learn anything about them. The
signature has size O(` log q). (2) An efficient proof of knowledge of a signature protocol between a
user and a verifier. The common inputs are pkS and a commitment C. The user’s private inputs
are the values (v1, . . . , v`, r), and σpkS

(v1, . . . , v`) such that C = PedCom(v1, . . . , v`; r). These
signatures are secure under the strong RSA assumption. For the purposes of this exposition, it
does not matter how CL signatures actually work, all that matters are the facts stated above.

Our subsequent e-cash systems will require the strong RSA assumption independently of the
CL signatures. By making additional assumptions based on bilinear maps, we can use alternative
schemes by Camenisch and Lysyanskaya [19] and Boneh, Boyen and Shacham [7], yielding shorter
signatures in practice.

3.6 Verifiable Encryption

In Section 4.2, we apply a technique by Camenisch and Damg̊ard [16] for turning any semantically-
secure encryption scheme into a verifiable encryption scheme. A verifiable encryption scheme is

14

a two-party protocol between a prover and encryptor P and a verifier and receiver V. Roughly,
their common inputs are a public encryption key pk and a commitment A. As a result of the
protocol, V either rejects or obtains the encryption c of the opening of A. The protocol ensures
that V accepts an incorrect encryption only with negligible probability and that V learns nothing
meaningful about the opening of A. Together with the corresponding secret key sk, transcript c
contains enough information to recover the opening of A efficiently. We hide some details here and
refer to Camenisch and Damg̊ard [16] for the full discussion.

3.7 Bilinear El Gamal Encryption

In particular, we apply the verifiable encryption techniques above to the following bilinear variant
of El Gamal encryption [8, 2]. Assume we run Bilinear Setup on 1k to obtain γ = (q, ĝ1, ĥ1, Ĝ1, g̃2,
h̃2, G̃2, G, e), where we have bilinear map e : Ĝ1× G̃2 → G. Let (G,E,D) denote the standard key
generation, encryption, and decryption algorithms. On input (1k, γ), the key generation algorithm
G outputs a key pair (pk, ŝk) = (e(ĝ1, g̃2)u, ĝu

1) for a random u ∈ Zq. The main idea is that the
value ĝu

1 is enough to decrypt.
To encrypt a message m ∈ G under pk, select a random k ∈ Zq and output the ciphertext

c = (g̃k
2 , pk

k
m) = (g̃k

2 , e(ĝ1, g̃2)
ukm). Then, to decrypt c = (c̃1, c2) with the value ĝu

1 , simply compute
c2/e(ĝu

1 , c̃1). This encryption scheme is known to be semantically-secure under the Decisional
Bilinear Diffie-Hellman (DBDH) assumption [8, 2], i.e., given (g̃2, g̃a

2 , g̃
b
2, g̃

c
2, X) for random a, b, c ∈

Zq and X ∈ G, it is hard to decide if X = e(ĝ1, g̃2)abc.

4 Two Compact E-Cash Systems

We present two compact e-cash systems. In System One, an honest bank can quickly detect double-
spending, identify the perpetrator, and prove his guilt to a third party from two coin deposits with
the same serial number. This system allows a wallet of 2` coins to be stored in O(` + k) bits.
In System Two, the bank can do everything that it could before, and in addition, the bank can
compute the serial numbers for all the coins that belong to the perpetrator along with proofs of
their ownership. Here, size of our wallets is either O(` + k) or O(` · k) bits depending on the
underlying assumptions. The user’s anonymity is based on computational, not trust assumptions.
If a user does not overspend, he cannot be identified or traced. There is no trusted party.

Global parameters for both Systems. Let 1k be the security parameter and let ` be any value
in O(log k). Our subsequent schemes work most efficiently by having four different groups:

• G = 〈g〉, where n is a special RSA modulus of 2k bits, g is a quadratic residue modulo n,
and h ∈ G.

Common uses: Pedersen commitments and RSA-based CL signatures.

• G = 〈g〉, where g is an element of prime order q = Θ(2k), and h is an element in G. We
assume that DDH is hard in G; when this group is the range of a bilinear mapping, we will
denote it as G instead.

Common uses: coin serial numbers, security tags, and range of bilinear mapping. In particu-
lar, we let FDY

g,s (x) = g
1

x+s+1 denote the PRF due to Dodis and Yampolskiy [37].

15

• Ĝ1 = 〈ĝ1〉 = 〈ĥ1〉 and G̃2 = 〈g̃2〉 = 〈h̃2〉, where both groups have the same prime order as G,
and there exists a bilinear mapping e : Ĝ1 × G̃2 → G.

Common uses: first and second domain of bilinear mapping.

Our first scheme will not require Ĝ1 and G̃2. Assume that, on input 1k, each system is ini-
tialized with the necessary common parameters, denoted ζ, as specified above. We also define
PedCom(x1, . . . , xn; r) = hrΠn

i=1g
xi
i . Sometimes for simplicity we do not explicitly include the ran-

domess r in the input to the commitment. h, {gi} are assumed to be publicly known elements of
the appropriate group.

4.1 System One: Compact E-Cash with Public Key Recovery

Our first system supports the basic algorithms (BKeygen,UKeygen,Withdraw, Spend, Deposit, Identify,
VerifyGuilt). In this scheme, a wallet of size O(` + k) is sufficient to hold 2` coins. In the Identify
algorithm, the bank can recover the identity of a double-spender pkU from two deposits with the
same coin serial number S. Using VerifyGuilt, the bank can prove that pkU double-spent coin S to
a third party; while all honest users are guaranteed strong exculpability.

The parties set up their keys as follows. In BKeygen(1k, ζ), the bank B generates a CL signature
key pair (pkB, skB) for message space M such that Zq×Zq×Zq ⊆M . In UKeygen(1k, ζ), each user
U generates a unique key pair (pkU , skU) = (gu, u) for a random u ∈ Zq. Recall that merchants are
a subset of users.

Withdraw(U(pkB, skU , 2`),B(pkU , skB, 2`)): A user U interacts with the bank B as follows:

IDEA: User’s wallet of 2` coins is (skU , s, t, σ, J), where σ is the bank’s signature on (skU , s, t)
and J is an `-bit counter.

1. U identifies himself to the bank B by proving knowledge of skU .
2. In this step, the user and bank contribute randomness to the wallet secret s; the user also

selects a wallet secret t. This is done as follows: U selects random values s′, t ∈ Zq and
sends a commitment A′ = PedCom(skU , s′, t; r) to B. B sends a random r′ ∈ Zq. Then
U sets s = s′ + r′. U and B locally compute A = gr′A′ = PedCom(skU , s′ + r′, t; r) =
PedCom(skU , s, t; r).

3. U and B run the CL protocol for obtaining B’s signature on committed values contained in
commitment A. As a result, U obtains σB(skU , s, t).

4. U saves the walletW = (skU , s, t, σB(skU , s, t), J), where s, t are the wallet secrets, σB(skU , s, t)
is the bank’s signature, and J is an `-bit coin counter initialized to zero.

5. B records a debit of 2` coins for account pkU .

Spend(U(W,pkM),M(skM, pkB, 2`)): U anonymously transfers a coin to M as follows. Let H :
{0, 1}∗ → Z∗

q be a collision-resistant hash function. (An optimized version appears in Appendix A.)
The protocol follows the outline above exactly. The ZKPOK in step 3 can be done as follows:

1. Let A = PedCom(J); prove that A is a commitment to an integer in the range [0 . . . 2` − 1].

16

Outline of Spend Protocol:

1. User computes R = H(pkM||info), where info ∈ {0, 1}∗ is provided by the merchant.

2. User sends a coin serial number and double-spending equation:

S = FDY
g,s (J) , T = pkUF

DY
g,t (J)R.

3. User sends a ZKPOK Φ of (J, skU , s, t, σ) such that:

• 0 ≤ J < 2` (standard techniques [26, 20, 20, 10])

• S = FDY
g,s (J) (see below)

• T = pkUF
DY
g,t (J)R (see below)

• VerifySig(pkB, (skU , s, t), σ) =true (CL signatures [18, 19])

4. If Φ verifies,M accepts the coin (S, (R, T,Φ)) and uses this information at deposit time.

5. U updates his counter J = J + 1. When J > 2` − 1, the wallet is empty.

2. Let B = PedCom(u), C = PedCom(s), D = PedCom(t); prove knowledge of a CL signature
from B on the openings of B,C and D in that order,

3. Prove S = FDY
g,s (J) = g1/(J+s+1) and T = pkUF

DY
g,t (J)R = gu+R/(J+t+1).

More formally, this proof is the following proof of knowledge:

PK{(α, β, δ, γ1, γ2, γ3) : g = (AC)αhγ1 ∧ S = gα∧
g = (AD)βhγ2 ∧ B = gδhγ3 ∧ T = gδ(gR)β}

Use the Fiat-Shamir heuristic to turn all the proofs above into one signature of knowledge on the
values (S, T,A,B,C,D,g,h, n, g, pkM, R, info). Call the resulting signature Φ.

Deposit(M(skM, S, π, pkB),B(pkM, skB)): A merchantM sends to bank B a coin (S, π = (R, T,Φ)).
If Φ verifies and R is fresh (i.e., the pair (S,R) is not already in the list L of spent coins), then
B accepts the coin for deposit, adds (S, π) to the list L of spent coins, and credits pkM’s account;
otherwise, B sends M an error message.

IDEA: The bank accepts coin (S, (R, T,Φ)) if proof Φ verifies and (S,R) never appeared together
before. If S appeared before, trigger Identify algorithm.

Note that in this deposit protocol, M must convince B that it behaved honestly in accepting
some coin (S, π). As a result, our construction requires the Fiat-Shamir heuristic for turning a
proof of knowledge into a signature. If M and B were the same entity, and the Withdraw and
Spend protocols were interactive, then the bank B would not need to verify the validity of the
coin that the merchant wishes to deposit, and as a result, we could dispense with the Fiat-Shamir
heuristic and thus achieve balance and anonymity in the plain model (i.e., not just in the random
oracle model).

17

We note that if B was satisfied with detecting/identifying double-spenders, without worrying
about proving anything to a third party, it need only store (S,R, T) in L for each coin at a
considerable storage savings.

Identify(ζ, S, π1, π2): Suppose (R1, T1) ∈ π1 and (R2, T2) ∈ π2 are two entries in the bank’s database
L of spent coins for serial number S. Then output the proof of guilt ΠG = (π1, π2) and the identity
pk =

(
T2

R1/T1
R2

)(R1−R2)−1

.

IDEA: From two coins with same serial number S, anyone can recover the user’s public key.

Let us explain why this produces the public key pkU of the double-spender. Suppose coin S
belonged to some user with pkU = gu, then each Ti is of the form gu+Riα for the same values u and
α. (Either this is true or an adversary has been successful in forging a coin, which we subsequently
show happens with only negligible probability.) As the bank only accepts coins with fresh values
of R (i.e., R1 6= R2), it allows to compute:

(T2
R1

T1
R2

)(R1−R2)−1

=
(guR1+R1R2α

guR2+R1R2α

)(R1−R2)−1

= g
u(R1−R2)
(R1−R2) = gu = pkU .

VerifyGuilt(params, S, pkU ,ΠG) : Parse ΠG as (π1, π2) and each πi as (Ri, Ti,Φi). Run Identify(params,

IDEA: Anyone can check that two coins with same S allows to compute user’s public key.

S, π1, π2) and compare the first part of its output to the public key pkU given as input. Check
that the values match. Next, verify each Φi with respect to (S,Ri, Ti). If all checks pass, accept;
otherwise, reject.

Efficiency Discussion of System One. The dominant computational cost in these protocols
are the single and multi base exponentations. In a good implementation, a multi-base exponentation
is essentially as fast as an ordinary exponentation. While we do not provide the full details of the
Withdraw protocol, it can easily be derived from the known protocols to obtain a CL-signature on a
committed signature [18, 17]. Depending on how the proof of knowledge protocol is implemented,
Withdraw requires only three moves of communication.

The details of (an optimized version of) the Spend protocol are given in Appendix A. One can
verify that a user must compute seven multi-base exponentiations to build the commitments and
eleven more for the proof. The merchant and bank need to do eleven multi-base exponentiations
to check that the coin is valid. The protocols require two rounds of communication between the
user and the merchant and one round between the bank and the merchant.

Theorem 4.1 System One supports the algorithms (BKeygen, UKeygen, Withdraw, Spend, Deposit,
Identify) and guarantees balance, identification of double-spenders, anonymity of users, and strong
exculpability under the Strong RSA and y-DDHI assumptions in the random oracle model.

Proof.
Balance. Part 1. Let A be an adversary who executes f Withdraw protocols with an extractor
E = EBB-ε(A)

Withdrawm,lS
acting as the bank (with knowledge of skB). Suppose that the proof of knowledge

18

in step 3 (for the opening of commitment A) is done interactively, and let E ′ = EBB-ε(A)
pok be the

extractor for that proof of knowledge. (We know that such an extractor exists due to previous
results; see Section 3.3.) Then, for each Withdraw protocol, E acts exactly as an honest bank
would, except during step 3 where E runs the code of E ′ to extract the values (u, s, t). From the
value s, E can compute w = (S1, . . . , Sn, u, s, t, r) such that Si = FDY

g,s (i), for i = 1 to n, and
A = PedCom(u, s, t; r). At the end of each Withdraw execution, E outputs (stateE ,A, w) ∈ lS ,
where A is a commitment, purportedly equivalent to PedCom(u, s, t), that A sent during step 3
of Withdraw and the language lS is the set of triples (·,A, w), where the first element may be
anything, but the second two must conform to the specification for w immediately above. Let
Af = {Si,j |1 ≤ i ≤ f, 1 ≤ j ≤ n} be the list of serial numbers after f executions of the Withdraw
protocol.

If the proof of knowledge in the Withdraw protocol is done non-interactively, then both E and
E ′ must be given control over the random oracle in addition to their black-box access to A.

Part 2. Due to the soundness of the underlying proof of knowledge protocols, we know that Af

contains all valid serial numbers that A can produce, except with negligible probability. Thus, if
A is to succeed at its game, it must convince an honest B to accept a serial number for which it
cannot generate an honest proof of validity with some non-negligible probability.

Now suppose A convinces an honest B to accept the invalid coin (S, π) during Deposit, where
S 6∈ Af and π = (R, T,Φ). Then A must have concocted a false proof as part of the signature
proof Φ that: (1) A opens to an integer in [1, . . . , 2`] or (2) A knows a signature from B on the
opening of B,C,D or (3) that S (and T) are well formed as in Γ. Case (1) happens with negligible
probability ν1(k) under the Strong RSA assumption [26, 20, 20, 10]. Case (2) happens with negli-
gible probability ν2(k) under the assumption that the CL signatures are secure (which requires the
Strong RSA assumption [18] or an additional bilinear map assumption called LRSW [19]). Case
(3) happens with negligible probability ν3(k) under the discrete logarithm assumption [52] (this
assumption will later be subsumed by the y-DDHI assumption in the theorem statement). Thus,
the A succeeds in this case with negligible probability ν1(k) + ν2(k) + ν3(k). Thereby, A’s total
success probability in both parts is also negligible.

Removing the random oracle. If Withdraw is interactive, then random oracles are not used in
part 1. It is enough to give the extractor E ′ (and thus E as well) black-box access to A.

A (programmable) random oracle is used, however, to build the signature proofs in part 2. This
is necessary if a merchant is to prove to a bank during Deposit that it has not colluded with a user
to concoct a fake coin. In the special case that the same entity is running the Withdraw and Spend
protocols (and thus, there is no need for a Deposit protocol), we remove the need for random oracles
all together by making each proof in the Spend interactive. Black-box access to the adversary is
still required for our efficient proofs.

Identification of double-spenders: Let us first point out a case in which this property does
not apply. Observe that whenever the bank issues a CL signature on wallet secrets s, s′ such that
|s − s′| < 2`, the recipients of these signatures can both generate valid spending proofs for some
coin S = fDY

g,s (1) = fDY
g,s′ (s − s′ + 1) = g1/(s+1). Thus, there will be two valid entries in the

bank’s database as (S, π1) and (S, π2). This may look suspicious, but since double-spending has
not occurred, this property does not apply. That said, we point out that the domain from which
s is sampled is large enough that this is not a problem. During step 2 of the Withdraw protocol,

19

both the bank and user contribute to the randomness used to select s ∈ Zq. Thus, so long as one
of them is honest, s will be 2`-far from any other s′ with probability 2`+1/q.

We now return to our main proof. As defined in balance, let E = EBB-ε(A)
Withdrawm,lS

be the extractor
that interacts with the adversary A during the Spend protocols to extract a set of valid serial
numbers Af = {Si,j |1 ≤ i ≤ f, 1 ≤ j ≤ n}. Now, suppose the honest merchant M (simulated by
the bank) accepts two coins (S, π1) and (S, π2) for some S ∈ Af . (We already saw in balance that
the adversary cannot get an honest merchant to accept S 6∈ Af with non-negligible probability.)

Parse each πi as (Ri, Ti,Φi). Since an honest M chooses R at random during the Spend
protocol, we know that R1 6= R2 with high probability. If we show that, with high probability, each
Ti = pkUf

DY
g,t (J + 1)R for the same values of pkU , J and t, then the success of Identify(ζ, S, π1, π2)

in recovering pkU = gu follows directly from the correctness of the algorithm.
Since S is valid, we have S = fDY

g,s (J + 1) for some 0 ≤ J < 2` and s ∈ Zq such that A “knows”
σB(u, s, t) for some u, t, which incidentally E extracted. (Note that either A is proving knowledge
of the same σB in both transactions or it is actually spending two different coins in which case
A is not guilty of double-spending, and thus this algorithm does nothing.) Further since M (or
the random oracle) chose R1, R2, this uniquely fixes T1 = gu+R1/(J+t+1), T2 = gu+R2/(J+t+1) as the
only valid security tags to accompany serial number S in these two transactions. To deviate from
these tags during Spend, A must fake the proof of validity Φ in step 3 of Spend which we already
saw (in balance) happens with only negligible probability.

Thus, Identify can output the public key of the double-spender pkU along with proof that he
double-spent coin S which is simply ΠG = (π1, π2). Since running VerifyGuilt(params, S, pkU ,ΠG),
for our System One construction, is tantamount to re-running identify and comparing the outputs,
we see that VerifyGuilt will always accept on any honest output of Identify.

Anonymity of users: We capture anonymity by describing the simulator S for our construction
as described in the formal definition. As presented in System One, we will assume we are using
the efficient discrete-logarithm based proof protocols from Sections 3.3 (standard proof protocols)
and 3.5 (CL signature protocols).

Let the adversary A, representing a colluding bank and merchant, create and publish a public
key pkB. Next, A may request the public key pki of any user i. The adversary can engaged in the
Withdraw protocol with any user i as many times as he likes. Finally, A will be asked to engage in
a legal number of Spend protocols with some real user j (with a real wallet Wj) or a simulator S
(without Wj or even knowledge of j).

The simulator S = SIO-RO(A)(params, auxsim, n) is given as input the global parameters
params, some additional information auxsim possibly required by other simulators called as sub-
routines, and the total number of coins in a valid wallet n. This simulator S is given control of the
random oracle as well as input-output access to the adversary A.

Our simulator S executes each new Spend request by A as follows:

1. S receives an optional transaction string info ∈ {0, 1}∗.
2. S gathers the appropriate transaction information, such as info, pkB, current time, etc., and

fixes its output for the random oracle to be an arbitrary value R ∈ Z∗
q .

3. Next S chooses random values u, s, t ∈ Zq and a random J ∈ [0, . . . , n − 1], and computes
S = fDY

g,s (J + 1) and T = gufDY
g,t (J + 1)R.

4. S sends A the coin (S, π), where π = (R, T,Φ), and Φ is the following simulated signature
proof Φ:

20

(a) A = PedCom(J + 1) and a (real) proof that A is a commitment to an integer in the
range [1, . . . , n],

(b) B = PedCom(u), C = PedCom(s), D = PedCom(t) and a simulated proof of knowledge
of a CL signature from B on the openings of B,C and D in that order. (S invokes the
appropriate CL simulator [18, 19] for this step, which requires control of the random
oracle.)

(c) and a (real) proof Γ that S = g1/(J+s+1) and T = gu+R/(J+t+1).

Observe above that all the difficulty of S’s job is handled by the simulator for a proof of
knowledge of a CL signature.

We now explain why the output of S is computationally indistinguishable from the output of a
real user. We claim that during the Withdraw protocol A did not learn anything meaningful about
the set of secrets (u, s, t) that it signed due to the security of the CL signatures. In fact, these
values can be information theoretically-hidden from A by requesting a signature on (u, s, t, r) for a
random r that is otherwise discarded [18, 19].

Thus, the values s and t chosen by S are indistinguishable from those chosen by real users.
Recall that a coin consists of the tuple (S, (R, T,Φ)), where R is chosen by A or the random oracle
(thus, indistinguishable between the schemes). Due to the security of the DY PRF [37], the coin
parts S = fDY

g,s (J +1) and T = gufDY
g,t (J +a)R are computationally indistinguishable from random

elements in G̃2. And therefore, equally likely to have been generated by any user with pki = gui

and with any coin counter value J ∈ [0, . . . , n − 1]. Observe that T looks random due to the fact
that fDY

g,t (J + 1) is computed in a cyclic group of prime order, and is thus a random generator
in G raised to an arbitrary, non-zero power. Finally, recall that our simulated Φ consisted of a
group of (perfectly hiding) Pederson commitments, two true proofs, and one simulated proof. The
simulated proof is the only difference between S’s Φ and that of a real user. However, we ran the
CL signature proof simulator to generate the simulated proof, and thus, by the security of the CL
signatures, A distinguishes between Game R (with a real user) and Game I (with S) with only
negligible probability based on the Strong RSA [18] or a bilinear map based assumption called
LRSW [19].

Removing the random oracle. As in the balance discussion, a (programmable) random oracle
will typically be necessary to our proofs here, so that S can fake the coin’s signature proof of
validity. (It needs to be a signature proof, in practice, because the merchant will need to have the
bank verify it before deposit.) However, in the special case that the bank and the merchant are a
single entity, the random oracle can be securely removed at the cost of make the Spend protocol
interactive, changing each proof protocol so that A must commit to his challenge in advance, and
giving the simulator black-box access to A. Further, if random oracles could be removed from the
proof of the CL signatures, then that result would carry over to our scheme as well.

Strong Exculpability: In our construction, it is easy to see that corresponding to a wallet W ,
even one obtained as a result of interacting with a malicious bank B, there are exactly n serial
numbers that an honest user U can produce.

Parts (1a) and (2a) of the strong exculpability definition (and indeed, all of the weak exculpa-
bility one) require that an adversary should not be able to produce a serial number S and a proof
Π such that VerifyOwnership(params, S,Π, pkU , n) accepts with non-negligible probability. In our
System One presentation, the algorithm VerifyOwnership was not defined. Let us now define the

21

algorithm such that it rejects on all inputs. Then System One trivially satisfies weak exculpability
and part of the strong exculpability requirement.

Now, we move on to the part of exculpability requirement that concerns VerifyGuilt. This is
also fairly trivial. Recall that in System One the proof of guilt is Π = (π1, π2) such that the coins
(S, π1) and (S, π2) were accepted by honest merchants. (That is, the (non-interactive) coins (S, π1)
and (S, π2) are re-verified as part of the VerifyGuilt algorithm.) And furthermore, part of any valid
πi involves proving knowledge of the user’s secret key skU = u (see step 3(c) of Spend). Thus,
either (1) A is successful at producing a false Π which means that he is also successful at forging
the underlying proof of knowledge, which happens with only negligible probability [52]; or (2) if
(S, π1) and (S, π2) are both valid coins because they are registered to different users (see discussion
at the start of the identification of double-spenders proof) then VerifyGuilt will reject, because the
Identify algorithm will not recover pkU . 2

A Simpler E-Cash System. Although we settled on System One for presentation purposes, in
our original design we considered a simplified version called System Zero. System Zero required that
a wallet simply consist of a PRF seed s, the bank’s signature on s, and a counter J : (s, σB(s), J).
To spend a coin, the user produces the serial number fDY

g,s (J) along with a proof of its validity.
This has the benefit that a user would not need to have a public key to join the system. The
drawback, however, is that there is no method for recovering the identity of a double-spender. For
some applications, this level of security might be appropriate. For example, suppose each coin
represents an anonymous vote in a company election. If any shareholder attempts to over-vote, i.e.,
cast more votes than they are allocated, this fraud will be detected and those votes can be voided.

4.2 System Two: Compact E-Cash with Full Tracing

We now extend System One to allow coin tracing. Let us begin by sketching how this can be
accomplished. Suppose for the moment that the Identify algorithm recovered skU rather than pkU
for a double-spender. We change the withdrawal protocol so that the user U must also provide the
bank B with a verifiable encryption of her wallet secret s (used to generate the coin serial numbers)
under her own public key pkU . This way, if U double-spends, B can compute skU , recover her secret
s, and output the serial numbers Si = fDY

g,s (i), for i = 0 to 2` − 1, of all coins belonging to U .
(Notice that recovering skU would actually allow the bank to decrypt all ciphertexts corre-

sponding to different wallets for user U , and thus, trace all coins withdrawn from account pkU . We
will return to this point later.)

Now that we understand the high-level construction, we will go into more details as to how
we realize it. Recall that a user’s keys in the previous system were of the form pkU = ga and
skU = a, and that the Identify algorithm recovered ga when a user double-spent. Suppose there
was a semantically-secure cryptosystem where the value ga was sufficient to decrypt and the new
public key was a one-way function of ga. Given such a cryptosystem, we can use the verifiable
encryption techniques of Camenisch and Damg̊ard, as described in Section 3.6, which be applied to
any semantically-secure encryption scheme. This will allow user U to leave a verifiable encryption
of her wallet secret s under her own pkU with the bank B during the withdrawal protocol. No one
but U knows the corresponding skU . However, by using the same coin structure as System One,
double-spending allows B to recover the value ŝkU = ĝu

1 . Thus, B can decrypt the ciphertexts and
trace the cheating user’s coins. All we need is a cryptosystem with keypairs of this new form.

22

Luckily, the bilinear El Gamal scheme (see Section 3.7) does exactly this. It supports public
keys of the form pkU = e(ĝ1, g̃2)u, for u ∈ Zq, where knowing ŝkU = ĝu

1 is sufficient for decryption,
given a bilinear mapping e : Ĝ1 × G̃2 → G.

This would be the entire solution, except one technical difficulty arises. The Dodis-Yampolskiy
PRF [37], used in the double-spending equation, is only known to be a PRF in groups where DDH
is hard. However, to recover the secret key ĝu

1 for the bilinear El Gamal cryptosystem, we need to
set the double-spending equation in the group Ĝ1, where there exists a mapping e : Ĝ1 × G̃2 → G,
and thus DDH may be easy. Obviously, this is a problem, because the anonymity of the coins relies
on this function being pseudorandom.

We propose two different solutions under two different assumptions to overcome this technical
hurdle. Our final result is summarized (later in Theorem 4.4) as:

System Two supports the algorithms (BKeygen,UKeygen, Withdraw, Spend, Deposit,
Identify, VerifyGuilt, Trace, VerifyOwnership) and guarantees balance, identification of
double-spenders, tracing of double-spenders, anonymity of users, and weak and strong
exculpability under the Strong RSA, y-DDHI, and either the XDH (using Solution
#1) or the Sum-Free DDH (using Solution #1) assumptions in the random oracle
model.

Let us now describe these two solutions, and then provide a detailed construction using the
second one.

Solution #1: Use the DY PRF, make XDH Assumption. As described in Section 2, the
XDH Assumption assumes that there are bilinear mappings e : Ĝ1 × G̃2 → G where DDH is hard
in Ĝ1. Boneh, Boyen, and Shacham [7] showed that when Ĝ1 and G̃2 are distinct groups with an
efficient isomorphism ψ : G̃2 → Ĝ1, but not ψ′ : Ĝ1 → G̃2, then, in the generic group model, the
standard Decision Diffie-Hellman (DDH) problem is hard in Ĝ1. It has been conjectured that this
property may hold when the bilinear groups are instantiated using either the Weil or Tate pairing
over MNT curves [47][7, Sec. 8.1]. (For supersingular curves, such a conjecture is known to be
false [43].)

Suppose that the above conjecture holds for MNT curves, implying that DDH is hard in Ĝ1.
Then our construction above just works. We may continue to use the DY PRF [37] to create our
coins, as we did in System One. Where we used G, a generic group of prime order where DDH was
hard, in System One, we can now replace it with G, the range of the bilinear mapping, for all items
except the double-spending equation T̂i = ĝu

1f
DYbg1,t (i)

R which is now set in Ĝ1. The user’s key pairs

are now of the form pkU = e(ĝ1, g̃2)u and ŝkU = ĝu
1 for the bilinear El Gamal cryptosystem. (We

observe that the bilinear El Gamal cryptosystem works in bilinear groups regardless of the XDH
Assumption.)

Due to the obvious similarities with System One, the above comments are sufficient to describe
the entire system.

Solution #2: Use a New PRF, make Sum-Free DDH Assumption. Solution #1 has the
benefit of being very simple and efficient. However, the XDH Assumption may turn out to be false
for MNT curves, or, for other reasons, it may be more desirable to implement System Two using
the supersingular curves. For either of these cases, we now propose an alternative design where we

23

do not simultaneously set the double-spending equation in Ĝ1 (where DDH is now easy) and use
the DY PRF (where DDH must be hard).

We overcome this difficulty by using a new PRF that works even in DDH-easy groups. (We’ll
only use this new PRF for the double-spending equation T and continue to use the DY PRF
elsewhere.) We are aware of one candidate PRF for a DDH-easy group due to Dodis [36]. Unfor-
tunately, we could not adapt his construction for use in System Two without performing expensive
proofs of knowledge. For efficiency reasons, we instead propose a new PRF construction specifically
to solve our problem.

4.2.1 A New PRF for Groups where DDH may be Easy

Let us begin by recalling the definition of a sum-free encoding as given by Dodis [36].

Definition 4.2 (Sum-Free) We say that an encoding V : {0, 1}n → {0, 1}m is sum-free if for all
distinct elements a, b, c, d in the set of encodings {V (s)}s∈{0,1}n, it holds that a+ b 6= c+ d, where
a, b, c, d are viewed as m-bit 0/1-vectors and + is bitwise addition over the integers.

Dodis [36] proved that if V is any sum-free encoding, and 〈g〉 is a group of order q, then fV
g,(·),

defined as follows, is a PRF: the seed for this PRF consists of values ti ∈ Zq, for 0 ≤ i ≤ 3`; let
~t = (t0, . . . , t3`); the function fV

g,~t
is defined as

fV
g,~t

(x) = g
t0

Q
V (x)i=1 ti .

This holds under the Sum-Free DDH assumption (also introduced by Dodis [36]); note that it seems
reasonable to make such an assumption even of groups where DDH is easy.

For our purposes, we need the encoding V to have nice algebraic properties. We define an
encoding V : {0, 1}` 7→ {0, 1}3` as V (x) = x◦x2, where ◦ denotes concatenation, and multiplication
is over the integers.

Lemma 4.3 The encoding V (x) = x ◦ x2 described above is sum-free.

Proof. Observe that V : {0, 1}` → {0, 1}3`. Suppose that A,B,C,D are elements of {V (s)}s∈{0,1}` .
We can parse each element as A = a ◦ a2, B = b ◦ b2, etc.

We show that if A+B = C +D, then without loss of generality a = c and b = d, implying that
A,B,C,D are not distinct. If A+B = C +D, it follows that

a+ b = c+ d (1)
a2 + b2 = c2 + d2 (2)

For the moment, let + and − be addition and subtraction, respectively, over the integers. We can
rearrange equation two as a2−d2 = c2−b2. By factoring this new equation, we have (a+d)(a−d) =
(c + b)(c − b). We can rearrange equation one as a − d = c − b. We can then substitute this into
the previous equation to obtain (a + d)(a − d) = (c + b)(a − d). By canceling (a − d) from both
sides, we arrive at a + d = c + b. Subtracting equation one, we have d − b = b − d, which implies
2d = 2b, and d = b directly follows. The same logic shows that c = a.

Lastly, it suffices to observe that this analysis is the same when + and − are bitwise addition
and subtraction, respectively. 2

24

4.2.2 System Two with Solution #2

Our second system supports all algorithms mentioned in Section 2: (BKeygen, UKeygen, Withdraw,
Spend, Deposit, Identify, VerifyGuilt, Trace, VerifyOwnership). We assume a standard signature
scheme (SG ,Sign,SVf). Then, UKeygen(1k, ζ) runs SG(1k, ζ) → (vkU , sskU) and the bilinear El
Gamal key generation algorithm G(1k, ζ)→ (ekU , d̂kU) = (e(ĝu

1 , g̃2), ĝ
u
1), and outputs pkU = (ekU ,

vkU) and skU = (d̂kU , sskU). The bank’s keys are as before.
We continue to set the CL signatures, for the bank, in the group G with composite modulus n,

although they could moved to the bilinear groups [19].

Withdraw(U(pkB, skU , 2`),B(pkU , skB, 2`)): A user U interacts with the bank B as follows:

IDEA:

• Bank obtains a verifiable encryption of s under the user’s public key pkU for the bilinear El
Gamal cryptosystem.

• User’s wallet of 2` coins is (skU , s, t0, . . . , t3`, σ, J), where σ is the bank’s signature on
(skU , s, t0, . . . , t3`) and J is an `-bit counter.

1. U identifies himself to the bank B by proving knowledge of skU = (d̂kU , sskU).
2. As in System One, in this step, U and B contribute randomness to the wallet secret s, and the

user selects wallet secrets ~t = (t0, . . . , t3`), where ti ∈ Zq for all i. As before, this is done as
follows: U chooses random values s′ and ~t, and sends the commitment A′ = PedCom(u, s′,~t)
to B, obtains a random r′, sets s = s′ + r′, and then both U and B locally set A = gr′A′ =
PedCom(u, s,~t).

3. U forms a verifiable encryption Q of the value s under his own key ekU = e(ĝu
1 , g̃2). (This

encryption can be proved correct relative to commitment A.) Q is signed by U . B verifies the
correctness of Q and the signature σ on Q. U obtains a CL signature from B on the values
committed in A via the protocol for getting a signature on a set of committed values.

4. B debits 2` from account pkU , records the entry (pkU , Q, σ) in his database D, and issues U
a CL signature on Y .

5. U saves the wallet W = (skU , s,~t, σB(u, s,~t), J), where J is an `-bit counter set to zero.

Spend(U(W,pkM),M(skM, pkB, 2`)): The only change from System One is in the calculation of
the security tag T and the subsequent proof Φ. Assume info ∈ {0, 1}∗ and R ∈ Z∗

q are obtained as
before.
Recall the details of the serial number of the coin S = fDY

g,s (J) = g1/(J+s+1), the security tag

T̂ = d̂kUfVbg1,~t
(J)R = ĝ

u+Rt0
Q
{i:V (J)i=1} ti

1 . The signature proof Φ of their validity consists of:

(a) A0 = PedCom(J) and a proof that A is a commitment to an integer in the range [0, . . . , 2`−1];
a commitment A1 = PedCom(J2) and a proof that it is a commitment to the square of the
opening of A0; and finally, a commitment A2 = PedCom(V (J)) = PedCom(J ◦ J2) and a
proof that it was formed correctly.

25

Outline of Spend Protocol:

1. User computes R = H(pkM||info), where info ∈ {0, 1}∗ is provided by the merchant.

2. User sends a coin serial number and double-spending equation:

S = FDY
g,s (J) , T̂ = p̂kUF

DYbg1,~t
(J)R.

3. User sends a ZKPOK Φ of (J, skU , s, t0, . . . , t3`, σ) such that:

• 0 ≤ J < 2` (standard techniques [26, 20, 20, 10])

• S = FDY
g,s (J) (see below)

• T̂ = p̂kUF
Vbg1,~t

(J)R (see below)

• VerifySig(pkB, (skU , s, t0, . . . , t3`), σ) =true (CL signatures [18, 19])

4. If Φ verifies,M accepts the coin (S, (R, T̂ ,Φ)) and uses this information at deposit time.

5. U updates his counter J = J + 1. When J > 2` − 1, the wallet is empty.

(b) Bi = PedCom(V (J)i) for i = 1 to 3` (commitments to the bits of V (J)) and proof that each
Bi opens to either 0 or 1; that is, PK{(γ1, γ2) : Bi/g = hγ1 ∨Bi = hγ2},

(c) proof that A2 and {Bi} are consistent; PK{(γ) : A2/g
∏3`

i=1 B2i−1

i = hγ},
(d) commitments to U ’s secret key u, and wallet secrets s and ~t: C = PedCom(u), D =

PedCom(s), Ei = PedCom(ti) for i = 0 to 3`, and proof of knowledge of a CL signature
from B on the openings of C, D, and all Ei’s in that order,

(e) the following commitments that will help in proving that T̂ was formed correctly: F0 = E0,
Fi = PedCom(

∏
{j≤i:V (J)j=1} tj) for i = 1 to 3`,

(f) and a proof that S = fDY
g,s (J) and T̂ = ĝu

1 (fVbg1,~t
(J))R. (We provide more details of this

step in Appendix A.2.) Proving the statement about S is done as in System One; proving
the statement about T̂ can be done as follows: Prove, for every 1 ≤ i ≤ 3` that Fi was
formed correctly, corresponding to the committed value ti and the value (bit) contained in
the commitment Bi. That is to say:

PK{(α, β, δ) : Fi = PedCom(α) ∧ Fi−1 = PedCom(β) ∧

Ei = PedCom(δ) ∧
((

Bi = PedCom(0) ∧ α = β
)
∨(

Bi = PedCom(1) ∧ α = βδ
))
}

Note that, if all Fi’s are formed correctly, then F3` is a commitment to the discrete logarithm
of the value fVbg1,~t

(J) which is t0
∏3`

i=1 t
(V (J))i

i . So we can prove the validity of tag T̂ as follows:

PK{(α, β) : T̂ = ĝα+βR
1 ∧C = PedCom(α) ∧ F3` = PedCom(β)}

As in System One, using the Fiat-Shamir heuristic we turn these multiple proofs of knowledge
into one signature, secure in the random-oracle model.

26

The Deposit protocol and VerifyGuilt algorithm follow the same outline as System One. During
deposit, the bank may store only (S,R, T̂) in database L to obtain all desired functionality –
except the ability to convince a third party of anything, such as a double-spender’s identity or
which coins belong to him.

Identify(ζ, S, π1, π2): The algorithm behaves exactly as before. The proof of guilt ΠG can essentially

IDEA: From two coins with serial number S, anyone can recover the user’s secret key skU .

just be the user’s secret key ĝu
1 . If a user does not over-spend her wallets, then her secret key will

not be exposed based on anything in this system. We acknowledge that an honest user may have
her secret key stolen through adversarial actions outside this system (such as a stolen smartcard),
and thus, for policy reasons the proof of guilt should perhaps also include the transaction logs in L
allowing to compute ĝu

1 .

Trace(ζ, S, pkU ,ΠG, D, 2`): Parse ΠG as (d̂k , π1, π2) and pkU as (ekU , vkU). The bank checks that

IDEA: Bank can use skU to decrypt and recover s for each wallet registered to U , then compute
all serial numbers for all coins in that wallet.

e(d̂k , g̃2) = ekU ; if not, it aborts. Otherwise the bank searches its database D, generated during the
withdrawal protocol, for verifiable encryptions tagged with the public key pkU . For each matching
entry (pkU , Q, σ), B does the following: (1) runs the Camenisch-Damg̊ard decryption algorithm
on Q with d̂k to recover the value s; and (2) then for i = 0 to 2` − 1, outputs a serial number
Si = fDY

g,s (i) and a proof of ownership Πi = (Q, σ, d̂k , i).

VerifyOwnership(ζ, S,Π, pkU , 2`): Parse Π as (Q, σ, d̂k , i). Check that σ is pkU ’s signature on Q and

IDEA: Anyone can check that the user with pkU is the owner of a coin with serial number S.

that i is in the range [0, . . . , 2` − 1]. Next, verify that d̂k is pkU ’s decryption key by checking that
e(d̂k , g̃2) = ekU . Finally, run the verifiable decryption algorithm on Q with d̂k to recover s′ and
verify that S = fDY

g,s′ (i). If all checks pass, the algorithm accepts, otherwise, it rejects.

Efficiency Discussion of System Two. In Withdraw, the number of communication rounds
does not change from System One, but one of the multi-base exponentiations will involve 3` bases
and hence its computation will take longer. Let us discuss the computational load of the verifiable
encryption. For a cheating probability of at most 2−k, the user must additionally compute k exps
and 2k encryptions with the bilinear El Gamal scheme. To verify, the bank also must perform k
exps but only k encryptions. Upon recovery of the double-spender’s secret key, the bank needs to
perform at most k decryptions and k exponentiations. Furthermore, the bank needs to compute
all the 2` serial numbers each of which takes one exponentiation.

Details of the proof in step (1f) of the Spend protocol are in Appendix A.2. In Spend, the user
must compute a total of 7+9` and 17+21` multi-base exponentiations for the commitments and the

27

signature proof, respectively. The merchant and the bank also need to perform 17+21` multi-base
exponentiations. For each of these, there is one multi-base exponentiation with 3` exponents while
all the others involve two to four bases.

Theorem 4.4 System Two supports the algorithms (BKeygen,UKeygen, Withdraw, Spend, Deposit,
Identify, VerifyGuilt, Trace, VerifyOwnership) and guarantees balance, identification of double-spenders,
tracing of double-spenders, anonymity of users, and weak and strong exculpability under the Strong
RSA, y-DDHI, and either the XDH (using Solution #1) or Sum-Free DDH (using Solution #2)
assumptions in the random oracle model.

Proof sketch.
Balance: Part 1. The extractor E = EBB-ε(A)

Withdrawm,lS
proceeds exactly as in System One, the only

difference being that this time he will recover more messages, e.g., (u, s, t0, . . . , t4`).

Part 2. As before, we know that A cannot produce a truly valid serial number S (i.e., one
for which it need not fake a proof of validity) which is not in the set output by the extractor Af

except with negligible probability. So it remains to analyze A success in faking proofs of validity
for S 6∈ Af . The analysis is similar to before, except that the signature proof π = (R, T̂ ,Φ) is more
complicated. If A succeeds in convincing B to accept (S, π), then he must have concocted a false
proof as part of Φ that: (1) A opens to an integer in [1, . . . , 2`] or (2) some Bi opens to either 0 or
1 or (3) A and {Bi} are consistent or (4) A knows a signature from B on the opening of C,D, {Ei}
or (5) that S (and T̂) are well formed as in Γ. Case (1) happens with negligible probability ν1(k)
under the Strong RSA assumption [26, 20, 20, 10]. Cases (2), (3), and (5) happen with negligible
probability ν2(k) under the discrete logarithm assumption [52]. Case (4) happens with negligible
probability ν3(k) under the assumption that the CL signatures are secure (which requires either the
Strong RSA assumption [18] or an additional bilinear map assumption called LRSW [19]). Thus,
A’s total success probability is also negligible.

Identification of double-spenders: The identification of double-spenders property of System
Two follows directly from the proof of this property for System One.

Tracing of double-spenders: First, the adversary has only negligible chance of winning by the
existence of a serial number S′ ∈ Af not output by Trace. This is because, in each Withdraw
protocol, the secret s that E extracts (to generate Si = fDY

g,s (i), for 1 ≤ i ≤ n, for Af) is also
verifiably encrypted under the user’s public key ekU = e(ĝ1, g̃2)u and given to the bank. Due to the
semantic-security of the bilinear El Gamal scheme [2] and the soundness of the verifiable encryption
protocol of Camenisch and Damg̊ard [16], we know that the bank can decrypt to obtain s once part
of the user’s secret key ĝu

1 is known. For System Two, it is easy to see that ĝu
1 can be recovered

from double-spent coins given the identification of double-spenders property above. (Recall that in
System Two, one computes ĝu

1 on the way to finding ekU .) Thus, with high probability, the Trace
algorithm will obtain s, for each wallet, and output all serial numbers in Af .

Secondly, the adversary has only a negligible chance of winning by the existence of a serial
number Sj and corresponding proof Πj output by Trace(params, S, pkU ,ΠG, D, n) such that the
algorithm VerifyOwnership(params, Sj ,Πj , pkU , n) does not accept. This is because verifying the
ownership of a coin Sj in our construction is tantamount to re-running the (deterministic) Trace
algorithm and checking its output.

28

Anonymity of users: The proof of anonymity for System Two follows that of System One, with
the three exceptions being that:

1. One must argue that A does not learn any information about the users during the verifiable
encryption protocol added to Withdraw that will later help it distinguish. This follows from the
semantic-security of the bilinear El Gamal scheme [2] and the verifiable encryption technique
of Camenisch and Damg̊ard [16] which rely on the DBDH (which is later subsumed by the
Sum-Free DDH assumption in the theorem statement) and the Strong RSA assumptions.

2. The coin part T̂ is now indistinguishable from a random element in Ĝ1 due to the pseudo-
randomness of our new PRF fV

(bg1,·)(·) secure under the Sum-Free DDH assumption.
3. And finally, the simulated signature proof Φ is more complicated, it remains that the only

simulated part of Φ is performed for S (with IO, random oracle access) by the CL signature
proof simulator under the Strong RSA [18] and the LRSW [19] assumptions.

Strong Exculpability: It is easy to see that corresponding to each wallet in our construction,
there are exactly n valid serial numbers.

First, we show parts (1b), (2b) and (3) of the strong exculpability requirement, namely, that
no adversary can produce a serial number S and a proof Π such that VerifyGuilt(params, S, pkU ,Π)
accepts with non-negligible probability, and yet it is not the case that the coin with serial number
S was spent more than once by user U .The same reasoning for proving eculpability of System One
applies to this part of the proof of exculpability for System Two – that is, either (1) the adversary
is successful in faking a proof of knowledge of u or (2) two users have wallet secrets s and s′ that
are 2`-close. Both cases occur with negligible probability.

Next, we show part (1a) that no adversary can produce a serial number S that does not belong
to the set of serial numbers of the U known to A, and a proof Π such that VerifyOwnership(params,
S, Π, pkU , n) accepts with non-negligible probability. Recall that a proof for VerifyOwnership in
System Two consists of (Q, σ, d̂k , i), where Q is a verifiable encryption of a wallet secret s, σ is the
user’s signature on Q, d̂k is the user’s decryption key, and i is an integer in [1, . . . , 2`]. There is only
one d̂k corresponding to ekU ∈ pkU (which is easy to test as e(d̂k , g̃2) = ekU). Decryption of Q, to
say s, given d̂k is deterministic, as is checking that S = fDY

e(bg1,eg2),s(i) for i in the right range. Thus,
to forge a proof of ownership against pkU for a serial number S, the adversary needs to produce a
seed s and number J such that S = FDY

e(bg1,eg2),s(J + 1), and a ciphertext Q that is an encryption of
s signed by U ’s signing key. It is easy to see that the ability to do so violates either the security
of the signature scheme used for signing Q or the security of the PRF used to generate S, or the
security of the encryption scheme used to generate the ciphertext Q.

Finally, let us show part (2a) that, if no double-spending has occured, it is impossible to prove
that the user double-spent a coin whose serial number is known to the adversary. This also easily
follows from the security of the PRF used to generate S, and the security of the encryption scheme
used to generate the ciphertext Q: the only way that VerifyOwnership can accept the serial number
S is if it is given the seed s and a number J such that S = FDY

e(bg1,eg2),s(J + 1), which contradicts the
security of the encryption and of the PRF.

2

Acknowledgments. We are grateful to Yevgeniy Dodis for helpful comments. We also thank
Giuseppe Ateniese, Breno de Medeiros, and Hovav Shacham for bringing the XDH assumption to

29

our attention.
Part of Jan Camenisch’s work reported in this paper is supported by the European Commission

through the IST Programme under Contract IST-2002-507932 ECRYPT and by the IST Project
PRIME. The PRIME projects receives research funding from the European Community’s Sixth
Framework Programme and the Swiss Federal Office for Education and Science. The information
in this document reflects only the author’s views, is provided as is and no guarantee or warranty is
given that the information is fit for any particular purpose. The user thereof uses the information
at its sole risk and liability.

Susan Hohenberger’s work was performed while at IBM Research, Zurich Research Laboratory,
CH-8803, Rüschlikon.

Anna Lysyanskaya was supported by NSF Career Grant CNS-0347661.

References

[1] N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair exchange of digital signatures.
IEEE Journal on Selected Areas in Communications, 18(4):591–610, April 2000.

[2] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved Proxy
Re-encryption Schemes with Applications to Secure Distributed Storage. In the 12th Annual
Network and Distributed System Security Symposium, pages 29–43, 2005.

[3] Lucas Ballard, Matthew Green, Breno de Medeiros, and Fabian Monrose. Correlation-Resistant
Storage. Johns Hopkins University, Computer Science Department Technical Report # TR-
SP-BGMM-050705. http://spar.isi.jhu.edu/~mgreen/correlation.pdf, 2005.

[4] Niko Barić and Birgit Pfitzmann. Collision-free accumulators and fail-stop signature schemes
without trees. In Walter Fumy, editor, Advances in Cryptology — EUROCRYPT ’97, volume
1233 of LNCS, pages 480–494. Springer Verlag, 1997.

[5] Mihir Bellare and Adriana Palacio. GQ and Schnorr Identification Schemes: Proofs of Security
against Impersonation under Active and Concurrent Attacks. In Moti Yung, editor, Advances
in Cryptology — CRYPTO ’02, volume 2442 of LNCS, pages 162–177. Springer Verlag, 2002.

[6] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian Cachin
and Jan Camenisch, editors, Advances in Cryptology — EUROCRYPT ’04, volume 3027 of
LNCS, pages 54–73. Springer, 2004.

[7] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures using strong Diffie-
Hellman. In Advances in Cryptology – CRYPTO ’04, volume 3152 of LNCS, pages 41–55,
2004.

[8] Dan Boneh and Matthew Franklin. Identity-based encryption from the Weil pairing. In Joe
Kilian, editor, Advances in Cryptology — CRYPTO ’01, volume 2139 of LNCS, pages 213–229.
Springer Verlag, 2001.

[9] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In
C. Boyd, editor, Advances in Cryptology – ASIACRYPT ’01, volume 2248 of LNCS, pages
514–532, 2001.

30

[10] Fabrice Boudot. Efficient proofs that a committed number lies in an interval. In Bart Preneel,
editor, Advances in Cryptology — EUROCRYPT ’00, volume 1807 of LNCS, pages 431–444.
Springer Verlag, 2000.

[11] Stefan Brands. An efficient off-line electronic cash system based on the representation problem.
Technical Report CS-R9323, CWI, April 1993.

[12] Stefan Brands. Untraceable off-line cash in wallets with observers. In Douglas R. Stinson,
editor, Advances in Cryptology — CRYPTO ’93, volume 773 of LNCS, pages 302–318, 1993.

[13] Stefan Brands. Rapid demonstration of linear relations connected by boolean operators. In
Walter Fumy, editor, Advances in Cryptology — EUROCRYPT ’97, volume 1233 of LNCS,
pages 318–333. Springer Verlag, 1997.

[14] Stefan Brands. Rethinking Public Key Infrastructure and Digital Certificates— Building in
Privacy. PhD thesis, Eindhoven Institute of Technology, Eindhoven, The Netherlands, 1999.

[15] Ernie Brickell, Peter Gemmel, and David Kravitz. Trustee-based tracing extensions to anony-
mous cash and the making of anonymous change. In Proceedings of the Sixth Annual ACM-
SIAMs, pages 457–466. Association for Computing Machinery, January 1995.

[16] Jan Camenisch and Ivan Damg̊ard. Verifiable encryption, group encryption, and their ap-
plications to group signatures and signature sharing schemes. In Tatsuaki Okamoto, editor,
Advances in Cryptology — ASIACRYPT ’00, volume 1976 of LNCS, pages 331–345. Springer
Verlag, 2000.

[17] Jan Camenisch and Jens Groth. Group signatures: Better efficiency and new theoretical
aspects. In Carlo Blundo and Stelvio Cimato, editors, Security in Communication Networks
’04, volume 3352 of LNCS, pages 120–133, 2004.

[18] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols. In Stelvio
Cimato, Clemente Galdi, and Giuseppe Persiano, editors, Security in Communication Networks
’02, volume 2576 of LNCS, pages 268–289. Springer Verlag, 2002.

[19] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from
bilinear maps. In Matthew Franklin, editor, Advances in Cryptology — CRYPTO ’04, volume
3152 of LNCS, pages 56–72. Springer Verlag, 2004.

[20] Jan Camenisch and Markus Michels. Proving in zero-knowledge that a number n is the product
of two safe primes. In Jacques Stern, editor, Advances in Cryptology — EUROCRYPT ’99,
volume 1592 of LNCS, pages 107–122. Springer Verlag, 1999.

[21] Jan Camenisch and Markus Michels. Separability and efficiency for generic group signature
schemes. In Michael Wiener, editor, Advances in Cryptology — CRYPTO ’99, volume 1666 of
LNCS, pages 413–430. Springer Verlag, 1999.

[22] Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption of discrete
logarithms. In Dan Boneh, editor, Advances in Cryptology — CRYPTO ’03, volume 2729 of
LNCS, pages 126–144, 2003.

31

[23] Jan Camenisch and M. Stadler. Efficient group signature schemes for large groups. In Burton
S. Kaliski Jr., editor, Advances in Cryptology – CRYPTO ’97, volume 1296 of LNCS, pages
410–424, 1997.

[24] Jan L. Camenisch, Jean-Marc Piveteau, and Markus A. Stadler. Blind signatures based on
the discrete logaritm problem. In Alfredo De Santis, editor, Advances in Cryptology — EU-
ROCRYPT ’94, volume 950 of LNCS, pages 428–432. Springer Verlag Berlin, 1994.

[25] Jan Leonhard Camenisch. Group Signature Schemes and Payment Systems Based on the
Discrete Logarithm Problem. PhD thesis, ETH Zürich, 1998. Diss. ETH No. 12520, Hartung
Gorre Verlag, Konstanz.

[26] Agnes Chan, Yair Frankel, and Yiannis Tsiounis. Easy come – easy go divisible cash. In Kaisa
Nyberg, editor, Advances in Cryptology — EUROCRYPT ’98, volume 1403 of LNCS, pages
561–575. Springer Verlag, 1998.

[27] David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L.
Rivest, and Alan T. Sherman, editors, Advances in Cryptology — CRYPTO ’82, pages 199–
203. Plenum Press, 1982.

[28] David Chaum. Blind signature systems. In David Chaum, editor, Advances in Cryptology —
CRYPTO ’83, page 153. Plenum Press, 1983.

[29] David Chaum. Security without identification: Transaction systems to make big brother
obsolete. Communications of the ACM, 28(10):1030–1044, October 1985.

[30] David Chaum. Online cash checks. In Jean-Jacques Quisquater and Joos Vandewalle, editors,
Advances in Cryptology — EUROCRYPT ’89, volume 434 of LNCS, pages 289–3293. Springer
Verlag, 1989.

[31] David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash. In Shafi Goldwasser,
editor, Advances in Cryptology — CRYPTO ’88, volume 403 of LNCS, pages 319–327. Springer
Verlag, 1988.

[32] David Chaum and Torben Pryds Pedersen. Transferred cash grows in size. In Rainer A.
Rueppel, editor, Advances in Cryptology — EUROCRYPT ’92, volume 658 of LNCS, pages
390–407. Springer-Verlag, 1992.

[33] David Chaum and Torben Pryds Pedersen. Wallet databases with observers. In Ernest F.
Brickell, editor, Advances in Cryptology — CRYPTO ’92, volume 740 of LNCS, pages 89–105.
Springer-Verlag, 1992.

[34] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In Yvo G. Desmedt, editor, Advances in Cryptology
— CRYPTO ’94, volume 839 of LNCS, pages 174–187. Springer Verlag, 1994.

[35] Ivan Damg̊ard and Eiichiro Fujisaki. An integer commitment scheme based on groups with
hidden order. In Yuliang Zheng, editor, Advances in Cryptology — ASIACRYPT ’02, volume
2501 of LNCS, pages 125–142. Springer, 2002.

32

[36] Yevgeniy Dodis. Efficient construction of (distributed) verifiable random functions. In Yvo
Desmedt, editor, Public Key Cryptography, volume 2567 of LNCS, pages 1–17. Springer Verlag,
2002.

[37] Yevgeniy Dodis and Aleksandr Yampolskiy. A Verifiable Random Function with Short Proofs
an Keys. In Public Key Cryptography, volume 3386 of LNCS, pages 416–431, 2005.

[38] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Advances in Cryptology – CRYPTO ’86, volume 263 of LNCS, pages
186–194, 1986.

[39] Yair Frankel, Yiannis Tsiounis, and Moti Yung. “Indirect discourse proofs:” Achieving efficient
fair off-line e-cash. In Kwangjo Kim and Tsutomu Matsumoto, editors, Advances in Cryptology
— ASIACRYPT ’96, volume 1163 of LNCS, pages 286–300. Springer Verlag, 1996.

[40] Matthew Franklin and Moti Yung. Towards provably secure efficient electronic cash. Technical
Report TR CUSC-018-92, Columbia University, Dept. of Computer Science, April 1992. Also
in: Proceedings of ICALP 93, Lund, Sweden, July 1993, volume 700 of LNCS, Springer Verlag.

[41] Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to prove modular
polynomial relations. In Burt Kaliski, editor, Advances in Cryptology — CRYPTO ’97, volume
1294 of LNCS, pages 16–30. Springer Verlag, 1997.

[42] Steven D. Galbraith. Supersingular curves in cryptography. In Colin Boyd, editor, Advances
in Cryptology – ASIACRYPT ’01, volume 2248 of LNCS, pages 495–513, 2001.

[43] Steven D. Galbraith and Victor Rotger. Easy Decision-Diffie-Hellman Groups. LMS Journal
of Computation and Mathematics, 7:201–218, 2004.

[44] Stanislaw Jarecki and Vitaly Shmatikov. Hancuffing big brother: an abuse-resilient transaction
escrow scheme. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology —
EUROCRYPT ’04, volume 3027 of LNCS, pages 590–608. Springer, 2004.

[45] Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Traceable signatures. In Christian Cachin
and Jan Camenisch, editors, Advances in Cryptology – EUROCRYPT ’04, volume 3027 of
LNCS, pages 571–589. Springer, 2004.

[46] Noel McCullagh and Paulo S. L. M. Barreto. A new two-party identity-based authenticated
key agreement. In Alfred Menezes, editor, Topics in Cryptology – CT-RSA, volume 3376 of
LNCS, pages 262–274, 2004.

[47] A. Miyaji, M. Nakabayashi, and S. Takano. New explicit conditions of elliptic curve traces for
FR-reduction. IEICE Trans. Fundamentals, E84-A(5):1234–1243, 2001.

[48] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random
functions. Journal of the ACM, 51, Number 2:231–262, 2004.

[49] Tatsuaki Okamoto and Kazuo Ohta. Disposable zero-knowledge authentications and their
applications to untraceable electronic cash. In Gilles Brassard, editor, Advances in Cryptology
— CRYPTO ’89, volume 435 of LNCS, pages 481–496. Springer-Verlag, 1989.

33

[50] Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Joan Feigenbaum, editor, Advances in Cryptology – CRYPTO ’91, volume 576 of
LNCS, pages 129–140. Springer Verlag, 1991.

[51] Michael O. Rabin and Jeffery O. Shallit. Randomized algorithms in number theory. Commu-
nications on Pure and Applied Mathematics, 39:239–256, 1986.

[52] Claus P. Schnorr. Efficient signature generation for smart cards. Journal of Cryptology,
4(3):239–252, 1991.

[53] Mike Scott. Authenticated ID-based key exchange and remote log-in with simple token and
PIN number. Available at http://eprint.iacr.org/2002/164, 2002.

[54] Markus Stadler, Jean-Marc Piveteau, and Jan Camenisch. Fair blind signatures. In Louis C.
Guillou and Jean-Jacques Quisquater, editors, Advances in Cryptology — EUROCRYPT ’95,
volume 921 of LNCS, pages 209–219. Springer Verlag, 1995.

[55] Yiannis S. Tsiounis. Efficient Electonic Cash: New Notions and Techniques. PhD thesis,
Northeastern University, Boston, Massachusetts, 1997.

A Full Protocols to Spend Coins

To provide the full protocols to spend a coin, we need to provide some details about the signature
scheme the bank uses.

Let QRn denote the set of quadratic residues modulo n. Let Z,U,V be elements of QRn that
are part of the public key of the bank.

Let `n denote the number of bits of the bank’s RSA modulus n and let `∅, e.g., `∅ be a security
parameter controlling the statistically zero knowledge property of the proof protocol as well as the
statistically hiding property of the commitment schemes we use.

A signature of the bank on the seed (message) s consists of the values (Q, e, v), where e ∈
{2`e − 2`′e , 2`e + 2`′e} is a random prime, v ∈ {0, 1}`n+`∅ is a random integer, and Q ∈ 〈U〉 ⊂ QRn,
such that the following holds

Z ≡ QeVvUs (mod n) .

We note that the bank does not learn s when issuing this signature. Instead, the bank and the user
run an efficient two-party protocol where the output of the user will be (Q, e, v) [18].

In case the bank signs a block of messages, say (u, s, t), at once, we replace V by (V1,V2,V3)
in the public. The signature still consists of values (Q, e, v) such that

Z ≡ QeV1
uV2

sV3
tUs (mod n) .

To make our proof more efficient by roughly a factor of two, we will change the range of J , the
coin counter. Our goal is to have a range that contains an odd number of elements. This is not
strictly necessary but gives us a more efficient proof when J lies in an odd interval. Thus, we need
that J0 − J1 ≤ J ≤ J0 + J1 holds for some J0 and J1. For instance, setting J1 = 2`−1 and J0 = 2`

we have 2`−1 ≤ J ≤ 3 · 2`−1 and thus can spend 2` + 1 coins. Note that now J can no longer be 0
and a therefore the serial number S can be computed as S = g1/(J+s).

34

A.1 System One: Full Protocol

We now describe how the user spends a coin in System One in more detail. Recall that the user
has obtained from the bank a signature (Q, e, v) on the “messages” u, s, and t.

Let J be the number of the coin. By construction we have J0 − J1 ≤ J ≤ J0 + J1 and hence
0 ≤ J2

1 − (J − J0)2 = J2
1 − J2

0 + 2J0J − J2 for all J . Thus, to show that a coin number J lies in the
required interval, we only need to show that for J2

1 − (J − J0)2 is a positive number. Now, due to
Lagrange, each positive number can be represented by four squares.

We are now ready to describe how a user spends one of her coins. we merged all the single
proofs of Φ into one and get some efficiency improvements, e.g., the commitments C and D are not
needed. Also, we choose J differently and thus compute S and T in a slightly different manner.

1. M (optionally) sends a string info ∈ {0, 1}∗ containing transaction information to U and/or
identifies himself by proving knowledge of skM (We leave this step out.).

2. M chooses a random R ∈ Zq such that R 6= 0 and sends R to U (or it is a result of a hash
function).

3. If J > J0 + J1, the user aborts as she has already sent all coins.
4. The user computes the serial number S = g1/(J+s) and a (now fixed) security tag T =
pkUg

R/(J+t)

5. The user computes values w1, w2, w3, and w4 such that
∑

iwi = J2
1 − (J − J0)2 (e.g., using

an algorithm by Rabin and Shallit [51]).
6. The user chooses random values rA,rB, r1, r2, r3, and r4 r ∈R {0, 1}`n+`∅ , and computes

the the commitments A = gJhrA , B = guhrB and Wi = gwihri for i = 1, . . . , 4, The user
chooses r ∈R {0, 1}`n+`∅ and computes Q′ := QUr. Note that (Q′, e, v + r) is also a valid
signature on the message s but that Q and Q′ are statistically independent.

7. The user computes the following signature proof of knowledge:

Ψ = SPK{(α, β, γ, δ, ε, ρ1, . . . , ρ7) :

Z = ±Q′εV1
µV2

σV3
τUζ ∧ A = ±gγhρA ∧ g = SσSγ ∧

Wi = ±gνihρi ∧ gJ2
1−J2

0 = ±(Ag−2J0)γW1
ν1W2

ν2W3
ν3W4

ν4hρ5 ∧
B = gµhρ6 ∧ 1 = BσBτ (1/g)αhρ7 ∧ gR = T σT τ (gR)α ∧

σ ∈ {0, 1}`m+`∅+`H+2 ∧

(ε−2`e) ∈ {0, 1}`′e+`∅+`H+1}(Z,V1,V2,V3,U,g,h, n, g, S, T,A,B,W1,W2,W3,W4, info)

8. If Φ verifies, M accepts the coin (R,S, T,Φ) and subsequently submits (R,S, T,Φ) to the
bank B. If R is not already in L, then B accepts the coin and stores the values (R,S, T) in a
database of spent coins L. If S was already in L, then B initiates the Identify protocol.

9. U updates his counter J = J + 1 as before. When J > 2` − 1, the wallet is empty.

We see that, to spend a coin, a user needs to compute 7 multi-base exponentiations to build the
commitments and 11 multi-base exponentiations to carry out the proof. The merchant and bank
need to do 11 multi-base exponentiations to spend a coin.

A.2 System Two: Partial Protocol

The Spend protocol in System Two is more involved than that of System One. From the description
in Section 4.2, it may not be clear how to implement step (1f) of the Spend protocol. We now

35

describe how to construct these signature proofs in more detail (although further optimizations are
also possible).

Recall that in step (1f) a user U must prove to a merchantM that the serial number S and the
security tag T̂ are valid elements of a coin. In particular, U is tasked with showing that S = fDY

g,s (J)
and T̂ = ĝu

1 (fVbg1,~t
(J))R. The essence of this proof it to show that S and T̂ are using the same J

value.
More formally, we denote Γ = Γ0 ∧ Γ1 ∧ . . . ∧ Γ3` as the signature proof of knowledge where Γ0

is the following signature proof of knowledge:

Γ0 = SPK{(α, β, γ, δ1, δ2, δ3) : g = (AD)αhδ1 ∧ S = gα ∧C = gβhδ2 ∧ F3` = gγhδ3∧

T̂ = ĝβ
1 (ĝR

1)γ}(S, T̂ ,A, {Bi},C,D, {Ei}, {Fi},g,h, n, ĝ1, g̃2, g, pkM, R, info)

After this point in the proof we can consider the values (u, s,~t, J) as fixed (although unknown
to M) and value R as public, what remains to be shown is that F3` = gγhδ3 where fVbg1,~t

= ĝγ
1

and the U knows γ, δ3. To show this, we successively build up to F3` by showing that for each
intermediate commitment Fi, for i = 1 to 3`, either: (1) the ith bit of V (J) is zero and thus Fi and
Fi−1 open to the same value, or (2) the ith bit of V (J) is one and thus Fi opens to the opening
of Fi times ti (where ti is the corresponding secret in ~t). The user already proved that each Bi

commits to the ith bit of V (J) in steps (1b) and (1c).
Then for i = 1 to 3`, we have the signature proof of knowledge Γi:

Γi = SPK{(αi, βi, φi, {γ(n)
i }) :

(
Fi = Fi−1hγ(2) ∧Bi = hγ

(3)
i

)
∨(

Fi = Fi−1
αihγ

(4)
i ∧Ei = gαihγ

(5)
i ∧Bi = ghγ

(6)
i

)
}

(S, T̂ ,A, {Bi},C,D, {Ei}, {Fi},g,h, n, ĝ1, g̃2, g, pkM, R, info).

36

