
Performance Modeling of Anonymity Protocols

Niklas Carlssona,∗, Carey Williamsonb, Andreas Hirtb, Michael Jacobson,
Jr.b

aLinköping University, Linköping, Sweden
bUniversity of Calgary, Calgary, AB, Canada

Abstract

Anonymous network communication protocols provide privacy for Internet-
based communication. In this paper, we focus on the performance and scala-
bility of anonymity protocols. In particular, we develop performance models
for two anonymity protocols from the prior literature (Buses and Taxis), as
well as our own newly proposed protocol (Motorcycles). Using a combination
of experimental implementation, simulation, and analysis, we show that: (1)
the message latency of the Buses protocol is O(N2), scaling quadratically
with the number of participants; (2) the message latency of the Taxis pro-
tocol is O(N), scaling linearly with the number of participants; and (3) the
message latency of the Motorcycles protocol is O(log2 N), scaling logarith-
mically with the number of participants. Motorcycles can provide scalable
anonymous network communication, without compromising the strength of
anonymity provided by Buses or Taxis.

Key words: Anonymous network communication, Protocol performance

0NOTICE: this is the authors’ version of a work that was accepted for publication
in Performance Evaluation. The final version will appear in the Performance Evaluation
journal (Elsevier). Changes resulting from the publishing process, such as editing, correc-
tions, structural formatting, and other quality control mechanisms may not be reflected
in this document. Changes may have been made to this work since it was submitted for
publication.

∗Corresponding author
Email addresses: niklas.carlsson@liu.se (Niklas Carlsson),

carey@cpsc.ucalgary.ca (Carey Williamson), hirt@cpsc.ucalgary.ca (Andreas
Hirt), jacobs@ucalgary.ca (Michael Jacobson, Jr.)

Preprint submitted to Performance Evaluation August 24, 2012

1. Introduction

Certain Internet applications require anonymity, wherein the identities
of communicating participants are concealed. These applications can be
used both for benevolent social purposes (e.g., crime stoppers, freedom of
speech, on-line counseling for victims of abuse, protecting human rights,
whistle blowing), as well as for nefarious purposes1 (e.g., criminal activities,
illegal file-sharing, malware distribution, terrorism). In general, anonymous
communication provides privacy, and eliminates the risks associated with
compromised identities.

Anonymous communication on the Internet is supported using anonymity
protocols [1]. These protocols protect the identities of communicating par-
ties from others, thus ensuring privacy for network-based communication.
Such protocols can provide both data anonymity and connection anonymity.
Data anonymity [9] removes identifying data in messages, such as the sender
address in an e-mail. Connection anonymity [9] obscures the traffic communi-
cation patterns, preventing traffic analysis that traces a message through the
network from the initiator (the original sender of a message) to the responder
(the final receiver of a message). Connection anonymity can be further sub-
divided into sender anonymity, receiver anonymity, mutual anonymity, and
unlinkability [27]. The type of connection anonymity required is application-
dependent.

Two important characteristics of anonymity protocols are the strength of
anonymity that they provide, and the scalability of the protocol itself. The
strength of an anonymity protocol is usually measured in an information-
theoretic sense, by determining the probability that an attacker or observer
can identify communicating parties. These issues are well addressed in the
security and privacy literature. Scalability refers to the communication over-
head associated with a protocol (e.g., end-to-end latency), and how this grows
with the size of the network. These issues are less well-studied in the liter-
ature, particularly since few anonymity protocols are implemented and used
in practice. For example, Boukerche et al. [6] study an anonymous routing
protocol for wireless ad hoc networks, but only using simulation.

There is typically a tradeoff between strength of anonymity and the scal-
ability of an anonymity protocol. For example, strong anonymity can be pro-
vided by aggregating many messages into batches (mixes) before forwarding

1As with encryption, legislation may be required to curtail malicious wrongdoings.

2

them, but the batching process itself increases the end-to-end message de-
lay. Similarly, anonymity can be fortified with dummy cover traffic (i.e., fake
messages) in the network, but this increases the bandwidth consumption on
the network as well as the processing overhead for participating nodes.

In this paper, we focus on the performance and scalability of three anony-
mous network communication protocols: Buses, Taxis, and Motorcycles. We
focus on the end-to-end message latency in these protocols, and how this la-
tency scales with the network size (i.e., number of participants). To the best
of our knowledge, our paper is the first to provide a detailed performance
analysis of multiple anonymity protocols to assess their practical scalability.

The primary contributions in this paper are the following:

• We use analysis, experiments, and simulation to show that the end-to-
end message latency of the Buses protocol is O(N2), scaling quadrati-
cally with the size of the network.

• We use analysis, experiments, and simulation to show that the message
latency of the Taxis protocol is O(N), scaling linearly with the network
size.

• We propose a new anonymity protocol, Motorcycles, that improves
upon Buses and Taxis.

• We use analysis, experiments, and simulation to show that the message
latency of the Motorcycles protocol is O(log2 N), scaling logarithmi-
cally with the network size.

The rest of this paper is organized as follows. Section 2 provides back-
ground information on anonymous communication. Section 3 describes the
three anonymity protocols analyzed in our paper. Section 4 and Section 5
present our analysis of these protocols. Section 6 presents simulation and
experimental results to validate our analytical models. Finally, Section 7
concludes the paper.

2. Background

2.1. Anonymity Techniques

Anonymous communication is a vibrant research area with many anonymity
schemes proposed [1, 15, 26]. Delay-tolerant applications, such as e-mail,

3

can use strong anonymous communication schemes [10]. However, interac-
tive applications, such as Web browsing and SSH, require lower overhead to
minimize the end-to-end message latency.

Designing a strong anonymous communication scheme with low latency is
a challenge [11]. As an interim solution, anonymous communication schemes
such as Crowds [29] and Tor [11] have been used for interactive applications,
despite their known vulnerabilities [11].

The three basic techniques underlying most anonymous communication
protocols are broadcasting, mixes, and buses. The strength and scalability of
an anonymity protocol are inherited from these basic techniques.

The broadcasting technique requires each participant to conduct secret
coin flips, and then broadcast the resulting parity to all the other partici-
pants [8]. Since this traffic overhead is O(N2), the broadcasting approach is
no longer mainstream in the literature [1], and is not discussed further here.

The mixes and buses techniques can be measured by their performance
and the strength of anonymity provided. The performance metric considered
in this paper is the average message latency, and how it scales with the
number of participants. The measure of anonymity is how well an initiator
or responder is hidden among the participants.

The following subsections introduce mixes and buses, while Section 3
describes the three specific anonymity protocols considered in our work.

2.2. Mixes

Mixes provide very strong anonymity [7]. The basic idea is to re-route a
message through a sequence of mixes, each of which collects a batch of inputs
and randomly re-orders the outputs. In addition, the message is encrypted
more than once at the source, with one layer of encryption removed by each
mix along the routing path.

The goal of mixes is to prevent an attacker from correlating an input
message with its corresponding output message. However, the only proven
secure solution requires each initiator to send at least one message to each
responder in every batch. This cover traffic scales quadratically with the
number of participants.

Debate arises as to how much anonymity is sacrificed when cover traffic is
reduced or eliminated [11]. To reduce the overhead of input-output mixing,
anonymous communication schemes such as Tor [11] and Crowds [29] use
no cover traffic at all. The authors acknowledge the tradeoffs between over-
head and vulnerabilities to known attacks [11, 29]. Other schemes such as

4

JAP [5] and MorphMix [30, 35] use partial cover traffic, while Mixmaster [25],
Mixminion [10], and Tarzan [14] use full cover traffic.

2.3. Classic Buses

The buses anonymity technique was proposed by Beimel and Dolev [3].
We refer to their work as Classic Buses.

The Classic Buses protocol is based on the metaphor of a city bus, which
traverses a circular path among all of the participants in the anonymity
network (see Figure 1). Messages travel in the seats of a bus, appropriately
obscured by layers of encryption. The bus traverses the network, passing from
one node to the next. When in possession of the bus, a node replaces the
bus with its decryption and retrieves messages intended for itself, replacing
the message’s seat with random data. In addition, the node places layered
encrypted messages on the bus to be delivered to other nodes. By encrypting
the message, only the intended recipient can recover its messages. Since each
node alters the bus, an adversary cannot tell if a node inserts a new message
or replaces an existing seat with its decryption.

N1

N2

N3

N4

N5

N6

' $$
%¾

t t

Figure 1: Example of Routing in Buses

The operation of Classic Buses is best illustrated with an example. Con-
sider the bus network in Figure 1, where nodes N1 through N6 are part of the
network, and the bus tours the network in a clockwise round-robin fashion. If
N1 wants to send an anonymous message M to N4, then the message routing
path will be N1 to N2 to N3 to N4. To send the message, N1 encrypts it
as EKN2

(EKN3
(EKN4

(M))), where EKNi
(x) denotes the encryption of x with

Ni’s public key. Node N1 then places the message on a randomly chosen
seat on the bus. When N2 receives the bus, it decrypts all messages on the
bus, peeling away a layer of encryption, and forwards the resulting contents
(including the still-obscured valid message) on the bus to N3, which in turn

5

decrypts and forwards to N4. When N4 receives the bus, it decrypts all
seats, revealing the message M destined for itself. The message is removed
and replaced with random bits (or a new outgoing message) before the bus
is forwarded.

2.4. Qualitative Assessment

Table 1 provides our qualitative assessment of Classic Buses compared
to several other anonymity protocols in the literature [17]. The theoretical
design of Classic Buses [3] provides strong anonymity guarantees. The pri-
mary weaknesses are with respect to active adversaries (e.g., replay attacks);
however, these problems are fixable. While the original authors never im-
plemented or deployed the Classic Buses protocol, we use their underlying
design as the starting point for our own work.

Table 1: Vulnerabilities of Anonymity Protocols

Anonymity Vulnerable to Vulnerable to Vulnerable to
Protocol Global Eavesdropper? Passive Adversary? Active Adversary?

Anonymizer [2] Yes Yes Yes

Babel [16] Yes Yes No

Chaum’s Mixes [7] No No Yes

Classic Buses [3] No No Yes

Crowds [29] Yes Yes Yes

Hordes [32] Yes Yes Yes

LPWA [24] Yes Yes Yes

Onion Routing [28] Yes Yes Yes

P5 [31] Yes No Yes

Tor [11] Yes Yes Yes

3. Anonymity Protocols

3.1. Buses

There are several versions of the buses protocol described in [3]; we now
focus on a specific version that we have implemented and demonstrated ex-
perimentally [17].

There are three key innovations in our version of the buses protocol. First,
we use owned seats. This feature restricts participating nodes to only insert

6

messages into specific (owned) seats on the bus. This feature drastically
reduces the number of bus seats required, while avoiding the random seat
collisions that can occur in the Classic Buses protocol, especially under high
load. Note that ownership of a seat does not compromise anonymity, since
an observer cannot determine whether a seat contains a message or not (i.e.,
a semantically secure cryptosystem is used). Second, our protocol provides
reliable message delivery, using anonymous acknowledgements, timeouts, and
retransmissions. This mechanism also provides protection against replay at-
tacks. Third, we use nested encryption with indirection. This feature de-
couples the logical re-routing path of messages from the physical routing
of messages around the network. This change reduces the dependence on
a known network topology (i.e., static route), making the Buses protocol
usable as a peer-to-peer (P2P) overlay network on the Internet.

A new nested encrypted message is created by encrypting a message with
the responder’s key, selecting a random set of up to L indirection partic-
ipants, and then recursively encrypting the message with each indirection
participant’s corresponding key. In practice, a relatively short indirection
path length of 1 or 2 nodes is sufficient to provide strong anonymity [19].
For example, consider the bus network in Figure 1. If N1 wants to send an
anonymous message M to N4, then N1 randomly chooses intermediate nodes
for the re-routing path. Suppose that it chooses two indirection nodes, N2

and N5, in that order. The message routing path will be N1 to N2 to N5 to
N4, requiring more than one cycle of the bus to achieve delivery. That is, the
bus circulates the network clockwise, visiting every node in turn, but only the
nodes involved in the message re-routing path alter the contents (seats) of
the bus. The message is encrypted multiple times as EKN2

(EKN5
(EKN4

(M)))
and placed on a seat owned by N1. N2 receives and decrypts a copy of the
message, peeling away a layer of encryption, and forwards the message using
its own seat to N5, which in turn forwards to N4 following decryption. When
N4 receives the bus, it decrypts the seat from N5 to reveal the message M
from N1.

The basic operation of the bus otherwise remains the same. When a
participant receives the bus, it copies the bus, modifies the bus, and forwards
the bus. Unlike Classical Buses, the bus is copied for off-line processing,
which can take place after the incoming bus has been forwarded. The main
component of the off-line processing is to decrypt the bus, removing a layer
of encryption from any nested messages. A participant modifies the bus by
inserting any messages to forward or send in its owned seats, and replacing

7

any unused owned seats with random data2 before forwarding the bus to the
next participant on the route.

While the buses protocol is conceptually elegant, and requires no addi-
tional cover traffic, it nonetheless has an end-to-end message latency that
scales quadratically with the number of participants. Simply stated, the cy-
cle time of the bus for N nodes is O(N), and the processing and network
delays at each node are also O(N). The resulting latency is O(N2), which
limits the practical scalability of the protocol. See Section 4 for details of
this analysis.

3.2. Taxis

The Taxis protocol [18] improves upon the buses protocol significantly.
Rather than having one large bus with O(N) seats circulating the network,
the Taxis protocol has N taxis each with O(1) seats circulating the network,
concurrently and independently.

This basic idea reduces both the processing and network delay per tour.
Instead of a bus with rows of owned seats, each participant owns a single
taxi that contains only its owned seats. This allows a participant to separate
the taxis into owned and unowned taxis. Unowned taxis require minimal
processing, and can simply be forwarded, resulting in a metaphorical ‘fast
lane’. A taxi is only delayed once per tour for full seat processing at the
participant that owns the taxi, resulting in a message delay that is O(N).
See Section 4 for details of this analysis. Similar to the Buses protocol,
indirection and nested encryption are used.

3.3. Motorcycles

Our new proposed anonymity protocol combines the idea of Taxis with the
idea of Chord [34], an efficient Distributed Hash Table (DHT) mechanism for
content-based routing and lookup on a peer-to-peer (P2P) overlay network.
In Chord, the identifier space is organized into a logical ring, and information
lookup can be done in logarithmic time, using a finger table that leads directly
to a (logarithmic) subset of nodes that are strategically placed around the
ring.

2Note that even the dummy traffic seats containing random data must be encrypted
before transmission, so that the processing delays are consistent at each node, and not
vulnerable to a timing attack by an adversary.

8

To continue the transportation analogy, we refer to our Chord-based Taxis
protocol as Motorcycles. While motorcycles have limited seating, they can
easily take off-road shortcuts to minimize travel time to a destination.

In the Motorcycles protocol, each node has a finite set of motorcycles, each
with one seat, that are sent to nodes in its finger table. A node with a message
to send or forward inserts a message into one of its owned motorcycles. The
message travels a Chord-like (logarithmic) routing path through the network
to its indirection nodes, transferring to other motorcycles as necessary for
forwarding, until it eventually reaches its target destination. While this
protocol requires messages to be transferred between motorcycles at each
node (not only at indirection nodes), we note that the Chord-like routing
significantly reduces the path length from source to destination.

Technically, an external observer might attempt to discern the sender-
receiver pair for a message, based on the routing activity of motorcycles. To
prevent this traffic analysis, an outgoing motorcycle is multicast simultane-
ously3 to all entries in the outgoing finger table. Most nodes silently discard
the dummy traffic, while the intended forwarder sends the message onward
in the same fashion, using its own motorcycles.

Figure 2 illustrates how Motorcycles work, when routing from node 0
to node 7 using indirection nodes 14 and 4. In this example, we assume
that there are exactly 16 nodes participating in the network. Figure 2(a)
shows the finger table of node 0. Figure 2(b) shows the total message traffic
needed to route from node 0 to indirection node 14. Here, the message path is
illustrated using solid lines and the dummy traffic using dotted lines. Finally,
Figure 2(c) shows the message path. The source, destination and indirection
nodes are marked in red. The fowarding nodes are shown in green. Note
that nested decryption is only done at the indirection and destination nodes.

3.4. Security

The security of Buses is discussed in [17], and that of Taxis in [18]; neither
protocol appears susceptible to any known active or passive attacks. Motor-
cycles is built upon the security provided by Buses and Taxis. Furthermore,

3Alternatively, (encrypted) messages can be sent in round-robin fashion to each node in
the node’s finger table. In either case, the traffic pattern observed by an external observer
would be independent of the message load and would not provide insights with regards to
the message patterns.

9

0
1

2

3

4

5

6

15

14

13

12

11

10

0
1

2

3

4

5

6

15

14

13

12

11

10

0
1

2

3

4

5

6

15

14

13

12

11

10

7
8

10

9 7
8

10

9 7
8

10

9

Figure 2: Motorcycles protocol. (a) Finger table of node 0. (b) Message
traffic associated with routing from node 0 to node 14. (c) Message path
from node 0 to node 7, using indirection nodes 14 and 4.

careful design and analysis were conducted to ensure that the size and prob-
ability distribution over the anonymity sets yield maximum entropies. A
detailed security analysis appears in [19]. This paper focuses solely on the
performance of the protocols.

4. High-Level Performance Model

In this section, we first develop a high-level mathematical model to char-
acterize end-to-end message delay in our anonymity protocols. This unified
model applies for all three protocols of interest. We then refine the analysis
to produce closed-form solutions for each protocol.

4.1. Notation and Assumptions

Table 2 summarizes the notation used in our model. From top to bottom,
the table is organized into four logical sections: anonymity protocol con-
figuration parameters, message traffic workload parameters, network model
parameters, and the variables used to represent different aspects of the end-
to-end delay, as described in Section 4.2.

We make the following assumptions in our model:

• New messages are generated according to a Poisson process with an
aggregate arrival rate λ. Messages are variable-sized, but each message

10

Table 2: Notation for Anonymity Protocol Analysis

Symbol Definition

N Number of nodes in the anonymity network

K Number of seats per node on bus, taxi, or motorcycle

L Number of indirection layers used

s Seat size in bits

λ Aggregate generation rate for new messages (per sec)

λi Message generation rate for node i (per second)

r Network bandwidth in bits per second (bps)

p Per-hop network propagation delay in seconds

DSR One-way message delay from S to R

DS Time for source to encode a nested message

WS Waiting time at the originating node S

HSR Average number of hops traversed from S to R

Dseat Processing time per seat on bus, taxi, or motorcycle

Dproc Per-hop nodal processing delay

Dnet Per-hop transmission and propagation delay

HT Average number of transfer nodes from S to R

WT Message waiting time at a transfer node

DR Time for receiver to decode a message

TC Cycle time for a bus, taxi, or motorcycle

QC Number of cycles incurred

fits4 within a fixed-size seat (e.g., s = 3 KB).

• Message traffic is homogeneous and uniformly distributed across all N
participating nodes in the network. That is, λi = λ

N
. The receiver of a

message is always distinct from the original sender, and the receiver is
selected uniformly at random from the other nodes. Indirection nodes
are uniformly selected from all the nodes (including the original sender
and the receiver).

• The nodal processing time is short relative to the cycle time of a bus,
taxi, or motorcycle. In particular, we assume that a message to be

4Larger messages can be split into smaller pieces, and modeled with a batch message
generation process.

11

transferred (or acknowledged) by a node is fully processed (decoded)
by the time the next eligible bus, taxi, or motorcycle arrives.

• The network nodes are homogeneous. The processing time (Dproc) is
the same for all nodes, and is independent of the load. Hence, the
cycle time TC depends only on the number of hops HSR on the routing
path and the per-hop processing (Dproc) and network delays (Dnet). In
particular, TC = HSR(Dproc + Dnet).

• The network delay (Dnet) for transmission and propagation is the same
for each node pair (hop) traversed by a message. In a wide-area net-
work, this means that the transmission and propagation delays dom-
inate the (network) queueing delays (which differ from the message
queueing delays considered in our analysis of anonymity protocols).5

• Message queueing occurs only when waiting for an outgoing bus, taxi,
or motorcycle. This can happen at the original sender and at each
transfer node. With Buses and Taxis, transfers only take place at the
indirection nodes. With the Motorcycles protocol, both indirection
and forwarding nodes can act as a transfer nodes. In a scenario with
acknowledgements, message queueing can occur at the receiver as well.

• Finally, our queueing analysis assumes that the transfer queue of each
node is independent of the transfer queue of any other node, and also
that arrival events are Poisson. While this may not be completely true
in practice, we do believe that this provides a reasonable approxima-
tion.

4.2. Model Overview

This section provides an overview of the structural model for a homoge-
neous system with N nodes, each generating new messages at a rate λ/N .
Throughout our analysis, the primary metric of interest is the expected deliv-
ery time DSR for a message from the sender to the receiver. For simplicity, we
initially focus on one-way message traffic (i.e., ignoring acknowledgements),

5In general, we do not consider background traffic or other external elements that
potentially may affect the network queueing delays.

12

since this suffices for relative performance comparisons of the three proto-
cols. We also assume that the traffic load is evenly distributed6 across all
nodes. Extensions to heterogeneous and bi-directional traffic are discussed
in Section 5.

Our unified model is developed to allow us to compare and contrast the
three different protocols, and does not consider second-order effects due to
slight variations within each protocol. While protocol-dependent policies
such as timeouts and retransmissions can be important for reliability pur-
poses, we do not model such effects since their performance impacts are
typically small.

4.2.1. Delay Components

Consider an arbitrary message in the system. The delivery time of a
message has several components:

1. The originating sender S must create the message. We model this delay
as the source encoding time (DS). This delay is independent of the
routing path chosen, and independent of the load along this path.

2. The sender must wait for the next outgoing bus, taxi, or motorcycle at
the sending node. We denote the average such queueing delay by WS.
This delay is a load-dependent sender-side delay.

3. There is a load-independent path delay associated with forwarding the
message from the sender to the receiver. If there are HSR hops traversed
along the delivery path from S to R, then a message incurs a processing
delay (Dproc) and a network delay (Dnet) at each hop. The total load-
independent path delay is HSR(Dproc + Dnet).

4. A load-dependent transfer delay arises from the message queueing delay
experienced at nodes where a message transfer occurs along the path.
When a message switches from one bus, taxi, or motorcycle to another,
it must wait for the next bus, taxi, or motorcycle to become available. If
each message requires HT transfers, and the average queueing delay at
a transfer node is WT , then the total expected transfer delay is HT WT .

5. The target receiver R must decrypt and receive the message. We model
this load-independent delay as the receiver decoding time DR.

6This case holds if destination and indirection nodes are selected uniformly at random,
for instance.

13

Table 3: Summary of Delays and Cycle Times

Load-independent Load-dependent
Anonymity Processing Network Sender Transfer Cycle Time
Protocol Dproc Dnet WS WT TC

Buses KNDseat
KNs

r
+ p TC(QC + 1

2) TC(QC + 1) N(KNDseat + KNs
r

+ p)

Taxis KDseat
Ks
r

+ p TC(QC + 1
2) TC(QC + 1

2) N(KDseat + Ks
r

+ p)

Motorcycles KDseat
Ks
r

+ p TC(QC + 1
2) TC(QC + 1

2) logN(KDseat + Ks
r

+ p)

The foregoing components are mutually-exclusive serial delays, and to-
gether constitute the entire end-to-end delivery delay. Combining the above
components, the expected delivery time DSR can be calculated as

DSR = DS + WS + HSR(Dproc + Dnet) + HT WT + DR. (1)

While the above model is universal for all three protocols, the protocols
may differ significantly with regards to the individual delay components.
Using the same model for all three protocols allows us to provide insights
with regards to these differences. Throughout the remainder of this section,
we highlight similarities and differences between the protocols.

We now turn our attention to how the individual terms in this model
can be calculated for each of the protocols. Note that the nodal processing
delays at the sender and receiver, DS and DR, are basically small constants,
and can be ignored in relative performance comparisons. The other delays,
in general, differ for each protocol (see Table 3). We analyze these delays
next.

4.2.2. Per-Hop Delays

We first derive expressions for the processing delay (Dproc) and network
delay (Dnet) for each hop of the routing path.

For the Buses protocol, each node has K seats, so the bus has KN seats.
If Dseat is the seat processing time, then Dproc = KNDseat. If s is the size of
a message and r is the network bandwidth, then Dnet = KNs

r
+ p, where p is

the propagation delay to the next hop.
A similar analysis applies for Taxis and for Motorcycles, though the total

number of seats per taxi or motorcycle is lower by a factor of N . Assuming
small propagation delays, both these protocols therefore reduce the total

14

per-hop delay (Dproc + Dnet) by roughly a factor of N . The leftmost part of
Table 3 summarizes these load-independent delays.

4.2.3. Number of Hops

We next compute the number of hops (HSR) traversed along a delivery
path from the sender to the receiver. Throughout this analysis, we assume
that the sender never sends an end-to-end anonymous message to itself, that
destination and indirection nodes are selected independently (uniformly at
random), and that any node (including the sender, receiver, and the indirec-
tion node itself) can be used as the next indirection node. We further assume
that there are L indirection steps.

Consider first the Buses and Taxis protocols. For these protocols, trans-
fers (and possible message queueing) occur only at the indirection nodes; thus
HT = L. Intuitively, each message is forwarded (N + 1)/2 hops per indirec-
tion, on average. With L > 0 indirections, the average is HSR = (L+1)N+1

2
.

However, this expression is not exact for the special case when L = 0. For
this case, there are only N − 1 potential receivers, for an average distance of
N/2 hops.

Consider now the Motorcycles protocol. In this protocol, messages change
motorcycle at every node along the path; thus HT = HSR − 1. With Chord-
based routing, there are O(log N) hops per indirection node, so both HSR

and HT are roughly (L + 1) log N . However, a more careful analysis shows
that log N is actually the worst case upper bound for Chord-based routing;

the average case is about half of this [34]. Analysis verifies that
log N

2
is a

very good approximation, especially for larger N . (See appendix for details.)
Table 4 summarizes the resulting expressions for the expected number of

hops (HSR) traversed along a delivery path, as well as for the expected total
number of transfer nodes (HT) at which the message switches from one bus,
taxi, or motorcycle to another (and queueing may occur).

Table 4: Summary of Hop Counts

Metric Buses/Taxis Motorcycles

HSR
N
2 , if L = 0 L+1

N−1

∑logN

h=1 h
(logN

h

)

(L + 1)N+1
2 , otherwise ≈ (L + 1)

log N

2

HT L HSR − 1

We note that the Motorcycles protocol reduces the total number of hops

15

compared to the Buses and Taxis protocols. On the other hand, the Mo-
torcycles protocol increases the number of nodes at which message transfers
occur. Future sections will discuss this tradeoff further.

4.2.4. Cycle Time

We next derive the cycle time for a bus, taxi, or motorcycle, which is an
essential part of the (load-dependent) waiting time for messages. In particu-
lar, a message can only be launched when an eligible bus, taxi, or motorcycle
is available to depart.

For the Buses protocol, the cycle time for a node is the elapsed time
between visits by the (single) bus. For the taxis protocol, the cycle time is
the elapsed time between visits by the node’s own taxi. With Motorcycles,
the cycle time is the elapsed time between visits by one of its own motorcycles.

In general, the cycle times are roughly deterministic (i.e., equal to the
total processing and forwarding delay during a cycle). Assuming messages
are sent as soon as possible, the cycle times can be calculated as given in the
rightmost column of Table 3.

We observe that the Buses protocol has the largest cycle time among
these three protocols. The cycle time for the Taxis protocol is lower by a
factor of N , since each node has its own taxi. The Motorcycles protocol has
the lowest cycle time, which depends on log N rather than N .

4.2.5. Waiting Times

Consider now the load-dependent delays associated with accessing a (new)
bus, taxi, or motorcycle. This delay can be calculated based on the cycle
time TC and the number of cycles QC that the message must wait before it is
among the next K messages to be served. We also need to add the expected
waiting time until service for a message arriving to an empty queue.

We assume that cycle times are roughly deterministic, and messages
queued at an individual node are served in FIFO order when the bus, taxi,
or motorcycle is available to serve these messages. Each node (and its queue)
is modeled as an independent K-limited server with deterministic vacation
periods. When a bus, taxi, or motorcycle is available to the node, and there
are outstanding messages in the queue, up to K messages can be served.

If there are no queued messages, then the bus, taxi, or motorcycle departs
without serving any requests. Independent of the number of messages served,

16

the next bus, taxi, or motorcycle will return in another cycle.7 While we leave
the details of our queueing analysis to Section 5, we note that with evenly
distributed load, the total average (queueing) load per node is (1 + HT) λ

N
.

Here, the λ
N

corresponds to new messages being generated, while HT
λ
N

is due
to message transfers.

Now, consider the waiting time for a message that arrives to an empty
queue. Clearly, this delay will depend on when in a cycle the message arrives.
Assuming that cycle times are deterministic and messages are generated ac-
cording to a Poisson process, the expected waiting time at the sender is half
a cycle (TC/2). For the case of transfer nodes, however, this is not necessarily
the case. For example, with the Buses protocol, a message that has gotten off
the bus for local nodal processing actually waits an entire cycle (TC) before
being placed back on the (same) single circulating bus. There may be some
structural dependence for the other protocols as well; however, in general,
we have found that TC/2 provides a reasonable approximation of the average
waiting time (see Section 6).

The middle columns of Table 3 summarize the load-dependent (message
queueing) delays. Section 5.2 provides a more detailed analysis of the queue-
ing delays.

4.3. Model Summary
Table 3 summarizes the component delays in our models for the three

anonymity protocols. We reiterate that the cycle times for the Buses protocol
are the largest, while those of the Motorcycles protocol are the smallest. The
cycle-time advantage of the Motorcycles protocol is mitigated in part by its

requirement for roughly
logN

2
more message transfers.

The average utilization (ρ = λ
N

(1 + HT)TC) values for Buses, Taxis, and
Motorcycles are O(λ

N
LN2), O(λ

N
LN), and O(λ

N
L log2N), respectively. This

analysis shows that the shorter path lengths used by the Motorcycles protocol
effectively compensate for the additional queueing events incurred. For a
fixed load of injected message traffic, the Motorcycles protocol will have
much lower node utilization. Stated another way, Motorcycles can tolerate
significantly higher message generation rates than Buses or Taxis before the
system saturates (ρ → 1).

7Using terminology from the queueing literature, the node can be thought of as a
server. If at least one message is served, the server endures a service period of duration
TC . Otherwise, it endures a vacation period of duration TC .

17

5. Detailed Models

This section presents detailed performance models for several special
cases. First, we consider the case when there are no queueing delays (i.e.,
QC → 0). Here, results are obtained for the asymptotic scalability of the
three protocols. Second, we use a Poisson assumption to obtain explicit ex-
pressions for the queueing delay when K = 1. Third, we show how the model
can be extended to handle heterogeneous message generation rates and mes-
sage acknowledgements, respectively. Section 6 validates our models with
both simulation and experimental results.

5.1. Protocol Scalability

This section considers the asymptotic scalability of the end-to-end deliv-
ery delay for each anonymity protocol. We assume a lightly loaded system
with N nodes.

In a lightly loaded system, the message queueing delays are negligible
and can be ignored. For this case, QC = 0, and the waiting times WS

and WT reduce to either TC or TC

2
, depending on the protocol. With these

simplifications, the expressions8 for HSR and HT from Table 4 can be used
to refine Equation (1) for each anonymity protocol:

DBuses
SR = DS + (L + 1)

N + 1

2
(Dproc + Dnet) + (

1

2
+ L)TC + DR (2)

DTaxis
SR = DS + (L + 1)

N + 1

2
(Dproc + Dnet) +

1

2
(L + 1)TC + DR (3)

DMotor
SR = DS + (L + 1)

log N

2
(Dproc + Dnet +

TC

2
) + DR (4)

These expressions show how the end-to-end message delivery delay in-
creases with the network size N , in a lightly loaded system (QC = 0). We
observe the following:

- For Buses, both Dproc and Dnet are proportional to N , and TC is pro-
portional to N2, so DBuses

SR is O(N2).

- For Taxis, Dproc and Dnet are independent of N , while TC is propor-
tional to N , so DTaxis

SR is O(N).

8See Section 4.2.3 for a detailed discussion of HSR.

18

TC

qm
λ/N

New messages

HT λ/N
Local

transfers

 1/(1+HT)
Final destination

HT /(1+HT)
Additional

transfer

…

Vacation
or service

period

Single Node

Network Topology

Figure 3: Queueing Model.

- For Motorcycles, Dproc and Dnet are independent of N , while TC is
proportional to log N , so DMotor

SR is O(log2N).

These results confirm our intuition regarding the relative latency of each
protocol. In particular, Motorcycles has a significant performance advantage,
especially in lightly loaded systems.

5.2. Queueing Analysis for K = 1

We now derive an exact closed form solution for the queueing at an arbi-
trary node for the single-seat (K = 1) case.9 Figure 3 illustrates our queueing

9A discussion of the general case K > 1 is provided at the end of this section.

19

model. For simplicity, we assume that the total average (queueing) load per
node is equal to λ̃. For the case when all nodes are homogenous and the
load is evenly distributed across all nodes, this aggregate rate is equal to
λ̃ = (1 + HT) λ

N
.10 Of this load, λ

N
is associated with new messages be-

ing generated by the node itself; the rest is due to message transfers (i.e.,
changing bus, taxi, or motorcycle at the node). Furthermore, our analysis
assumes that both the message generation and the message transfer events
at an individual node are Poisson. (Note that this implies that the aggregate
sequence of message events is also Poisson.) While we acknowledge that this
may not be true in practice, we do believe that this provides a reasonable
approximation (as verified by our simulations).

We model each node as an independent queueing system with vacation
times. As noted in Section 4.2.5, pending messages in the queue can only
be served when a bus, taxi, or motorcycle is available at the node. Since
cycle times are independent of the current forwarding load, the next (useful)
bus, taxi, or motorcycle will not become available until the next cycle. For
the purpose of the analysis, we refer to the time durations (TC) between
consecutive service instances as either a service period or a vacation period.
From the perspective of a single node, a cycle is considered a service period
if it is able to send at least one queued message; otherwise, the cycle is
considered a vacation period.

Consider an (open) M/G/1 queueing system with vacation times (e.g.,
as in Exercise 5.23 in Kleinrock [21]). Assuming generating functions F (z)
and V (z) for the arrivals during a service period and during a vacation pe-
riod, respectively, the generating function of the queue lengths (including
any jobs/messages in service) as observed at an arrival instant can be shown

to be equal to Q(z) = V (z)p0(1−F (z))
V (z)−z)

, where p0 = 1−ρ
dF
dz

|z=1

and ρ = λ̃TC .

With load-independent cycle times, the service and vacation periods are
identically distributed. Thus F (z) = V (z). Furthermore, assuming deter-
ministic cycle times, V (z) can be calculated as V (z) =

∑∞
i=0 viz

i, where the
probability vi that there are exactly i arrivals during a cycle time TC is

vi =
(λ̃TC)i

i!
e−λ̃TC . (5)

10As previously noted, the Motorcycles protocol can use a round-robin implementation.
In this case, each node has one queue per finger table entry, the queues are served in
round-robin fashion, and the aggregate load is split among the log N queues.

20

Given these observations, the generating function of the queue lengths re-
duces to

Q(z) = p0
V (z)(1 − V (z))

V (z) − z
, (6)

where p0 = (1 − ρ)/ρ.
Given explicit expressions for the generating function of the queueing at

each node, it is now possible to calculate queue statistics that can provide
insights with regards to the overall system behavior for the different proto-
cols.

Consider first the expected queue length E[q] (including any jobs/messages
in service). The expected queue length (E[q] =

∑∞
i=0 qii) can be derived by

differentiating the generating function, and evaluating the derivative at z = 1.
That is,

E[q] =
dQ

dz
|z=1 (7)

=
p0V (z)

(V (z) − z)2

[

dV

dz
(2z −

z

V (z)
− V (z)) + (1 − V (z))

]

z=1

.

Since V (1) = 1, applying l’Hôpital’s rule twice gives

E[q] =
ρ(3 − 2ρ)

2(1 − ρ)
, (8)

where ρ = λ̃TC . The omitted intermediate steps use the fact11 that V (z) =

eλ̃TC(z−1). This allows the mth derivative dmV
dzm |z=1 to be calculated (λ̃TC)meλ̃TC(z−1).

Evaluated at z = 1, this further reduces to λ̃mTm
C (or ρm).12

For the purpose of our analysis, we note that for the case when K = 1,
as in this section,

QC = E[q] − ρ =
ρ

2(1 − ρ)
. (9)

Note that the subtracted ρ term corresponds to the probability that some
job/message currently is being served (i.e., a message is being sent from one

11To see this, substitute Equation (5) into the definition of V (z) (i.e.,
∑

∞

i=0 viz
i).

12These expressions can also be obtained in other ways. For example, the probabilities
vi must sum to one (i.e., V (1) =

∑

∞

i=0 vi), and the first derivative evaluated at z = 1 (i.e.,
dV

dz
|z=1 =

∑

∞

i=0 vii) gives the expected number of arrivals during a cycle (λ̃TC).

21

node to the next).13

Finally, we note that the generating function can also be used to cal-
culate explicit state probabilities and queue-size variations. For example,
the probability q0 that we find the system empty can be calculated by eval-
uating q0 = Q(0), while the probability that we find exactly one message
in the queue is equal to q1 = dQ

dz
|z=0. (In general, qm = 1

m!
dmQ

dzm |z=0.) Sub-
stituting z = 0 rather than z = 1 into Equations (6) and (7), we obtain

q0 = (1−ρ)(1−e−ρ)
ρ

and q1 = (1−ρ)(1−e−ρ−ρe−2ρ)
ρe−ρ . Note that for ρ < 0.5 these two

states account for 60% of the system state occupancy.
We do not have a closed form result for the more general case K > 1.

While queueing models of vacation systems have generated much research,
there are only limited results for systems with both batched service and mul-
tiple vacations. To the best of our knowledge, no explicit expressions have
been derived for average waiting times in the system of interest here, namely
a single-server queue with multiple vacations, batched service, and determin-
istic vacation (and service) periods.

Since existing results do not provide explicit expressions, and may not
provide additional insights regarding our protocols, we leave the analysis
of such systems as future work. However, the necessary set of equations
(such as the generative equation) and a discussion of the numerical solution
approaches needed to obtain the solutions are described in Lee et al. [22],
and elsewhere. For a general discussion on queuing systems with vacation
periods, please see [12, 13, 36], as well as papers on vacation periods with
batch service [22, 23, 33].

5.3. Heterogeneous Traffic

We now discuss how the analysis can be extended to handle heterogeneous
traffic load. While this requires some modifications to the individual terms
in Equation (1), it is important to note that most of the analysis stays the
same and only the two load-dependent terms (i.e., the sender-side delay and
the transfer delay) are affected. In fact, assuming that the average number

13The above expression can also be obtained from general results for the M/G/1 queue
with multiple vacations. Specifically, the number of messages in the queue (but not in

service) should be λ̃
2
S2

2(1−λ̃S)
+ λ̃V 2

2V
, where S and V are the service and vacation period

durations, respectively. Substituting S2 = V 2 = T 2
C

, V = TC , and observing that ρ = λ̃TC ,
leads to the same expression.

22

of transfer nodes (HT) and cycle times (TC) are independent of the nodes
generating the traffic, these terms will be affected only through the queueing
delays QCi

(measured in cycle times). Of course, assuming that the load
λ̃i on each node i can be estimated, the queueing delays can be estimated
(independently) using the same queueing analysis as before.

Consider for example the case when messages are generated at rate λi and
indirection nodes are selected uniformly at random; the average load on each
node is λ̃i = λi + λ

N
HT . Using these rates, the QCi

values can be obtained
on a per-node basis using Equation (8), for example.

Finally, it is important to note that average delivery delay must be calcu-
lated on a per-message basis (rather than on a per-node basis, for example).
With messages generated unevenly, messages are more likely to be sent from
a node generating lots of traffic. The expression for the average sender-side
waiting times (WS) must therefore be calculated as WS =

∑N

i=1
λi

λ
WSi

. In
contrast, assuming that the transfers are evenly distributed across nodes,
the average transfer time (WT) can be calculated on a per-node basis; i.e.,
WT = 1

N

∑N

i=1 WTi
.

5.4. Message Acknowledgements

Thus far we have considered anonymity protocols without any acknowl-
edgements. This subsection outlines how the model can be extended to
include these. For the purpose of our analysis, we assume that the receiver
(R) of a message automatically generates a return (acknowledgement) mes-
sage to the original sender (S), which is basically indistinguishable14 in size,
content, and delivery from a regular message.

Acknowledgements affect three components of our model:

• Acknowledgements increase the overall load λ̃i at each node. Part of
this load comes from additional queueing at R (where an outbound
message is now being generated), and part of it comes from additional
indirections on the return path. Assuming that the same number of
indirections are used for the return path, this increases the load λ̃i and
utilization ρi by exactly a factor of 2. The waiting times WS and WT

must be updated accordingly.

14There is an acknowledgement flag in the innermost core of the message returned to S.

23

• The number of transfer nodes WT increases. Conceptually, R can now
be considered a transfer node, since it has to wait for the next outgoing
bus, taxi, or motorcycle. The modified number of transfer nodes Hack

T

is therefore equal to Hack
T = 2HT +1. While acknowledgements roughly

double the delays in the system, there are some subtle differences to
consider. In particular, even for light loads, the Buses protocol causes
the acknowledgement message to wait for a full cycle TC (the worst
case) before it can be sent back. At the original sender, on the other
hand, a new message on average only has to wait half a cycle. By
considering the receiver as a transfer node, rather than a sender, our
model automatically handles this asymmetry.

• The total number of hops (HSRS) traversed must be increased to include
the return path from R to S. With the assumption that the return path
uses the same number of indirection nodes as the forwarding path,
HSRS can be calculated as HSRS = 2HSR. Asymmetric paths (e.g., a
lengthy forward path, and short reverse path, or vice versa) are possible,
especially when L is small.

With these changes, our model extends easily to handle acknowledge-
ments. As noted earlier, the presence of acknowledgements does not change
the relative performance of the protocols.

6. Numerical Results

In this section, we validate our analytical model for the anonymity proto-
cols, and present numerical results illustrating the performance and scalabil-
ity of these protocols. We start with cross-validation of our analytical models
and simulation models using small-scale experimental results. We then con-
sider larger network scenarios using simulation and analysis. Finally, we
consider the effects of protocol configuration parameters and offered load.

6.1. Experimental Results

Experimental results were collected using two different proof-of-concept
implementations of the three anonymity protocols [19, 20].

The first prototype was implemented in C++ and tested in a 1 Gbps
Ethernet LAN environment using a 14-node Beowulf cluster [4]. This im-
plementation was a full-fledged prototype of the Buses protocol [17] and the

24

Taxis protocol [18], but not the Motorcycles protocol. The implementation
included packet encryption, decryption, and other security related features.
We used empirical measurements from this prototype to calibrate our ana-
lytic and simulation model parameters. See Table 5.

Table 5: Parameter Settings and Model Calibration

Symbol Definition Value

N Number of nodes 16

K Seats per node 1

L Indirection layers 2

s Seat size 3 KB

r Network bandwidth 1 Gbps

DS Encoding time (Buses) 0.110 s

DR Decoding time (Buses) 0.110 s

DS Encoding time (Taxis and Motorcycles) 0.041 s

DR Decoding time (Taxis and Motorcycles) 0.041 s

Dseat Seat processing time (Buses) 0.0018 s

Dseat Seat processing time (Taxis and Motorcycles) 0.012 s

The second prototype was implemented in Java, and run on a labora-
tory of desktop computers connected by a 100 Mbps Ethernet LAN. This
prototype is a partial implementation of the Buses, Taxis, and Motorcycles
protocols, in that it contains all of the required networking aspects, including
socket-based TCP communication, but none of the encryption and decryp-
tion code. Rather, all messages are exchanged in plain text. Nonetheless,
this prototype provides useful insights regarding the relative performance
and scalability of the three protocols.

Figure 4 shows the experimental results from the Java-based prototype.
The top graph shows results for Buses, Taxis, and Motorcycles. The message
latencies grow quickly (quadratically) for Buses (as has been shown in prior
work [18]), while those for Taxis and Motorcycles are much lower. The bot-
tom graph zooms in on the results for Taxis and Motorcycles. In addition, a
best-fit line is drawn through each of the latter results, demonstrating that
the results for Taxis are highly linear (as expected), while those for Motorcy-
cles are consistent with O(log2N) growth. We have obtained similar scaling
results (for Buses and Taxis) using our full-fledged prototype implementa-
tion [18, 19].

25

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 5 10 15 20 25 30 35

A
ve

ra
ge

 R
ou

nd
 T

rip
 T

im
e

(m
s)

Number of Nodes

Average Round Trip Time for Buses, Taxis, and Motorcycles (K = 1)

Buses Avg
Taxis Avg

Motorcycles Avg

(a) Measurement results for Buses, Taxis, and Motorcycles

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 5 10 15 20 25 30 35

A
ve

ra
ge

 R
ou

nd
 T

rip
 T

im
e

(m
s)

Number of Nodes

Average Round Trip Time for Taxis and Motorcycles (K = 1)

Taxis Experiment
Model y = 6.47 N + 6

Motorcycles Experiment
Model y = 1.8 log2(N)2 + 14

(b) Measurement results for Taxis and Motorcycles

Figure 4: Experimental results for Buses, Taxis, and Motorcycles (Java)

26

6.2. Model Validation

To validate our analytic model, we used our experimental results, as well
as results using a discrete-event simulator for Buses, Taxis, and Motorcycles
(approximately 1,000 lines of C code). We first use the small-scale experi-
ments to validate our simulator, and then use the simulator to validate the
analytic model for a wider range of scenarios. For realistic evaluation, the
processing delays used at each node in the simulation and analytic models
were calibrated using the experimental measurements from the full-fledged
implementation.

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16

A
vg

 M
es

sa
ge

 L
at

en
cy

 (
s)

Number of Nodes

Validation of Buses

Experiments (two-way)
Simulation (two-way)

Analytic (two-way)
Simulation (one-way)

Analytic (one-way)

(a) Buses

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16

A
vg

 M
es

sa
ge

 L
at

en
cy

 (
s)

Number of Nodes

Validation of Taxis

Experiments (two-way)
Simulation (two-way)

Analytic (two-way)
Simulation (one-way)

Analytic (one-way)

(b) Taxis

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16

A
vg

 M
es

sa
ge

 L
at

en
cy

 (
s)

Number of Nodes

Validation of Motorcycles

Simulation (two-way)
Analytic (two-way)

Simulation (one-way)
Analytic (one-way)

(c) Motorcycles

Figure 5: Validation using small-scale experiments and simulations.

Figure 5 shows validation results using small-scale experiments on our
testbed implementation of the Buses and Taxis protocols, as well as simula-
tions using all three protocols. For the Motorcycles protocol, for which we do

27

not have a full-fledged implementation, we assumed that the processing over-
heads were the same as in the Taxis protocol (i.e., only the message routing
changes). Since our implementations measured round-trip message latency,
including acknowledgements, we used half of the two-way message latency
as an estimate of the one-way message delays. While the primary purpose
of these results is to validate the simulator, for completeness, we also show
results for the analytic model.

In our simulation experiments, messages are generated according to a
Poisson process. The system is simulated for at least 10,000 messages,
in order to capture the steady-state behavior of the system. Specifically,
12,000 messages are generated, with the statistics for the first 1,000 mes-
sages (warmup) and the last 1,000 messages (cooldown) excluded from the
analysis. This methodology is used in all of our simulation experiments.

Figure 5(a) shows the validation results for Buses. The lower line and
dots on the graph show the one-way message transfer delays in the analytic
model and simulations, while the upper line and dots show these values scaled
(doubled) to reflect round-trip message delay. The experimental results are
presented as square dots on the graph. There is excellent agreement between
the experimental, simulation, and analytic results, thus validating our Buses
model.

Figure 5(b) shows the validation results for Taxis. The lower line again
shows one-way message latency, while the upper line shows round-trip delay.
The experimental measurement results are presented as square dots on the
graph. There is good agreement between the experimental and simulation
results. These results provide validation for our Taxis model.

Figure 5(c) shows the corresponding validation results for Motorcycles.
While the fit is not as tight as for Buses and Taxis, there is again good
agreement between the analytic model, simulation, and the experimental
results.

We next use the simulator to validate a wider range of scenarios. Focusing
on the one-way delays, Figure 6 shows validation results for the analytical
models, using simulation results using different numbers of indirection nodes.
Figure 6(a) shows the one-way message latency for Buses, from our simulation
(dots) and our analytical model (lines). The agreement is very close. Similar
observations apply for the Taxis protocol in Figure 6(b). The validation
results for the Motorcycles protocol appear in Figure 6(c). For simplicity,
we only considered cases in which the number of nodes is a power of two.
The qualitative agreement is good, though there are some small differences

28

observed between the simulation and analytical results.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12 14 16

O
ne

-w
ay

 M
es

sa
ge

 L
at

en
cy

 (
s)

Number of Nodes

Simulation Validation of Buses Analytical Model (K=2)

Simulation (L=2)
Analysis (L=2)

Simulation (L=1)
Analysis (L=1)

Simulation (L=0)
Analysis (L=0)

(a) Buses

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10 12 14 16

O
ne

-w
ay

 M
es

sa
ge

 L
at

en
cy

 (
s)

Number of Nodes

Simulation Validation of Taxis Analytical Model (K=2)

Simulation (L=2)
Analysis (L=2)

Simulation (L=1)
Analysis (L=1)

Simulation (L=0)
Analysis (L=0)

(b) Taxis

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 2 4 6 8 10 12 14 16

O
ne

-w
ay

 M
es

sa
ge

 L
at

en
cy

 (
s)

Number of Nodes

Simulation Validation of Motorcycles Analytical Model (K=1)

Simulation (L=2)
Analysis (L=2)

Simulation (L=1)
Analysis (L=1)

Simulation (L=0)
Analysis (L=0)

(c) Motorcycles

Figure 6: Simulation validation of analytical models for Buses, Taxis, and
Motorcycles

6.3. Heterogeneous Traffic

Using our analytic and simulation models, we next explore the effects of
heterogeneous traffic. The corresponding analytical model for this scenario
was developed in Section 5.3.

Figure 7 shows results for four example scenarios, with analytic results
plotted using lines, and simulation results plotted as points. We consider a
uniform traffic scenario as our baseline, and then study three non-uniform
traffic scenarios. In the simplest one, even-numbered nodes generate twice
as much traffic as the odd-numbered nodes. In the second scenario, there

29

are two highly active nodes, each generating 25% of the overall traffic, while
the remaining nodes uniformly generate the rest of the traffic. In the most
extreme scenario, there is a single heavy-hitter in the network, generating
50% of the aggregate traffic. In all cases, the aggregate traffic load is the
same, and traffic destinations (and indirection nodes) are chosen uniformly
at random. The network size is N = 16, with K = 1 and L = 2.

The results in Figure 7 show the expected behaviour. Message latencies
remain quite reasonable until the system nears saturation, at which point
the latencies rise abruptly. The odd-even scenario saturates slightly sooner
than the uniform traffic scenario, while the heavy-hitter scenarios saturate
much sooner. The single heavy-hitter has the most extreme results, since
the saturated node becomes a bottleneck for all messages circulating on the
Bus or Taxi tour of the network. The impact of the heavy-hitter is less
pronounced for Motorcycles, since not all routes traverse the saturated node.

We note that the results using the analytic model and the simulation
model are qualitatively very similar. While there are some quantitative dif-
ferences in the average message delays for a given arrival rate, the relative
differences in the saturation points for the different traffic scenarios are well
captured. The agreement is very good for the Buses and Taxis protocols,
but less accurate for the Motorcycles protocol, particularly for certain traffic
patterns.

One particular limitation of the analytical model is that it ignores tempo-
ral and spatial correlations that can occur in the traffic, particularly for the
Motorcycles protocol. To illustrate this effect in more detail, we next exam-
ine the Motorcycles traffic scenario with two heavy-hitters. While the first
heavy-hitter can be placed arbitrarily at node 0, the location of the second
heavy-hitter can have a great impact on the performance. Figure 8 illustrates
this effect. Here, the second heavy-hitter is placed in turn at nodes 1, 2, 4,
and 8, which happen to be the finger table entries for node 0 in a network of
size N = 16. We note that the message latency is much worse with node 8
as the second heavy-hitter, and that node 4 is the second-worst choice.

This performance degradation is due to high correlation between the
queue lengths in the Motorcycles protocol. More precisely, the structure
of the finger tables will cause node 0 to use node 8 as the next forwarding
node for half of the possible destinations. Similarly, node 8 will use node 0
as the forwarding node for half of its destinations. Clearly, this will further
increase the load on these two nodes. In contrast, node 4 will only receive
one-quarter of the traffic from node 0, and node 0 will never receive traffic

30

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12

M
ea

n
M

es
sa

ge
 L

at
en

cy

Message Arrival Rate

Sensitivity of Buses to Traffic Pattern (N = 16, K = 1)

1 Elephant (50%)
2 Elephants (25%)

Odd-Even
Uniform

(a) Buses Analysis and Simulation

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30

M
ea

n
M

es
sa

ge
 L

at
en

cy

Message Arrival Rate

Sensitivity of Taxis to Traffic Pattern (N = 16, K = 1)

1 Elephant (50%)
2 Elephants (25%)

Odd-Even
Uniform

(b) Taxis Analysis and Simulation

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60

M
ea

n
M

es
sa

ge
 L

at
en

cy

Message Arrival Rate

Sensitivity of Motorcycles to Traffic Pattern (N = 16, K = 1)

1 Elephant (50%)
2 Elephants (25%)

Odd-Even
Uniform

(c) Motorcycles Analysis and Simulation

Figure 7: Heterogeneous traffic results for Buses, Taxis, and Motorcycles

31

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30 35 40

M
ea

n
M

es
sa

ge
 L

at
en

cy
Message Arrival Rate Lambda

Sensitivity of Motorcycles to Traffic Pattern (N = 16, K = 1, L = 2)

2 Elephants (0 and 8)
2 Elephants (0 and 4)
2 Elephants (0 and 2)
2 Elephants (0 and 1)

Figure 8: Sensitivity of Motorcycles Protocol to Elephant Placement

directly from node 4. Clearly, placing the second heavy-hitter on node 8 is
the worst-case scenario.

The analytic model does not capture any of these second-order effects,
and therefore predicts the same performance, independent of which node
is chosen as the second heavy-hitter. For Buses and Taxis, the choice of
the second heavy-hitter has negligible impact on the performance, and such
assumptions are therefore okay. However, as illustrated above, node selection
can impact the performance of the Motorcycles protocol, and hence limits
the accuracy of the Motorcycles model.

This observation provides new insights for interpreting the results in Fig-
ure 7(c) for the Motorcycles model. In particular, the analytic model fit is
actually very good for the single heavy-hitter, and even for two heavy-hitters,
which are placed at node 0 and node 5 in these experiments. For the odd-even
scenario, structural correlations again degrade the accuracy of the analytical
model. In particular, since the finger table entries are predominantly even
(i.e., only the very first entry is odd), this traffic scenario tends to cause the
“busy” even-numbered nodes to forward their traffic to other “busy” nodes,
even though half of the nodes in the network (i.e., the odd-numbered ones)
are lightly loaded. The correlated queues result in degraded message deliv-
ery. Finally, the uniform traffic scenario tends to degenerate in this way as
well. In essence, this is a manifestation of the “birthday paradox”, wherein
transient queues tend to build up on some (temporarily popular) nodes in the
network, and then the queues percolate elsewhere in the network in a struc-
tured fashion (based on the finger table), before they gradually dissipate. In

32

the simulation results, this effect manifests itself in pronounced short-term
correlation in the message delivery latencies. As the load nears saturation,
this phenomenon degrades message delivery far more than predicted by the
analytical model, which is based on an independence assumption.

6.4. Scalability Results

In the previous subsections, we validated our analytic models using small-
scale experiments and simulations. In this section, we use the analytic model
to study scalability issues. While the queueing model is limited to the one-
seat per node case, or the light-load scenarios (in which case the queuing
delays are small), the fast computation times offered by the analytic model
allow us to explore questions that would require many time-consuming ex-
periments.

Figures 9 through 12 provide examples of protocol scalability results from
the analytical models. These results all use the same parameter settings as
in Sections 6.3 and 6.4.

Figure 9 shows results for small networks. As the message arrival rate
is increased, the Buses protocol saturates first, then the Taxis protocol, and
finally the Motorcycles protocol. The advantages of Taxis over Buses are ev-
ident even on small networks (N = 4), while Motorcycles are clearly superior
when the network is larger. Our analytical models provide a convenient way
to determine the saturation point, which is important in system capacity
planning.

Figure 10 shows results for different load levels, on networks ranging
from N = 4 to N = 256 nodes. The graphs show how the average message
latency increases with load. Queueing delays start to dominate when ρ > 0.8.
The delays are extremely high for Buses, tolerable for Taxis, and modest
for Motorcycles. Also recall that the Motorcycles protocol can sustain a
much higher message generation rate, for a given network utilization, so the
user-perceived performance differences between these protocols are even more
pronounced than illustrated here (note that the vertical axis is logscale).

Figure 11 shows results for the light load case on larger networks. The
graphs show how the average message latency increases with the number of
nodes for Buses, Taxis, and Motorcycles. The growth is quadratic, linear,
and logarithmic, as expected, regardless of the number of seats.

Figure 12 shows results for different load levels on larger networks. The
graphs show how the average message latency increases with load, as queue-
ing delays start to dominate. Fortunately, the relative performance differ-

33

ences observed between the anonymity protocols at light load are maintained
at higher loads. That is, the scaling behaviors for the three protocols are con-
sistent across a wide range of ρ values. These results show that Motorcycles
provide a robust and scalable approach for anonymous network communica-
tion.

7. Conclusions

In this paper, we focus on the performance and scalability of anonymous
network communication protocols. In particular, we develop end-to-end mes-
sage latency models for three anonymity protocols: Buses, Taxis, and Mo-
torcycles. The latter is a new anonymity protocol proposed in this paper.

Using a combination of analytical, experimental, and simulation results,
we show that the message latency of the Buses protocol scales quadratically
with the number of participants, while that of the Taxis protocol scales lin-
early, and that of Motorcycles scales logarithmically with the network size.
The analytic models are validated with simulation results and experimental
results from prototype implementations of the three anonymity protocols.
Motorcycles provides scalable anonymous network communication, without
compromising the strong anonymity provided by Buses and Taxis.

Acknowledgements

The authors thank the reviewers for their constructive feedback and sug-
gestions, which helped to improve the clarity of the final paper. We are also
grateful to Ibrahim Ismail, who implemented the first-ever prototype of the
Motorcycles protocol for his M.Sc. thesis [20]. Financial support for this work
was provided by Canada’s Natural Sciences and Engineering Research Coun-
cil (NSERC), and by the Informatics Circle of Research Excellence (iCORE)
in the Province of Alberta.

References

[1] Anonymity bibliography, 2005. http://www.freehaven.net/anonbib/.

[2] Anonymizer, 2003. http://www.anonymizer.com.

[3] A. Beimel and S. Dolev. Buses for anonymous message delivery. Journal
of Cryptology, 16(1):25–39, 2003.

34

[4] Beowulf cluster, 2007. http://www.beowulf.org/overview/.

[5] O. Berthold, H. Federrath, and S. Köpsell. Web MIXes: A system for
anonymous and unobservable Internet access. In H. Federrath, editor,
Proceedings of Designing Privacy Enhancing Technologies: Workshop
on Design Issues in Anonymity and Unobservability, Springer-Verlag,
LNCS 2009, pages 115–129. Berkeley, CA, USA, July 2000.

[6] A. Boukerche, K. El-Khatib, L. Xu, and L. Korba. Performance evalu-
ation of an anonymity providing protocol for wireless ad hoc networks.
Performance Evaluation, 63(11):1094–1109, November 2006.

[7] D. Chaum. Untraceable electronic mail, return addresses and digital
pseudonyms. Communications of the ACM, 24(2):84–88, 1981.

[8] D. Chaum. The dining cryptographers problem: Unconditional sender
and recipient untraceability. Journal of Cryptology, 1(1):65–75, 1988.

[9] J. Claessens, B. Preneel, and J. Vandewalle. Solutions for anonymous
communication on the Internet. In Proceedings of the 33rd IEEE Annual
International Carnahan Conference on Security Technology (ICCST),
pages 298–303. Madrid, Spain, October 1999.

[10] G. Danezis, R. Dingledine, and N. Mathewson. Mixminion: Design of a
type III anonymous remailer protocol. In Proceedings of the 2003 IEEE
Symposium on Security and Privacy (S&P), pages 2–15. Berkeley, CA,
May 2003.

[11] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-
generation onion router. In Proceedings of the 13th USENIX Security
Symposium, pages 303–320. San Diego, CA, USA, August 2004.

[12] B. Doshi. Queueing Systems with Vacations - A Survey. Queueing
Systems, vol. 1, February 1986, pp. 29–66.

[13] B. T. Doshi. Single Server Queues with Vacations. Stochastic Analy-
sis of Computer and Communication Systems (Ed. H. Takagi), North-
Holland, Amsterdam, 1991.

[14] M. Freedman and R. Morris. Tarzan: A peer-to-peer anonymizing net-
work layer. In Proceedings of the 9th ACM Conference on Computer

35

and Communications Security (CCS), pages 193–206. Washington, DC,
USA, November 2002.

[15] Y. Guan, X. Fu, R. Bettati, and W. Zhoa. An optimal strategy for
anonymous communication protocols. In Proceedings of the IEEE 22nd
International Conference on Distributed Computing Systems (ICDCS),
pages 257–266. Vienna, Austria, July 2002.

[16] C. Gulcu and G. Tsudik, “Mixing E-mail with Babel”, Proceedings of the
IEEE Symposium on Network and Distributed System Security, pp. 2-16,
1996.

[17] A. Hirt, J. Michael Jacobson, and C. Williamson. A practical buses
protocol for anonymous Internet communication. In Proceedings of the
Third Annual Conference on Privacy, Security, and Trust (PST), pages
233–236. St. Andrews, NB, Canada, October 2005.

[18] A. Hirt, J. Michael Jacobson, and C. Williamson. Taxis: scalable strong
anonymous communication. Proceedings of the IEEE/ACM 11th Inter-
national Symposium on Modeling, Analysis and Simulation of Computer
Telecommunications Systems (MASCOTS), Baltimore, MD, USA, Oc-
tober 2008.

[19] A. Hirt. Strong Scalable Anonymous Network Communication.
Ph.D. Thesis, University of Calgary, March 2010.

[20] I. Ismail, Analysis and Evaluation of Anonymity Protocols. M.Sc. Thesis,
University of Calgary, January 2011.

[21] L. Kleinrock. Queueing systems: Theory, Vol. I. Wiley, New York, NY,
USA, 1976.

[22] H. W. Lee, D. Chung, S. S. Lee, and K. C. Chae. Server Unavailability
Reduces Mean Waiting Time in Some Batch Service Queuing Systems.
Computers and Operations Research, vol. 24, iss. 6, June 1997, pp. 559-
567.

[23] H. W. Lee, S. S. Lee, K. C. Chae, and R. Nadarajan. On a Batch Service
Queue with Single Vacation. Appl. Math. Modelling, vol. 16, Jan. 1992,
pp. 36–42.

36

[24] Lucent Personal Web Assistant, http://www.math.tau.ac.il/

matias/lpwa.html

[25] U. Möller, L. Cottrell, P. Palfrader, and L. Sassaman. Mixmaster Pro-
tocol — Version 2. Draft, July 2003.

[26] A. Pfitzmann and M. Köhntopp. Anonymity, unobservability, and
pseudonymity: A proposal for terminology. Draft, version 0.31, Febru-
ary 2008.

[27] A. Pfitzmann and M. Waidner. Networks without user observability.
Computers & Security, 2(6):158–166, 1987.

[28] M. Reed, P. Syverson, and D. Goldschlag, “Anonymous Connections
and Onion Routing”, Proceedings of IEEE Symposium on Security and
Privacy, pp. 44-54, 1997.

[29] M. Reiter and A. Rubin. Crowds: Anonymity for web transactions. ACM
Transactions on Information and System Security, 1(1):66–92, 1998.

[30] M. Rennhard and B. Plattner. Introducing MorphMix: Peer-to-peer
based anonymous Internet usage with collusion detection. In Proceedings
of the Workshop on Privacy in the Electronic Society (WPES), pages
91–102. Washington, DC, USA, November 2002.

[31] R. Sherwood, B. Bhattacharjee, and A. Srinivasan, “P5: A Protocol for
Scalable Anonymous Communication”, Proceedings of IEEE Symposium
on Security and Privacy, pp. 53-65, 2002.

[32] C. Shields and B. Levine, “A Protocol for Anonymous Communication
over the Internet”, Proceedings of ACM Conference on Computer and
Communication Security, pp. 33-42, 2000.

[33] K. Sikdara, and U. C. Gupta. On the Batch Arrival Batch Service
Queue with Finite Buffer under Server’s Vacation: MX/GY/1/N Queue.
Computers and Mathematics with Applications, vol. 56, iss 11, Dec. 2008,
pp 2861–2873.

[34] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: a scalable peer-to-peer lookup
protocol for Internet applications. IEEE/ACM Transactions on Net-
working, 11(1):17–32, February 2003.

37

[35] P. Tabriz and N. Borisov. Breaking the collusion detection mechanism
of MorphMix. In G. Danezis and P. Golle, editors, Proceedings of the
Sixth Workshop on Privacy Enhancing Technologies (PET), Springer,
pages 368–384. Cambridge, UK, June 2006.

[36] H. Takagi. Queueing Analysis: A Foundation of Performance Evalua-
tion, Volume 1: Vacation and Priority Systems. Elsevier Science Pub-
lishers, Amsterdam, 1991.

A. Chord Routing Analysis

This section presents our analysis of the average path length from a sender
to a receiver on a Chord ring. For simplicity, we assume that a Chord message
is never sent to the node itself, and the next indirection node (or receiver) is
1, 2, ..., or N − 1 node ids away. This differs slightly from our assumptions
in the analysis of Buses and Taxis.

In a Chord ring, where N is a power of 2, the number of nodes that are

distance h from the sender is equal to
(log N

h

)

. For this case, we can hence

calculate the average number of hops per indirection as
∑logN

h=1 h
(logN

h

)

. This
expression has been empirically verified by comparison against the average
path distance, as calculated over every possible path, for each Chord ring of
size 2 through 220. The match is exact for all such rings.

In our Motorcycles model, we use
log N

2
as our approximation. Compar-

ison against the exact values shows that this is a very good approximation,
especially for large N . For example, with N equal to 16, 256, and 4,096 the
errors are 6.25%, 0.39%, and 0.02%, respectively.

38

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

A
ve

re
ra

ge
 D

el
iv

er
y

T
im

e

Message Generation Rate

Buses
Taxis

Motorcycles

(a) N = 4

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

A
ve

re
ra

ge
 D

el
iv

er
y

T
im

e

Message Generation Rate

Buses
Taxis

Motorcycles

(b) N = 16

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

A
ve

re
ra

ge
 D

el
iv

er
y

T
im

e

Message Generation Rate

Buses
Taxis

Motorcycles

(c) N = 64

Figure 9: Impact of message generation rate λ for different N .

10-1

100

101

102

103

104

105

106

10.80.60.40.2

A
ve

re
ra

ge
 D

el
iv

er
y

T
im

e

Node Utilization

N=256
N=64
N=16
N=4

(a) Buses

10-1

100

101

102

103

104

105

106

10.80.60.40.2

A
ve

re
ra

ge
 D

el
iv

er
y

T
im

e

Node Utilization

N=256
N=64
N=16

N=4

(b) Taxis

10-1

100

101

102

103

104

105

106

10.80.60.40.2

A
ve

re
ra

ge
 D

el
iv

er
y

T
im

e

Node Utilization

N=256
N=64
N=16
N=4

(c) Motorcycles

Figure 10: Impact of node utilization for different N .

39

1000000

800000

600000

400000

200000

0
 0 500 1000 1500 2000 2500

A
ve

re
ra

ge
 D

el
iv

er
y

T
im

e

Number of Nodes

K=16
K=8
K=4
K=2
K=1

(a) Buses

 0

 200

 400

 600

 800

 1000

 0 500 1000 1500 2000 2500

A
ve

re
ra

ge
 D

el
iv

er
y

T
im

e

Number of Nodes

K=16
K=8
K=4
K=2
K=1

(b) Taxis

 0

 2

 4

 6

 8

 10

 12

 14

 0 500 1000 1500 2000 2500

A
ve

re
ra

ge
 D

el
iv

er
y

T
im

e

Number of Nodes

K=16
K=8
K=4
K=2
K=1

(c) Motorcycles

Figure 11: Scaling results for light load with K seats per node.

1000000

800000

600000

400000

200000

0
 0 500 1000 1500 2000 2500

A
ve

re
ra

ge
 D

el
iv

er
y

T
im

e

Number of Nodes

ρ=0.95
ρ=0.9
ρ=0.5
ρ=0.1

ρ=0.01

(a) Buses

 0

 200

 400

 600

 800

 1000

 0 500 1000 1500 2000 2500

A
ve

re
ra

ge
 D

el
iv

er
y

T
im

e

Number of Nodes

ρ=0.95
ρ=0.9
ρ=0.5
ρ=0.1

ρ=0.01

(b) Taxis

 0

 2

 4

 6

 8

 10

 12

 14

 0 500 1000 1500 2000 2500

A
ve

re
ra

ge
 D

el
iv

er
y

T
im

e

Number of Nodes

ρ=0.95
ρ=0.9
ρ=0.5
ρ=0.1

ρ=0.01

(c) Motorcycles

Figure 12: Scaling results for different load levels (K = 1, L = 2).

40

