
Almost Optimal Private Information RetrievalDmitri Asonov? and Johann-Christoph FreytagHumboldt-Universit�at zu Berlin,10099 Berlin, Germanyfasonov, freytagg@dbis.informatik.hu-berlin.deAbstract. A private information retrieval (PIR) protocol allows a userto retrieve one of N records from a database while hiding the identity ofthe record from the database server.With the initially proposed PIR protocols to process a query, the serverhas to process the entire database, resulting in an unacceptable responsetime for large databases. Later solutions make use of some preprocessingand o�-line communication, such that only O(1) on-line computationand communication are performed to execute a query.The major drawback of these solutions is o�-line communication, com-parable to the size of the entire database.Using a secure coprocessor we construct a PIR scheme with O(1) on-linecomputation and communication, periodical o�-line preprocessing, andzero o�-line communication.The protocol is almost optimal. The only parameter left to improve isthe server's o�-line preprocessing complexity - the least important one.Keywords: E�cient realization of privacy services.1 IntroductionA private information retrieval (PIR) protocol allows a user to retrieve one of Nrecords from a database while hiding the identity of the record from a databaseserver. That is, with a PIR protocol, the client can perform his query "returnme the i-th record" in such a way that no one (including the server) receives anyinformation about i.Many practical e-commerce applications could bene�t from using PIR toaddress user privacy [Aso01]. An obvious, common application is trading digitalgoods. Using PIR, a client may retrieve a selected subject (a digital article, ane-book, or a music �le etc.) privately. "Privately" means that a digital good isretrieved such that no one except the client observes the identity of the good. Atthe same time the retrieval is controlled by the server, so billing can be performedas well.Naturally, the quality of every PIR protocol is measured by the two followingparameters: the complexity of the computation to perform one query, and the? This research was supported by the German Research Society, Berlin-BrandenburgGraduate School in Distributed Information Systems (DFG grant no. GRK 316.)



2 Dmitri Asonov and Johann-Christoph Freytagcomplexity of the communication done between the client and the server toexecute one query.1.1 MotivationInitially developed PIR protocols lack scalability dramatically, making it impos-sible to use them in the real world. In order to process a PIR query to retrieve asingle record, the server must perform complex computations with each recordof the entire database.Several attempts were made to address this problem. Two papers present thestate of the art [BDF00,SJ00]. PIR protocols by Bao et. al. and Schnorr et. al.,being developed independently, present very similar ideas to address the problem,although they introduce a new one. Namely, o�-line communication, comparableto the size of the entire database, must be performed between the client and theserver before these protocols start. (Sect. 2.3 discusses these protocols in details.)1.2 Our ResultsWe present a protocol that addresses the problem of constructing a PIR protocolwith O(1) answer time and on-line communication, and no o�-line communica-tion. For our protocol, O(1) records have to be processed on-line in order toanswer a query. But, in contrast to [BDF00,SJ00], the protocol eliminates theo�-line communication completely. Our protocol is almost optimal in the sensethat the only parameter left to be optimized is the server's preprocessing com-plexity - the least critical one.1.3 Preliminaries and AssumptionsIn the following, N denotes the number of records in the database. The onlytype of query considered is "return me the i-th record", 1 6 i 6 N .As in [SS00,SS01,BDF00,SJ00], we omit the precise mathematical de�nitionof privacy while presenting the protocol. The de�nition "no information aboutqueries is revealed" is enough. However, we introduce a formal de�nition ofprivacy later in this paper in order to formally prove that the protocol ful�llsthe privacy property.We say that a PIR protocol has O(A) communication complexity and O(B)computation complexity if only O(A) records must be communicated betweenthe server and client, and only O(B) records must be processed by the server (inoder to answer one query). For example, we say that computation complexity isO(1) if the number of records, that has to be processed by the server to answera query, is independent from N .Note that our measure of the communication complexity does not include thesize of the query itself. This is because the query size for most PIR protocols ismuch less then the size of an average record in the applications considered. Forexample, let us take a theoretical limit for a query size: lgN bits. It is practicalto say that lgN bits are much less than the record size (5Mb in case of an mp3�le).



Almost Optimal Private Information Retrieval 31.4 Structure of the PaperHaving analyzed the related work in the next section, we present our basicprotocol in Sect. 3. Further details on the protocol and discussion are presentedin Sect. 4. We �nish the paper with ideas about future work.Furthermore, Appendix A formalizes the protocol; we introduce a formalde�nition of privacy based on information theory in Appendix B.1. Based on theformal description of the protocol and the de�nition of privacy we prove that theprotocol is private in Appendix B.2. Finally, a short introduction to informationtheory is given in Appendix C.2 Related WorkThe PIR problem was �rst formulated by Chor et al. [CGKS95]. From the verybeginning two fundamental limitations became clear:1. PIR is impossible, unless we consider sending the entire database to the clientas a solution. That is, the communication complexity of any PIR protocolto perform one query is proven to be 
(N). 12. In order for any PIR protocol to answer one query, the entire databasemust be read. This conclusion is based on the following simple observation:Independently from how a PIR protocol works, if the server does not readsome of the database records while answering a query, then the (malicious)server may observe the records that the client did not request. This is aprivacy violation by de�nition.While the �rst limitation a�ects the �rst parameter of a PIR protocol - thecommunication complexity, the second limitation a�ects the second parameterof a PIR protocol - the computation complexity (or, response time) of the server.The following three sections show the e�orts made to overcome these limita-tions. After each description we summarize the pros and cons of each protocol.Finally, jumping ahead over the description of our protocol (for the convenienceof the presentation), we give a comparison of the state of the art with our pro-tocol in Sect. 2.4.2.1 Computational PIRAlthough PIR with communication complexity less than 
(N) is impossibletheoretically, it is found to be possible if computational cryptography is used[KO97,CMS99,KY01].1 There is also a modi�cation of the problem setting (called multi-server PIR), whereseveral servers hold copies of the database. A communication complexity better than
(N) may be achieved under the assumption that the servers do not communicateto each other [CGKS95,CG97,Amb97,BI01]. The idea is to send di�erent queries todi�erent servers, so that i is not derivable from any single of them. But having theall answers gathered, the client can derive the i-th record. In this paper we do notconsider the schema based on several servers non-communicating to each other.



4 Dmitri Asonov and Johann-Christoph FreytagThe underlying idea is to rely on some intractability assumptions (the hard-ness of deciding quadratic residuosity, in case of [KO97]). Then, a protocol worksas follows. The client encrypts a query "return me the i-th record" in such away, that the server still can process it using special algorithms and the entiredatabase as an input. However, under an intractability assumption, the serverrecognizes neither the clear-text query nor the result. The result can be decryptedby the client only.Pros and Cons. Computational PIR protocols break through the �rst limitation;[KO97] provides polynomial communication complexity (O(N c), for any givenc < 1), improved by polylogarighmic communication complexity in [CMS99,KY01].Still, the second limitation works for such protocols: the server has to processeach record of the entire database to answer one query. Although these proto-cols are beautiful research jobs from the viewpoint of mathematics, O(N) com-putation complexity makes them practically infeasible even for small databases[BDF00].2.2 Hardware-based PIRSmith et al. [SS00,SS01] make use of a tamper-proof device to implement thefollowing PIR protocol.The idea is to use a secure coprocessor (a tamper-proof device) as a blackbox, where the selection of the requested record takes place. Although hostedat the server side, the secure coprocessor (SC) is designed so that it preventsanybody from accessing its memory from outside [SPW98].The basic protocol runs as shown in Figure 1. The client encrypts the query"return me the i-th record" with a public key of the SC, and sends it to theserver. The SC receives the encrypted query, decrypts it, reads through theentire database, but leaves in memory the requested record only. The protocolis �nished after the SC encrypts the record and sends it to the client.To provide integrity, the SC keeps all records of the database encrypted. Wediscuss this in details in Sect. 4.3.Pros and Cons. This PIR protocol improves the computation complexity. Incomparison to computational PIR protocols, ordinary decryption and encryptionhave to be made with each of the N records to process a query.The main disadvantage of this PIR is the same as that of the computationalPIR protocols: the second limitation, e.i. , O(N) computation complexity.2.3 PIR with Preprocessing and O�-line CommunicationAlthough it does not seem feasible to break through the second limitation -O(N) computation, one could try to move o�-line as much work as possibleusing preprocessing. Such that, when a query is submitted, it would cost onlyO(1) computation to answer it on-line.22 As already explained above, we do not consider here approaches oriented for a settingwith several servers non-communicating to each other [BIM00,CIO98,GGM98].
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Fig. 1. An example of a PIR protocol with SC.With this idea in mind, [BDF00,SJ00] present independently very similar PIRprotocols. Both utilize a homomorphic encryption, which is used by the server toencrypt o�-line every record of the database. All these encrypted records are sent(o�-line) to the client. This communication has to be done only once betweenthe client and the server before the PIR protocol starts, independently from howmany PIR queries will be processed on-line.If the client wants to buy a record, he selects the appropriate (locally stored)encrypted record and re-encrypts it. Then, the client sends it to the server andasks to remove the server's encryption. The server is able to do it because of thehomomorphic property of the encryption. The server removes its encryption, butcannot identify the record because of the client's encryption. He sends it backto the client. The client removes his encryption. The protocol is done. Figure 2demonstrates every step of the protocol.Pros and Cons. The protocols with preprocessing and o�-line communicationovercome the second limitation: Only O(1) computation is required on-line toanswer one query, i.e., these protocols ensure a practical response time.However, the protocols su�er from another drawback: This is o�-line commu-nication comparable to the size of the entire database, that makes their practicalapplicability questionable. (Imagine a client decides to buy a single digital bookor a music �le at some digital store. He will probably react negatively after beingasked to download the entire encrypted content of the digital store in oder toproceed. Another problem is keeping the client's database copy updated.)
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EcFig. 2. An example of a PIR protocol with preprocessing and o�-line communication.Steps 1 and 2 are made o�-line once, and the other steps are performed on-line forevery query submission.2.4 State of The Art and Our ResultsIn Table 1 we summarize the existing PIR protocols and compare them with theproposed PIR protocol.Table 1. Comparative analysis of the proposed protocol.PIR ProtocolParameter Computational[CMS99,KY01] With SC[SS00,SS01] WithPreprocessing[BDF00,SJ00] The Proposed(With SC)On-line commu-nication assimpt.optimal optimal optimal optimalComputation O(N) O(N) O(1) O(1)O�-line comm. no no O(N) noPreprocessing no yes yes yesIn summary, protocols with preprocessing [BDF00,SJ00] are the most e�ec-tive in terms of on-line computation and on-line communication complexity. OurPIR protocol retains these parameters, but it does not require o�-line commu-nication in comparison to [BDF00,SJ00].



Almost Optimal Private Information Retrieval 73 The Basic ProtocolWe start with the same basic model as described in Sect. 2.2. But in addition,before starting the PIR protocol, the SC shu�es the records o�-line. That is, theSC computes a random permutation of the records, and stores this permutationin an encrypted form. Now, the server has no evidence of which record is which.After the client sends his query "return me the i-th record", the SC does notneed to read the entire database anymore. Instead, the SC accesses the desiredencrypted record directly. Then the encrypted record is decrypted inside the SC,encrypted with the user public key, and sent to the user. To answer this query,O(1) computation and communication is made on-line by the server.To answer a second query, the SC reads the previously accessed record �rst,then the desired record. If the previously accessed record is not read by the SC,then the privacy of the second query could obviously be broken. 3 In case thesecond query requests the same record as the �rst query, the SC chooses somerandom record to be read.So, to answer the k-th query, the SC has to read the k � 1 previously readrecords �rst. Then the SC reads the desired record. Evidently, the SC has tokeep track of the accessed records.It is up to the server to decide at which m = max(k) (1 6 m 6 N) to stopand to switch to another preprocessed (shu�ed) copy of the database, so thatk would equal one again. Since m is a constant independent of N , we can saythat the server has to perform O(1) on-line computations (and read operations)to answer each query.Now that the basic idea has been introduced, we go into details of our protocolin the next section.4 The DetailsWe describe the shu�ing algorithm in Sect. 4.1. A problem related to the index-ing of the encrypted database is discussed in Sect. 4.2. A hypothetical attack isconsidered in Sect. 4.3. We demonstrate a trade-o� between o�-line and on-linecomputation in our protocol and discuss how to choose the optimal trade-o� inSect. 4.4 and 4.5 respectively. Finally, we consider shortly the cases with multiplequeries and multiple secure coprocessors.4.1 Shu�ing AlgorithmThe purpose of a shu�ing algorithm is to get a random permutation of records([Knu81], Sect. 3.4.2). However, the speci�city of our shu�ing algorithm is in3 Assume that the server issued the �rst query itself. Then he observed which recordwas read by the SC, and he got back the original record as an answer to his query.So he knows the identity of the one encrypted record. Now, the SC reads anotherencrypted record to answer some client's query. The server can observe that theclient is interested in the record di�erent to the record that the server requestedbefore. This is a privacy violation.



8 Dmitri Asonov and Johann-Christoph Freytagthat it should be done by the SC in a way, that does not reveal the resultingpermutation of the encrypted records to anyone. In our context we focus onbuilding this speci�c algorithm, omitting how the permutation vector itself isobtained inside the SC.The SC works as follows. The SC invokes (o�-line) N times a PIR protocolsimilar to the one described in Sect. 2.2. With each of these invocation it privatelyreads one record (which is chosen accordingly with the permutation vector). Itthen encrypts and writes this record to a new database. As a result of thisshu�ing algorithm, the SC generates a database of encrypted and randomlypermutated records.Having stored an encrypted index to address these records4, the SC cannow access any encrypted record directly, while not revealing the identity of theaccessed record.The shu�ing algorithm could be run o�-line any given number of timesbeforehand to produce several shu�ed databases. The only limitation for a pre-processing algorithm is the size of additional storage available to the server.Therefore in Sect. 4.4 we de�ne an o�-line load parameter as an average amountof additional storage (per query) used during preprocessing.4.2 IndexingThe SC has to maintain some sort of index, in order to know which record iswhich. In case the index is stored outside the SC, it should be encrypted. Also,the SC has to read the entire index (in addition to O(1) records) in order toanswer one query. However, since the records are large, reading the index wouldtake much less time then reading one record.Example 1 (Comparing the sizes of the index and a record). We use an examplesimilar to one given in [SS01]. Assume that the size of a record is Srecord = 5Mb,there are N = 10000 records, and i = 10 bytes, which is enough to address arecord. Then, the size of an index I may be estimated asI = N � i = 100Kbytes; I � Srecord: (1)utSo reading the index does not in
uence the on-line workload much in comparisonto reading a record on-line. Therefore, to estimate on-line computation work, weonly consider a number of records that must be read to answer a query.The di�erence between times to read an index and to read a record evengrows, if the entire index �ts in the SC's internal memory which is a quitereasonable assumption for commercially available secure coprocessors [DLP+01].4 The stored (in an encrypted form) permutation vector may serve as a simple index.We also discuss indexing in Sect. 4.2.



Almost Optimal Private Information Retrieval 94.3 Active AttacksIn [SS00] an attack is considered, where the malicious server destroys or modi�esan arbitrary record before the PIR protocol starts. If the client complains afterthe PIR query is performed, the malicious server concludes that the client wasinterested in the modi�ed record, thus breaking the privacy of the client. Thesolution proposed is to check the granularity of every record in the database(while reading the entire database through) for every query. If a record with thebroken granularity appears, the SC aborts PIR protocol, independently fromwhether the forged record is requested by the client or not [SS00]. In order toprovide the granularity control, each record is stored in an encrypted form.The malicious server might try the same attack within our PIR protocol.In this case, the SC does not have to check the integrity of each record inthe database to process one query. It is enough to check the granularity of therequested encrypted record only.4.4 Trade-O� Between Preprocessing and On-Line ComputationIn our protocol, it is possible to balance the workload between the on-line ando�-line phases. Decreasing the amount of on-line work increases the o�-line workand vice versa. Let m (1 6 m 6 N) be a maximal number of records allowed tobe read on-line to answer a single query, as explained in Sect. 3. Obviously, m isa trade-o� parameter. Reducing m will decrease the on-line computation (and,consequently the response time of the server), but will increase the amount ofthe o�-line preprocessing.Let ron�line be the average number of encrypted records that the SC readson-line to answer a query. This parameter characterizes the average response timeof the server. Let woff�line be the average number of encrypted records thatthe SC writes o�-line (during the preprocessing stage) in order to be prepared toanswer one query. This parameter characterizes the average amount of additionalstorage used by the SC for answering one query. Our equations below show bothparameters expressed using the trade-o� parameter.ron�line = 1 + 2 + 3 + :::+mm = m � (m+ 1)2 �m = m+ 12 (2)woff�line = Nm (3)The dependencies between the trade-of parameter m, the on-line work ron�line,and the preprocessing parameter woff�line are shown in Figure 3 (for N =10000). From equations 2 and 3 we derive the dependence between the on-line(ron�line) and o�-line (woff�line) parameters of the protocol.ron�line = N2 �woff�line + 1; ron�line = �� 1woff�line� (4)The last equation exhibits that each reduction of the response time by an orderleads to a blow up in preprocessing work by an order.
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100001000100101Fig. 3. The dependence between on-line performance (max and average number ofrecords to read on-line per query) and preprocessing load (number of o�-line writeoperations per query).4.5 Choosing the Optimal Trade-O�Using the required response time of the server one could determine the trade-o�parameter m. That is, if the maximal allowed response time is �xed, choosingthe trade-o� parameter is a straightforward task.Another strategy for choosing the trade-o� parameter might be minimizingthe overall work S(m), de�ned as the sum of the normalized on-line and o�-linework parameters.We show in Figure 4 that the overall work S(m) does not remain constantwhile varying trade-o� parameter. To determine the optimal trade-o� parameterwe must �nd the minimum of the following function:S(m) = ron�line � knorm +woff�line (5)where knorm is the normalization coe�cient used to normalize the two parame-ters.We resolve the optimal trade-o� by �nding the roots of the derivative ofS(m) : S0(m) = � (m+ 1) � knorm2 + Nm�0 = knorm2 � Nm2 (6)knorm2 � Nm2opt = 0; mopt = �r 2 �Nknorm � (7)
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1000100101Fig. 4. The overall work done per query (calculated as a sum of normalized on-lineand o�-line parameters) is not constant for di�erent values of the trade-o� parameter.For example, if knorm = 1 (reading one record on-line is considered equalto writing and storing one record o�-line) and N = 10000, then the optimaltrade-o� parameter is mopt = [p2 �N ] = 141.4.6 Multiple Queries and Multiple CoprocessorsMulti-query optimization may be advantageous for our protocol. When severalqueries arrive, the SC may read previously accessed records only once, thuseliminating the need to perform this operation for every query.Shifting from a single SC to multiple SCs is not a trivial task for the PIRscheme in [SS00]. For our scheme, distributing the work between several SCsis obvious. For example, due to a small on-line workload, one SC might bededicated to answering queries; and the rest secure coprocessors can do thepreprocessing work, i.e. preparing several shu�ed copies of the database. Sucha simple parallelization is possible because on-line and preprocessing algorithmsare practically independent.5 Future WorkWe do not discuss key management issues that might arise in our scheme. Thusprototyping the protocol is an interesting future task.



12 Dmitri Asonov and Johann-Christoph FreytagAnother open question is whether the preprocessing complexity of our pro-tocol is optimal or not.6 ConclusionPrivate Information Retrieval (PIR) can solve privacy issues in many practicale-commerce applications by enabling the user to retrieve a record of his choicefrom the database in a way, that no one, not even the database server, observesthe identity of the record.The existing PIR protocols either incur intolerable query response time (lin-ear in the size of the database) or introduce o�-line communication of the sizeof the entire database between the user and the server. Thus the applicability ofboth types of protocols is questionable from a practical point of view.We presented a new PIR protocol with preprocessing that has O(1) responsetime, optimal on-line communication complexity, and does not require o�-linecommunication. This property is due to a new preprocessing algorithm based onshu�ing and due to the usage of a secure coprocessor.We showed the trade-o� between the on-line and preprocessing workloads forthe protocol. The protocol is scalable for multiple queries and multiple securecoprocessors.References[Amb97] A. Ambainis. Upper bound on the communication complexity of privateinformation retrieval. In Proceedings of 24th ICALP, 1997.[Aso01] D. Asonov. Private information retrieval - an overview and current trends. InProceedings of the ECDPvA Workshop, Informatik 2001, Vienna, Austria,September 2001.[BDF00] F. Bao, R. H. Deng, and P. Feng. An e�cient and practical scheme forprivacy protection in the e-commerce of digital goods. In Proceedings ofthe 3rd International Conference on Information Security and Cryptology,December 2000.[BI01] A. Beimel and Y. Ishai. Information-theoretic private information retrieval:A uni�ed construction. ECCC Report TR01-015, February 2001.[BIM00] A. Beimel, Y. Ishai, and T. Malkin. Reducing the servers computation inprivate information retrieval: PIR with preprocessing. In Proceedings ofCRYPTO'00, 2000.[CG97] B. Chor and N. Gilboa. Computationally private information retrieval. InProceedings of 29th STOC, 1997.[CGKS95] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private informationretrieval. In Proceedings of 36th FOCS, 1995.[CIO98] G. D. Crescenzo, Y. Ishai, and R. Ostrovsky. Universal service-providers fordatabase private information retrieval. In Proceedings of 17th PODC, 1998.[CMS99] C. Cachin, S. Micali, and M. Stadler. Computationally private informationretrieval with polylogarithmic communication. In Proceedings of EURO-CRYPT'99, 1999.



Almost Optimal Private Information Retrieval 13[DLP+01] J. G. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, S. W. Smith,and S. Weingart. Building the ibm 4758 secure coprocessor. IEEE Computer,34(10):57{66, October 2001.[GGM98] Y. Gertner, S. Goldwasser, and T. Malkin. A random server model forprivate information retrieval. In Proceedings of 2nd RANDOM, 1998.[Jay94] E. T. Jaynes. Probability theory: the logic of science. http://omega.math.albany.edu:8008/JaynesBook.html, 1994.[Knu81] D. E. Knuth. The art of computer programming, volume 2. Addison-Wesley,second edition, Jan 1981.[KO97] E. Kushilevitz and R. Ostrovsky. Replication is NOT needed: Single-database computationally private information retrieval. In Proceedings of38th FOCS, 1997.[KY01] A. Kiayias and M. Yung. Secure games with polynomial expressions. InProceedings of 28th ICALP, 2001.[Mac00] D. J. MacKay. Textbook on Information Theory. http://wol.ra.phy.cam.ac.uk/mackay/Book.html, 2000.[Sch96] B. Schneier. Applied Cryptography. Wiley, New York, 2nd edition, 1996.[Sha48] Shannon. A mathematical theory of communication. Bell Systems TechnicalJournal, 27, 1948.[SJ00] C. P. Schnorr and M. Jakobsson. Security of signed elgamal encryption. InProceedings of ASIACRYPT'00, LNCS 1976, December 2000.[SPW98] S. W. Smith, E. R. Palmer, and S. H. Weingart. Using a high-performance,programmable secure coprocessor. In Proceedings of the 2nd InternationalConference on Financial Cryptography, Springer-Verlag LNCS, February1998.[SS00] S. W. Smith and D. Sa�ord. Practical private information retrieval withsecure coprocessors. Technical report, IBM Research Division, T.J. WatsonResearch Center, July 2000.[SS01] S. W. Smith and D. Sa�ord. Practical server privacy with secure coproces-sors. IBM Systems Journal, 40(3), September 2001.A The Formal ProtocolThis part of the paper formally presents the concepts and algorithms discussedin this paper. Namely, we start with the proposed PIR protocol, which refers inturn to the database shu�ing algorithm (formalized in Appendix A.2) and tothe protocol for answering k-th query (formalized in Appendix A.3).A.1 Almost Optimal PIR ProtocolWe give a simple version of the protocol, with one shu�ed database. The re-shu�ing takes place when a �xed number of queries have been answered. Theprotocol can easily be generalized by preparing several shu�ed copies of thedatabase, and by producing shu�ed copies in parallel with the process of an-swering queries.The preprocessing phase of the protocol is handled by the SC and consists ofperiodically producing a number of shu�ed databases (with appropriate indexes)using Algorithm 1.The on-line phase of the protocol works as follows.



14 Dmitri Asonov and Johann-Christoph Freytag(1) The SC initializes a query counter k = 1, loads the index V 0 of a shuf-
ed database into the internal memory, and initializes the track of accessedrecords T = f?g.(2) The client (i.e., the user) comes up with a query Q = "return me the i-threcord"(3) The client and the SC generate and exchange symmetric keys Keyc andKeysc using a public key infrastructure.(4) The client sends the encrypted query E(Q;Keysc) to the server.(5) The SC receives and decrypts the query.(6) The SC runs Algorithm 2 to get the answer A = Ri.5(7) The SC sends the encrypted answer E(A;Keyc) to the client.(8) The client decrypts the answer to his query.(9) The SC increments k by one.If k > m, the SC switches to a new shu�ed database, reloads the correspond-ing index, re-initializes the query counter k = 1 and the track of accessedrecords T = f?g.(10) Step 2 may be repeated.A.2 Database Shu�ing AlgorithmTo provide preprocessing for the PIR protocol the database shu�ing algorithmis executed inside the secure coprocessor. The only operations observable fromoutside the SC are read and write operations, which are used to manage theexternal storage. The complexity of this algorithm is O(N2). A basic realizationof the database shu�ing algorithm is presented as Algorithm 1.A.3 An Algorithm for Processing the k-th QueryThis algorithm (Algorithm 2) is executed inside the secure coprocessor, and isused as a part of the on-line phase of the PIR protocol. The only operations ob-servable from outside the SC are read operations to access the shu�ed database.As discussed above, the complexity of this algorithm is O(1).B Privacy De�nition and Proof of ProtocolBased on the formalization of the protocol in Appendix A, we give a formal prooffor the privacy property of the proposed protocol. However, we �rst discuss howwe de�ne privacy formally. The formal de�nition of privacy is based on Shannon'sinformation theory sketched in Appendix C.5 Algorithm 2 uses i, V 0, and T to privately retrieve the requested record into the SC;it also updates T appropriately.



Almost Optimal Private Information Retrieval 15Input: DB: a database of N recordsOutput: DBshuffled: a shu�ed copy of DB, each record is encrypted;INDEXshuffled: an encrypted index of DBshuffled1: V = [1; :::; N ] fIndex of the database DBg2: V 0 = shu�e(V) fPrepare index for the shu�ed database DBshuffledg3: for g = 1 to N do4: for h = 1 to N do5: read(Temp( DB[h]) fRead the h-th record into the SCg6: if h = V 0[g] then7: Record = Temp fSave the V 0[g]-th record of the database internallyg8: end if9: end for10: write(DBshuffled[g]( Record) fProduce the g-th record of DBshuffledg11: end for12: V 0encrypted = encrypt(V 0) fEncrypt the index with some key of the SCg13: write(INDEXshuffled ( V 0encrypted) fStore the encrypted index of DBshuffledgAlgorithm 1: The basic database shu�ing algorithmB.1 Privacy De�nitionTo perform the formal proof for privacy, we need a formal de�nition for privacy.We must formally capture the notion "no information about user queries isrevealed" in mathematical terms. De�nitions based on previous work, such as"communication between the server and client must be indistinguishable", aredi�cult to apply in our case. In our protocol, not only communication betweenthe server and client is observable, but preprocessing work of the SC is observabletoo. We need a precise and universal de�nition.We exploit Shannon's information theory to use its de�nition of informa-tion measure [Sha48]. There are several reasons for choosing this de�nition ofinformation measure. It is formal and universal: Many scienti�c societies (incomputer science, physics, economics etc.) accepted it as a classical measure ofinformation ([Jay94], Chapter 11). It is well developed: We can avoid a long listof preliminary theorems by referencing to previous work on information theory[Mac00,Sch96,Jay94].First, we give a sketch of how the amount of information is measured usinginformation theory in Appendix C. Informally, the information known about avariable i is de�ned as a measure of the predictability of this variable [Jay94].The measure of predictability is de�ned using the measure of unpredictability(entropy) - the central notion in the Shannon's theory.Second, based on the introduction to information theory, we de�ne privacy asan absence of information about a set of queries Q1; :::; Qk. Due to the informa-tion theory, there is no information revealed about the set of variables Q1; :::; Qkif and only if the joint entropy H(Q1; :::; Qk) of these variables reaches its max-imum.



16 Dmitri Asonov and Johann-Christoph FreytagInput: DBshuffled; V 0: a shu�ed copy of DB (each record is encrypted) and its index;k: the sequence number of the query being processed using DBshuffled;i: the number of the DB record requestedOutput: Answer: record Ri of DB privately retrieved into the SC1: g = 12: GotAnswer = No fAn indicator of the presence of Answer inside the SCg3: while g < k do4: read(Temp( DBshuffled[T [g]]) fRead previously accessed records one by oneg5: if V 0[T [g]] = i then6: Answer = Temp fOne of the accessed records is the answer, save itg7: GotAnswer = Y es8: end if9: g = g + 110: end while11: if GotAnswer = No then12: obtain i0 : V 0[i0] = i fGet the position of the i-th DB record in DBshuffledg13: read(Answer( DBshuffled[i0]) fAccess the required record directlyg14: T [k] = i0 fThe track list is updated with the k-th itemg15: else16: UnRead = f1; :::Ng n fT [1]; :::; T [k � 1]g17: h = select random from(UnRead) fSelect randomly one of the unread recordsg18: read(Temp( DBshuffled[h]) fRead the selected record into the SCg19: T [k] = h fThe track list is updated with the k-th itemg20: end if21: return AnswerAlgorithm 2: An algorithm for processing k-th queryDe�nition 1 (Privacy). No information about a set of variables is revealed i�the joint entropy of these variables is maximal.We consider the following example to demonstrate the de�nition.Example 2 (Calculating the Joint Entropy). We consider two queries Q1; Q2.Each of these queries is presented as a variable equal to a number from 1 to N ,meaning the record number to be retrieved. We consider two cases. First case:the observer has no information about set of variables Q1; Q2. Second case: theobserver has no information about variables but the fact that Q1 = Q2.Intuitively, half of the information about the set of two variables is revealedin the second case. After calculating the joint entropies for both cases, we checkif the joint entropies correlate in the same way.To calculate joint entropies we need the individual entropies H(Q1) andH(Q2). The individual entropiesH(Q1) and H(Q2) are calculated with (9) usingthe correspondent conditional probabilities. The conditional probabilities areequal and are the same for the both cases:P (Q1 = 1) = P (Q1 = 2) = ::: = P (Q1 = N) = 1N ;



Almost Optimal Private Information Retrieval 17P (Q2 = 1) = P (Q2 = 2) = ::: = P (Q2 = N) = 1N :In both cases the individual entropies H(Q1) and H(Q2) are maximal (9,11) :H(Q1) = X1�j�N P (Q1 = j) � log 1P (Q1 = j) = H(Q2) = logNIn the �rst case, the joint entropy is calculated as the sum of the individualentropies (13) :H(Q1; Q2) = H(Q1) +H(Q2) = logN + logN = 2 � logNIn the second case, the joint entropy is calculated due to (12) :H(Q1; Q2 � Q1) = X1�j�N;1�k�N P (Q1 = j;Q2 = k) � log 1P (Q1 = j;Q2 = k)= X1�j�N P (Q1 = j) � log 1P (Q1 = j) = logNThe last two equations demonstrate the correspondence between the notion ofentropy and our intuition in that the entropy of two unknown independent vari-ables is twice as large as the entropy of two unknown equal variables. utB.2 Proving the Privacy PropertyBased on the de�nition of privacy (Appendix B.1, De�nition 1) and on the formaldescription of the protocol (Appendix A), we formally prove that our protocolhas privacy property.Theorem 1 (The proposed protocol is private). Let S be a set of queriesQ1; :::Qk (for any k) executed so far using the protocol proposed in Appendix A.Then, no information (due to De�nition 1) is revealed about this set.Proof. Given the proposed protocol, we must prove that "no information is re-vealed about the set of queries executed". That is, due to the de�nition of privacy(Appendix B.1), we have to prove that, for an observer, the joint entropy of theset of queries is maximal: H(Q1; :::; Qk) = k � logN (8)To prove (8), it is su�cient (14) to prove that:1. The queries are independent for an observer (the �rst claim):P (Q1; :::; Qk) = P (Q1) � P (Q2) � ::: � P (Qk)2. The entropy of each query is maximal (the second claim):H(Q1) = H(Q2) = ::: = H(Qk) = logN



18 Dmitri Asonov and Johann-Christoph FreytagWe prove both claims by induction. First, we consider the number of queriesk = 1. Second, we also consider the case of k = 2. Third, we assume that theclaims are true for k = K and prove the same for k = K + 1.For k = 1, only one queryQ1 is processed after the database was shu�ed withAlgorithm 1. Due to Algorithm 2, the SC reads directly the required encryptedrecord to answer the query. The �rst claim is obviously true because the setof answered queries contains only one query. Since the records were randomlypermutated with the shu�ing algorithm, reading the encrypted record revealsno correspondence to the original record. This proves the second claim to betrue: P (Q1 = 1) = ::: = P (Q1 = N) = 1N ; H(Q1) = Hmax(Q1) = logNConsider the case k = 2. Due to the protocol (Appendix B.1), the serveranswers the second query after reading the previously accessed record and oneof the unread records from the shu�ed database. Since the server reads one ofthe unread records independently from whether Q1 = Q2 or not (commands 18and 13 of Algorithm 2 respectively), Q1 and Q2 are independent variables forthe observer.6 This proves the �rst claim to be true.Because the database is shu�ed, Q2 may be any number from 1 to N withequal probabilities. This proves the second claim to be true.P (Q1; Q2) = P (Q1) � P (Q2); H(Q1) = H(Q2) = logNWe assume that the claims are true for k = K, i.e.,P (Q1; :::; QK) = P (Q1) � ::: � P (QK); H(Q1) = ::: = H(QK) = logNWe consider the execution of the k = (K + 1)-th query with Algorithm 2. Sincethe SC reads all K previously read records plus one, there is no relationshipbetween the new query and the previous ones. Taking into account the lastequation, we have:P (Q1; :::; QK ; QK+1) = P (Q1) � ::: � P (QK) � P (QK+1)Similarly, since the SC accesses a shu�ed database, QK+1 could be of any valuewith equal probability for the observer.H(Q1) = ::: = H(QK) = H(QK+1) = logNThe proof by induction is complete. ut6 That is, if the observer knows one query it does not provide him any informationabout another one.



Almost Optimal Private Information Retrieval 19C An Introduction to Information TheoryDuring the preparation of this short survey several sources were used, including[Sha48,Jay94,Mac00,Sch96].Let X be a random variable, and let AX be the set of values this variable maytake. Let the number of elements of the set AX be N . Finally, by xj we denotethe j-th element of AX , xj 2 AX . A random variable X is presented as a vectorof probabilities X =< P (x1); :::; P (xN ) >. Similarly, Y =< P (y1); :::; P (yN ) >.The amount of information known about the variable X is measured bythe entropy of this variable H(X). Informally, the entropy is a measure of the"uncertainty" of X . If the entropy is zero, one knows the exact value of thevariable { as shown in Equation 10 below. If the entropy is the maximal for thisvariable, one knows nothing about this variable except its size { as shown inEquation 11 below.The entropy is de�ned as a function H with the following properties:1. H should be continuous in the P (xj). Otherwise an arbitrary small changein the probability distribution would still lead to the same big change in theamount of uncertainty.2. It is required, that this function should correspond qualitatively to commonsense in that when there are many possibilities, we are more uncertain thanwhen there are few. This condition takes the form that in case the P (xi) areall equal, the quantity h(N) = H� 1N ; :::; 1N �is a monotonically increasing function of N .3. Informally, the measure H should be consistent, i.e., if there is more thanone way of working out its value, we must get the same answer for everypossible way. Formally, if a choice is broken down into two successive choices,the original value of H should be the weighted sum of the values of H forindividual choices. The meaning of this is illustrated in Figure 5. For this
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20 Dmitri Asonov and Johann-Christoph FreytagThe coe�cient 0:4 is the weighting factor.Shannon's Theorem proves that the only function satisfying the given prop-erties is the following one (a multiplicative constant is usually omitted):H(X) = Xx2AX P (x) � log 1P (x) (9)With the de�nition of entropy, one can prove the further properties:H(X) > 0 with equality i� P (xj) = 1 for one j 2 1; :::; N (10)H(X) 6 logN with equality i� P (xj) = 1=N for all j 2 1; :::; N (11)The joint entropy, i.e., the entropy of a set of variables is calculated by:H(X;Y ) = Xxy2AXAY P (x; y) � log 1P (x; y) (12)In case of variable independence, the joint entropy is calculated as a sum ofentropies of the variables:H(X;Y ) = H(X) +H(Y ) if P (x; y) = P (x) � P (y) (13)The joint entropy of a set of variables has the same meaning as the entropyof a variable. That is, no information about a set of variables is revealed i� thejoint entropy is maximal.It can be shown, that the maximal joint entropy may be reached only ifthe variables are independent and the individual entropies of the variables aremaximal. So, no information is revealed about a set of variables, if these variablesare independent7 and no information about each of these variables is revealed.Formally:The joint entropy H(X,Y) is maximal i�H(X) = logN; H(Y ) = logN; and P (x; y) = P (x) � P (y) (14)The maximal entropy is then due to (13) and (14) :H(X;Y ) = Hmax(X) +Hmax(Y ) = logN + logN = 2 � logNIn summary, we say that no information is revealed if the correspondingentropy is maximal. In particular, no information is revealed about a set ofvariables if the joint entropy of these variables is maximal. Only for independentvariables the joint entropy may reach its maximum and can be calculated by thesum of the entropies of the variables.7 This basically means, that if we know one variable it gives us no information aboutanother variable.


