
Towards Statistically Strong Source
Anonymity for Sensor Networks

Min Shao, Yi Yang, Sencun Zhu, Guohong Cao
The Pennsylvania State University

E-mail: {mshao,yy5,szhu,gcao}@cse.psu.edu

Abstract—For sensor networks deployed to monitor and report
real events, event source anonymity is an attractive and critical
security property, which unfortunately is also very difficult and
expensive to achieve. This is not only because adversaries may
attack against sensor source privacy through traffic analysis, but
also because sensor networks are very limited in resources. As
such, a practical tradeoff between security and performance is
desirable. In this paper, for the first time we propose the notion of
statistically strong source anonymity, under a challenging attack
model where a global attacker is able to monitor the traffic in the
entire network. We propose a scheme called FitProbRate, which
realizes statistically strong source anonymity for sensor networks.
We also demonstrate the robustness of our scheme under various
statistical tests that might be employed by the attacker to detect
real events. Our analysis and simulation results show that our
scheme, besides providing source anonymity, can significantly
reduce real event reporting latency compared to two baseline
schemes.

Index Terms—security and privacy, source anonymity, statis-
tical test, SPRT, sensor networks

I. INTRODUCTION

Sensor networks have been envisioned to be very useful
for a broad spectrum of emerging civil and military appli-
cations [1]. However, sensor networks are also confronted
with many security threats such as node compromise, routing
disruption and false data injection, because they normally
operate in unattended, harsh or hostile environment.

Among all these threats, privacy (especially source
anonymity) is of special interest since it cannot be fully
addressed by traditional security mechanisms such as encryp-
tion and authentication. Consider a simple example of event
reporting in sensor networks (as shown in Fig. 1). When a
sensor detects an event, it sends a message including event
related information to the base station. If an attacker (the
hunter here) can intercept the message, it may know such
sensitive information as whether, when and where a concerned
event has happened, e.g., the appearance of an endangered
animal in a monitoring sensor network [2]. Following this,
the attacker can take some action to capture/kill the animal.

To preserve source anonymity is a challenging task in sensor
networks that have scarce resources in energy, computation
and communication. Hence, only lightweight, energy efficient
privacy-conserving mechanisms are affordable. Moreover, sen-
sors typically have low-cost radio devices that employ stan-
dardized wireless communication technologies, which allow

This work was supported in part by Army Research Office (W911NF-05-
1-0270 and W911NF-07-1-0318) and the National Science Foundation (CNS-
0524156, CNS- 0519460, and CAREER-0643906).

Base Station

Fig. 1. An application of sensor networks for animal monitoring.

an attacker to easily monitor or eavesdrop in communications
between sensors. Consequently, it is also possible for a single
attacker to monitor all the network traffic either by deploying
his own sensors that cover the whole deployment area or by
employing a powerful site surveillance device with hearing
range no less than the network radius.

Despite its importance, so far, sensor source anonymity
has not received enough attention, and the existing solutions
have limitations when directly applied to sensor networks.
For example, in phantom routing [2], the attacker has limited
coverage, comparable to that of sensors. Therefore, only a
single source is under the attacker’s consideration at a time
and the attacker tries to trace back to the source in a hop-
by-hop fashion. When the attacker becomes more powerful,
e.g., has a hearing range more than three times that of the
sensors, the capture likelihood is as high as 97%. In addition,
a large number of anonymity techniques [3] designed for
general networks are not appropriate to be used for sensor
networks. This is not only because the privacy problem is
different but also because these techniques are too expensive
to be employed.

In this paper, we aim to provide source anonymity for sensor
networks under a global observer who may monitor and ana-
lyze the traffic over the whole network. Clearly, if all the traffic
in the network is real event messages, it is unlikely to achieve
source anonymity under such a strong attack model. Therefore,
we employ network-wide dummy messages to achieve global
privacy. The basic idea is as follows. Every node in the
network sends out dummy messages with intervals following
a certain kind of distribution, e.g., constant or probabilistic.
When a node detects a real event, it transmits the real event
messages with intervals following the same distribution. As
such, neither can an attacker discern the occurrence of a real
event, nor can he find out the location of the real event source.

To reduce the extra overhead caused by dummy messages,

the message transmission rate should be relatively low. In this
case, however, the real event report latency could be high,
because a source node needs to postpone the transmission
of a real event message to the next interval. Therefore,
the questions we try to answer are: how to achieve global
source anonymity without causing high real event notification
latency? Is it possible to provide perfect global privacy without
losing performance benefit?

More specifically, we make the following contributions in
this paper. First, we demonstrate that it is difficult to achieve
perfect global privacy without sacrificing performance benefit.
Hence, we have to relax the perfect source anonymity require-
ment and for the first time propose a notion of statistically
strong source anonymity for sensor networks. Second, we
devise a realization scheme, called FitProbRate (Fitted Prob-
abilistic Rate) scheme, in which the event notification delay is
significantly reduced while keeping statistically strong source
anonymity, through selecting and controlling the probabilistic
distribution of message transmission intervals.

The rest of the paper is organized as follows. We first
formalize the problem in Section II. After that, Section III
presents the FitProbRate scheme. Its performance is evaluated
in Section IV and its security property is analyzed in Sec-
tion V. Finally, we describe the related work in Section VI
and conclude this paper in Section VII.

II. PROBLEM FORMALIZATION

A. Network Model
As in other sensor networks [4], our system also assumes

that a sensor network is divided into cells (or grids) where each
pair of nodes in neighboring cells can communicate directly
with each other. A cell is the minimum unit for detecting
events; for example, a cell head coordinates all the actions
inside a cell. Each cell has a unique id and every sensor node
knows in which cell it is located through its GPS or an attack-
resilient localization scheme [5]. Moreover, we assume a base
station (BS) located in the network and works as the network
controller to collect event data. Every event has an event id; for
example, we may assign a unique id to each type of animals.
When a cell detects an event, it will send a triplet (cell id,
event id, timestamp), which provides the BS with the source
location of the event as well as the time it is detected.

B. Adversary Model
According to the classification in [6], we assume that the

adversary is external, global and passive. By external, we
assume that the adversary does not compromise or control any
sensors. By global, we assume that the adversary can monitor,
eavesdrop and analyze all the communications in the network.
The adversary may launch active attacks by channel jamming
or other denial-of-service attacks. However, since these attacks
are not related to source anonymity, we do not address them.

Next, we discuss how an adversary may analyze the col-
lected traffic. First, the attacker may simply examine the
content of an event message that may contain the source
location id. Second, even if the message is encrypted, it is
easy for the global adversary to trace back to the source of

the message if the encrypted message remains the same during
its forwarding, because the adversary is capable of identifying
the immediate source of a message. Third, he may perform
more advanced traffic analysis including rate monitoring and
time correlation. In a rate monitoring attack, the adversary
pays more attention to the nodes with different (especially
higher) transmission rates. In a time correlation attack, he
may observe the correlation in transmission time between a
node and its neighbor, attempting to deduce a forwarding path.
We assume that the attacker has sufficient resources (e.g., in
storage, computation and communication) to perform these
advanced attacks.
C. Problem Definition

According to [7], a mechanism to achieve anonymity appro-
priately combined with dummy traffic yields unobservability,
which is the state that items of interest (IOIs) are indistinguish-
able from any IOI of the same type. All the subjects under
consideration constitute an unobservability set. In our case, the
unobservability set consists of all the N cells in the network.
Specifically, we are interested in event unobservability, which
is defined as follows.

Definition 1: Event unobservability is a privacy property
that can be satisfied if an attacker cannot determine whether
real events have occurred through observation.

Straightforward solutions exist to provide event unobserv-
ability by means of dummy traffic. For example, in a Con-
stRate scheme, all the cells in the network send out mes-
sages at a constant rate no matter there are real events or
not (messages are always encrypted by a secret key shared
between a node and the base station [8]). Since the traffic
in the network always keeps the same pattern, it effectively
defeats any traffic analysis techniques. Clearly, the average
transmission latency in a source cell is half of the interval.
Although this deterministic solution provides the property of
perfect event unobservability, it has an inherent difficulty in
setting the constant rate. If the rate is too small, the message
delay will be too high; if the rate is too large, this approach
will introduce too much dummy traffic into the network.

This motivated us to design probabilistic solutions, which
provide the chance of reducing the waiting time. For example,
we may adopt an exponential distribution to determine the time
intervals between message transmissions, which is referred to
as the ProbRate scheme here. Under our attack model, a global
attacker can easily know the distribution and its mean by a
statistic test over the collected time intervals. However, when
we keep the seed for generating random numbers secret from
an attacker, the attacker may not be able to notice if a message
transmission is due to a real event or a dummy message even if
a cell sends out a real event message immediately. Intuitively,
a cell cannot always send real event messages immediately
in the presence of burst events; otherwise, an attacker may
notice the change of the underlying distribution. Therefore,
it is difficult to guarantee perfect event unobservability while
providing low latency.

Hence, the question becomes: how to reduce the latency as
much as possible while still providing a satisfactory degree

of event unobservability? In order to achieve low latency, we
need to relax the perfect event unobservability requirement
and accept statistically strong event unobservability.

Let the inter-message delay (imd) between message k(k >
0) and k + 1 from cell i(1 ≤ i ≤ N) be imdi

k = tik+1 − tik,
where tik is the transmission time of message k from cell i.
A global observer can see a sequence of continuous inter-
message delays, which can be represented by a distribution
Xi = {imdi

1, imdi
2, · · ·}. Ideally, in a scheme with perfect

privacy, inter-message delays from all the cells follow the same
distribution. In our case with statistically strong guarantee,
distributions of inter-message delays are actually statistically
indistinguishable from each other. Next, we first introduce the
definition of statistically indistinguishable distributions.

Definition 2: Two probabilistic distributions Xi and
Xj(1 ≤ i, j ≤ N, i �= j) are statistically indistinguishable
from each other iff they follow the same type of probabilistic
distribution with the same parameter (i.e., they have the same
distribution function) statistically. They are indistinguishable
from each other in the sense that by a statistic test one cannot
differentiate them.

Take the exponential distribution as an example. This dis-
tribution has only one parameter λ(= 1/µ). Hence, if two
probabilistic distributions are both exponential distributions
with very close means, they are statistically indistinguishable
from each other. Note that if a distribution is controlled by
multiple parameters (e.g., two in a normal distribution), two
data sets are statistically indistinguishable only when all these
parameters of the probabilistic distribution derived from the
two data sets are the same or very close. Clearly, the more
parameters a distribution has, the harder it is to prove its
statistical indistinguishability. As such, in the following we
will limit our discussion on one-parameter distribution.

For the one-parameter distribution, the property of statis-
tically strong event unobservability is related to two security
parameters α and ε, where α controls the goodness of fit to a
specific probabilistic distribution and ε controls the closeness
of the parameter derived from the observations to that of the
population. These two security parameters are used together
so that message transmission time intervals from all the cells
in the network, including the real sources if any, follow the
“same” distribution with the “same” parameters. Here “same”
means that an attacker cannot tell the difference through a sta-
tistical hypothesis test. More formally, we call this statistically
strong event unobservability as (α, ε)-unobservability, because
two parameters α and ε tightly relate to this privacy property.

Definition 3: (α, ε)-unobservability (α, ε > 0) is a type of
statistically strong event unobservability, in which a distribu-
tion Xi (with parameter λi) is statistically indistinguishable
from a probabilistic distribution X (e.g., exponential with
parameter λ) under the following conditions:

1) n
∫ +∞
−∞ [F (Xi) − F (X)]2Ψ[F (X)]dF (X) ≤ c,

2) (1 − ε)λ ≤ λi ≤ (1 + ε)λ,
where n is the sample size, F is a cumulative distribution
function (CDF), Ψ is a weight function, and c is a critical
value determined by α.

The left side of Condition 1 calculates the distance between
two CDFs. Details of evaluating the distance between two
distributions could be found in [9], [10]. If the distance
between two distributions is smaller than a critical value
determined by significance level α and their parameters are
close to each other in a way determined by ε in Condition
2, these two distributions satisfy (α, ε)-unobservability. The
above distance evaluation of CDFs was used in Anderson-
Darling test [11] for goodness of fit tests; therefore, to achieve
(α, ε)-unobservability our schemes will directly use Anderson-
Darling tests. The above definition is rather general, which
leaves a large room for defining α and ε according to different
applications or extending it to the multiple-parameter case.

III. THE FITPROBRATE SCHEME

In this section, we discuss the building blocks of our
scheme, including the policy for dummy traffic generation
and the policy for embedding real event messages. Finally,
a running example is used to illustrate the entire process of
our scheme.

A. Policy for Dummy Traffic Generation
The transmission rate of dummy messages determines the

network transmission overhead. As discussed in Section II-C,
high rate causes high message overhead, whereas low rate
increases the delay of reporting real events. In addition, the
ProbRate scheme where message transmission rate follows a
probabilistic distribution provides an opportunity for reducing
latency, compared with the ConstRate scheme where message
transmission rate is fixed. Hence, we prefer probabilistic
message transmission intervals.

Now we need to decide what probabilistic distribution to
use. There are many probability distributions; e.g., exponential,
uniform, weibull, normal. The advantage of an exponential
distribution is that it has only one parameter (λ = 1/µ, where
µ is the mean), which makes it relatively easy to achieve
(α, ε)-unobservability. Therefore, to maximize the communi-
cation randomness and to simplify the problem, we choose the
exponential distribution to control the rate of dummy traffic
generation.

Specifically, Algorithm 1 implements our idea of probabilis-
tic dummy traffic generation. Suppose there are a series of
k dummy messages, our goal is to make the time intervals
between two consecutive messages (imdi, i = 1, 2, · · · , k−1)
follow an exponential distribution. Given a mean µ and a
global variable seed, the algorithm returns the time interval
to transmit the next dummy message. The mean µ of the
exponential distribution is a system parameter and we assume
it is known to the adversary because he can calculate it from
observed message intervals. However, the seed for generating
random numbers is kept secret from the adversary, and the
seed is hard to guess and different for each sensor node.

B. Policy for Embedding Real Traffic
When a real event happens, by exactly following the Pro-

bRate scheme, i.e., determining the waiting time based on
Algorithm 1, in the long run, we cannot gain anything over
the ConstRate scheme if the message transmission rates in

Algorithm 1: Probabilistic Traffic Generation
Input: mean µ;

Output: a time interval following the exponential distribution with

mean µ;

Procedure PTG:

1: seed(seed);{Assign seed as the seed for random number generation,

a unique seed is preloaded in each sensor.}
2: return exponential(µ);

these two schemes have the same mean. On the other hand, if
the real event message is sent out right away, the distribution
of time intervals could be skewed (i.e., the mean becomes
smaller), leaving the real event evident. So, our goal is to
keep the message transmission intervals following the same
distribution while reducing the real event report latency.

More formally, when a real event Ek happens after the
dummy events Ei(1 ≤ i ≤ k− 1), the corresponding message
should be sent out only when the next time interval (imdk)
and the earlier ones (imdi, i = 1, 2, · · · , k − 1) satisfy the
following two conditions:

• The whole series {imd1, imd2, · · · , imdk−1, imdk} still
follow the same exponential distribution;

• imdk is as small as possible.

From the attacker’s perspective, in order to detect real event
messages, he may perform a statistic test to determine if the
message transmission intervals always follow the same expo-
nential distribution of the same mean µ, after monitoring the
network traffic and collecting sufficient message transmission
intervals. More specifically, the statistic test can be broken
into two parts: test if the distribution is exponential and test if
the mean is µ. To defend against the attacker’s strategies, we
adopt the following techniques:

1) A statistic test called Anderson-Darling Test is adopted
to keep the message intervals of each cell following an
exponential distribution, controlled by parameter α;

2) A method is used to ensure the measured sample means
of the distribution do not deviate too far from the true
mean µ, controlled by parameter ε.

Next, we introduce these two techniques separately.
1) Anderson-Darling Test: Anderson-Darling Test [12] (A-

D test in short) is a goodness fit test to determine if a series
of data follow a certain probabilistic distribution. The basic
idea is to evaluate the distance between the distribution of the
sample data and a specified probabilistic distribution. If the
distance is statistically significant, the data do not follow this
distribution. More formally, the test is defined as follows.

• H0: The data follows a specified distribution;
• Ha: The data do not follow a specified distribution;
• Test Statistic: A2 = −n − S, where

S =
N∑

i=1

2i − 1
n

[log F (Xi) + log(1 − F (Xn+1−i))].

Here F is the CDF of interest, n is the sample size, and
Xi denotes the ith datum;

• Significance Level: α (typically equals to 0.05);
• Critical Region: The critical values for the A-D test

depend on the specific distribution being tested. Tab-
ulated values and formulas have been published by
Stephens [12]. If the test statistic A2 is greater than the
corresponding critical value c, the hypothesis that the
distribution is of a specific form will be rejected.

Algorithm 2 shows some details of this A-D test for an
exponential distribution. The input is a series of xi, i.e., the
time interval between two consecutive messages sent out from
a cell, and the output is a decision if the series follow an
exponential distribution. This algorithm mainly involves a sort-
ing and a statistic calculating operation. The time complexity
for sorting is O(n log n) (e.g., by quicksort) and the time
complexity for calculating the test statistic is O(n), where
n is the window size (the size of the input). Therefore, the
complexity of this algorithm is O(n log n).

Algorithm 2: Goodness of Fit Test
Input: a sequence of data {xi, 1 ≤ i ≤ n};

Output: TRUE, if {xi, 1 ≤ i ≤ n} follows an exponential

distribution; FALSE, otherwise.

Procedure Anderson-Darling:

1: sort xi into an ascending order: x1 ≤ x2 ≤ · · · ≤ xn;

2: calculate the test statistic: A2;

3: if (A2 < c) {
4: then return TRUE;

5: else return FALSE;

6: end if

In our problem setting, we want to use the A-D test
to find an appropriate inter-message delay (imd) for trans-
mitting the real event message, such that Algorithm 2 will
return TRUE when given the whole series of time intervals
{imd1, imd2, · · · , imdk−1, imd}. Because the A-D test is a
statistical test, the solution to pass the test is not unique.
Therefore, the A-D test is repeated until the test is passed.
Because a small but random delay is preferred, the search
process for imd starts from 0, and increases in a small random
pace whenever it fails the A-D test.

Algorithm 3 shows the details of the search algorithm.
It has a series of time intervals as input and returns the
first imd that can pass the A-D test. The selection of the
granularity (INCREASEPIECE) affects the running time. We
set INCREASEPIECE to be a random number between 0 and
the first quartile of the input data set, as shown in the algorithm
(line 2). Based on our experiments, this can achieve a relatively
small delay within a relatively short time. From line 4 to line
11, the test repeats until it finds a value which can pass the A-
D test or a value which cannot be accepted because the delay
becomes larger than a specified upper bound (line 5), e.g., the
maximum value of imd1,imd2,. . .,imdn. In the latter case,
another INCREASEPIECE will be selected (line 6) and
the searching process starts over from the value of 0. The
whole algorithm terminates when a proper delay is found.
Because many values can pass the A-D test with the same

Algorithm 3: Search for a Proper Delay to Send a Real
Event Message
Input: a sequence of inter-message time intervals {imdi(1 ≤ i ≤ n)};

Output: a proper delay imd to send a real event message;

Procedure search delay:

1: µ = mean(imd1, imd2, . . . , imdn);

2: INCREASEPIECE = rand(0, first quartile);

3: imd = -INCREASEPIECE;

4: repeat

5: if imd > upper bound then

6: INCREASEPIECE = rand(0, first quartile);

7: imd = -INCREASEPIECE;

8: end if

9: imd += INCREASEPIECE; {A-D test begins from 0}
10: ret = Anderson-Darling({imd2, imd3, . . . , imdn, imd});

11: until ret == TRUE;

12: return imd;

input, an appropriate value can be found quickly. This has
been verified by experiments. With sample sizes of 20, 40,
80, 160, 320, 640, 1280, 2560, 5120 and 10240, Algorithm 3
always terminates within 2∼10 rounds.

2) Sample Mean Recovery: If there are multiple continuous
real events happening, Algorithm 3 will be called repeatedly.
In this case, the sample mean will gradually decrease as
smaller delays are favored in Algorithm 3. According to the
Central Limit Theorem, the sample means follow a normal
distribution. From the perspective of an attacker, every time
he observes a new time interval, he will need to make a “yes”
or “no” decision on whether a real event has occurred. If
“yes”, he will take an action (e.g., to check the suspicious cell
by himself); otherwise, he will do nothing. However, when
he makes a “yes” decision, it is possible that it is a wrong
decision. Thus, as a balance between false positive rate and
false negative rate, an attacker needs to determine a threshold.
Once the difference between the sample mean and the true
mean is beyond this threshold, he will consider the occurrence
of a real event and take an action.

Thus, we need to deliberately recover the sample mean
so that it will never deviate from the true mean beyond this
threshold. Specifically, in our scheme we will set this threshold
as εµ, because in Definition 3 the condition (1 − ε)λ ≤ λi ≤
(1 + ε)λ is equivalent to (1 − ε)µ ≤ µi ≤ (1 + ε)µ for the
exponential distribution with λ = 1/µ. We will search for
an appropriate new time interval for the next message (real
or dummy event) such that the sample mean of the entire
time series including the new one is within εµ from the true
mean. Algorithm 4 serves this purpose. It calculates the value
needed to recover the mean (line 3) and a random number is
selected between this value and a value following exponential
distribution with mean µ (line 4) until this random number
can pass A-D test (line 5 − 8).

From the above discussions, the significance level α defined
in the A-D test is used to control the acceptable distance
between the observed distribution of message transmission

Algorithm 4: Recovery of Mean
Input: mean µ, a sequence of data {xi, 1 ≤ i ≤ n};

Output: a proper delay to send out the next message;

Procedure recovery:

1: sum = sum(x2, x3, · · ·, xn);

2: dx = µ-sum/(n − 1);

3: y1 = (µ + dx) ∗ n-sum;

4: y2 = PTG(µ); //defined in Algorithm 1

5: repeat

6: x = rand(y1, y2);

7: ret = Anderson-Darling({x2, x3, · · ·, xn, x});

8: until ret == TRUE

9: return x;

time intervals and the exponential distribution. ε reflects an
acceptable difference between the sample mean and the true
mean, which will not cause suspicion from the attacker. With
these two parameters, our FitProbRate scheme can achieve
the statistically strong source anonymity defined by (α, ε)-
unobservability.

C. A Running Example
To illustrate the whole process, a running example is shown

in Fig. 2. According to Algorithm 1, three dummy messages
are supposed to be sent out at time A, B and E, respectively.
At time C, a real event happens, so Algorithm 3 is called and
this real event is sent out at time D. After this, according to
Algorithm 4, the dummy message at time E is canceled and
rescheduled at time F . From the attacker’s point of view, he
can only see the intervals between A and B, B and D, D
and F , which follow an exponential distribution and the mean
is stable. Thus, the attacker cannot tell if any real event has
happened.

Algorithm 1 result Algorithm 1 result

A Real Event Occurs

Algorithm 3

result

Algorithm 4 result

A B

C

D E F

Fig. 2. A running example to illustrate the entire process.

All algorithms can be easily implemented in sensor net-
works because they only involve simple operations. For exam-
ple, TinyOS supports all functions used in our algorithms such
as log and exp. These algorithms can be further optimized.
For example, in Algorithm 2, the calculation of S involves a
summation of n values. Whenever Algorithm 3 calls the A-D
test (Algorithm 2), n−1 values in the time series are the same
as that in the previous call. Thus, only one additional log and
one additional exp operations are needed.

IV. PERFORMANCE EVALUATIONS

In this section, we compare the performance of the Fit-
ProbRate scheme, the ConstRate scheme, and the ProbRate
scheme.

A. Comparison between FitProbRate and ConstRate
In the simulation, the mean of dummy message intervals is

20s. Real events arrive according to a Poisson Arrival process
with the mean changing from 1/20 to 1/100. Fig. 3 shows
the delay to send a real event in both schemes. As can be
seen, the average latency in the FitProbRate scheme is less
than 1s, whereas the average latency in the ConstRate scheme
is 10.87s, which indicates that FitProbRate can significantly
reduce the transmission delay of the real event messages.

20 40 60 80 100
0

2

4

6

8

10

12

Mean of Real Events

A
ve

ra
ge

 D
el

ay

FitProbRate

ConstRate

Fig. 3. Comparing average delay in the FitProbRate scheme (α = 0.05,
ε = 0.1) with the ConstRate scheme.

B. Comparison between FitProbRate and ProbRate
In this simulation, dummy messages are generated at the

average rate of 1/40s and the simulation runs for a total
of 3600-second simulation time. For easy illustration, we
only show part of the simulation result in Fig. 4. In the
ProbRate scheme, real event messages and dummy messages
are treated equally; that is, their transmission time intervals
are determined by the output of Algorithm 1. To make a
more comprehensive comparison, we examine three traffic
patterns at different levels of burstiness for real event message
generation, as shown in three different columns of Fig. 4.

In Fig. 4(a), each real event message arrives at the time
point according to an exponential distribution; in Fig. 4(b)
and (c), three and five real event messages are generated in
a burst, at the same time points as in Fig. 4(a). Figs. 4(d)-(f)
visualize the time slots at which real event messages are ready
as shown by the solid lines. The dotted lines are the time points
when real event messages are actually forwarded. From these
figures, we can observe that real event messages are forwarded
more frequently in our scheme than the ProbRate scheme. As
a result, the transmission latencies of real event messages in
our scheme will be much smaller than that in ProbRate.

Figs. 4(g)-(i) quantify these observations. As shown in the
figure, the FitProbRate scheme can significantly reduce the real
event message forwarding latency compared with the ProbRate
scheme. If the real events happen in burst, the latency will be
higher. As traffic pattern 3 is more bursty than traffic pattern
1, the average delay in Fig. 4(i) is also much higher than
that of Fig. 4(g). This is because the average waiting time
must increase to recover from mean skewness when more real
messages need to be sent out within a certain time.

V. SECURITY ANALYSIS
We first prove that the FitProbRate scheme has the property

of (α, ε)-unobservability. Then, we show the robustness of our
scheme against various powerful statistical tests.

A. Security Property
We have the following theorem on the security property of

the FitProbRate scheme.
Theorem 1: The FitProbRate scheme has the property of

(α, ε)-unobservability.
Proof: To prove that the FitProbRate scheme has the

property of (α, ε)-unobservability, we need to prove that the
statistically strong event unobservability has been achieved
under the control of parameters α and ε.

Under the control of parameter α, by Algorithm 3 the
distribution Xi of message transmission intervals from any
cell i(1 ≤ i ≤ N) can pass the A-D test. This means that
the difference between the empirical cumulative distribution
function (CDF) from the ordered sample data and the cumu-
lative distribution function of the corresponding exponential
distribution X is smaller than the critical value c decided
by the predetermined significance level α, according to the
nature of A-D test. Namely, the following formula holds:
n

∫ +∞
−∞ [F (Xi)−F (X)]2Ψ[F (X)]dF (X) ≤ c, where n is the

sample size, F is the CDF and Ψ is the weight function of
the goodness of fit test.

Moreover, under the control of parameter ε, once the sample
mean µi from any cell i deviates from the population mean
µ of the exponential distribution in a noticeable way, i.e.,
|µi − µ| ≥ ε, Algorithm 4 will be automatically triggered
to recover the mean. Hence, the sample mean from any cell
in the network cannot be differentiated from the population
mean under the control of ε. That is, at any time (1 − ε)µ ≤
µi ≤ (1 + ε)µ.

In summary, probabilistic distributions of message trans-
mission intervals from real sources are statistically indistin-
guishable from those of other cells that send out dummy
messages. By Definition 3, we say the FitProbRate scheme
has the property of (α, ε)-unobservability.

Assuming the employment of our scheme, we consider what
the attacker can do to detect real events. Clearly, we cannot
limit an attacker from using any statistical tool, so what we
show below are based on our guessing of the general while
powerful techniques that might be used by the attacker. We
believe other statistic testing methods will render the similar
results.

We assume that the attacker has enough resources (e.g.,
in storage and computation) to collect and analyze message
time intervals from all the cells in the network. Then, the
attacker will try to identify sources with different distributions
of message time intervals. To do this, the attacker can first
conduct some goodness of fit tests to check whether the
probabilistic distributions of message time intervals from every
cell follow the exponential distribution. If the distribution from
any cell cannot pass the goodness of fit test, the corresponding
cell will be marked as a potential real source. Two widely
used distribution test tools are adopted here: Anderson-Darling
(A-D) test [9] and Kolmogorov-Simirnov (K-S) test [13]. For
those distributions that can pass the goodness of fit test, the
attacker then further performs the mean test. Those cells whose

(a) Traffic Pattern 1 (b) Traffic Pattern 2 (c) Traffic Pattern 3

0 100 200 300 400 500

FitProbRate

ProbRate

Time

(d)

50 100 150 200 250

FitProbRate

ProbRate

Time

(e)

60 80 100 120 140

FitProbRate

ProbRate

Time

(f)

5 10 20 30 40 50 60 70 80
0

100

200

300

400

500

600

700

800

900

1000

Mean of Real Events

A
ve

ra
ge

 D
el

ay

(g)

5/310/3 20/3 30/3 40/3 50/3 60/3 70/3 80/3
0

100

200

300

400

500

600

700

800

900

1000

Mean of Real Events

A
ve

ra
ge

 D
el

ay

(h)

FitProbRate
ProbRate

5/510/5 20/5 30/5 40/5 50/5 60/5 70/5 80/5
0

100

200

300

400

500

600

700

800

900

1000

Mean of Real Events

A
ve

ra
ge

 D
el

ay

(i)

Traffic Patterns of Real Events

Time Sequence Example of the Simulations

Delay vs. Mean of Real Events

Fig. 4. Performance comparison between the FitProbRate scheme (α = 0.05, ε = 0.1) and the ProbRate scheme under different real traffic patterns. In
(a)-(c), 1, 3, or 5 real event messages are generated in a burst. In (d)-(f) the solid lines are the time points when real events are ready and the dotted lines are
the time points when real event messages are actually forwarded. (g)-(i) show the numerical values of real event transmission latency under three different
real traffic patterns.

sample means deviate from the true mean beyond a certain
degree will be marked as potential real sources, too. The
SPRT (Sequential Probability Ratio Test) [14] is a good choice
for the mean test, because SPRT could minimize the number
of samples required to make a decision after continuous
observations.

Next, we demonstrate the robustness of our FitProbRate
scheme in defending against these testing techniques by the
attacker, including its robustness to the distribution tests as
well as its robustness to the mean test.
B. Robustness to Distribution Tests

To detect abnormal probabilistic distributions of message
time intervals, the attacker can check whether a probabilistic
distribution Xi is exponential. For the attacker, the hypotheses
in the test are:

• H0-the distribution is exponential: F (Xi) = F (X).
• H1-the distribution is not exponential: F (Xi) �= F (X).
When the attacker makes a decision, there are some risks for

him to get wrong decisions. The decision is called a detection,
if H1 is accepted when it is actually true. If in this case H0 is
accepted, then it is called false negative. On the other hand,
if H0 is in fact true, accepting H1 is a false positive. For the
attacker, the false positive rate is denoted as α′ and the false
negative rate is denoted as β′. Note that in our scheme the
false positive rate is actually equal to the significance level
α defined in the A-D test and we denote our false negative
rate as β. To differentiate from ours, the attacker’s rates are
denoted as α′ and β′ correspondingly.

One may argue that if the attacker selects a significance
level α′ different from that in our algorithm (α), then the
attacker may detect the perturbed probabilistic distributions
from the real sources. However, there is a tradeoff between
false positive rate α′ and false negative rate β′ in attacker’s
distribution test. To explain this, let us consider two extreme
cases. If the rejection region has critical values −∞ and +∞,
then the attacker always accepts H0. In this case, α′ = 0
and β′ = 1. On the contrary, if the rejection region has the
critical values 0 and 0, then the attacker always rejects H0.
In this case, α′ = 1 and β′ = 0. Hence, it is impossible for
the attacker to make both α′ and β′ arbitrarily small for a
fixed sample size n. If the attacker chooses a very small α′

in the test, then he is at the risk of having a high β′, which
means he has a high chance of failing to detect real events.
Likewise, if the attacker chooses a smaller β′, then the attacker
will examine more fake sources, wasting more of his resources
and time (for travelling to the fake sources).

Next we use simulations to verify the above statement.
To test false positive, we generate 10,000 groups of pure
exponential distributed data. Then we perform K-S and A-
D test on them separately under different significance levels
(ranging from 0.01 to 0.1). Finally, based on the test results,
we get the false positive rate as shown in Figure. To test false
negative, instead of using pure exponential distributed data,
we add real event disturbance into the data and perform the
same test.

0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

Significance Level

F
al

se
 R

at
e

K−S test False Negative (β’)
A−D test False Negative (β’)
K−S test False Positive (α’)
A−D test False Positive (α’)

Fig. 5. A tradeoff between α′ and β′ for the attacker (α = 0.05).

In Fig. 5, the x-axis is the significance level used by the
attacker and the y-axis represents the false rate (either false
positive or false negative). We can observe that the false
negative rate β′ of the attacker’s test (A-D test or K-S test) is
high, which indicates that it is hard for the attacker to detect
the disturbed message transmission intervals of real events.
Second, if the attacker tries to decrease the false negative rate
β′ by selecting a higher significance level in his distribution
test, then the false positive rate α′ will increase. As such, no
matter which statistical distribution test the attacker uses, there
is a tradeoff between false negative rate and false positive rate
for the attacker.

We also check the impact of the significance level in our
scheme to the detection rate of the attacker. If the significance
level α in the A-D test of our scheme is larger, e.g., it is
increased from 0.05 to 0.10, then the distributions of message
time intervals from real sources in our scheme exhibit less
abnormality, i.e., F (Xi) is closer to F (X). Hence, it is harder
for the attacker to detect the real events and thus the false
negative rate of the attacker is slightly higher (the figure is not
shown here because it has only slight difference with Fig. 5).

C. Robustness to Mean Test
After the distribution test, the attacker may conduct a mean

test to detect the disturbed means. As message interval data
come in continuously, SPRT [14] is a natural choice for such a
test. In the SPRT test, after the attacker chooses a threshold ε′

(in contrast to the corresponding recovery threshold ε defined
in our scheme), the attacker can do the following to detect real
event messages:

• Test two alternatives H0 : µi ≥ µ, H1 : µi ≤ µ1, if we
denote µ1 = (1−ε′)µ, where µi is the sample mean from
cell i and µ is the population mean of the exponential
distribution. Because in our scheme sample mean tends to
be smaller than population mean according to Algorithm
3, with µi ≥ µ the attacker can safely decide that no real
event has occurred;

• Choose among three possible decisions: (i) accepting H0

means that there are no real event messages; (ii) accepting
H1 means that there are real event messages; or (iii)
continue the test due to insufficient observations.

Following [14], the above composite hypotheses could be con-
verted to simple hypotheses H0 : µi = µ and H1 : µi = µ1.
Accepting H0 may cause false negative (β′) and accepting H1

may cause false positive (α′).

In more detail, the SPRT mean test for the attacker works as
follows. Each time a new message time interval imdi

k(k ≥ 1)
from cell i is observed, the following statistics will be calcu-
lated

sk = log
f(imdi

1, µ1) · · · f(imdi
k, µ1)

f(imdi
1, µ) · · · f(imdi

k, µ)
,

where f is the probability density function of the exponential
distribution. Two boundaries A and B are decided according
to the predetermined false positive rate α′ and false negative
rate β′: A = log 1−β′

α′ and B = log β′

1−α′ . If sk ≤ B, the test
is terminated and H0 : µi = µ is accepted. If sk ≥ A, the test
is terminated and H1 : µi = µ1 is accepted. If B < sk < A,
more observations are needed to make a decision.

Simulation results of the SPRT test for the attacker are
presented in Table I and Table II. In both tables, we set
the significance level α = 0.05 and the recovery threshold
ε = 0.05 for our scheme; all the generated message transmis-
sion intervals in the simulation have passed the exponential
distribution test, and about one half of them are actually
disturbed ones due to randomly generated real events. In
Table I, we fix the attacker’s false negative rate β′, and check
the impact of α′ and ε′ to the number of observations needed
for the attacker to make a decision. In Table II, we check the
impact of β′ and ε′ under the condition that α′ is fixed. From
these two tables, we can see that the test results always accept
H0 (theoretically H1 could also be accepted, subject to the
traffic pattern)), which means there is a high chance for the
attacker to fail in real event detection.

In addition, there is long delay for the attacker to make
a decision. For example, when α′ = 0.05, β′ = 0.20, and
ε′ = 0.05, after the first message more than 1,000 observations
are needed for the attacker to draw a decision. Even if the
attacker’s conclusion is correct in the end, this may already
render the detection worthless.

We further notice from the tables that the number of
observations for the attacker to make a decision decreases with
the attacker’s false positive/negative rate. When the number
of observations to make a decision decreases, both the false
negative rate β′ and false positive rate α′ of the attacker
become higher. That is, if the attacker wants to make a
faster decision, the attacker will have to be willing to accept
higher false positive and false negative. Also, the number of
observations for the attacker to make a decision decreases with
the attacker’s recovery threshold ε′. If the recovery threshold
is higher (e.g., increased from 0.05 to 0.10), the sample data
exhibit less abnormality according to the attacker’s criteria.
Therefore, the attacker draws a quicker conclusion to say that
there are no real event messages (although it is still a wrong
decision).

In conclusion, the attacker cannot effectively detect the
occurrences of real events even after he employs the SPRT-
based mean test. We notice that SPRT test is not the only
choice for the attacker to detect changed sample mean, but
we believe that due to the statistical nature of the problem,
the attacker cannot obtain perfect accurate results.

TABLE I
OF OBSERVATIONS TO DRAW A DECISION IN SPRT WHEN α′ CHANGES

(β′ = 0.05)

α′ 0.01 0.05 0.10 0.20 Test result
of obs. 2198 2192 2058 2054 accept H0

(ε′ = 0.05) (false negative)
of obs. 612 612 611 591 accept H0

(ε′ = 0.10) (false negative)

TABLE II
OF OBSERVATIONS TO DRAW A DECISION IN SPRT WHEN β′ CHANGES

(α′ = 0.05)
β′ 0.01 0.05 0.10 0.20 Test result

of obs. 3156 2192 1799 1316 accept H0

(ε′ = 0.05) (false negative)
of obs. 921 612 472 361 accept H0

(ε′ = 0.10) (false negative)

VI. RELATED WORK

Since Chaum’s seminal work in 1981 [15], so far hundreds
of papers [3] have been concentrated on building, analyzing,
and attacking anonymous communication systems. Due to
space limit, we can only discuss those most relevant ones in
sensor networks.

In [16], techniques for hiding the base station (message
destination) from an external global adversary are studied. In
their schemes, every sensor node is a mix and transmits at
a constant rate. Different from their work, we are interested
in source location privacy. In [2], [17], a random walk based
phantom flooding scheme is proposed to defend against an
external adversary who attempts to trace back to the data
source in a sensor network where sensor nodes report sensing
data to a fixed base station. A more recent work [18] proposes
a new random walk algorithm. In [19], a path confusion
algorithm is proposed to increase source location anonymity.
Note that these schemes only works for a local adversary
model. In our scheme, we consider a powerful attacker who
has the global view of all the network traffic.

In [20], to provide source event unobservability, schemes
like ConstRate or ProbRate are used by the sensors. The
focus of this work is to reduce the overall network traffic
by proactively dropping the dummy messages on their way
to the BS. Clearly, this work is complementary to ours and
they can be seamlessly integrated to provide both low latency
and low communication overhead. In [21], also under the
global attacker model, two schemes are proposed. The first
one is the ConstRate scheme; the second one is a k-anonymity
like source-simulation scheme where (k − 1) fake sources
simulate the mobility pattern a mobile real source. All the
aforementioned work focuses on providing privacy for outsider
attacks. In [22], we proposed techniques to deal with insider
attacks by offering different levels of data privacy based on
different cryptographic keys for data centric sensor networks.

VII. CONCLUSION

In this paper, after analyzing the source anonymity problem
under the global attacker model, we identify the fundamen-
tal tradeoff between performance and privacy. For the first

time, we propose the notation of statistically strong source
anonymity for sensor networks. We also devise a realization
scheme called FitProbRate, which achieves statistically strong
source anonymity under such a specific circumstance. Perfor-
mance evaluations demonstrate that by this scheme, the event
report latency is largely reduced and source location privacy
could be preserved even if the attacker conducts various
statistical tests. In our future work, we will investigate different
real-world attack models.

REFERENCES

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E.Cayirci, “Wireless
Sensor Networks: A Survey,” Computer Networks, vol. 38, no. 4, March
2002.

[2] P. Kamat, Y. Zhang, W. Trappe, and C. Ozturk, “Enhancing source-
location privacy in sensor network routing,” IEEE ICDCS, 2005.

[3] “The free haven project,” http://freehaven.net/anonbib/date.html 2005.
[4] W. Zhang, H. Song, S. Zhu, and G. Cao, “Least privilege and privilege

deprivation: Towards tolerating mobile sink compromises in wireless
sensor networks,” in Proceedings of ACM Mobihoc, 2005.

[5] D. Liu, P. Ning, and W. Du, “Attack-resistant location estimation in
sensor networks,” in Proceedings of The 4th International Conference
on Information Processing in Sensor Networks (IPSN), 2005.

[6] A. Back, U. Moller, and A. Stiglic, “Traffic analysis attacks and trade-
offs in anonymity providing systems,” The 4th Workshop on Information
Hiding (IHW), 2001.

[7] A. Pfitzmann and M. Hansen, “Anonymity, unobservability, and
pseudonymity: A consolidated proposal for terminology,” Draft, July
2000.

[8] S. Zhu, S. Setia, and S. Jajodia, “Leap: Efficient security mechanisms
for large-scale distributed sensor networks,” ACM CCS, 2003.

[9] T. W. Anderson and D. A. Darling, “Asymptotic theory of certain
”goodness of fit” criteria based on stochastic processes,” The Annals
of Mathematical Statistics, vol. 23, no. 2, pp. 193–212, June 1952.

[10] G. Marsaglia and J. C. W. Marsaglia, “Evaluating the anderson-darling
distribution,” Journal of Statistical Software, vol. 9, no. 2, 2004.

[11] T. W. Anderson and D. A. Darling, “A test of goodness of fit,” Journal
of the American Statistical Association, vol. 49, no. 268, pp. 765–769,
December 1954.

[12] M. A. Stephens, “EDF Statistics for Goodness of Fit and Some Com-
parisons,” Journal of the American Statistical Association, vol. 69, pp.
730–737, 1974.

[13] J. L. Romeu, “Kolmogorov-simirnov: A goodness of fit test for small
samples,” START: Selected Topics in Assurance Related Technologies,
vol. 10, no. 6, 2003.

[14] A. Wald, Sequential Analysis. New York: J. Wiley & Sons, 1947.
[15] D. Chaum, “Untraceable electronic mail, return address, and digital

pseudonyms,” Communications of the ACM, vol. 24, no. 2, pp. 84–88,
1981.

[16] J. Deng, R. Han, and S. Mishra, “Intrusion tolerance and anti-traffic
analysis strategies for wireless sensor networks,” International Confer-
ence on Dependable Systems and Networks (DSN’04), June 2004.

[17] C. Ozturk, Y. Zhang, and W. Trappe, “Source-location privacy in energy-
constrained sensor networks routing,” ACM Workshop on Security of Ad
Hoc and Sensor Networks (SASN’04), October 2004.

[18] Y. Xi, L. Schwiebert, and W. Shi, “Preserving source location privacy
in monitoring-based wireless sensor networks,” the 2nd International
Workshop on Security in Systems and Networks(SSN ’06).

[19] B. Hoh and M. Gruteser, “Protecting location privacy through path
confusion,” securecomm, vol. 0, pp. 194–205, 2005.

[20] Y. Yang, M. Shao, S. Zhu, B. Urgaonkar, and G. Cao, “Towards
event source unobservability with minimum network traffic in sensor
networks,” The ACM Conference on Wireless Network Security (WiSec),
2008.

[21] K. Mehta, D. Liu, and M. Wright, “Location privacy in sensor networks
against a global eavesdropper,” ICNP, 2007.

[22] M. Shao, S. Zhu, W. Zhang, and G. Cao, “pDCS: Security and Privacy
Support for Data-Centric Sensor Networks,” IEEE INFOCOM, 2007.

