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Abstract

Data transfer over TCP/IP provides no privacy for net-
work users. Previous research in anonymity has fo-
cused on the provision of initiator anonymity. We ex-
plore methods of adapting existing initiator-anonymous
protocols to provide responder anonymity and mu-
tual anonymity. We present Anonymous Peer-to-peer
File Sharing (APFS) protocols, which provide mutual
anonymity for peer-to-peer file sharing. APFS addresses
the problem of long-lived Internet services that may out-
live the degradation present in current anonymous proto-
cols. One variant of APFS makes use of unicast commu-
nication, but requires a central coordinator to bootstrap
the protocol. A second variant takes advantage of multi-
cast routing to remove the need for any central coordina-
tion point. We compare the TCP performance of APFS
protocol to existing overt file sharing systems such as Nap-
ster. In providing anonymity, APFS can double trans-
fer times and requires that additional traffic be carried by
peers, but this overhead is constant with the size of the
session.

1 Introduction

The Internet has become a pivotal medium for informa-
tion dissemination and content sharing across the globe.
While the the Internet Protocol suite (TCP/IP) takes
into account numerous network performance issues, data
transfer on the Internet inherently provides no privacy.
All packets used for TCP data transfer can be easily
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traced back to the host specified in the IP source address
field.

Protocols for maintaining anonymous Internet connec-
tions that have been proposed previously [12, 5, 11, 13]
have specifically addressed maintaining the anonymity
of the initiator of a connection. However, providing
anonymity to a user awaiting connections — responder
anonymity — is also crucial, as responder anonymity
would allow privacy for network interactions such as
anonymous web servers, anonymous e-mail, and private
peer-to-peer file sharing.

In this paper, we offer a number of contributions with
regard to comprehensive anonymity. First, we provide
two techniques for adapting current initiator protocols to
provide responder anonymity — one based solely on uni-
cast communication and a second that takes advantage
of multicast communication. Second, we show how pro-
tocols for initiator and responder anonymity can be com-
posed to provide mutual anonymity for two parties form-
ing a connection over the Internet. Our specific design
of a mutually anonymous protocol is called the Anony-
mous Peer-To-Peer File Sharing (APFS) protocol. APFS
takes advantage of the peer-to-peer environment to solve
problems specific to maintaining responder anonymity.

We offer two versions of APFS based on our solutions
to responder anonymity: one based on unicast transmis-
sions, and a second which makes use of multicast routing
protocols. We show that the use of multicast routing
can eliminate the need for any centralized coordinator for
the system, yielding, for APFS, a completely distributed
file sharing service. Our unicast solution requires a boot-
strapping point. We evaluate the network performance of
APFS in comparison to the overt peer-to-peer file transfer
protocol used in Napster and Gnutella. As APFS directly
applies previous anonymous routing protocols, we do not
offer a security analysis of those protocols. However, we
do argue that we have not introduced any security flaws.

In the next section, we introduce recent work in peer-to-
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peer file sharing and anonymity. In Section 3, we propose
two techniques for responder anonymity, and we detail
the operation of APFS. In Section 4, we evaluate by sim-
ulation the additional network overhead caused by APFS
as compared to overt file sharing techniques. Lastly, Sec-
tion 5 summarizes our contributions.

2 Background

While there has been little specific research in the area of
anonymous file-sharing, extensive research has been done
in file sharing and anonymity separately, which we review
in this section.

Although we make use of multicast routing in some of
our proposals in this paper, we do not review IP multicast
because of space limitations; extensive overviews of its de-
sign and operation can be found elsewhere [4, 6]. Multi-
cast is not yet widely available, but, UUnet/Worldcom
and Sprint have begun deploying PIM-Source Specific
Multicast (PPM-SSM) [9, 8] multicast implementations.

2.1 Peer-to-Peer File Sharing

Distributed files systems can be classified into two broad
categories, centralized and distributed. A centralized sys-
tem has a main server through which all communication
is coordinated; a distributed system lacks a centralized
server. In general, a centralized file sharing system has a
simpler search design and can return search queries faster
than distributed systems. This is due to the fact that
the server knows the location of all files, and as the user
base increases, additional hardware can be added to the
server to compensate for the heightened load. However,
the server can be a bottleneck on the performance of the
system, and if the server is unavailable the entire system
halts. In the case of the Napster system of peer-to-peer file
sharing, the central server is responsible for storing lists
of available files and servicing queries for users searching
for files; once peers learn the location of a desired file,
they then directly contact the remote peer for to request
the file.

In a distributed system there is no server: the responsi-
bility of coordinating communication is distributed across
the users. In order to conduct a search, a query must
be forwarded throughout the members of the system, as
there is no centralized knowledge of where resources exist.
This querying process limits the speed of searching and
can be expensive in terms of network traffic. Gnutella is a
distributed peer-to-peer system, and is reviewed in more
detail below.

2.1.1 Napster

One of the most well known peer-to-peer file sharing sys-
tems is Napster. While Napster was designed specifically
for the transmission of audio files, its theory can be em-
ployed for any peer-to-peer needs. Napster is a fully cen-
tralized system, and the Napster corporation maintains
a cluster of servers for conducting searches. The Napster
protocol is proprietary, but is simple to reverse engineer.
Open-Nap [2] is the open-source reverse engineering of
the protocol used by Napster. Because APFS is partially
based on the Open-Nap protocol, we review its operation.

To join an on-going Napster session, a client sends the
central server its login id and file list, which is a list of
files that the client has available to share. To search the
Napster community’s files, a client sends a query to the
server. The server replies with a list of matching files
along with the name of the user sharing the file. The
user may choose a remote file, and the client contacts
the server again, requesting the IP address of that user.
Finally, the client contacts the user directly and requests
that the file be sent.

The Napster system lacks any significant security or
privacy measures and has a single point of failure at the
server cluster.

2.1.2 Gnutella

Gnutella is a popular, fully-distributed, file-sharing sys-
tem. We review its operation here summarily, enough to
point out the lack of anonymity in Gnutella1.

Gnutella has no central point for querying or file trans-
fer, though a coordination point allows new clients to
learn of other clients running the protocol. In order to
conduct searches, each client picks seven other clients to
use for querying. If a query cannot be answered by these
neighbors, the query is relayed to the neighbors of those
neighbors. This process can recurse for up to 25 hops,
and the cost in traffic for queries can be extreme. While
the immediate originator of a query is not obvious except
to its neighbors, querying is not entirely anonymous. Dis-
covering who originated a query is as simple as answering
a request falsely and waiting for the originator to directly
request the desired file, as specified by the Gnutella de-
sign.

1Unfortunately, the popular press often claims Gnutella is anony-
mous; e.g., see J. Brown “The Gnutella paradox”, Salon, Sept. 29,
2000.
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2.2 Anonymity

Because IP addresses can uniquely identify users and their
machines on a network, the goal of anonymous routing
protocols is to disassociate a user’s IP address from the
traffic the user initiates on the network.

Previous research on anonymity has largely focused on
initiator anonymity, with few exceptions [10, 7]. However,
such protocols protect only half the connection. Our goal
is to protect the anonymity of the initiator and the re-
sponder of a connection.

Most protocols that are designed for anonymous IP
communication organize a group of members that for-
ward messages for each other, trading bandwidth for
anonymity. Examples of this type of protocol are Onion
Routing [11], Hordes [13], and Crowds[12]. The general
method of these protocols is that an initiator creates a
path through the group, and the last member of the path,
called the tail node, contacts the responder. The tail node
then forwards the request to the responder and returns
the reply back to the initiator. This method provides
anonymity, because at each step on the path it is not
possible to tell if the previous hop initiated the message,
or was forwarding it for some other member.

This approach to anonymity requires other consid-
erations be taken with respect to maintenance on the
group [12]. Specifically, users are required to join and exit
the group only at periodic intervals; all group members
clear and reform their paths each interval. The reason
for this periodic join is that a new member attempting to
form a new path would be immediately recognizable as
the initiator of that path if all other group members had
already constructed, long-standing paths.

We choose to use Onion Routing as the base of our
protocol; however, any path-based approach can be used.
In the next section we discuss Onion Routing in detail.

2.2.1 Onion Routing

Onion Routing is a path-based anonymous protocol,
which uses well-known public keys of participants to hide
path information. A certificate authority can be used to
store and distribute these keys [11, 14]. To send a mes-
sage in an Onion Routing session, the initiator randomly
chooses a path of proxies, then encrypts the message mul-
tiple times using the public keys of each proxy in the de-
sired route creating a onion. For example, the onion for
the path P0, P1, P2,P3, D is

{P1, {P2, {P3, {D,M}KP3+ }KP2+ }KP1+}KP0+

where {M}KP+ indicates a cipher created by encrypting
a message, M , with P ’s public key.

Each proxy on the path decrypts the message to find

the identity of the next proxy, then forwards the en-
crypted payload that only that next proxy can decrypt.
This process repeats until the last proxy sends the mes-
sage to its final destination. To enable the destination to
respond, proxies pass a session ID along with the onion
to their neighbors on the path. When the destination re-
sponds to the message it is routed back along the same
path in the reverse direction.

2.3 Degradation of Anonymity

Our previous work [15] has shown the inability of pro-
tocols to maintain high degrees of anonymity with low
overhead in the face of persistent attackers. This oc-
curs because over time the path between initiator and
responder must be reformed, and each path reformation
provides attackers the opportunity to learn some informa-
tion about the initiator. Over enough path reformations,
the attackers can determine with increasing probability
the initiator of a connection. With Onion Routing, the
expected number of path reformations required for c at-
tackers to determine the initiator out of n participants is
O

((
n
c

)l
)

[15], where l is the length of the path between
the initiator and responder. A persistent, coordinated
attack applies to all protocols for untraceability as well.

In the next section, we show how responder anonymity
is affected by this result.

3 Comprehensive Anonymity

Previous work has focused primarily on providing
anonymity for the initiator of a connection. In this section
we discuss protocols and techniques for hiding the identity
of a responder, and for providing completely anonymous
communication in which both the initiator and responder
are anonymous.

There are two prominent difficulties with providing re-
sponder anonymity as compared to providing initiator
anonymity.

1. Protocols for responder anonymity must be designed
to route packets to a responder without the opportu-
nity to set up a path between initiator and responder
ahead of time, since we must assume the responder
does not know the which initiator will desire commu-
nication.

2. Responders tend to be servers. Servers commonly
need to stay up for a long period of time, which is
in conflict with previous work on the degradation of
anonymous protocols [15]. (See Section 2.3.)
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Figure 1: Steps for using proxies for responder anonymity.

In this section, we provide solutions to both problems.
For the first problem, presently we propose two dif-

ferent techniques to forward messages to an anonymous
responder, which can then set up a connection to the ini-
tiator using a protocol for initiator anonymity (See Sec-
tion 2). The first technique, which we call Proxy for Re-
sponder Anonymity (PRA), utilizes unicast routing and
a proxy, which does not have to be trusted. The second
technique, which we call Multicast Responder Anonymity
(MRA), utilizes multicast routing and no proxies.

For the second problem, we take advantage of the prop-
erties of peer-to-peer networking services to allow the use
of servers in such a way as to avoid the problem of long-
term anonymous degradation.

3.1 Responder Anonymity

Any protocol for initiator anonymity can be used to pro-
vide responder anonymity. A publicly-advertised proxy
can accept and relay datagrams to an anonymous respon-
der. The technique requires only a few additional steps
during which the responder contacts the proxy anony-
mously prior to receiving communications from any ini-
tiator. Figure 1 illustrates the technique.

Step 1: The responder, R, sets up a connection to a
known proxy, P , using a protocol that provides initiator
anonymity. The proxy maintains a public alias for R,
without knowing the true identity of the responder.

Step 2: Packets from an initiator are sent to the proxy
over the anonymous channel, encapsulating data and a
header that specifies the alias of the responder.

Step 3: The proxy decapsulates received data and for-
wards them over the pre-established anonymous channel
to the responder.

Step 4 (optional): To avoid the bottleneck of the
proxy, the responder could set up a connection to the
initiator using a protocol for initiator anonymity.

Anonymous responders may wish to have more than
just their alias advertised. For example, the proxy may
also identify the type of service the responder is providing.

The responder may also wish to generate a public/private
key pair and use it to sign the alias (along with a time
stamp) so that past correspondents can identify respon-
ders from past sessions. The proxy need only be trusted
to not engage in a denial-of-service attack by dropping
requests, but does not have to be trusted to maintain the
responder’s anonymity.

3.1.1 Proxyless Techniques

A proxy can be avoided altogether if the responder listens
on a multicast address for new requests. An equivalent
idea has been put forward in the past for broadcast net-
works [10]; multicasting is a natural mechanism for apply-
ing this technique to IP networks. Instead of advertising
the proxy’s address and alias, the responder r advertises
a responder alias: (m, id), where m is a multicast address,
id is a random number. The id serves as a unique marker
in case more than one anonymous responder chooses to
listen on the same multicast address.

The choice of a multicast group may be one already in
use by another user on the same network as the responder;
hijacking an existing group allows the responder to be
indistinguishable from all other receivers of the multicast
group.

Step 1: R chooses m, id, and a public key Kr and ad-
vertises these values on a public site (e.g., IRC channels,
web sites, newsgroups, etc).

Step 2: The initiator I sends its message to the mul-
ticast group. This transmission reveals I’s identity.

I → m : id, {data}Kr
(2)

Step 3: Once the responder receives the initiator’s
packet on the multicast address, it checks that the alias
in the data portion of the packet is its own. The reply
can be sent after a connection to the initiator is set up
using a protocol for initiator anonymity, just as in PRA.

Ar → I : (initiator anonymity set up from R to I) (3)

The use of multicast can create more traffic than prox-
ies, though our past work has shown that this is not al-
ways so [13]. However, proxies require the cooperation of
a third party host, even though it need not be trusted to
hide the identity of the responder. More details on us-
ing multicast for return paths to an initiator are in pre-
sented in our previous work on the Hordes protocol. The
Hordes protocol is especially adaptable to multicast-based
responder anonymity as initiators in Hordes already use
multicast for their return path.
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3.2 Mutual Anonymity - APFS

We have shown that responder anonymity is made possi-
ble by simple modifications to initiator-anonymous pro-
tocols. In this section, we address two other important
problems. We show that providing mutual anonymity for
both the initiator and responder simultaneously simply
requires composition of both types of anonymous pro-
tocols. And, we address the conflict between long-lived
servers and the degradation of anonymous protocols [15]
by taking advantage of peer-to-peer networking. With
peer-to-peer file services, such as Napster, file transfers
are the responsibility of peers — the server performs only
the duty of having a central location to store and query
file indexes. APFS removes the single central server by
recruiting peers to fill its position for a time short enough
that they will not be revealed by anonymous degrada-
tion [15]. The peers therefore share the servers respon-
sibilities serially, and shift those responsibilities between
peers before anonymous degradation occurs.

In our explanation of the APFS protocol, we make the
distinction between overt clients, where hosts act overtly
to create anonymous routes, and anonymous peers, where
hosts anonymously contact each other for the purposes of
file sharing. APFS accordingly has two separate stages:

1. Initialization: clients join together to form anony-
mous connections between themselves (e.g., using
Crowds, Hordes, or Onion Routing). All messages
in this stage are overt, as the group membership is
required to be known.

2. Peer-to-peer services: peers anonymously relay
queries to the current server; the server anonymously
answers queries, providing information allowing con-
tact with peers who have the requested file. Period-
ically, new anonymous servers are chosen. All mes-
sages in this stage are anonymous.

APFS relies only on unicast communication, but re-
quires an untrusted proxy called a coordinator to initial-
ize the session. However, later in this section, we show
how the coordinator can be replaced with multicast com-
munication between clients, removing the single point-of-
failure. For clarity, our subsequent discussion assumes
that Onion Routing is the anonymous protocol used by
all participants throughout the session, but any protocol
will work.

3.2.1 APFS: Initialization

APFS begins with the start of a coordinator, which is a
bootstrapping point for other clients. The coordinator’s

I Initiator
p Peer (anonymous client)
v Server
C Coordinator
M Multicast address of responder

IPn IP address of client n
A(n) Anonymous transmission from peer n

S Session ID
Tn Tail node of initiator n
Nv Nonce chosen by server v

timei Time of reset i
f Frequency of resets (in time)

IDn Anonymous alias ID of peer n
Fi File i

Table 1: Table of Variables.

IP address and certifiable public key is well-advertised to
potential clients (e.g., using web pages, e-mail, or IRC).
Multiple sessions can be bootstrapped at the same coordi-
nator when distinguished by unique identifiers. A client,
I, begins the protocol by sending a join message to the
coordination point, C, that contains its IP address and a
session ID, S.

I → C : IPI , S (1)
The client learns from the coordinator the set of other
clients available for forming anonymous routes. New
members must be allowed to join periodically. Therefore,
as in many anonymous protocols, routes are periodically
torn down and recreated, a process called resetting; oth-
erwise, new routes in the group can be associated with
new members [12].

The coordinator returns the time of the next reset,
time1, the frequency of resets, f , and a list of other
clients, enabling the new client to begin construction of
paths through the anonymous group.

C → I : S, timei, f, IP1, . . . , IPn (2)
Optionally, these messages may use authentication and
authorization mechanisms, which we do not include here.
Starting at time1, paths are formed using Onion Routing
(see [11] for a complete description of that process).

3.2.2 APFS: Starting Servers

After initialization, willing peers begin announcing them-
selves as servers to the coordinator and users begin issuing
search queries to servers. All messages at this stage are
sent anonymously.

Server Step 1. Peers willing to act as a query server
send an anonymous message to the coordinator, en-
crypted with the coordinator’s public key. The message
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includes a unique server identifier, IDv (a large random
number should suffice), a nonce, Nv, the current tail node
of the server, Tv, the Server-Start flag, and the associated
session ID, S.

A(v) → C : {IDv, Nv, Tv,Server-Start, S}KC+ (3)
Here we have denoted A(I) → C to mean that the node I
uses its anonymous protocol to send the message. The use
of the nonce and encryption prevents a denial-of-service
attack described below. Optionally, the coordinator may
acknowledge the message. The above message is resent
to the coordinator whenever a server’s tail node changes
due to a path reset; a server’s IDv stays constant over
path resets.

Server Step 2. The server begins waiting for peers to
anonymously send lists of files to share. Upon receiving a
file list from a user, the server records the newly available
file list for future queries.

Server Step 3. Servers then process queries. For a
query from an anonymous peer P yielding N results, the
server sends the peer the information about each match.
For each result n, this includes the filename, Fn, the
anonymous ID of the sharing peer, IDn, and the tail node
for which the user should use to contact the sharing peer,
Tn.

A(v) → A(P ) : (F1, ID1, T1), . . . , (FN , IDN , TN ) (4)
Server Step 4. When a server wants to stop participat-
ing in the session, it must first remove itself from the
server lists stored by the users. The server sends a mes-
sage to the coordinator declaring itself a non-server en-
crypted with the coordinator’s public key. This message
is the same as message (3) with the start flag changed to
Server-Stop.

A(v) → C : {IDv, Tv,Server-Stop, Nv + 1, S}KC+ (5)
If not for the incremented nonce, it would be too easy for
other nodes to forge this last message, resulting in a denial
of service attack. If the former server continues to receive
search requests, they may be ignored, or an error message
may be anonymously sent to the requesting peer. If an
error message is used, a nonce exchange, similar to that
described above, could be used to limit the effectiveness
of denial-of-service based on forged error messages.

3.2.3 APFS: Anonymous Peers

Peer Step 1. Peers start by anonymously querying the
coordinator for available servers in the current session S.
For a peer, P :

A(P ) → C : S,Server-List-Request (6)
Peer Step 2. The coordinator responds with the current
list of servers. For each server, a server ID and the current

tail node is provided.
C → A(P ) : (ID1, T1), . . . , (IDN , TN ) (7)

Peer Step 3. The peer sends a message to some or all
known servers announcing the user’s shared content. This
includes the peer’s anonymous ID, IDP , its current tail
node, Tp, and a list of all the files the user is sharing,
F1, . . . , FN .

A(P ) → A(v) : IDP , TP , F1, . . . , FN (8)
Users send message (8) whenever they first learn of a
new server. The user periodically sends updates of its
file list, which also servers to inform the server that the
user is still active. However, when sending message (8)
to a previously known server, the file list in the message
can be omitted if no changes have occurred.

Peer Step 4. The anonymous peer can begin anony-
mously sending queries. The user can spread queries
across different servers to avoid poorly connected or heav-
ily loaded servers. Multiple queries also might aid in find-
ing files that have been reported to only a subset of the
possible servers.

Peer Step 5. When a client is ready to leave the session
it should simply send the server a message stating that it
is no longer sharing any files. At the next join period the
user does not re-announce itself as a member.

3.2.4 APFS Multicast

APFS Multicast has a few differences from the unicast
version. The protocol has some added complexity, but
has the key advantage of having no central coordinator.

Here, we describe the differences between the two pro-
tocols.

APFS Multicast begins with an initial participant who
starts the session with the selection of a multicast ad-
dress, M . Currently, IP multicast doesn’t allow reser-
vations of addresses; however, collision with other appli-
cations is easily detected, although cumbersome. The
chosen address is posted in a well-advertised form; e.g.,
web pages, mailing list, or IRC channel. The advertise-
ment includes a base join time and a frequency of future
join periods given in GMT. As we see later, only loose
clock synchronization is required. (The advertisement is
optionally signed by the initial participant for integrity.)

Participants join the session by subscribing to the mul-
ticast group and then overtly sending messages (1) peri-
odically to the multicast address. Clients learn of other
clients by waiting long enough to hear a sufficient number
of other participants.

To become a server, peers send a message (3) to the
multicast group M instead of the coordinator; following
our assumption of Onion Routing as the unicast protocol,
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this means that the tail node multicasts the message to
M .

Servers handle queries and return query results unicast.
Servers quit answering queries by sending message (5)

to the multicast group instead of the coordinator. If the
former server continues to receive search requests, a mes-
sage (5) may be resent, multicast or unicast, until search
requests cease.

Peer searches do not have any operational differences
with the unicast version of APFS. Peers learn of new
servers from the advertisements on the multicast group.

3.2.5 Overlapping Periodic Reset

To perform periodic resets efficiently and without a cen-
tralized server, we propose that sessions overlap construc-
tion and deployment. Each session i has three points of
interest called Buildi, Deployi, and Shutdowni. These
points are when route building begins, when the session
routes begin use, and when the old routes must cease use,
respectively. The overlap between sessions is such that

• Buildi = Deployi−1

• Deployi = Shutdowni−1 = Buildi+1

• Shutdowni = Deployi+1

For a give session i, the creation and implementation of
the session i+1 follows the following steps (see Figure 2).

Reset Step 1. During the time period [Buildi, Deployi)
all nodes must announce themselves via message (1)
shown previously.

Reset Step 2. During [Deployi, Shutdowni) =
[Buildi+1, Deployi+1) all routes must be determined.
Also, servers need to multicast message (3) to ensure all
the users know about the servers’ new tail node. (Peers
may request retransmissions after timeout.)

Reset Step 3. At time Shutdowni = Deployi+1 all
clients and server must stop using routes from session i
and begin using the new session i + 1 routes. Clients
can now update the servers by sending message (8). The
client should again omit the file list for servers it sent up
to date file lists to in session i. At this point normal func-
tioning may resume using session i + 1, and preparations
for session i + 2 should be underway.

4 Performance Analysis

The primary cost of providing anonymity to a set of
clients is the additional latency of data delivery to respon-
ders and the additional bandwidth consumed forwarding

time i-1 i i+1 i+2

Build(i+2)

Deploy(i-1)

Build(i) Deploy(i)

Build(i+1)

Shutdown(i-1) Shutdown(i)

Deploy(i+1)Build(i-1)

Figure 2: Overlap between session phases.

traffic for other members. There was also additional la-
tency from querying. We chose to study the costs of data
delivery rather than the expenses involved in maintain-
ing a system for performing queries and the costs of those
queries. The rationale for this decision was that data de-
livery was likely to be the more expensive operation and
that there was no point in studying anonymous query
mechanisms if data delivery was not feasible. As our re-
sults show, such delivery is possible, and our future work
will include a study of the costs of querying.

We simulated our protocol over a hierarchical, Internet-
like topology to determine how our protocol compares
with equivalent overt protocols, such as Napster. We eval-
uated the TCP performance of APFS based on a generic
path-based protocol similar to Crowds or Onion Rout-
ing. We also calculated the amount of work required to
support other peers in the session.

Previous performance studies of anonymous protocols
have not considered TCP performance. Reiter and Rubin
have calculated the amount of work required of partici-
pants in the Crowds protocol [12]. Levine and Shields
compared by simulation the round trip time and link
utilization of Crowds and Onion Routing, Hordes, and
overt connections [13] and computed the work required
for Hordes participants. (Syverson et al report perfor-
mance results of Onion Routing only in terms processing
overhead [14].)

4.1 Methodology

We simulated APFS against an overt peer-to-peer file
transfer using the ns2 [1] network simulator. Our simula-
tions ran over internet topologies generated by the Geor-
gia Tech Internetwork Topology Modeler (GT-ITM) [16,
3, 17]. Our performance analysis focuses on the overhead
introduced directly by APFS; for this reason, we evalu-
ated the performance of transfers between peers.

We simulated a variety of sizes of client groups: 10, 50,
100, 200, and 285. Each size client group was simulated
over each of three different GT-ITM topologies of 1000
nodes each. Our client base was limited to 285 because
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we choose clients only from the edges of the generated
topologies. Each edge generated by GT-ITM had a ran-
dom latency, from 10ms to 2300ms, randomly selected
in a fashion that approximates an internet network. All
links had a simulated bandwidth of 1.5 Mbs. Routing
between clients was determined by ns2’s internal shortest
path unicast routing protocol.

At startup, we preselected a path from one peer to
another peer. To simulate a generic overt peer-to-peer
application, the path was simply the initiating peer and
one other peer chosen uniformly at random. To simulate
APFS, the path between peers consisted of 4 or 8 other
peers, simulating a mutually anonymous connections of
two paths of length two and two paths of length four
respectively. Peers transfered a 2Mb file to the remote
peer using TCP Reno between clients on the path.

We ran a total of 900 simulations. For each of the
five group sizes and three path lengths, we generated 30
runs of the simulation: 10 simulations with 10 different
randomly chosen paths for each peer for each of the three
topologies. Moreover, we simulated two separate loss rate
scenarios on the links: geometrically-distributed loss pro-
cesses of 1% and 5% each. These loss rates were aggressive
as they appeared on each link in the network, and as such
they accumulated end-to-end. Because the anonymous
protocols traversed more links, they were at a disadvan-
tage in the simulation environment.

For all graphs in this section, error bars report 95%
confidence intervals.

4.2 Transfer Latency

First we present our analysis of the difference in latency
between overt systems and APFS. Of all latencies in a
distributed file sharing system, the most import is the
transfer times for files, as this has a direct bearing on
the interactive usability of the system. Figure 3 shows
the average transfer time for 2MB files initiated simul-
taneously at every peer for various group sizes and path
lengths with 1% loss in the links. Note that a path length
of zero in this case is the equivalent to overt protocols like
Napster. There transfer time increases by 65% by using
APFS with a path length of 2. However we also note that
to increase the path length to 4, we only see an additional
increase of 13%. From this we gather that after the ini-
tial increase in transfer time, we can increase the level of
anonymity relatively cheaply. This is due to the pipelin-
ing of TCP connections that is used to forward data down
the path between clients. Figure 4 shows the same exper-
iments with 5% constant loss on the links. The extreme
loss greatly delays the TCP transfer time, affecting the
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Figure 3: Transfer latency for 1% loss on all links.
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Figure 4: Transfer latency for 5% loss on all links.

anonymous protocols worse than overt protocols due to
the additional network links traversed.

4.3 Resource Consumption

When a user decides to join an APFS session, the client
also offers their own network resources to be used for
proxying data. We analyzed what factors effect the
amount of resources consumed by proxying data versus
traffic generated by that users own file requests. Fig-
ure 5 shows the amount of data in bytes carried for other
clients during the session where every peer transfered ex-
actly 2MB. In comparison to the peer’s own file transfer,
the amount of traffic carried for others is high. Fortu-
nately, the amount of traffic forwarded for other clients is
directly related to the path length chosen by other clients
and not the number of clients in the session; this is pre-
dicted by Reiter and Rubin’s analysis [12]. While clients
cannot limit the path length chosen by other nodes, they
can deny requests from nodes to join a path so as to con-
trol the amount of work they perform. Fortunately clients
in Onion Routing locally pick routes and can avoid over-
taxed nodes that haven’t denied their route requests.
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Figure 5: Percentage of data carried from other connec-
tions.

4.4 Scalability

The most prominent quality of the performance results
presented in Figures 3–5 is the excellent scalability of the
anonymous protocols in terms of resulting latency and
carried traffic. As the number of clients (who are all each
peers) grows in the simulation, the APFS protocol has
perfect scalability with respect to transfer times and re-
source consumption. This is due to the fact that as more
users join the session, not only do they bring more data
to require proxying, but also they themselves add to the
proxy count. The end effect of this is a more distributed
path structure, but no change in transfer time or resource
consumption.

As noted in Section 2, Gnutella is not an anonymous
protocol, though it can be mistaken for one. Although
we did not simulate the protocol, it is a safe conjecture
to say that Gnutella’s scaling properties are extremely
poor as more clients join the session. This is due to the
expensive querying mechanism being used. APFS offers
true anonymity but, like Gnutella and unlike Napster, has
no central serving point.

5 Conclusions

We have contributed new techniques for providing re-
sponder anonymity using existing protocols for initiator
anonymity. We solve two important problems in provid-
ing responder anonymity: the problem of allowing ini-
tiators to locate and contact an anonymous responder,
and the problem of providing anonymity for a long-lived
server in the face of anonymous degradation. APFS can
use either an untrusted central coordinator or multicast
routing to eliminate the problems in providing responder
anonymity. APFS also uses features of peer-to-peer net-

working to solve the problem of degradation of anonymity
over time in servers.

Our simulations show that the latencies incurred in
providing reliable anonymous peer-to-peer communica-
tion can increase the transfer times for data, and that
APFS suffers more from high network loss rates than non-
anonymous protocols. The trade-off in gaining anonymity
is an increase in bandwidth consumption that does not
scale with the size of the session but instead with the
length of the anonymous paths constructed.

References
[1] Network simulator version 2. http://www.isi.edu/nsnam/ns.

[2] Opennap: Open source napster server.
http://opennap.sourceforge.net.

[3] GT-ITM: Georgia Tech Internetwork Topology Models.
http://www.cc.gatech.edu/fac/Ellen.Zegura/ graphs.html, 1996.

[4] K. Almeroth. The Evolution of Multicast: From the MBone to
Inter-Domain Multicast to Internet2 Deployment. IEEE Network,
January 2000.

[5] D. Chaum. The Dining Cryptographers Problem: Unconditional
Sender and Receipient Untraceability. Journal of Cryptography,
(1):65–75, 1988.

[6] C. Diot, B.N. Levine, B. Lyles, H. Kassan, and D. Balsiefien. De-
ployment Issues for the IP Multicast Service and Architecture.
IEEE Network, January/February 2000.

[7] I. Goldberg and D. Wagner. Taz servers and the rewebber net-
work: Enabling anonymous publishing on the world wide web.
First Monday, 1998.

[8] H. Holbrook and B. Cain. Source-specific multicast for ip. IETF
Internet-Draft, March 2001. ¡draft-holbrook-ssm-arch-ast.txt¿.

[9] H. Holbrook and D. Cheriton. Explicitly requested source-specific
multicast: Express support for large-scale single-source applica-
tions. In ACM SIGCOMM ’99, September 1999.

[10] A. Pfitzmann and M. Waidner. Networks without user observabil-
ity — design options. In Eurocrypt ’85, LNCS 219, pages 245–253,
1986.

[11] M. Reed, P. Syverson, and D. Goldschlag. Proxies for anonymous
routing. In 12th Annual Computer Security Applications Con-
ference, pages 95–104. IEEE, December 1995.

[12] M. K. Reiter and A. D. Rubin. Crowds: Anonymity for Web Trans-
actions. ACM Transactions on Information and System Security,
1(1):66–92, November 1998.

[13] C. Shields and B.N. Levine. A Protocol for Anonymous Communi-
cation Over the Internet. In Proc. 7th ACM Conference on Com-
puter and Communication Security (ACM CCS 2000), November
2000.

[14] Paul F. Syverson, D. M. Goldschlag, and M. G. Reed. Anonymous
connections and onion routing. In 18th Annual Symposium on
Security and Privacy, pages 44–54. IEEE CS Press, May 1997.

[15] M. Wright, M. Adler, B. Levine, and C. Shields. An analysis of
the degradation of anonymous protocols. Technical Report, April
2001. University of Massachusetts, Amherst.

[16] E. Zegura, K. Calvert, and S. Bhattacharjee. How to Model an
Internetwork. In Proceedings of IEEE Infocom ’96, San Francisco,
CA, 1996.

[17] E. Zegura, K. Calvert, and M. Donahoo. A Quantitative Compar-
ison of Graph-based Models for Internet Topology. IEEE/ACM
Transactions on Networking, 5(6):770–783, December 1997.

9


