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of which the user retrieves the i-th bit xi, while giving the database no information about the indexi. The main cost measure for such schemes is their communication complexity. The notion of PIRwas introduced in [11], where it was shown that if there is only one copy of the database availablethen n bits of communication are needed (for information-theoretic user-privacy). However, if thereare k � 2 non-communicating copies of the database, then there are solutions with much better(sublinear) communication complexity.In this paper, we introduce the stronger model of Symmetrically Private Information Retrieval(SPIR), where privacy of the data, as well as of the user, is guaranteed. That is, every invocation ofa SPIR scheme, in addition to maintaining the user's privacy, prevents the user (even a dishonestone) from obtaining any information other than a single physical bit of the data. Data privacy isa natural and crucial requirement in many settings. For example, consider a commercial databasewhich sells information, such as stock information, to users, charging by the amount of data thatthe user retrieved. Here, both user-privacy and data-privacy are essential.The original PIR model was only concerned with user-privacy, without requiring any protectionof data-privacy. Indeed, previous PIR schemes allow the user to obtain other physical bits of thedata (i.e., xj for j 6= i) or other information such as the exclusive-or of certain subsets of the bitsof x. A good example of this is a single invocation of the best 2-database information-theoreticscheme currently known [11], from which a user can systematically retrieve �(n1=3) physical bits ofdata (see Section 5, Example 2).To e�ciently realize SPIR schemes, we introduce and utilize a new cryptographic primitive,called \conditional disclosure of secrets", which may also be of independent interest as a buildingblock for designing more general cryptographic protocols. Informally, conditional disclosure ofsecrets allows a set of players to disclose a secret to an external party Carol, subject to a givencondition on their joint inputs. In the setting we consider, Carol knows all the inputs held bythe players except for the secret to be conditionally disclosed, so she knows whether the conditionholds and whether she will obtain the secret. Each player on the other hand only sees its portionof the input and does not necessarily know whether Carol will obtain the secret. The protocolinvolves only a unidirectional communication from the players to Carol. A simple example thatillustrates the use of \conditional disclosure of secrets" is one in which each player has the input bitbi, indicating whether it agrees to reveal the secret s to Carol. Carol obtains the secret s subjectto the condition that the majority of the players agree on the bit.This work is concerned with the information-theoretic setting for SPIR. The techniques used inthis work can also be applied to computational PIR schemes (c.f. [10, 20, 9]), in which the privacyrequirement is relaxed to computational privacy (against computationally bounded databases).However, in this computational setting a better solution for realizing SPIR may be constructedusing pseudo-random functions [21]. We note that in addition to their theoretical signi�cance andtheir unconditional security, information theoretic schemes possess other advantages over knowncomputational schemes; they are much more time-e�cient, and their communication complexityis typically smaller for moderately sized data strings (even when their asymptotic complexity ishigher).Realizing SPIR involves a modi�cation to the previous multi-database model. This is necessarybecause information-theoretic SPIR schemes, regardless of their complexity, cannot possibly beachieved in the original PIR setting, in which the databases do not interact with each other atall (see Appendix A.1). We thus use a minimal extension of the original setting: continue todisallow direct interaction between the databases, but grant them access to a shared random string,2



unknown to the user. A similar kind of extension has been studied before in the contexts of privatecomputation [14, 16], non-interactive zero-knowledge [5] and other scenarios. Here, this extensionis particularly natural since, even in the basic PIR setting, databases are required to maintainidentical copies of the same data string. (In the next subsection we discuss an alternative approachof using shared pseudo-random strings rather than sharing truly random strings.)1.1 Our ResultsWe construct e�cient SPIR schemes, with sublinear communication complexity, which may be evenfurther improved if better PIR schemes are designed. More precisely, we present transformationsfrom PIR schemes to SPIR schemes, preserving the user's privacy and guaranteeing data-privacyas well, with a small penalty in the communication complexity. We give two types of reductions.A General Reduction We show that using any PIR scheme it is possible to construct a SPIRscheme with the same number of rounds, a constant factor overhead in communication complexity,and linear (in n) shared randomness (per query). The resultant SPIR scheme requires the use ofan additional auxiliary database, which does not need to hold the original data (only the sharedrandom string). That is, we achieve:� (k+1)-database SPIR scheme of communication complexity O(C(n)), for any k-database PIRscheme of complexity C(n).However, the additional database requirement may be costly. In particular, it does not allowto obtain an information-theoretic sublinear SPIR solution with only 2 databases. This case isimportant, since 2 is the minimal number of databases required for such a solution to exist. Indeed,via more speci�c reductions we manage to avoid the additional database, and in particular obtain agood solution for the 2-database case. Moreover, these speci�c reductions require signi�cantly lessshared randomness.Speci�c Reductions We present reductions which exploit speci�c structural properties of exist-ing PIR schemes to transform them into SPIR schemes which use the same number of databasesas the underlying PIR scheme, communication complexity which is at most a small constant factorover the PIR scheme, and shared randomness complexity (per query) which is of the same orderof magnitude as the communication complexity. In particular, extending schemes from [11, 1] weobtain:� k-database SPIR scheme of complexity O(n1=(2k�1)) for any constant k � 2;� O(logn)-database SPIR scheme of complexity O(log2 n � log logn).Our schemes maintain the general paradigm of existing PIR schemes: all databases hold an identicalcopy of x, and all protocols use a single queries-answers round.If one is willing to settle for computational privacy of the data (while still maintaining theinformation-theoretic privacy of the user) then we can also consider a slight variation of the model,by replacing the shared random strings with pseudo-random ones. More speci�cally, the databasesmay share a short random seed from which longer shared pseudo-random strings can be generated\on the 
y", without extra communication [6, 25]. This allows the databases to save storage space3



and save on the amount of random bits they need to produce. We also remark that by using pseudo-random functions [15] it is possible for the databases, in each execution of the protocol, to directlyexpand from the seed only the portion of the expanded string that is needed for this particularexecution (without actually expanding the whole string).Our results, as well as all cited PIR works, concentrate mainly on the case of 1-privacy. Themore general notion of t-privacy requires that the view of any coalition of t databases is independentof the user's retrieval index i. A generalization of our SPIR protocols that satis�es this strongert-privacy requirement is described later in the paper (Subsection 6.2).Note that we restrict our attention to retrieval of single bits, rather than the retrieval of blocksconsisting of multi-bit records. In Subsection 6.1 we address block retrieval, and show that forsingle-round schemes, concentrating on single-bit records does not compromise generality. We thendescribe how to generalize our results for multi-round schemes as well, achieving SPIR for multi-bitrecords.Finally, an interesting observation is that the SPIR problem may be viewed as a distributedversion of a known cryptographic primitive called �n1�-Oblivious-Transfer (OT) [22, 13, 7, 8]. An�n1�-OT protocol allows Bob to secretly choose one of n secret bits held by Alice, in a way that atthe end of the protocol Bob learns only a single bit of his choice, and Alice learns nothing aboutBob's choice. The results of our work give the �rst 1-round distributed implementations of �n1�-OTwith information-theoretic security and sublinear communication complexity. Since �n1�-OT is auseful tool for cryptographic protocol design, it is our hope that SPIR might also be found a usefultool for the design of cryptographic protocols.1.2 Previous WorkPrivate information retrieval (with information-theoretic user privacy) was introduced in [11], wherethe schemes achieve communication complexity of O(n1=3) bits with 2 databases; O(n1=k) bits withk � 3 databases; and O(log2 n log logn) bits with k = O(logn) databases. In [1] the k-databaseupper bound is improved to O(n1=(2k�1)) for any constant k. The computational counterpart of PIR(i.e., schemes where the user-privacy is only with respect to polynomial-time databases, relying oncertain intractability assumptions) was considered in [10, 20]; they show how to obtain schemeswith communication complexity O(nc) (for any constant c > 0) for k=2 databases [10], assumingthe existence of one-way functions, and even for the case of a single database [20], under thequadratic residuosity assumption. All the above schemes require only a single round of queries andanswers. None of these works consider data-privacy, with the exception of [20], who show how toadd data-privacy to their computational PIR scheme using general zero-knowledge techniques anda multi-round protocol.1.3 OrganizationIn Section 2 we introduce notations and basic de�nitions. In Section 3 we show a general trans-formation of PIR schemes into SPIR schemes, including the introduction of \conditional disclosureof secrets" in Subsection 3.2. The following sections present speci�c schemes, which outperformthe ones obtained by applying the general transformation. Section 4 includes SPIR schemes whichrely on the user being honest. In Section 5 we present schemes which keep the data private from4



any, possibly dishonest, user (with a minor extra communication cost). Section 6 contains exten-sions and generalization of our results: Subsection 6.1 generalizes the results for block retrieval ofmulti-bit records; Subsection 6.2 generalizes the results to schemes with higher levels of user-privacy(that is, privacy against coalitions of databases); and Subsection 6.3 outlines a generalization ofSPIR, called private retrieval with costs, where our techniques and results can be used. Finally,Appendix A.1 contains a proof of the impossibility of SPIR in the usual PIR setting (without directinteraction between the databases or shared randomness), and Appendix A.2 gives a lower boundon the amount of shared randomness necessary for our general PIR to SPIR transformation.2 Preliminaries2.1 General Notations and De�nitionsThe following notations and conventions are used throughout the paper. Let [`] denote the setf1; 2; : : : ; `g and Z` def= f0; 1; : : : ; `� 1g denote the additive group of residues modulo `. For any twosets S; S 0, let S�S 0 denote the symmetric di�erence between S and S 0 (i.e., S�S 0 = (SnS 0)[(S 0nS)).For a set S � [`] let �S denote the characteristic vector of S: an `-bit binary string whose j-th bitis equal to 1 i� j 2 S. To simplify notation, S � j and �j are used instead of S � fjg and �fjg,respectively. For any binary string � 2 f0; 1gd, let weight(�) denote the number of nonzero entriesin � (in particular 0 � weight(�) � d). For any n-tuple y and index set B � [n], let yjB denotethe restriction of y to its entries with indices from B. By default, whenever referring to a randomchoice of an element from a �nite domain A, the associated distribution is uniform over A, andthis random choice is independent of all other random choices. Finally, addition and multiplicationoperations will sometimes be carried over a �nite �eld or group, as implied by the context.A Boolean function h : f0; 1gm!f0; 1g is called monotone if for every A;B � [m] s.t. A � B,if h(�A) = 1 then also h(�B) = 1. A Boolean formula over the variables y1; : : : ; yn is a labeledbinary tree, whose leaves (representing inputs) are labeled by literals from fy1; y1; : : : ; yn; yng, andwhose internal nodes (representing boolean operators) are labeled by \^" or \_". Such a formulacomputes a Boolean function h : f0; 1gn ! f0; 1g in the natural way. A formula is said to bemonotone if all of its leaves are labeled by positive literals (which implies that the function that theformula computes is monotone). Finally, the size of a formula is measured by the number of leaves.2.2 PIR SchemesLet k denote the number of databases, DBj (for 1 � j � k) denote the j-th database, x denotean n-bit data string which is held by each of the k databases, U denote the user, and i denote theposition (also called index) of a data bit which the user wants to retrieve (1 � i � n).A PIR scheme is a randomized protocol between U and DB1; : : : ;DBk, where U has an accessto a random input �, unknown to the databases, and DB1; : : : ;DBk have access to a shared randominput r, unknown to the user1. In each round of the protocol messages are exchanged between theuser and the databases: queries are sent from the user to each database, and answers are sent from1It is assumed, without loss of generality, that all databases are otherwise deterministic.5



each database to the user.2 The view of the user in the protocol, denoted viewU(x; i; r; �), consistsof its input i, its random input �, and all the answers received from the k databases during theexecution of the protocol (with inputs x; i; r; �). Similarly, the view of the j-th database, denotedviewj(x; i; r; �), consists of the data string x, the shared random input r, and all the queries sent fromthe user to DBj during the execution of the protocol. At the end of the execution, the user appliessome reconstruction function 	 to its view and outputs the corresponding value 	(viewU(x; i; r; �)).A party (user or database) in a PIR scheme is called honest if it follows the protocol's speci�-cation. When the user U interacts with (possibly dishonest) databases DB�1; : : : ;DB�k, we denotethe view of the j-th database by view�j(x; i; r; �). Similarly, when the k databases DB1; : : : ;DBkinteract with a (possibly dishonest) user U� we denote the view of the user by view�U(x; i; r; �).A (1-private, information-theoretic) PIR scheme is a protocol as above, which satis�es thefollowing two requirements:(1) correctness: When both the user and the k databases are honest, the user always reconstructsthe data bit xi. That is, for every x; i; r; � as above,	(viewU(x; i; r; �)) = xi:(2) user-privacy: The view of any single database is independent of the retrieval index i. Formally,for any (possibly dishonest) databases DB�1; : : : ;DB�k interacting with the (honest) user U , forany shared random input r, any data string x, any two retrieval indices 1 � i; i0 � n, anydatabase index 1 � j � k, and any view viewj of DB�j ,Pr� [view�j(x; i; r; �) = viewj] = Pr� [view�j(x; i0; r; �) = viewj] :It should be noted that the de�nition of PIR schemes in the literature does not allow for a sharedrandomness between the databases. However, in the context of PIR the de�nitions are equivalent.It is only in the SPIR context where the shared-randomness becomes crucial.2.3 SPIR SchemesA SPIR scheme is a PIR scheme such that in any invocation of the scheme, the user cannot learnany information which doesn't follow from a single physical bit of data. Formally, a SPIR schemeshould satisfy, in addition to the correctness and the user-privacy requirements, the following thirdrequirement:(3) data-privacy: For any (possibly dishonest) user U� interacting with the honest databasesDB1; : : : ;DBk,and for any random input � held by U�, there exists an index i, such that for every data stringsx; y satisfying xi = yi, and every view view of U�,Prr [view�U(x; i; r; �) = view] = Prr [view�U(y; i; r; �) = view] :2As is the case in most of the PIR literature, we will mostly be interested in single-round schemes. The followingde�nitions may take a slightly simpler form when the schemes are restricted to a single round.6



Let us argue that the above de�nition yields the \intuitive notion" of data privacy. The intuitivenotion that we want to capture is that the user cannot learn any information about the data whichdoes not follow from a single physical bit. One may be tempted to require that for any user U�there exists a single index i, such that the view of U� is independent of the data string x givenxi. However, this (stronger) variant of the de�nition cannot be satis�ed. To see that, consider aSPIR scheme S satisfying this latter requirement, and consider a user U� which starts by randomlychoosing an index i, and then proceeds to run according to S with retrieval index i. Clearly, there isno single index i such that the view of such user depends on xi alone. What our de�nition requiresis that, for every random string � held by the user, the user must (explicitly or implicitly) �x anindex i such that its view depends only on xi.3 Finally, note that an equivalent formulation of thedata-privacy requirement is the following one: For any deterministic user U�, there exists an indexi, such that the user's view is independent of the data string x given xi.An honest-user SPIR scheme is a PIR scheme that satis�es the data-privacy requirement withrespect to U , the honest (but curious) user, which follows the scheme's speci�cation but may try todeduce extra information from the communication.Notice that the above formulation of the model is only concerned with answering a single retrievalquery made by a single user. Multiple queries (possibly originating from di�erent users) maybe handled by independent repetitions of the single-query scheme, where in each invocation thedatabases use an independent source of shared randomness (or a \fresh" portion of a single sharedrandom string).By default, the terms \PIR scheme" and \SPIR scheme" refer to 1-round, 1-query, informationtheoretically private schemes.2.4 ComplexityThe main complexity measure for PIR and SPIR schemes is their communication complexity. Thecommunication complexity of a k-database scheme will be denoted (�k(n); �k(n)), where �k(n) isthe total number of query bits sent from the user to all k databases and �k(n) is the total numberof answer bits sent from all k databases to the user, when the data string is of size n. We sometimesuse a single parameter to measure the communication complexity of a given scheme, which is thetotal communication complexity �k(n) + �k(n).The shared randomness complexity of a SPIR scheme is de�ned as the entropy of the sharedrandom input r (which equals to the length of the string r in the case it is uniformly distributedover all strings of some �xed length).Finally, while the de�nitions in Subsections 2.2 and 2.3 do not address the aspect of computa-tional e�ciency, all protocols constructed in this work will also be computationally e�cient (thatis, polynomial in n).3Also note that if the user has some a-priori information regarding the data string x (e.g., that xj = xi) then theretrieval of xi, together with its a-priori information, may give it information about other bits of x; this is obviouslyunavoidable.
7



3 A General Reduction from SPIR to PIRIn this section we present a construction of a SPIR scheme by using any PIR scheme as a black-box. This construction introduces an overhead of a single auxiliary database, a constant factor incommunication complexity, and a linear amount of shared randomness over the corresponding PIRscheme. The auxiliary database need not hold a copy of the data string x; it only needs to haveaccess to the shared random string r.More speci�cally, we present two general reductions. The �rst is with respect to an honestuser and costs only an additive logarithmic factor in communication complexity (Subsection 3.1).The second strengthens the �rst to deal with any user, possibly dishonest (Subsection 3.3). Thelatter is constructed by utilizing a new cryptographic primitive, called \conditional disclosure ofsecrets" (introduced in Subsection 3.2), which will also be used in later sections. We note that bothreductions (Theorems 1 and 3) are stated and proved for a single round PIR, but can be generalizedto apply to PIR schemes with any number of rounds.3.1 A General Reduction with Respect to Honest UsersTheorem 1. Let P be any 1-round k-database PIR scheme with communication complexity(�k(n); �k(n)). Then, there exists a 1-round (k+1)-database honest-user SPIR scheme SP withcommunication complexity (�k(n) + (k+1)dlog2 ne; �k(n) + 1), and shared randomness complexityn.Proof. To simplify notation, assume that the index i is taken from the set Zn = f0; 1; : : : ; n� 1g(rather than from [n]). The scheme SP involves k databases DB1; : : : ;DBk, corresponding todatabases of the original scheme P, and an auxiliary database DB0. All databases share a randomstring r 2 f0; 1gn. The scheme SP proceeds as follows:Queries: First the user picks queries q1; : : : ; qk as speci�ed by the PIR scheme P, and independentlypicks a random shift amount � 2 Zn. Then the user sends to each DBj, for 1 � j � k, the same shiftamount �j = �, along with the query qj. Finally, the user sends the shifted index i0 def= (i��)modnto DB0.Answers: Each database DBj, for 1 � j � k, locally computes a \virtual data string" x0 def= x �(r >> �), where � denotes bitwise exclusive-or, and r >> � denotes a cyclic shift of the randomstring r by � places to the right. Then, DBj answers the query qj as it would do in the originalPIR scheme P with respect to the computed string x0. Finally, the auxiliary database DB0 replieswith the single bit ri0 .Reconstruction: The user reconstructs xi by �rst reconstructing from the answers ofDB1; : : : ;DBka bit bP according to PIR scheme P, and then computing the exclusive-or of this bit with the bitri0 received from DB0.By the correctness of P, we have bP = x0i. Therefore, the reconstruction step of SP yieldsbP � ri0 = x0i � ri0 = (xi � ri0) � ri0 = xi, which proves the correctness of SP . The user's privacyfollows from the privacy of P, and from the fact that each of the additional queries � and i0 isuniformly distributed in Zn, independently of the P-queries q1; : : : ; qk. Finally, to show that thescheme SP meets the data-privacy requirement with respect to the honest user, we will use thefollowing, more general, claim. 8



Claim 1. Let q = hi0; (q1;�1); (q2;�2); : : : ; (qk;�k)i be any (k+ 1)-tuple of queries (possibly, butnot necessarily, picked by an honest user). Moreover, suppose that �1 = �2 = � � � = �k def= �.Then, the joint answers of DB0; : : : ;DBk to their corresponding queries in q are independent of xgiven xi0+� (where the probability space is over the choice of r, and where the sum i0 +� is takenmodulo n).Proof. Let x0 def= x�(r >> �). Note that x0 is the virtual data string computed by each databaseDBj, 1 � j � k, in the process of answering to its own query from q, i.e., qj. Now, consider thejoint distribution of (x0; ri0). This distribution is uniform over the setf(y; b) : y 2 f0; 1gn; b 2 f0; 1g; yi0+� � b = xi0+�g ;thus depending only on xi0+�. Since x0 determines the answers of DB1; : : : ;DBk given the query-tuple q, and since ri0 is the answer of DB0, it follows that the joint distribution of all answers givensuch query-tuple q depends on xi0+� alone.Claim 1 implies that the distribution of the view of an honest user, given that it holds input iand random input �, depends only on a single data bit, because an honest user sets �1 = �2 =� � � = �k = �. This shows the data-privacy of SP with respect to an honest user, and concludesthe proof of Theorem 1.Note that in the above scheme SP , a dishonest user can either send invalid P-queries, or senddi�erent shifts �j to di�erent databases. However, by Claim 1, only the latter dishonest behaviorcould potentially give the user more information on the data. In other words, if the user sends thesame shifts to all databases, then data-privacy will always be maintained, regardless of the validityof the other queries. Thus, to extend this scheme for a dishonest user, it would su�ce to have thedatabases (each of which sees only a single �j) send their answers disguised so that the user learnsthe answers only if the condition �1 = : : : = �k is satis�ed. To this end, we use the primitive of\conditional disclosure of secrets", introduced in the next subsection.A natural question regarding the above transformation is whether its shared randomness com-plexity may be reduced. A partial answer to this question is given in appendix A.2, where it isshown that for our transformation to be general (i.e. applicable to any underlying PIR scheme),the shared n-bit string used there must be uniformly distributed over f0; 1gn, namely linear sharedrandomness is required regardless of the communication complexity of the underlying PIR scheme.Finally, we note that Claim 1 implies that if P is the trivial 1-database PIR scheme in whichthe entire data string is being sent to the user, then the 2-database SPIR scheme SP constructedabove is resilient also against a dishonest user. We thus have:Corollary 1. There exists a 1-round, 2-database SPIR scheme S�2 with communication complexity(2dlog2 ne; n + 1), and shared randomness complexity n.While this scheme S�2 is ine�cient on its own, as it requires linear communication complexity,it will be used as a subprotocol (with small data strings) in our later constructions.3.2 Conditional Disclosure of SecretsIn this subsection we describe and implement a new cryptographic primitive, called conditionaldisclosure of secrets (or CDS for short). This primitive is then used in the next subsection to obtaina general reduction from SPIR to PIR withstanding any user behavior.9



Informally, the conditional disclosure setting involves k players, each holding some private input,and an external party Carol, which knows all inputs held by the players. In addition, there is asecret s which is known to at least one of the players but not to Carol. The goal is for the players todisclose the secret to Carol, subject to a given condition on their joint input (namely if the conditionholds, Carol learns the secret, and if it doesn't she obtains no information about the secret). Themodel allows all the players to have access to a shared random string (hidden from Carol), andthe only communication allowed is a single unidirectional message sent from each player to Carol.Note that Carol knows whether the messages she receives will help her obtain the secret becauseshe holds the entire input, and thus knows whether the condition holds.A formal de�nition is given below. For convenience, we start by de�ning a version where thesecret s to be disclosed is known to all players (we call this version conditional disclosure of acommon secret).Let h : f0; 1gn!f0; 1g be a �xed boolean function (the condition); let B1; : : : ; Bk be a partitionof [n] into k sets (each Bj � [n] is called the j-th player input portion); and let SD be some secretdomain (e.g., all binary strings of a particular length). A conditional disclosure of a common secretfor the condition h, input partition B1; : : : ; Bk, and secret domain SD, consists of a set of k playersP1; : : : ; Pk (modeled as functions) and (an external party) Carol, as follows. Let r denote a sharedrandom input of the players, drawn from some distribution R. For any �xed y = y1 : : : yn 2 f0; 1gn(the input), s 2 SD (the secret), and 1 � j � k, we de�ne a random variable mj = Pj(yjBj ; s; r)(the j-th player message), where the randomness is over the choice of r. Then the following twoconditions must hold:1. correctness: For every y 2 f0; 1gn, if h(y) = 1, then 8s; r, Carol(y;m1; : : : ; mk) = s. Thatis, if the condition holds, then Carol is always able to reconstruct the secret s from her inputand the messages she received.2. secrecy: For every y 2 f0; 1gn, if h(y) = 0, then for any s0; s1 2 SD the k-tuples of randomvariables Dms0j = Pj(yjBj ; s0; r)Ekj=1 and Dms1j = Pj(yjBj ; s1; r)Ekj=1 are identically distributed(where the probability is over the choice of r). That is, if the condition does not hold, Carolobtains no information about the secret s (the messages received by Carol are identicallydistributed for any two possible secrets s0 and s1).A similar version can be de�ned when the secret s is known to at least one of the players (notnecessarily to all of them). In this case we let mj = Pj(yjBj ; r) for players Pj who do not hold s(their message is constructed only based on their portion of the input and the shared randomness).We call this (more general) version conditional disclosure of a secret.The communication complexity of a conditional disclosure protocol is the maximal total size ofall messages sent by the players (over the choices of r), and its shared randomness complexity is theentropy of R.We note that the model of conditional disclosure is similar to the non-interactive model of privatecomputation from [14], which is described in Subsection 4.2. Known results in that (in a sense moregeneral) model are su�cient to yield some solutions to the conditional disclosure problem. Forinstance, results of [14, 16] imply conditional disclosure protocols with communication which isquadratic in the size of a branching program or a formula describing the condition h (see Remark 2for discussion). However, the solutions obtained via these general results are usually not e�cient10



enough for our purposes. Instead, we show below how to achieve much more e�cient solutions,which use communication at most linear in the size of h.3.2.1 Reduction to Generalized Secret SharingIn the following we show how to implement conditional disclosure of secrets under an arbitrarycondition by reducing it to generalized secret sharing [4, 17] relative to a corresponding accessstructure.Generalized secret sharing. The problem of generalized secret sharing is an extension of theusual notion of t-out-of-m secret sharing [23]. Informally, a generalized secret sharing protocol is arandomized protocol for sharing a secret into m shares such that the secret can be reconstructedfrom any quali�ed set of shares, whereas any combination of an unquali�ed set of shares shouldgive no information about the secret. Formally, a generalized secret sharing scheme with secretdomain SD is de�ned by a triple (D; R; C), where D (the dealing function) maps a secret s 2 SDand a random input r into an m-tuple of shares hs1; : : : ; smi, R is the distribution from which therandom input r is chosen, and C (the reconstruction function) maps a set A � [m] and an jAj-tuple of shares into a reconstructed secret s 2 SD. The collection of quali�ed sets is speci�ed by amonotone Boolean function hM : f0; 1gm!f0; 1g, called an access structure, where a set A � [m]of shares is said to be quali�ed if hM(�A) = 1 and otherwise is said to be unquali�ed. The schemeS = (D; R; C) is said to be a generalized secret sharing scheme realizing the access structure hM ifit satis�es the following two requirements: (1) correctness: for any quali�ed set A � [m], everysecret s 2 SD, and every random input r, the reconstruction succeeds; that is, C(A;D(s; r)jA) = s;and (2) secrecy: for any unquali�ed set A � [m] and secrets s1; s2 2 SD, the random variablesD(s1; r)jA and D(s2; r)jA are identically distributed (where the probability is over the choice of r,distributed according to R). Finally, the share complexity of S is the maximum total size of allshares in an m-tuple D(s; r), and its randomness complexity is the entropy of R.Lemma 1. Let hM : f0; 1gm!f0; 1g be a monotone Boolean function. Let h : f0; 1gn!f0; 1gbe a Boolean function de�ned by h(y1; : : : ; yn) = hM(g1; : : : ; gm), where each gi depends on a singlevariable yj; that is, gi 2 fy1; y1; : : : ; yn; yng for 1 � i � m (such h will be referred to as a projectionof hM ). Let S be a generalized secret sharing scheme with secret domain SD realizing the accessstructure hM , with share complexity � and randomness complexity 
. Then, for any partitionB1; : : : ; Bk of the inputs to h among k players, there exists a protocol P for disclosing a commonsecret s 2 SD subject to the condition h, with communication complexity � and shared randomnesscomplexity 
.Proof. Recall that the CDS protocol P involves players P1; : : : ; Pk each holding a portionof the input y = y1; : : : ; yn (player Pj holds Bj) and the secret s 2 SD. The players wish toreveal their secret to Carol subject to the condition h(y) = 1. We show how to construct Pusing the generalized secret sharing scheme S = (D; R; C) realizing the access structure hM , wherehM(g1; : : : ; gm) = h(y1; : : : ; yn)The protocol P uses a shared random string r distributed according to R, and proceeds asfollows. First, each player Pj evaluates D(s; r), generating an m-tuple of shares hs1; : : : ; smi (notethat all players generate the same shares, since they use the same secret and the same random input11



when evaluating D). Next, for each i 2 [m], player Pj includes the share si in the message sentto Carol if and only if the following two conditions hold: (1) gi depends on some input variable ylheld by the player (i.e., gi is either yl or yl for some l 2 Bj); and (2) gi evaluates to 1. That is, themessage sent to Carol by the player Pj consists of the restriction of the shares hs1; : : : ; smi to thosewhich satisfy the above two conditions.Observe that since each input variable yl is held by some player, Carol receives exactly thoseshares si for which gi = 1. By this observation, if hM(g1; : : : ; gm) = 1 then Carol has exactly the sifor which gi = 1, which according to the de�nition of generalized secret sharing is a quali�ed set ofshares, and can thus reconstruct the secret s (using the reconstruction function C). On the otherhand, if hM(g1; : : : ; gm) = 0 then Carol receives an unquali�ed set of shares, and hence gains noinformation about s. To complete the proof, recall that hM(g1; : : : ; gm) = h(y1; : : : ; yn); thus, Carolcan reconstruct s whenever the condition h(y) holds, and otherwise obtains no information on s.Finally, the shared randomness complexity of P is the same as the randomness complexity ofS, and the communication complexity of P is no larger than the share complexity of S (since eachshare is sent by at most one player).We now use Lemma 1 to obtain an upper bound on the complexity of conditional disclosure ofsecrets, depending on the size of a formula computing the condition. The proof of the followingtheorem will use a known result about the complexity of generalized secret sharing.Fact 1. [4] Suppose that hM : f0; 1gm!f0; 1g can be computed by a monotone Boolean formulaof size S. Then, there exists a generalized secret sharing scheme realizing hM with SD = f0; 1g,whose communication complexity and shared randomness complexity are bounded by S.Theorem 2. Suppose that h : f0; 1gn ! f0; 1g can be computed by a Boolean formula of size S,and let SD = f0; 1g. Then, for every partition B1; : : : ; Bk of the inputs to h,1. there exists a protocol P for disclosing a common secret bit s 2 SD (known to all players)subject to the condition h, with communication complexity and shared randomness complexitybounded by S.2. there exists a protocol P 0 for disclosing a secret bit s 2 SD (known to at least one player)subject to the condition h, with communication complexity and shared randomness complexitybounded by S + 1.Proof. A protocol P for conditional disclosure of a common secret bit s known to all playersis constructed as follows. Let H be a Boolean formula over the variables y1; : : : ; yn computing h,whose size is S. Replacing each negative literal yj with a positive literal wj, we obtain a monotoneBoolean formula HM of size S computing a monotone function hM(y1; : : : ; yn; w1; : : : ; wn). Notethat h is a projection of hM , since h(y1; : : : ; yn) = hM(y1; : : : ; yn; y1; : : : ; yn). Using Fact 1, it followsfrom Lemma 1 that the players can disclose the bit s subject to the condition h using at most Scommunication bits and at most S shared random bits, which completes the proof of the �rst partof the theorem.For the second part, a protocol P 0 for conditional disclosure of a secret bit s known to at least oneplayer, proceeds as follows. The players �rst conditionally disclose a shared random bit r0, known toall of them, subject to the condition h. This is done using the protocol P described above. Finally,a single player holding s sends the bit s� r0 to Carol. Clearly, if Carol can reconstruct r0 then she12



can also reconstruct s, and if she obtains no information on r0 then she can obtain no informationon s, and the theorem follows.Remark 1. Using best known general upper bounds on the complexity of generalized secretsharing [18], the result of Theorem 2 can be strengthened to apply to any function h with a spanprogram over GF(2) of size S (see [18] for a de�nition of the span program model).3.2.2 Direct Constructions for Special CasesIn the sequel, the conditional disclosure primitive will be used in our reductions for dealing withdishonest behavior of the user. These applications of conditional disclosure require only a sim-ple condition (e.g., testing equality between inputs). Therefore, in the following we give directconstructions of conditional disclosure protocols realizing these speci�c conditions. These directconstructions are more e�cient than the ones obtained by a straightforward application of The-orem 2. We stress though that the more general results described above are still useful in othercryptographic scenarios, such as the one described in Subsection 6.3.The next lemma shows an e�cient implementation of conditional disclosure of secrets, wherethe condition tests whether the sum of k �eld elements equals 0. Later it will mostly be used withk = 2, to implement conditional disclosure of secrets where the condition tests for equality betweentwo strings.Lemma 2. Let F be a �nite �eld (all arithmetic operations below are in this �eld). Suppose thateach of k players Pj holds an input yj 2 F , and that a secret s 2 F is known to at least one player.Then, there exists a protocol for disclosing the secret s subject to the condition \Pkj=1 yj = 0" inwhich each player sends a single �eld element, and whose shared random string consists of k random�eld elements.Proof. Assume without loss of generality that player Pk holds the secret s, and let r0; r1; :::; rk�1be independent random elements of F , shared by the parties. The protocol can then proceed asfollows:� Each player Pj, 1 � j � k � 1, sends to Carol the single �eld element mj def= yjr0 + rj;� The player Pk sends to Carol mk def= s+ ykr0 �Pk�1j=1 rj.First, note that if all inputs yj add up to 0, then s can be reconstructed as the sum of all messagesmj: kXj=1mj = k�1Xj=1(yjr0 + rj) + s + ykr0 � k�1Xj=1 rj = s+ r0 kXj=1 yj = s:We now show that if P yj 6= 0, the k-tuple of messages (m1; : : : ; mk) is uniformly distributed overF k independently of s. For any sequence of messages m1; : : : ; mk 2 F k, we de�ne its support as theset of all choices r0; r1; : : : ; rk�1 which make the players send this sequence of messages to Carol
13



(when the inputs are y1; : : : ; yk and the secret is s). By the construction of the protocol, the supportconsists of exactly all r0; r1; : : : ; rk�1 satisfying the system of equationsy1r0 +r1 = m1y2r0 +r2 = m2...yk�1r0 +rk�1 = mk�1ykr0 �r1 : : : �rk�1 = mk � sThis is a system of k linear equations in the k variables r0; r1; : : : ; rk�1. When P yj 6= 0 the kequations are linearly independent, since adding the �rst k � 1 equations to the last one yield atriangular system of equations. Therefore, any sequence of messages m1; : : : ; mk 2 F k has a supportwhich is a singleton, and in particular all sequences have the same size support. This implies thatthe uniform distribution of the �eld elements r0; r1; : : : ; rk�1 induces a uniform distribution of themessages m1; : : : ; mk over F k, for any input tuple y1; : : : ; yk with nonzero sum and any secret s 2 F .Note that the above lemma outperforms the general construction of Theorem 2. Using thegeneral construction, the communication and randomness required for disclosing a single bit secretis larger than the total size of k �eld elements (which is a lower bound on the size of a formulaevaluating the condition), whereas in the speci�c construction of Lemma 2 communication andrandomness of this size are su�cient for the disclosure of a longer secret, namely a �eld element.The following lemma shows that it is possible to further reduce the communication to be dominatedby the secret size, even when the secret is smaller than the inputs.Lemma 3. Suppose that each of k players holds an input string4 yj 2 f0; 1g`, and a secret strings 2 f0; 1gm is known to at least one player. Then, there exists a protocol for disclosing the secret ssubject to the condition \Lkj=1 yj = 0`" in which each player sends a string of length m, and whoseshared randomness complexity is k �max(`;m).Proof. For a �nite �eld F = GF(2w), we use a standard representation of �eld elements byw-bit strings, such that each element of F is represented by the coe�cient vector of the polynomialassociated with it. (Recall that an element of GF(2w) may be identi�ed with a polynomial overGF(2) of degree � w � 1, modulo some irreducible degree-w polynomial). Such representationde�nes an isomorphism between the groups hF;+i and hf0; 1gw;�i.We now consider two possible cases. If ` � m, then the protocol from the proof of Lemma 2can be used as is, letting F = GF(2m), and associating the secret s with the corresponding �eldelement and each input string yj 2 f0; 1g` with the �eld element corresponding to its m-bit paddingyj0m�`.In the second case (` > m), we use the same protocol with F = GF(2`), except that each �eldelement sent in the original protocol is projected to the m leftmost bits of its representation; thatis, if mj is the �eld element originally sent by Pj and is represented by the string �1�2 � � ��`, thenthe message sent from Pj to Carol in the new protocol would be the m-bit pre�x �1�2 � � ��m. Akey observation is that, under the above representation, the projection operator commutes withthe �eld addition. Hence, the sum of all `-bit projections sent in the new protocol is equal to the4The claim is formulated for binary strings, but can be generalized to strings over any �nite �eld.14



projection of Pkj=1mj. It follows from the above observation and from the analysis in the proof ofLemma 2 that if the condition \Lkj=1 yj = 0`" holds, then s can be reconstructed as the exclusive-orof all messages. On the other hand, if the condition does not hold, then the original k messagesare uniformly and independently distributed over F , from which it follows that the projected m-bitmessages are independently and uniformly distributed over f0; 1gm. This proves the correctnessand secrecy of this protocol.Finally, since in both cases each player sends a message string of length m, the speci�edcommunication bound is met, and since in both cases the protocol of Lemma 2 is invoked withF = GF(2max(`;m)), the speci�ed shared randomness bound is met as well.In particular, the result of Lemma 3 can be applied with k = 2 for conditionally disclosing asecret s subject to a condition which tests equality of strings held by two players. This protocolclearly outperforms any protocol obtainable via the general result of Theorem 2; indeed, sincetesting equality between `-bit strings requires a formula of size �(`), the best protocol obtainablevia Theorem 2 would require �(`) communication bits for conditionally disclosing a single bitsubject to equality between two `-bit strings (compared to only 2 communication bits required usingLemma 3). The improved e�ciency obtained via Lemma 3 will be used in the next subsection.3.3 A General Reduction with Respect to Dishonest UsersUsing the conditional disclosure of secrets primitive described above, the following theorem givesa general reduction from any PIR scheme to a SPIR scheme for the case of any user (possiblydishonest).Theorem 3. Let P be any 1-round k-database PIR scheme with communication complexity(�k(n); �k(n)). Then, there exists a 1-round, (k+1)-database SPIR scheme S�P with communicationcomplexity at most (�k(n)+(k+1)dlog2 ne ; 2�k(n)+1), and shared randomness complexity O(n+�k(n)).Proof. Let SP be the protocol from the general (honest-user) reduction of Theorem 1. ByClaim 1, SP satis�es data-privacy as long as the user sends to every database DBj the same shiftamount �j. Thus we make S�P be the following modi�cation of SP , e�ectively forcing the user tosend the same shifts.The user's queries are the same as in SP , and so are the answers of DB0 (the auxiliary database)and DB1. In addition, for each 2 � j � k, we let DBj and DB1 disclose the original SP -answerof DBj subject to the condition �j = �1 (where �j is the dlog2 ne-bit shift sent to DBj). Thisconditional disclosure is implemented using Lemma 3.The user-privacy in the original SP is clearly maintained. The scheme S�P meets the data-privacyrequirement, since the use of conditional disclosure guarantees that the (possibly dishonest) userwill obtain information only on answers of databases DBj such that �j = �1, which by Claim 1implies that the user learns at most a single physical bit of data. Hence, S�P is indeed a SPIRscheme.We now analyze the complexity of this scheme. For each 0 � j � k we let �jk(n) denotethe length of the answer sent by DBj in the scheme SP . By Theorem 1, we know that �0k = 1and that Pkj=0 �jk(n) = �k(n) + 1. Using Lemma 3, the communication complexity required toimplement the conditional disclosure subprotocol involving the databases DB1 and DBj in the15



scheme S�P is 2�jk(n). The total communication sent from all databases to the user is therefore�0k(n) + �1k(n) + Pkj=2(2�jk(n)) � 1 + 2Pkj=1 �jk(n) = 1 + 2�k(n). The total communication sentfrom the user is the same as in SP , namely �k(n) + (k + 1)dlog2 ne. The shared randomnesscomplexity is the same as in SP plus the randomness required by Lemma 3, which sums up ton+ 2Pkj=2max(2dlog2 ne; �jk(n)) = O(n+ �k(n)).In subsequent sections we present SPIR schemes which rely on speci�c structural properties ofsome underlying PIR schemes, and exploit them to outperform the above general transformations.In particular, they use sublinear shared randomness, and do not require an auxiliary database.4 Speci�c SPIR Schemes with Respect to Honest UsersIn this section we construct honest-user SPIR schemes which perform as well as their PIR coun-terparts, up to a multiplicative constant, both in terms of communication and randomness. Ourconstructions utilize two primitives: private simultaneous messages protocols (described below),and conditional disclosure of secrets (introduced in Section 3.2 above). Since our schemes rely onspeci�c PIR schemes from the literature, we �rst review some details of those PIR schemes whichare important for our constructions.4.1 Some Known PIR SchemesWe start by describing a PIR scheme from [11], referred to as the basic cube scheme. This schemeis the basis for the 2-database scheme B2 from [11], also described below, which in turn servesas the basis for the recursive k-database scheme Bk from [1]. The schemes Bk and the polynomialinterpolation scheme of [11, 3] are described later on, in the proofs of Theorems 6 and 7 respectively.Basic d-dimensional Cube Scheme: This is a PIR scheme for k = 2d databases. Assumewithout loss of generality that the database size is n = `d, where ` is an integer. The indexset [n] can then be identi�ed with the d-dimensional cube [`]d, where each index i 2 [n] can benaturally identi�ed with a d-tuple (i1; : : : ; id). A d-dimensional subcube is a subset S1 � � � � � Sdof the d-dimensional cube, where each Sm is a subset of [`]. Such a subcube is denoted by thed-tuple C = (S1; : : : ; Sd). The k(= 2d) databases are assigned all of the binary strings of length d,DB�8� 2 f0; 1gd. The scheme proceeds as follows.Queries: The user picks a random subcube C = (S01 ; : : : ; S0d), where S01 ; : : : ; S0d are independentrandom subsets of [`]. Let S1m = S0m � im (1 � m � d), where i = (i1; : : : ; id) is the index thatthe user wishes to retrieve. For each � = �1�2 � � ��d 2 f0; 1gd, the user sends to database DB� thesubcube C� = (S�11 ; : : : ; S�dd ), where each set S�mm is represented by its characteristic `-bit string.Answers: Each database DB�, � 2 f0; 1gd, computes the exclusive-or of the data bits residing inthe subcube C�, and sends the resultant bit b� to the user.5Reconstruction: The user computes xi as the exclusive-or of the k bits b�'s it has received.The scheme's correctness follows from the fact that every bit in x except xi appears in an evennumber of subcubes C�, � 2 f0; 1gd, while xi appears in exactly one such subcube (see [11] for5The exclusive-or of an empty set of bits is de�ned to be 0.16



details). The communication complexity of this 2d-database scheme is O(n1=d), much worse thanthe following scheme B2 and its generalization Bk, which achieves communication O(n1=(2k�1)) fora constant number of databases k.The scheme B2: This scheme may be regarded as a 2-database implementation of the 8-database(3-dimensional) cube scheme described above. Let ` = n1=3, and let i = (i1; i2; i3) be the index ofthe data bit being retrieved. Each of the two databases DB000 and DB111 emulates the 4 databasesDB�, � 2 f0; 1g3, such that the Hamming distance of � from its own index is at most 1. This isdone in the following way. The user sends to DB000 the subcube C000 = (S01 ; S02 ; S03) and to DB111the subcube C111 = (S11 ; S12 ; S13) as in the basic cube scheme. We would like the answers of eachof the two databases to include the 4 answer bits of the 4 databases it emulates. To this end,DB000 replies with its own answer bit b000 along with 3 `-bit long strings, each of which containsthe answer bit of one of the other databases it emulates. For instance, the i01-th bit of the stringemulating DB100 is obtained by computing the exclusive-or of all data bits residing in the subcube(S01 � i01; S02 ; S03), implying that the i1-th bit in this string is equal to b100. Symmetrically, DB111sends the single bit b111 along with 3 `-bit long strings, each of which corresponds to the subcubesobtained from C111 by \masking" the set S1m with all ` possible values of im. Altogether, the userreceives 8 answer strings a�; � 2 f0; 1g3, six of which contain ` bits each, and the other two (namely,a000 and a111) contain single bits. In each of the `-bit long strings, the required answer bit b� canbe found in either the i1 bit of the string (for � = 100; 011), the i2 bit (for � = 010; 101), or the i3bit (for � = 001; 110). Since the user can locate all 8 bits b�, � 2 f0; 1g3, in the answer strings, itcan reconstruct xi by computing their exclusive-or.4.2 The Private Simultaneous Messages (PSM) ModelIn a typical PIR scheme, the honest user can extract from the databases' answers more informationthan just the reconstructed value xi. Towards solving this problem, we use the following idea.Consider any 1-round PIR scheme. In an execution of such scheme, the user �rst produces k queriesq1; : : : ; qk, depending on the index i. It then sends each query to the corresponding database andin response receives k answer strings a1; : : : ; ak. Finally, the user applies a reconstruction function	 to obtain the desired bit xi. Our idea is to have the user compute the output of 	 withoutactually getting the answers a1; : : : ; ak, from which it can obtain more information, but rather getsome other messages m1; : : : ; mk that keep the privacy of the string x.Precisely this idea is captured by the model of non-interactive private computation introducedin [14] and further studied in [16], called the Private Simultaneous Messages (PSM) model. Inthis model there are k players, each player Pj holding a private input string yj, and an externalreferee called Carol. All players have access to a shared random input, which is unknown to Carol.The goal of a PSM protocol is to let Carol evaluate a function f(y1; : : : ; yk) without learning anyadditional information about the inputs y1; : : : ; yk. The scenario of the PSM protocol is similar to aconditional disclosure protocol (see Subsection 3.2), except that in PSM there is no input to Carol,and there is no other input to the players except y1; : : : ; yk. More formally, in a PSM protocol eachplayer Pj sends a single message to Carol, based on its private input yj and the shared random input,and Carol applies some reconstruction function to the k messages she received. A PSM protocolcomputing a k-argument function f must satisfy the following requirements: (1) correctness: forany input tuple y = (y1; : : : ; yk) and any shared random input, the value reconstructed by Carol17



is f(y); and (2) privacy: given any two input tuples y = (y1; : : : ; yk); y0 = (y01; : : : ; y0k) such thatf(y) = f(y0), the messages viewed by Carol are identically distributed.The communication complexity and the shared randomness complexity of a PSM protocol arede�ned as in the conditional disclosure of secrets model. We denote the communication complexityof a k-player PSM protocol by ck(m), where m is the total number of input bits held by the kplayers, and its shared randomness complexity by dk(m).In [14, 16] several upper bounds on PSM complexity are obtained. In particular, it is shown thatany Boolean function with a branching program of size S(m) (with any partition of the m inputbits among k players) can be computed by a PSM protocol whose communication complexity andshared randomness complexity are O(k �S(m)2) [16]. In general, this quadratic overhead will turnout to be too expensive for our purposes. However, some functions do admit simple PSM protocolswith linear complexity as we see in the following lemma.Lemma 4. Let (G;+; 0); (H; ~+; ~0) be �nite Abelian groups, and f :Gk ! H be a linear function(that is, f((y1+z1); : : : ; (yk+zk)) = f(y1; : : : ; yk) ~+f(z1; : : : ; zk) for all (y1; : : : ; yk); (z1; : : : ; zk) 2 Gk).Then, there exists a PSM protocol computing f whose communication complexity and sharedrandomness complexity are no larger than m, where m is the total number of input bits to f .Proof. The PSM protocol for f proceeds as follows. Each player Pj masks its input yj with rj,setting wj def= yj + rj, where (r1; : : : ; rk) 2 Gk is a random shared tuple satisfying f(r1; : : : ; rk) = 0.Then, Pj sends the masked input wj to Carol. Carol can now compute f(w1; : : : ; wk) = f((y1 +r1); : : : ; (yk + rk)) = f(y1; : : : ; yk) ~+f(r1; : : : ; rk) = f(y1; : : : ; yk) ~+~0 = f(y1; : : : ; yk), which is thedesired output value. The privacy of this protocol follows by observing that for any input tupley = (y1; : : : ; yk) and message tuple w = (w1; : : : ; wk) such that f(y) = f(w), there exists a uniquerandom input r (namely, r = w � y) such that f(r) = 0 and the messages induced by the inputs yand the random input r are w. Therefore, every message tuple w such that f(y) = f(w) has thesame size support (a singleton), implying identical distribution of all such messages. Finally, thecommunication and shared randomness complexity are clearly as speci�ed.This lemma is used in the sequel, when the groups G;H are the binary strings of a �xed length,and the operation is � (exclusive-or).Remark 2. (CDS from PSM) Note that the conditional disclosure of secrets (CDS) primitivedescribed in Subsection 3.2 and used in Theorem 2 may be implemented (less e�ciently) usingPSM computation. Speci�cally, disclosing a bit s subject to a condition g(y) may be reduced tothe PSM computation of the function f(y; s) = g(y) ^ s. Indeed, by the correctness of the PSMprotocol for f , if g(y) = 1 then Carol can reconstruct s = g(y) ^ s. On the other hand, if g(y) = 0then, by the privacy of the PSM protocol, Carol's view is identically distributed under the inputs(y; 0) and (y; 1), implying that Carol learns nothing about s. However, the general upper bound onthe complexity of conditional disclosure of secrets, established by Theorem 2, is linear in the sizeof a formula (or a span program) computing the condition, whereas best known results on PSMcomplexity yield a bound which is quadratic in such representation size. This is because everyfunction with formula size S(m) is also computable by a branching program of size S(m) + 1 (see[24, Chapter 14]). This, as mentioned above, gives a PSM complexity of O(S(m)2).18



4.3 SPIR Schemes Based on PSM and CDS ProtocolsIn this subsection we use PSM and CDS protocols to construct honest-user SPIR schemes. First, inlemma 5 we apply PSM solutions to a PIR scheme with a particular type of reconstruction functionin order to get an honest-user SPIR scheme. We then discuss the implications of this lemma andprovide an example in which it is used. This example and lemma are also helpful in our laterconstructions, in particular ones which involve PIR schemes with a more general reconstructionfunction.Lemma 5. Suppose P is a 1-round k-database PIR scheme with communication complexity(�k(n); �k(n)), such that: (1) the reconstruction function 	 depends only on the answers of thedatabases, and (2) the function 	 can be computed by a PSM protocol whose communicationcomplexity is ck(m) and whose shared randomness complexity is dk(n). Then, there exists a 1-roundk-database honest-user SPIR scheme S whose communication complexity is (�k(n); ck(�k(n))) andwhose shared randomness complexity is dk(�k(n)).Proof. A scheme S of the speci�ed complexity can be obtained from P as follows. Theuser chooses queries q1; : : : ; qk as it does in the PIR scheme P and sends each query qj to thecorresponding database DBj. Each database DBj computes its answer aj as it would do in P, butinstead of sending the answer to the user, the databases (using their shared randomness) simulatethe PSM computation of 	(a1; : : : ; ak). That is, each database DBj sends to the user the messagethat player Pj would send to Carol in the PSM protocol for 	. The correctness and privacy of Sfollow from the correctness and privacy of P and of the PSM protocol for 	, and the complexity isclearly as stated.We stress that Lemma 5 only yields honest-user SPIR schemes; indeed, a dishonest user canpotentially generate \invalid" queries, such that applying the reconstruction function to their an-swers gives forbidden information which does not follow from any physical data bit. (Here the ideaof hiding the input to the reconstruction function will not help, since the dishonest user may getinformation from the output of the reconstruction function). A direct application of Lemma 5 isgiven in the following example.Example 1. PSM-based honest-user SPIR scheme for the d-dimensional cube scheme.Consider the basic d-dimensional cube scheme from Subsection 4.1, in which the reconstructionfunction consists of computing the exclusive-or of the k answer bits sent from the databases. Thisscheme does not maintain data-privacy, since the user learns the exclusive-or of k = 2d di�erentsubsets of data bits. In this case, the extra information can be eliminated by applying Lemmas 4and 5. Speci�cally, instead of sending the original answer b�, each database DB� will send a maskedanswer b� � r�, where r = r0���00r0���01 � � � r1���10 is a (k � 1)-bit shared random string, and r1���11 iscomputed as the exclusive-or of the bits of r. Under the modi�ed scheme, an honest user's view isuniformly distributed among all k-tuples whose exclusive-or is L�2f0;1gd b�, which by the scheme'scorrectness is equal to the physical bit xi.Other PIR schemes with linear reconstruction function, to which Lemma 5 is applicable withno communication overhead, include the polynomial-interpolation schemes for O(logn) databasesof [11, 3], for which (dishonest-user) SPIR counterparts will be given in Subsection 5.2.19



Remark 3. (On the generality of Lemma 5) Note that Lemma 5 requires that in theunderlying PIR scheme P, the reconstruction function depends only on the answers computed bythe databases. While this is the case with the basic cube scheme (see Example 1 above), this isnot the case with the scheme B2, for instance, where reconstruction heavily depends on the indexi held by the user. In order to satisfy this requirement, any PIR scheme P, whose reconstructionfunction 	 may also depend on the the index i and the queries qj, may be augmented into a PIRscheme P 0, whose reconstruction 	0 depends only on the answers, as follows. First, the user secret-shares the index i between two databases independently of its original queries (e.g., by sending adlog2 ne-bit random string to one database and the exclusive-or of this random string with the binaryrepresentation of i to the other database). Such sharing of i does not violate the user's privacy andintroduces only a minor overhead on the query complexity. Then, each database DBj appends toits original answer aj the query qj it received (including the share of i). The original reconstructionfunction 	 induces a reconstruction function 	0 for the augmented scheme P 0, which depends onthe databases' answers alone. Hence, Lemma 5 can be applied to the augmented scheme. However,the complexity of this solution can be prohibitive.In the remainder of this section we derive an honest-user SPIR scheme from the 2-database PIRscheme B2.6 In this case, it is possible to use the PSM methodology of Lemma 5 and Remark 3to e�ciently meet this goal. However, towards constructions in the next sections, we introduce analternative, conceptually simpler, methodology of using conditional disclosure of secrets on top ofPSM. A similar methodology may also be useful in di�erent contexts, as will be demonstrated inSubsection 6.3.Theorem 4. There exists a 2-database honest-user SPIR scheme, B02, with communicationcomplexity and shared randomness complexity O(n1=3).Proof. Recall the PIR scheme B2 (see Section 4.1) and, in particular, its reconstruction functionwhich may be viewed as a two-stage procedure: (1) the user selects a single bit from each of 8answer strings, depending only on the index i = (i1; i2; i3); and (2) the user takes the exclusive-orof the 8 bits it has selected to obtain xi. Thus, if we let the honest user learn only the exclusive-orof the 8 bits corresponding to i, the data-privacy requirement will be met. This can be achievedby using the conditional disclosure of secrets primitive on top of a PSM protocol computing theexclusive-or of 8 bits. The scheme B02, an honest-user SPIR version of B2, proceeds as follows:Queries: The user sends the subcubes C000 to DB000 and C111 to DB111, as in the scheme B2. Inaddition, the user independently shares the three characteristic vectors �im , m = 1; 2; 3, among thetwo databases. This is done by picking random `-bit strings i0m; i1m such that i0m � i1m = �im andsending the three strings i0m to DB000 and the three strings i1m to DB111. 7Answers: Each of the two databases computes 3 answer strings of length n1=3 and 1 one bit answeras in the B2 scheme. Denote by a� the answer string emulating DB�, � 2 f0; 1g3. The databasestreat each bit of a string a� as an input to a PSM protocol computing the exclusive-or of 8 bits,6While it is possible to extend our construction to apply to Bk, the k-database generalization from [1], we postponethis generalization to the next section, which deals with the case of a dishonest user.7When the user is honest, this extra sharing of �im is redundant since the characteristic vectors of the sets S0m; S1msent by the user may be viewed as these shares; however, this presentation more closely resembles the solution for adishonest user, described in the the next section. 20



and using their shared randomness they compute (but do not send) the PSM message sent for eachsuch bit. Under the simple PSM protocol for XOR (see Lemma 4 or Example 1), each such messageis by itself a single bit. Let w� denote the string obtained by replacing each bit from a� by itscorresponding PSM message bit. In this case, w� is obtained by masking every bit of a� with thesame random bit r�, where the bits fr�g are 8 random bits whose exclusive-or is 0. Finally, forevery � 2 f0; 1g3 and 1 � j � jw�j, the databases use their shared randomness to disclose to theuser the j-th bit of w�, (w�)j, subject to an appropriate condition. For � = 100; 011 the conditionis (i01)j � (i11)j = 1, for � = 010; 101 it is (i02)j � (i12)j = 1, and for � = 001; 110 it is (i03)j � (i13)j = 1.The single bits w000; w111 can be sent in a plain form.Reconstruction: The user reconstructs the eight PSM message bits corresponding to the indexi (using the reconstruction function of the conditional disclosure protocol), and computes theirexclusive-or to obtain xi.The correctness of the above scheme and the user's privacy follow from the correctness and user'sprivacy of the PIR scheme B2 and the correctness of the CDS and the PSM schemes used, and areeasy to verify. We turn to show that the scheme meets the data-privacy requirement with respectto an honest user. We �rst introduce some notation. By A(x; i; r; �) we denote the 8-tuple of B2-answers a�, computed by the databases in the execution of B02 (or B2) induced by (x; i; r; �), wherex is the data string, i is the user's input query, r is the shared randomness of the databases, and� is the random input of the user. Similarly, by W (x; i; r; �) we denote the 8-tuple of PSM stringsw�, computed by the databases in the corresponding execution of B02. Finally, given an 8-tuplew = (w�)�2f0;1g3 and an index i, we let wji denote the restriction of w to the 8 bits correspondingto the index i.Since the user is honest and by the correctness of B2, the exclusive-or of the eight bits inA(x; i; r; �)ji is equal to xi. Thus, by the privacy of the PSM protocol for XOR, it follows that forany x; x0; i such that xi = x0i, any � and z 2 f0; 1g8,Prr [W (x; i; r; �)ji = z] = Prr [W (x0; i; r; �)ji = z]: (1)By the secrecy of the conditional disclosure protocol and the independence of its shared randomnessfrom the PSM randomness, it follows that for any x; x0; i; �; v, and z 2 f0; 1g8 we have:Prr [viewU(x; i; r; �) = v jW (x; i; r; �)ji = z] = Prr [viewU(x0; i; r; �) = v jW (x0; i; r; �) = z]: (2)Finally, combining equations (1) and (2) we get that for any x; x0; i; �; v such that xi = x0i:Prr [viewU (x; i; r; �) = v] = Xz2f0;1g8 Prr [viewU (x; i; r; �) = v j W (x; i; r; �)ji = z] � Prr [W (x; i; r; �)ji = z]= Xz2f0;1g8 Prr [viewU (x0; i; r; �) = v j W (x0; i; r; �)ji = z] � Prr [W (x0; i; r; �)ji = z]= Prr [viewU (x0; i; r; �) = v];concluding the proof of the data-privacy property. (We note that while the above proof explicitlyrefers to all relevant random variables, in subsequent proofs of a similar nature such detailed analysiswill be replaced by higher level arguments.)It remains to show that the scheme meets the speci�ed complexity bounds. Since the conditionfor disclosing each of the O(n1=3) bits of the strings wj is of the form \ y1� y2 = 1" (or equivalently21



y1�y2 = 0), where y1; y2 are single bits, it follows from Lemma 3 (or Theorem 2) that all such maskedanswer bits can be conditionally disclosed with total communication and shared randomness cost ofO(n1=3) bits. Altogether, the communication complexity of the scheme and its shared randomnesscomplexity are O(n1=3), as required.5 Speci�c SPIR Schemes with Respect to Dishonest UsersIn the previous section we were concerned with an honest but curious user. In this section weconstruct SPIR schemes which guarantee data-privacy with respect to dishonest users as well. Thefollowing example demonstrates the extra information that a dishonest user may obtain in ordinaryPIR schemes and in the honest-user SPIR scheme constructed above.Example 2. Consider the scheme B2. Suppose that a user sends the subcube C000 = (fi1g ; fi2g ;fi3g) as a (legitimate) query to the �rst database. Then, the answers of this database alone, whichinclude the bits x(i1;i2;i3), x(i1;i2;i3)�x(j;i2;i3), x(i1;i2;i3)�x(i1;j;i3), and x(i1;i2;i3)�x(i1;i2;j) for all j 2 [n1=3],reveal about 3n1=3 physical bits of data. Note that by randomly setting this query an honest usercan also learn that many physical data bits, but this occurs with only an exponentially smallprobability. Moreover, even in the scheme B02 (which perfectly maintains data-privacy for an honestuser), a dishonest user may similarly obtain �(n1=3) physical data bits. To do this, the user sendsto the �rst database the same cube C000 as above, and sends to the second database the empty cubeC111 = (;; ;; ;). Instead of sharing the characteristic vectors �im , the user will now share three all-ones vectors, which would automatically satisfy all disclosure conditions and allow the user to learnthe entirety of the eight strings w�. Then, about 3n1=3 physical bits can be reconstructed from thecombined answers of the two databases. For instance, for every j 2 [n1=3] the user may reconstructthe bit x(j;i2;i3) by computing w000� (w100)j� (w010)i2 � (w001)i3 � (w011)1� (w101)1� (w011)1�w111.Observe that in the honest-user SPIR scheme B02, a dishonest user can cheat in two ways. Oneway is to improperly share the characteristic vector of its index (e.g., share the all-ones vectorinstead). The other way is to send invalid B2-queries. This may give the user extra informationeven when the index is properly shared, because invalid B2-queries can make the output of thereconstruction function depend on more than one bit of data. In order to become resilient todishonest users, any honest-user SPIR scheme can (in principle) be modi�ed to �lter every originalanswer bit using the conditional disclosure primitive, such that the condition tests for the validityof the user's queries. However, the complexity of disclosing each answer bit subject to a full validitytest will be prohibitive. In the next subsections we use alternative means to transform the bestknown PIR schemes into SPIR schemes. All these transformations involve at most a constantmultiplicative communication overhead.5.1 Cube SchemesIn this subsection we construct a k-database SPIR scheme, resilient against dishonest users, whosecommunication complexity is O(n1=(2k�1)) (the same as the best k-database PIR scheme known).We �rst address the 2-database case, from which we then generalize to the k-database scheme.Theorem 5. There exists a 2-database SPIR scheme, B002 , with communication complexity andshared randomness complexity O(n1=3). 22



Proof. Assume that ` = n1=3 is an integer. The scheme B002 proceeds as follows:Queries: The user sends to DB000 the subcube C000 = (S01 ; S02 ; S03) and to DB111 the subcubeC111 = (S11 ; S12 ; S13), as in the scheme B2. In addition, the user independently shares dense repre-sentations of the index components im, m = 1; 2; 3 (as opposed to the unary representation in thescheme B02). This is done by viewing each index component im as an element of Z`, picking randomdlog2 `e-bit elements i0m; i1m 2 Z` such that i0m + i1m � im (mod `), and sending the three strings i0mto DB000 and the three strings i1m to DB111.Answers: The answers in B002 are constructed on top of some intermediate computations fromthe scheme B02. Recall that b� denotes the answer from database DB� in the basic 3-dimensionalcube scheme, a� denotes the answer string corresponding to DB� in the original scheme B2, andw� denotes the strings constructed by taking the exclusive-or of each bit in the string a� with thesame random bit r� (these correspond to messages in a PSM protocol for computing XOR). Lett1; t2; t3 be shared random strings of length ` each, and u1; u2; u3 be shared random bits (these willbe used as \masks" to guarantee that the user gets no information on x if the subcubes it sent arenot consistent with the index whose binary representation was shared). The databases reply withthe following messages:1. DB000 sends to the user the three bits v0m def= h�S0m; tmi � um, m = 1; 2; 3, where h�; �i denotesinner product over GF(2). Similarly, DB111 sends the bits v1m def= h�S1m; tmi � um.2. DB000 sends to the user the bit w000. Similarly, DB111 sends the bit w111.3. DB000;DB111 use the SPIR scheme S�2 of Corollary 1 to provide the user with a single bit fromeach of the six `-bit strings w100; w010; w001 (known to DB000), and w011� t1; w101� t2; w110� t3(known to DB111)8, in the positions corresponding to the shared index. This is done by usingthe user's queries i0m; i1m as the queries for the scheme S�2 , where m = 1 for retrieval fromw100 and w011 � t1, m = 2 for retrieval from w010 and w101 � t2, and m = 3 for retrieval fromw001 and w110 � t3. Since the index retrieved in the scheme S�2 is the sum of the queries toboth databases, this means that the user obtains the bits in position i1 from the �rst pair ofstrings, i2 from the second pair, and i3 from the third.Reconstruction: An honest user reconstruct xi as follows. For m = 1; 2; 3 the user reconstructsthe bit (tm)im by computing v0m � v1m. Then, using these 3 bits and the bits obtained from the S�2invocations, it computes(t1)i1 � (t2)i2 � (t3)i3 � w000 � w111 � (w011)i1 � (w101)i2 � (w110)i3�(w100 � t1)i1 � (w010 � t2)i2 � (w001 � t3)i3= M�2f0;1g3 b�= xiThe correctness and the user's privacy in this scheme are easy to verify. We now show thescheme's data-privacy, relative to any user.8Recall that in S�2 only one of the two databases needs to know the data, and the other one only needs access tothe shared random string. 23



Lemma 6. Denote by Sbm; ibm, b = 0; 1, m = 1; 2; 3, queries sent by a possibly dishonest user, andlet i�m def= i0m + i1m (mod `). If these queries satisfy S0m � S1m = fi�mg for m = 1; 2; 3 then the answersreveal the bit x(i�1 ;i�2;i�3) and no other information about the data. Otherwise, the answers reveal noinformation about the data.Proof. First, observe that using the random bits um guarantees that for m = 1; 2; 3 the answersv0m; v1m are two uniformly distributed bits satisfying v0m � v1m = h�S0m�S1m ; tmi. Thus if the user ishonest then S0m � S1m = fi�mg and so the user can obtain (tm)im, but if S0m � S1m 6= fi�mg then themessages (v0m; v1m), m = 1; 2; 3, jointly give no information about (tm)i�m . (Note that in the lattercase a user may learn the exclusive-or of the bit (tm)i�m with other bits in tm, but this still gives noinformation on (tm)i�m.)Next, observe that the data privacy of the SPIR scheme S�2 guarantees that the user learns asingle physical bit from each of the six `-bit strings to which the scheme was applied. Moreover, theposition of this bit corresponds to a shared index component i�m. By the properties of the underlyingPSM protocol, the only information revealed by these bits is their exclusive-or which is( M�2f0;1g3 b�)� (t1)i1 � (t2)i2 � (t3)i3 : (3)Altogether, the only information on x the user can obtain is what follows from h�S0m�S1m ; tmi and theoutcome of expression (3) above. Now, if S0m�S1m = fi�mg form = 1; 2; 3 thenL�2f0;1g3 b� = x(i�1 ;i�2;i�3),implying that xi�1;i�2;i�3 is the only information on x learned by the user. On the other hand, if S0m �S1m 6= fi�mg for some m, then there exists some m for which the user gets no information about(tm)i�m, and thus it learns no information about the data.Finally, using Corollary 1 the S�2 invocations can be implemented with a total of O(`) com-munication complexity and shared randomness complexity. Thus, the scheme meets the speci�edcomplexity bounds.We note that the SPIR scheme B002 constructed above is in fact as communication e�cient asthe PIR scheme B2 up to an additive logarithmic overhead.Next, we give a k-database generalization of Theorem 5.Theorem 6. For every constant k � 2 there exists a k-database SPIR scheme, B00k , with commu-nication complexity and shared randomness complexity O(n1=(2k�1)).Proof. We start by giving a short description of the PIR scheme Bk from [1]. Let d = 2k � 1and ` = n1=d. In the scheme Bk, the k databases (denoted DB1; : : : ;DBk) jointly emulate the 2ddatabases of the d-dimensional cube scheme. The scheme proceeds as follows. The user sends toDB1 the subcube C0d as in the basic cube scheme, and sends to each of DB2; : : : ; DBk the subcubeC1d. In its answers, DB1 emulates all databases DB� of the original scheme such that � 2 f0; 1gdis at Hamming distance at most 1 from 0d, similarly to the way such an emulation is done in thescheme B2. Simultaneously, the remaining databases DB2; : : : ;DBk jointly emulate the remainingdatabases of the original scheme, namely all DB� such that � contains at least two 1's. This is doneusing a constant number (2d � d� 1) of recursive invocations of the scheme Bk�1 between the userand DB2; : : : ;DBk. In each such invocation the user retrieves a single bit b� from a virtual datastring, whose entries correspond to the di�erent subcubes possibly sent to DB� in the basic cubescheme (i.e., each bit of the virtual data strings is the exclusive-or of data bits residing in such a24



potential subcube). By taking the exclusive-or of the d + 1 bits selected from the answers of DB1together with the 2d�d�1 bits retrieved by the recursive invocations of Bk�1, the user reconstructsxi. We now show how to adapt the proof of Theorem 5 to this k-database generalization. Intuitively,we combine the recursive construction outlined above with the techniques used for constructing thescheme B002 (of Theorem 5). Note that in B002 each of the two databases had a role as a \maindatabase" having some information to send to the user, as well as an \auxiliary database" to helpthe other database disclose its own information without revealing any extra information. Similarlyin B00k we will have DB1 be the \main database" in emulating the databases DB� of Hammingdistance at most 1 from 0d in the original cube scheme, and DB2 be the \auxiliary database" forthis purpose. In addition, DB2; : : : ;DBk will recursively emulate the other databases of the originalcube scheme, as in the scheme Bk described above. We start by describing the induction assumptionwe will be using, followed by a description of the scheme.Suppose we have a (k�1)-database SPIR scheme B00k�1 of communication complexity and sharedrandomness complexity O(n1=(2k�3)). In this case we make an additional assumption on B00k�1: weassume that the user is required to commit to the index being retrieved. This assumption is madeprecise in the following way. We say that a 1-round PIR scheme P satis�es the strong data-privacyrequirement with parameter d0, if the following conditions hold:1. On a data string x of length n0 = `d0 , the user sends special queries Q0m; Q1m, 1 � m � d0 (eachof which is an element of Z`); and2. If a user (possibly a dishonest user) sends queries in which Q0m +Q1m � i�m (mod `) for each1 � m � d0, then the answers reveal at most the bit x(i�1 ;:::;i�d0).Notice that strong data-privacy implies the usual data-privacy. Also note that the scheme B002satis�es this stronger requirement with d0 = 3, as follows from Lemma 6. Our additional assumptionon B00k�1 (which will be carried on to B00k) is that it satis�es the strong data-privacy requirement withd0 = 2(k � 1)� 1 = 2k � 3. The scheme B00k proceeds as follows:Queries: The user sends to DB1 the subcube C0d = (S01 ; : : : ; S0d) and to each of DB2; : : : ;DBkthe subcube C1d = (S11 ; : : : ; S1d). In addition, the user independently shares dense representationsof the index components im, m = 1; 2; : : : ; d, between DB1 and DB2, using additive shares over Z`as in the scheme B002 . Finally, the user sends the queries necessary for the recursive invocations ofB00k�1 described in item 4 below.Answers: As before, let w� denote the strings corresponding to the PSM message strings foremulating database DB� in the d-dimensional cube scheme. For � such that weight(�) � 2 thesestrings are described below, whereas for � of weight 0 or 1 these can be constructed from the queryC0d exactly as before. In particular, we consider wem where em denotes the m-th unit vector oflength d (note that the databases whose index is in Hamming distance at most 1 from 0d are DB0dand DBem 1 � m � d, and they can be emulated by DB0d as before). Let t1; t2; : : : ; td be sharedrandom strings of length `, and u1; u2; : : : ; ud be shared random bits. The databases reply with thefollowing messages:1. DB1 sends to the user the d bits v0m def= h�S0m ; tmi � um, 1 � m � d. Similarly, DB2 sends thebits v1m def= h�S1m ; tmi � um. 25



2. DB1 sends the bit w0d � s, where s is a shared random bit (to be conditionally disclosed initem 5 below).3. DB1 computes all `-bit long PSM message strings wem, 1 � m � d, emulating databases DBemin the d-dimensional cube scheme. Then DB1 and DB2 use the SPIR scheme S�2 to providethe user with the bit in position im of each string wem � tm. Like in the scheme B002 , this isdone by using the shares of im as the queries in S�2 .4. For each � 2 f0; 1gd such that weight(�) � 2, the user and the databases DB2; DB3; : : : ; DBkrecursively invoke B00k�1 on the virtual data string w� de�ned in the following. Let d0 = d� 2and n0 = `d0 . Let m�z , 1 � z � weight(�), denote the position of the z-th zero in �. Withevery � such that weight(�) � 2 and tuple i0 = (i01; : : : ; i0d0) 2 [`]d0 we associate a subcube C�i0(of the cube [`]d), which is obtained from C1d by replacing each set S1z , 1 � z � weight(�),with the set S1z � im�z . Each w� is de�ned to be the n0-bit string, whose i0-th bit is equal to theexclusive-or of data bits residing in the subcube C�i0 together with the PSM random bit r�. Ina recursive invocation of B00k�1 on the virtual data string w�, the user retrieves the bit whoseindex is represented by the d0-tuple i0� = (im�1 ; im�2 ; : : : ; im�p ; 1; : : : ; 1), where p = weight(�).5. The databases conditionally disclose the shared bit s subject to a conjunction of the followingconditions:(a) For every 3 � j � k, the subcube sent to DBj is equal to the subcube sent to DB2.(b) For every � 2 f0; 1gd such that weight(�) � 2, the index i0 shared by the user in theinvocation of B00k�1 on w� (in accordance with the strong data-privacy assumption madeon B00k�1) is equal to i0�. This can be veri�ed by comparing each component of i0 with thecorresponding component of i as shared by the user.(For e�ciently disclosing s under the conjunction of all these conditions, the databases maywrite s as the exclusive-or of several independent random bits, and disclose each of these bitssubject to a single condition of equality between two strings).Reconstruction: The user reconstructs xi by recursively reconstructing the bits retrieved viaB00k�1, and taking their exclusive-or with all other bits disclosed to the user.We start by analyzing the communication and shared randomness complexity. By Lemma 3 andCorollary 1, the conditional disclosure of the bit s and the SPIR retrievals from the strings wem� tmcan be implemented with O(`) communication and shared randomness complexity, for a constantk. Thus, by induction (using B002 as basis) the communication complexity is ck(n) = O(`) + (2d �d � 1) � ck�1(`d�2) = O(`) = O(n1=(2k�1)), and similarly the shared randomness complexity is alsoO(n(1=(2k�1)).The correctness and the user's privacy can be easily veri�ed. It remains to show that thestrong data-privacy requirement also holds for B00k . We argue that if the user commits to an indexi = (i1; : : : ; id) (by sharing its components between DB1 and DB2), then it can learn at most thebit xi. As in the B002 scheme, an honest user learns xi alone. In order to learn some informationinvolving other bits, a dishonest user must deviate from the scheme's speci�cation either by sendingto DB1; : : : ;DBk subcubes which don't meet the requirements imposed by i, or by trying to retrievefrom the recursive invocations of B00k�1 di�erent bits than those corresponding to i. The speci�ed26



disclosure conditions, the data privacy of S�2 , and the strong data-privacy assumption made on B00k�1guarantee that in both of these cases, the user will learn no information at all.5.2 A Polynomial Interpolation Based SchemeIn this section we prove that the polynomial interpolation based PIR scheme for k = dlog2 n + 1edatabases from [11] (see also [3]) can be transformed into a SPIR scheme with the same number ofdatabases and a constant factor of communication and randomness overhead.Theorem 7. There exists a dlog2 n+ 1e-database SPIR scheme, with communication complexityand shared randomness complexity O(log2 n � log logn).Proof. We start by describing the underlying PIR scheme, which is based on the method oflow-degree polynomial interpolation (see [3, 11] for more details). Assume without loss of generalitythat n = 2s, where s is a positive integer, and let k = s+1 be the number of databases. Let GF(q) bea �nite �eld with at least k+1 elements, and �j, 1 � j � k, be distinct, nonzero elements of GF(q).With every index i 2 [n] we associate an s-tuple ~i = (i1; i2; : : : ; is) 2 f0; 1gs, corresponding to thebinary representation of i. For each data string x 2 f0; 1gn, let px(y1; : : : ; ys) denote a multivariatedegree-s polynomial such that px(~i) = xi for every i 2 [n] (such px may be taken to be the multilinearextension of the function f(~i) def= xi). The user picks a random s-tuple ~c = (c1; : : : ; cs) 2 GF(q)s,and sends to each database DBj, 1 � j � k, the query ~uj = �j � ~c +~i. Each database DBj replieswith a single �eld element aj def= px(~uj). The user reconstructs xi by interpolation: if p0 is theunique degree-s univariate polynomial (over GF(q)) such that p0(�j) = aj for every 1 � j � k, thenxi = p0(0). The communication complexity of this scheme is O(log2 n log logn).As noted in Subsection 4.3, the linearity of the reconstruction function (interpolation) allowsto obtain a PSM-based honest-user SPIR scheme with the same communication complexity. Toprevent a dishonest user from obtaining any illegitimate information on x, we require the user toprove that its queries are consistent with some~i 2 f0; 1gs and ~c 2 GF(q)s. Such a proof will consistof sharing each entry of ~c and ~i, and its validation will consist of verifying that ~i 2 f0; 1gs and that~uj = �j � ~c+~i for each 1 � j � k.We begin with the following observation, which also yields a slight improvement to the originalPIR scheme described above. Note that the user reconstructs xi by computing some �xed linearcombination over GF(q) of the k �eld elements replied by the databases. Thus, as a �rst step,we can let each database multiply its original answer by the corresponding coe�cient, so thatreconstruction will consist of computing the sum of all answers over GF(q). Then, if q is chosen tobe a power of 2 (q = 2dlog2(k+1)e su�ces), it is enough for the databases to reply only with the \leastsigni�cant bit" of each answer, and for the user to reconstruct xi by taking the exclusive-or of thek answer bits. From now on we refer to this modi�ed scheme. The corresponding SPIR scheme weconstruct is formally described as follows:Queries: The user sends to each database DBj a query ~uj as in the original scheme. In addition,the user picks random tuples ~i0;~i1;~c0;~c1 2 GF(q)s such that ~i0 +~i1 =~i and ~c0 + ~c1 = ~c, and sends~i0;~c0 to DB1 and ~i1;~c1 to each of DB2; : : : ;DBk.Answers: Let r1; r2; : : : ; rk be independent random bits (included in the databases' shared ran-domness), and let r denote their exclusive-or. Each database DBj replies with a0j def= aj � rj, whereaj is its answer according to the modi�ed scheme. In addition, the databases use their shared27



randomness to disclose the bit r, subject to a conjunction of the following conditions: (1) for every3 � j � k, the shares of ~i and ~c sent to DBj are identical to those sent to DB2; (2) for every1 � m � s, either i0m + i1m = 0 or i0m + i1m = 1 (where ibm denotes the m-th entry of the b-th shareof ~i); and �nally (3) for every 1 � j � k and 1 � m � s, �j(c0m + c1m) + (i0m + i1m) = ujm. Notethat the above condition may be expressed by a Boolean formula over O(ks) = O(log logn) atomicconditions, each testing equality between two elements of GF(q) known to two di�erent databases.For instance, if j > 1 then verifying the condition �j(c0m + c1m) + (i0m + i1m) = ujm is equivalent tocomparing �jc0m + i0m, which is known to DB1, and ujm� �jc1m� i1m, which is known to DBj. UsingTheorem 2, the conditional disclosure of r can be implemented with communication complexity andshared randomness complexity of O(log2 n � log logn).Reconstruction: The user reconstructs r, and computes xi as the exclusive-or of a01; : : : ; a0k andr. The correctness and the user's privacy of the original scheme are clearly maintained. To see thedata-privacy of this scheme, consider two possible cases. If the user's queries are valid, then thetuple (a01; a02; : : : ; a0k; r) is uniformly distributed among all (k + 1)-tuples over GF(2) which add upto xi, implying that the answer distribution depends only on xi. Otherwise, the user obtains noinformation on r, and consequently a01; : : : ; a0k (which are uniformly and independently distributedover GF(2)) are independent of the conditional disclosure messages. It follows that in the lattercase the user obtains no information on x.Excluding the conditional disclosure of r, the communication complexity of the scheme is dom-inated by the query complexity, which is O(log2 n � log logn). Together with the complexity ofdisclosing r, which is discussed above, the entire scheme requires O(log2 n � log logn) communica-tion and shared randomness bits.6 Conclusion and ExtensionsWe have presented a methodology which allows to implement communication e�cient SPIR schemes,requiring only one round of interaction and withstanding any dishonest behavior of the user. Thismethodology may be useful for dealing with other variants of the basic PIR question, as we demon-strate in this section, as well as in other cryptographic scenarios. In the following we show how toextend our results in two directions: dealing with retrieval of blocks instead of single-bit records;and dealing with t-privacy, namely privacy against coalitions of up to t colluding databases. Wealso present an application which using our methodology for SPIR, and in particular the condi-tional disclosure of secrets primitive can be implemented quite e�ciently. This application, termedprivate retrieval with costs, allows a user to privately retrieve (in a single round) any collection ofdata items, provided that their total cost does not exceed what it had previously paid for.6.1 Block Retrieval SPIR schemesSo far, we have restricted our attention to retrieval of single bits rather than multi-bit records, alsoreferred to as blocks. In this subsection we show how results from the previous sections can beextended to yield block-retrieval SPIR schemes.We start by observing that for PIR schemes generality is not lost when only single bit retrievalis considered: any PIR scheme for single bit retrieval may simply be invoked ` times in parallel28



to retrieve a block of ` bits. However this argument does not carry on to SPIR schemes, becausea cheating user may invoke the scheme on ` bits which do not belong to the same record, thusobtaining information about more than one physical block. Therefore, we describe a modi�cationof the above procedure which works for single round SPIR schemes.Given a single round SPIR scheme where the user can retrieve a single bit out of the n-bit datastring, one can construct a (single round) SPIR scheme to retrieve an `-bit record from a data stringof n such records as follows: the user sends queries as in the original bit-retrieval scheme, and thedatabases reply ` times to the user's queries, once for each bit of the record. Each such reply allowsthe user to learn a single bit of the selected record, and since the user generates queries only onceit is guaranteed that the ` bits that it learns indeed form a single record of the database.The above transformation from single-bit to multi-bit retrieval is not applicable for multi-roundSPIR schemes, since the same set of queries cannot be used multiple times for di�erent record bits(queries for each bit must depend on replies received in previous rounds). On the other hand, formulti-round schemes, our general PIR to SPIR transformation of Section 3 may be extended towork for multi-bit block retrieval, by letting each entry of the shared random string r consist of `bits instead of a single bit. The protocols and their proofs can be modi�ed in a straightforwardway to support this extension. In addition, note that all our speci�c SPIR schemes (Sections 4,5)are single round, and thus may be used for block retrieval by the above transformation. This isalso true for our general SPIR scheme (Section 3), when used with an underlying single round PIRscheme (which is the case for most PIR schemes known in the literature).6.2 t-private SPIR schemesIn the general reduction described in Section 3, even if the original PIR scheme P is t-private forsome t > 1, the resultant SPIR scheme SP will still only be 1-private. This is because if DB0colludes with any other database DBj, the joint view of these two colluding databases includesboth the shift � and the shifted index i0 = (i��)modn, from which the user's index i can easilybe recovered. Generalizing the construction of SP , a t-private SPIR scheme StP can be obtainedfrom any t-private PIR scheme P as follows. Instead of directly asking DB0 for the (i��)-th bit ofthe shared random string r, the user can retrieve this bit by recursively invoking the (t� 1)-privateSPIR scheme St�1P with a \fresh" set of databases. As a basis S0P for this recursion, we may takethe trivial 1-database scheme in which the user explicitly asks for the desired index. In particular,the (k + 1)-database 1-private scheme described in Section 3 may be viewed as the second level ofthe recursion. In general, for any t-private k-database PIR scheme P, applying this recursion yieldsa t-private (kt+ 1)-database SPIR scheme SP whose communication complexity is roughly t timesthat of our original (1-private) scheme.In the following generalization of Theorem 3 we show that the number of databases in the t-private SPIR scheme can be reduced to k + t, at the expense of increasing communication by afactor of �k+t�1t�1 �.Theorem 8. Let P be any 1-round, k-database, t-private PIR scheme with communicationcomplexity (�k(n); �k(n)). Then, there exists a 1-round, (k+t)-database, t-private SPIR schemeSP with communication complexity (O(m(�k(n) + dlog2 ne); O(m�k(n))) and shared randomnesscomplexity O(mn), where m = �k+t�1t�1 �. 29



Proof. A t-private SPIR scheme SP using K = k + t databases DB1; : : : ;DBK is described inthe following. The construction uses a collection F = fS1; : : : ; Sm; Sm+1g � 2[K] of database setssuch that:� Sm+1 is a singleton;� each other set Sh, 1 � h � m, is of size k;� for any set T � [K] of size t, there exists a set S 2 F such that T \ S = ;.Such F exists with m = �k+t�1t�1 �. E.g., let Sm+1 = fKg, and for any subset T � [K] of size t suchthat K 2 T , let ST = [K] n T . 9An honest-user SPIR scheme can now proceed as follows (where all actions are performed usingone round of communication):� The user U picks m random shift amounts �1;�2; : : : ;�m 2 Zn;The databases hold m shared random strings r1; : : : ; rm, of length n each, and let r0 = xdenote the data string.� For 1 � j � m, U sends �j to each database in Sj, and invokes the PIR scheme P withdatabase set Sj to privately retrieve the bit bj in position ij def= i � Pj�1h=1�j (mod n) ofrj�1 � (rj >> �j). (Notice that in particular, i1 = i);� U explicitly asks the single database in Sm+1 for the bit bm+1 in position im+1 def= i �Pmh=1�h (mod n) of rm;� U reconstructs xi by taking the exclusive-or of the m+ 1 bits b1; : : : ; bm; bm+1.We now show that the scheme is correct, and that it satis�es both privacy requirements. Itfollows by induction that for h = 1; 2; : : : ; m, b1 � b2 � � � � � bh = xi � (rh)ih+1, and so (b1 � b2 �� � � � bm)� bm+1 = (xi � (rm)im+1)� bm+1 = xi. This proves the correctness of the scheme.To prove the user's privacy, consider the view of a collusion T of t databases. Since P is t-private, invocations of P involving members of T do not disclose any information about i. The onlypotential source of information about i are those messages from the set f�1;�2; : : : ;�m; im+1g thatare viewed by members of T . However, the de�nition of F guarantees that the collusion T will onlyview a proper subset of these messages, which contains no information on i.To prove the data-privacy (against an honest user), it su�ces to show that given any shiftamounts �1; : : : ;�m and position im+1 picked by the user, the random variable�x� (r1 >> �1); r1 � (r2 >> �2); r2 � (r3 >> �3); : : : ; rm�1 � (rm >> �m); (rm)im+1� ;where the strings r1; : : : ; rm are uniformly and independently distributed over f0; 1gn, depends onlyon the single data bit xi, where i = im +P�h. This can be proved by iterating the argument usedin the proof of Theorem 1. Letting r0 = x, it can be shown by backward induction on h that for9It is not hard to observe that the described F is of minimal cardinality, and that it cannot exist at all for Ksmaller than k + t. However, by increasing the number of databases K, the cardinality of F can be decreased. Forinstance, m can be made as low as t when K = tk + 1, corresponding to the recursive scheme described above.30



h = m�1; m�2; : : : ; 0, the joint distribution (rh�(rh+1 >> �h+1); rh+1�(rh+2 >> �h+2); : : : ; rm�1�(rm >> �m); (rm)im+1) is independent of rh given (rh)ih, where ih = im+1 + �m + �m�1 + : : : +�h+1 (mod n). In particular, for i = 0 we obtain the desired result.Finally, the same conditional disclosure mechanism used in the proof of Theorem 3 can be usedhere as well to guarantee data-privacy against any (possibly dishonest) user. Speci�cally, in anyinvocation of P involving database set Sh, each answer should be disclosed subject to the conditionthat all corresponding shift amounts sent by the user are equal. The above analysis shows that thissu�ces to guarantee data-privacy.Aside from the conditional disclosure protocol, the communication in the resultant scheme SPinvolves m invocations of the scheme P, m extra logn-bit query strings, and one extra answer bit.The conditional disclosure protocol induces a constant multiplicative communication and sharedrandomness overhead. This gives the communication and randomness bounds stated in the theorem.6.3 Private Retrieval with CostsIn this subsection we brie
y sketch how the conditional disclosure of secrets methodology can beused together with an underlying SPIR scheme to implement private retrieval with costs.Let i1; : : : ; im denote the indices of the data records which the user wishes to retrieve,10 c denotea public vector of `-bit integral costs (an n-tuple whose i-th entry ci contains a binary representationof the cost of the i-th data record (0 � ci � 2`� 1)), and p denote a public cost threshold (i.e., theamount of money paid by the user). A scheme for private retrieval with costs allows the user toretrieve the data records indexed by i1; : : : ; im privately (namely without giving the database anyinformation about i1; : : : ; im), provided that Pmh=1 cih � p (i.e. the total cost of the records does notexceed the amount pre-paid by the user); on the other hand, it should not allow the user to obtainany information which does not follow from such valid set of records.The following is a high-level description of a generic implementation of such a scheme, usingan underlying (1-round) SPIR scheme S. Without loss of generality (but possibly with a smallcomplexity overhead), we may assume that the reconstruction function applied by the user in Sdepends on the answers alone, and not on the index i or its random input �. (See Remark 3; also,notice that this is already the case with the schemes B00k constructed in Section 5.) The scheme canthen proceed as follows.Queries: The user chooses independently, for each desired retrieval index ih of x (1 � h � m), a k-tuple of queries according to the scheme S. It sends to each of the k databases the m correspondingmessages (all in parallel).Answers: Each database locally computes two answers to each of the user's queries: one byconsidering x as the data string, and the other by considering the cost vector c as the data string(more precisely, c is considered as ` n-bit vectors and the ` answers can be used to construct the `-bit entry cih). Then, the databases conditionally disclose their x-answers subject to an appropriatecondition on the c-answers. That is, the condition on the c-answers should assert that the sum10m will be disclosed to the database as an upper bound on the number of data records that the user wishes toretrieve. If the user wants to retrieve less than m records, the rest of the indices will point to a dummy record ofcost 0. 31



of the costs reconstructed from these answers (each of which can be obtained by applying thereconstruction function of S) is no larger than the public threshold p.The complexity of realizing conditional disclosure as above can be kept low in the following ways.First, it is better to use an underlying scheme S whose reconstruction function is computationallyeasy (this is the case with the schemes constructed in this paper). Second, it is possible to facilitatethe realization of disclosures under \complicated" conditions by requiring the user to send a witnessto the validity of its queries, which will serve as an additional input to the condition. In this setting,the general upper bounds given in Theorem 2 can be extended to apply to nondeterministic formulasor span programs, yielding e�cient conditional disclosure protocols whenever the condition can becomputed by an e�cient circuit. Indeed, letting the witness supplied by the user consist of allintermediate gate values, it is possible to verify that the circuit evaluates to 1 using a Booleanformula whose size is linear in the circuit size. Since addition of m `-bit integers can be computedby a circuit of size O(`m), the amount of communication required for disclosing each answer bit11is O(`m) plus m times the size of circuitry required for reconstructing the selected costs from thec-answers.AcknowledgmentsWe are grateful to Sha� Goldwasser for many enlightening discussions. We also thank Madhu Sudanfor helpful comments on an earlier version of this paper.References[1] A. Ambainis. Upper bound on the communication complexity of private information retrieval.In Proc. of 24th ICALP, 1997.[2] D. Beaver. Perfect privacy for two party protocols. Technical Report TR-11-89, HarvardUniversity, 1989.[3] D. Beaver and J. Feigenbaum. Hiding instances in multioracle queries. In STACS, 1990.[4] J. Benaloh and J. Leichter. Generalized secret sharing and monotone functions. In Proc. ofCRYPTO '88, pages 27{35, 1990.[5] M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its applications. InProc. of 20th STOC, pages 103{112, 1988.[6] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-randombits. SIAM Jour. on Computing, 13:850{864, 1984. Early version appears in Proc. of 23rdFOCS, 1982.[7] G. Brassard, C. Cr�epeau, and J.M. Robert. Information theoretic reductions among disclosureproblems. In Proc. of 18th STOC, pages 168{173, 1986.11In each of the schemes constructed in Section 5, there exists a single answer bit which, when eliminated fromthe user's view, makes the user learn no information about the data.32
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A Necessity of Shared RandomnessA.1 Shared Randomness is Necessary for SPIRIn this section we show that the addition of a shared randomness resource to the basic PIR settingis in a sense minimal.Suppose we allow the databases to use private randomness in answering the user's queries, butwe still do not allow them to interact without the mediation of the user (and in particular we donot allow them to share a random string unknown to the user). We argue that in this setting,(information-theoretic) SPIR cannot be implemented at all, regardless of its complexity, even whenthe user is honest.Claim 2. There exists no (multi-round) k-database SPIR scheme without direct interactionbetween di�erent databases, even if the databases are allowed to hold private, independent randominputs, and the user is honest.Proof. Since the user's view includes all of the communication, the strong privacy requirementimplies that any single database DBj cannot respond to the user's queries in a way that depends onthe data string x. Formally, at any round the distribution of the database's answer given previouscommunication is the same under every x. For otherwise, this answer distribution must either notfollow from some xi alone, thus violating the data-privacy requirement, or alternatively reveal tothe database the index i on which it depends, thus violating the user's privacy. By independenceof private random inputs held by di�erent databases, this implies that the joint distribution oftheir answers, given previous communication, is independent of x. Fixing an index i, it follows byinduction on the number of rounds that for any w > 0 the accumulated communication in the �rstw rounds is distributed independently of x. This implies that the user's output cannot depend onthe value of xi, contradicting the correctness requirement.As a special case of Claim 2 we may conclude the following:Corollary 2. There exists no single-database (information-theoretic) SPIR scheme.We note that Corollary 2 can also be derived from known results about two-party computation[12, 19, 2].A.2 Shared Randomness in General Reduction from SPIR to PIRWe have shown above that the resource of shared randomness is necessary in order for SPIR to beachievable. In Section 3 we have presented general transformations from PIR to SPIR using linearshared randomness, and in Sections 4 and 5 speci�c transformations using about the same sharedrandomness as the communication complexity.A natural question concerning the general transformations is whether their shared randomnesscomplexity can be reduced, possibly as a function of their communication complexity. We nowargue that if we want the general reduction to apply to any PIR scheme, then its shared randomnesscomplexity (in the information-theoretic honest user case) is in a sense minimal; that is, the uniformdistribution on f0; 1gn from which the shared random string is chosen cannot be replaced by adistribution on f0; 1gn whose entropy is less than n. It is straightforward to observe that this is34



the case with the trivial 1-database PIR scheme in which the database sends the entire data stringto the user; the following claim indicates that this is also the case for PIR schemes with arbitrarilysmall communication complexity.Claim 3. Any PIR scheme of which one answer bit gives the Boolean \OR" of all data bitsrequires the shared random string r in the scheme of Theorem 1 to be uniformly distributed overf0; 1gn.Proof. Let R denote the distribution on f0; 1gn from which r is picked, and suppose that R isnot uniform; for n � 2, it easily follows that there exist y; y0 2 f0; 1gn and an index i 2 [n] such thatyi = y0i, and Pr[R = y] 6= Pr[R = y0]. Let SRP denote the scheme SP constructed in the proof ofTheorem 1 with the shared random string r distributed according to R, and consider an invocationof SRP in which the user's retrieval index is i and the speci�ed shift is � = 0. Now, observe that inthis invocation the user can distinguish between the data strings y and y0, asPr[ _j2[n](y � R)j = 0] = Pr[R = y]6= Pr[R = y0] = Pr[ _j2[n](y0 �R) = 0]:By the correctness of SRP , the user must also learn the i-th data bit, implying that it obtains morethan a single physical bit of data.

35


