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Abstract

Private Information Retrieval (PIR) schemes allow a user to retrieve the i-th bit of an n-bit
data string z, replicated in k > 2 databases (in the information-theoretic setting) or in k£ > 1
databases (in the computational setting), while keeping the value of 7 private. The main cost
measure for such a scheme is its communication complexity.

In this paper we introduce a model of Symmetrically-Private Information Retrieval (SPIR),
where the privacy of the data, as well as the privacy of the user, is guaranteed. That is, in
every invocation of a SPIR protocol, the user learns only a single physical bit of  and no other
information about the data. Currently known PIR schemes severely fail to meet this goal. We
show how to transform PIR schemes into SPIR schemes (with information-theoretic privacy),
paying a constant factor in communication complexity. To this end, we introduce and utilize
a new cryptographic primitive, called conditional disclosure of secrets, which we believe may
be a useful building block for the design of other cryptographic protocols. In particular, we
get a k-database SPIR scheme of complexity O(nl/(%’l)) for every constant k > 2, and an
O(log n)-database SPIR scheme of complexity O(log?n - loglogn). All our schemes require
only a single round of interaction, and are resilient to any dishonest behavior of the user.

These results also yield the first implementation of a distributed version of (})-OT (1-
out-of-n oblivious transfer) with information-theoretic security and sublinear communication
complexity.

1 Introduction

Private Information Retrieval (PIR) schemes allow a user to retrieve information from a database
while maintaining its query private. In this model, the database is viewed as an n-bit string x out
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of which the user retrieves the i-th bit x;, while giving the database no information about the index
7. The main cost measure for such schemes is their communication complexity. The notion of PIR
was introduced in [11], where it was shown that if there is only one copy of the database available
then n bits of communication are needed (for information-theoretic user-privacy). However, if there
are k > 2 non-communicating copies of the database, then there are solutions with much better
(sublinear) communication complexity.

In this paper, we introduce the stronger model of Symmetrically Private Information Retrieval
(SPIR), where privacy of the data, as well as of the user, is guaranteed. That is, every invocation of
a SPIR scheme, in addition to maintaining the user’s privacy, prevents the user (even a dishonest
one) from obtaining any information other than a single physical bit of the data. Data privacy is
a natural and crucial requirement in many settings. For example, consider a commercial database
which sells information, such as stock information, to users, charging by the amount of data that
the user retrieved. Here, both user-privacy and data-privacy are essential.

The original PIR model was only concerned with user-privacy, without requiring any protection
of data-privacy. Indeed, previous PIR schemes allow the user to obtain other physical bits of the
data (i.e., z; for j # i) or other information such as the exclusive-or of certain subsets of the bits
of z. A good example of this is a single invocation of the best 2-database information-theoretic
scheme currently known [11], from which a user can systematically retrieve ©(n'/?) physical bits of
data (see Section 5, Example 2).

To efficiently realize SPIR schemes, we introduce and utilize a new cryptographic primitive,
called “conditional disclosure of secrets”, which may also be of independent interest as a building
block for designing more general cryptographic protocols. Informally, conditional disclosure of
secrets allows a set of players to disclose a secret to an external party Carol, subject to a given
condition on their joint inputs. In the setting we consider, Carol knows all the inputs held by
the players except for the secret to be conditionally disclosed, so she knows whether the condition
holds and whether she will obtain the secret. Each player on the other hand only sees its portion
of the input and does not necessarily know whether Carol will obtain the secret. The protocol
involves only a unidirectional communication from the players to Carol. A simple example that
illustrates the use of “conditional disclosure of secrets” is one in which each player has the input bit
b;, indicating whether it agrees to reveal the secret s to Carol. Carol obtains the secret s subject
to the condition that the majority of the players agree on the bit.

This work is concerned with the information-theoretic setting for SPIR. The techniques used in
this work can also be applied to computational PIR schemes (c.f. [10, 20, 9]), in which the privacy
requirement is relaxed to computational privacy (against computationally bounded databases).
However, in this computational setting a better solution for realizing SPIR may be constructed
using pseudo-random functions [21]. We note that in addition to their theoretical significance and
their unconditional security, information theoretic schemes possess other advantages over known
computational schemes; they are much more time-efficient, and their communication complexity
is typically smaller for moderately sized data strings (even when their asymptotic complexity is
higher).

Realizing SPIR involves a modification to the previous multi-database model. This is necessary
because information-theoretic SPIR schemes, regardless of their complexity, cannot possibly be
achieved in the original PIR setting, in which the databases do not interact with each other at
all (see Appendix A.1). We thus use a minimal extension of the original setting: continue to
disallow direct interaction between the databases, but grant them access to a shared random string,



unknown to the user. A similar kind of extension has been studied before in the contexts of private
computation [14, 16], non-interactive zero-knowledge [5] and other scenarios. Here, this extension
is particularly natural since, even in the basic PIR setting, databases are required to maintain
identical copies of the same data string. (In the next subsection we discuss an alternative approach
of using shared pseudo-random strings rather than sharing truly random strings.)

1.1 Owur Results

We construct efficient SPIR schemes, with sublinear communication complexity, which may be even
further improved if better PIR schemes are designed. More precisely, we present transformations
from PIR schemes to SPIR schemes, preserving the user’s privacy and guaranteeing data-privacy
as well, with a small penalty in the communication complexity. We give two types of reductions.

A General Reduction We show that using any PIR scheme it is possible to construct a SPIR
scheme with the same number of rounds, a constant factor overhead in communication complexity,
and linear (in n) shared randomness (per query). The resultant SPIR scheme requires the use of
an additional auxiliary database, which does not need to hold the original data (only the shared
random string). That is, we achieve:

e (k+1)-database SPIR scheme of communication complexity O(C(n)), for any k-database PIR
scheme of complexity C(n).

However, the additional database requirement may be costly. In particular, it does not allow
to obtain an information-theoretic sublinear SPIR solution with only 2 databases. This case is
important, since 2 is the minimal number of databases required for such a solution to exist. Indeed,
via more specific reductions we manage to avoid the additional database, and in particular obtain a
good solution for the 2-database case. Moreover, these specific reductions require significantly less
shared randomness.

Specific Reductions We present reductions which exploit specific structural properties of exist-
ing PIR schemes to transform them into SPIR schemes which use the same number of databases
as the underlying PIR scheme, communication complexity which is at most a small constant factor
over the PIR scheme, and shared randomness complexity (per query) which is of the same order
of magnitude as the communication complexity. In particular, extending schemes from [11, 1] we
obtain:

e k-database SPIR scheme of complexity O(n'/(?>*=1)) for any constant k > 2;
e O(logn)-database SPIR scheme of complexity O(log?n - loglogn).

Our schemes maintain the general paradigm of existing PIR schemes: all databases hold an identical
copy of x, and all protocols use a single queries-answers round.

If one is willing to settle for computational privacy of the data (while still maintaining the
information-theoretic privacy of the user) then we can also consider a slight variation of the model,
by replacing the shared random strings with pseudo-random ones. More specifically, the databases
may share a short random seed from which longer shared pseudo-random strings can be generated
“on the fly”, without extra communication [6, 25]. This allows the databases to save storage space
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and save on the amount of random bits they need to produce. We also remark that by using pseudo-
random functions [15] it is possible for the databases, in each execution of the protocol, to directly
expand from the seed only the portion of the expanded string that is needed for this particular
execution (without actually expanding the whole string).

Our results, as well as all cited PIR works, concentrate mainly on the case of 1-privacy. The
more general notion of t-privacy requires that the view of any coalition of ¢ databases is independent
of the user’s retrieval index i. A generalization of our SPIR protocols that satisfies this stronger
t-privacy requirement is described later in the paper (Subsection 6.2).

Note that we restrict our attention to retrieval of single bits, rather than the retrieval of blocks
consisting of multi-bit records. In Subsection 6.1 we address block retrieval, and show that for
single-round schemes, concentrating on single-bit records does not compromise generality. We then
describe how to generalize our results for multi-round schemes as well, achieving SPIR, for multi-bit
records.

Finally, an interesting observation is that the SPIR problem may be viewed as a distributed
version of a known cryptographic primitive called (?)—Oblivious—Transfer (OT) [22, 13, 7, 8. An

(?)—OT protocol allows Bob to secretly choose one of n secret bits held by Alice, in a way that at
the end of the protocol Bob learns only a single bit of his choice, and Alice learns nothing about
Bob’s choice. The results of our work give the first 1-round distributed implementations of (?)—OT

with information-theoretic security and sublinear communication complexity. Since (?)—OT is a
useful tool for cryptographic protocol design, it is our hope that SPIR might also be found a useful
tool for the design of cryptographic protocols.

1.2 Previous Work

Private information retrieval (with information-theoretic user privacy) was introduced in [11], where
the schemes achieve communication complexity of O(n'/?) bits with 2 databases; O(n'/*) bits with
k > 3 databases; and O(log”nloglogn) bits with k = O(logn) databases. In [1] the k-database
upper bound is improved to O(n'/(%*=1) for any constant k. The computational counterpart of PIR
(i.e., schemes where the user-privacy is only with respect to polynomial-time databases, relying on
certain intractability assumptions) was considered in [10, 20]; they show how to obtain schemes
with communication complexity O(n®) (for any constant ¢ > 0) for k=2 databases [10], assuming
the existence of one-way functions, and even for the case of a single database [20], under the
quadratic residuosity assumption. All the above schemes require only a single round of queries and
answers. None of these works consider data-privacy, with the exception of [20], who show how to
add data-privacy to their computational PIR scheme using general zero-knowledge techniques and
a multi-round protocol.

1.3 Organization

In Section 2 we introduce notations and basic definitions. In Section 3 we show a general trans-
formation of PIR schemes into SPIR schemes, including the introduction of “conditional disclosure
of secrets” in Subsection 3.2. The following sections present specific schemes, which outperform
the ones obtained by applying the general transformation. Section 4 includes SPIR schemes which
rely on the user being honest. In Section 5 we present schemes which keep the data private from



any, possibly dishonest, user (with a minor extra communication cost). Section 6 contains exten-
sions and generalization of our results: Subsection 6.1 generalizes the results for block retrieval of
multi-bit records; Subsection 6.2 generalizes the results to schemes with higher levels of user-privacy
(that is, privacy against coalitions of databases); and Subsection 6.3 outlines a generalization of
SPIR, called private retrieval with costs, where our techniques and results can be used. Finally,
Appendix A.1 contains a proof of the impossibility of SPIR in the usual PIR setting (without direct
interaction between the databases or shared randomness), and Appendix A.2 gives a lower bound
on the amount of shared randomness necessary for our general PIR to SPIR transformation.

2 Preliminaries

2.1 General Notations and Definitions

The following notations and conventions are used throughout the paper. Let [¢] denote the set
{1,2,...,¢} and Z, £ {0,1,...,¢ — 1} denote the additive group of residues modulo £. For any two
sets S, 5', let S®S’ denote the symmetric difference between S and S’ (i.e., S®S’ = (S\S)U(S'\9)).
For a set S C [{] let x5 denote the characteristic vector of S: an ¢-bit binary string whose j-th bit
is equal to 1 iff j € S. To simplify notation, S @ j and x; are used instead of S @ {j} and xy;,
respectively. For any binary string o € {0,1}", let weight(o) denote the number of nonzero entries
in o (in particular 0 < weight(o) < d). For any n-tuple y and index set B C [n], let y|p denote
the restriction of y to its entries with indices from B. By default, whenever referring to a random
choice of an element from a finite domain A, the associated distribution is uniform over A, and
this random choice is independent of all other random choices. Finally, addition and multiplication
operations will sometimes be carried over a finite field or group, as implied by the context.

A Boolean function h : {0,1}" — {0, 1} is called monotone if for every A, B C [m] s.t. A C B,
if h(xa) = 1 then also h(xp) = 1. A Boolean formula over the variables yi,...,y, is a labeled
binary tree, whose leaves (representing inputs) are labeled by literals from {y;, 77, ..., yn, Un}, and
whose internal nodes (representing boolean operators) are labeled by “A” or “v”. Such a formula
computes a Boolean function h : {0,1}" — {0,1} in the natural way. A formula is said to be
monotone if all of its leaves are labeled by positive literals (which implies that the function that the
formula computes is monotone). Finally, the size of a formula is measured by the number of leaves.

2.2 PIR Schemes

Let k denote the number of databases, DB, (for 1 < j < k) denote the j-th database, x denote
an n-bit data string which is held by each of the k& databases, & denote the user, and 7 denote the
position (also called indez) of a data bit which the user wants to retrieve (1 <i < n).

A PIR scheme is a randomized protocol between U and DBy, ..., DBy, where U has an access
to a random input p, unknown to the databases, and DBy, ..., DB, have access to a shared random
input 7, unknown to the user!. In each round of the protocol messages are exchanged between the
user and the databases: queries are sent from the user to each database, and answers are sent from

Tt is assumed, without loss of generality, that all databases are otherwise deterministic.



each database to the user.? The wview of the user in the protocol, denoted viewy(x,i, 7, p), consists
of its input 7, its random input p, and all the answers received from the k£ databases during the
execution of the protocol (with inputs z,i,r, p). Similarly, the view of the j-th database, denoted
view,(z,1i,r, p), consists of the data string =, the shared random input r, and all the queries sent from
the user to DB; during the execution of the protocol. At the end of the execution, the user applies
some reconstruction function W to its view and outputs the corresponding value ¥ (viewy (z,i, 7, p)).
A party (user or database) in a PIR scheme is called honest if it follows the protocol’s specifi-
cation. When the user U interacts with (possibly dishonest) databases DB, ..., DB}, we denote
the view of the j-th database by view(x,4,7,p). Similarly, when the k& databases DB, ..., DB,
interact with a (possibly dishonest) user U* we denote the view of the user by viewy, (x,1,r, p).

A (1-private, information-theoretic) PIR scheme is a protocol as above, which satisfies the
following two requirements:

(1) correctness: When both the user and the k databases are honest, the user always reconstructs
the data bit x;. That is, for every z, 1,7, p as above,

U (viewy(z,i,7,p)) = x;.

(2) user-privacy: The view of any single database is independent of the retrieval index i. Formally,
for any (possibly dishonest) databases DBj, ..., DB; interacting with the (honest) user U, for
any shared random input r, any data string =, any two retrieval indices 1 < 7,7 < n, any
database index 1 < j < k, and any view view; of DB,

f;r[view;‘-(.r, i,r,p) = view;| = P;r[view;‘-(.r, i'yr, p) = view;] .

It should be noted that the definition of PIR schemes in the literature does not allow for a shared
randomness between the databases. However, in the context of PIR the definitions are equivalent.
It is only in the SPIR context where the shared-randomness becomes crucial.

2.3 SPIR Schemes

A SPIR scheme is a PIR scheme such that in any invocation of the scheme, the user cannot learn
any information which doesn’t follow from a single physical bit of data. Formally, a SPIR scheme
should satisfy, in addition to the correctness and the user-privacy requirements, the following third
requirement:

(3) data-privacy: For any (possibly dishonest) user U* interacting with the honest databases DBy, . ..

and for any random input p held by U*, there exists an index ¢, such that for every data strings
x,y satisfying x; = y;, and every view view of U*,

f;r[view*U(.r,i, r,p) = view| = P;r[view*U(y, i,7,p) = view| .

2As is the case in most of the PIR literature, we will mostly be interested in single-round schemes. The following
definitions may take a slightly simpler form when the schemes are restricted to a single round.



Let us argue that the above definition yields the “intuitive notion” of data privacy. The intuitive
notion that we want to capture is that the user cannot learn any information about the data which
does not follow from a single physical bit. One may be tempted to require that for any user U*
there exists a single index 7, such that the view of U* is independent of the data string = given
x;. However, this (stronger) variant of the definition cannot be satisfied. To see that, consider a
SPIR scheme S satisfying this latter requirement, and consider a user U* which starts by randomly
choosing an index 7, and then proceeds to run according to & with retrieval index 7. Clearly, there is
no single index 7 such that the view of such user depends on z; alone. What our definition requires
is that, for every random string p held by the user, the user must (explicitly or implicitly) fix an
index 7 such that its view depends only on z;.® Finally, note that an equivalent formulation of the
data-privacy requirement is the following one: For any deterministic user U*, there exists an index
i, such that the user’s view is independent of the data string x given z;.

An honest-user SPIR scheme is a PIR scheme that satisfies the data-privacy requirement with
respect to U, the honest (but curious) user, which follows the scheme’s specification but may try to
deduce extra information from the communication.

Notice that the above formulation of the model is only concerned with answering a single retrieval
query made by a single user. Multiple queries (possibly originating from different users) may
be handled by independent repetitions of the single-query scheme, where in each invocation the
databases use an independent source of shared randomness (or a “fresh” portion of a single shared

random string).

By default, the terms “PIR scheme” and “SPIR scheme” refer to 1-round, 1-query, information
theoretically private schemes.

2.4 Complexity

The main complexity measure for PIR and SPIR schemes is their communication complexity. The
communication complexity of a k-database scheme will be denoted (ax(n), Bk(n)), where ay(n) is
the total number of query bits sent from the user to all & databases and (i (n) is the total number
of answer bits sent from all £ databases to the user, when the data string is of size n. We sometimes
use a single parameter to measure the communication complexity of a given scheme, which is the
total communication complexity ax(n) + G(n).

The shared randomness complexity of a SPIR scheme is defined as the entropy of the shared
random input r (which equals to the length of the string r in the case it is uniformly distributed
over all strings of some fixed length).

Finally, while the definitions in Subsections 2.2 and 2.3 do not address the aspect of computa-
tional efficiency, all protocols constructed in this work will also be computationally efficient (that
is, polynomial in n).

#Also note that if the user has some a-priori information regarding the data string = (e.g., that z; = x;) then the
retrieval of z;, together with its a-priori information, may give it information about other bits of z; this is obviously
unavoidable.



3 A General Reduction from SPIR to PIR

In this section we present a construction of a SPIR scheme by using any PIR scheme as a black-
box. This construction introduces an overhead of a single auxiliary database, a constant factor in
communication complexity, and a linear amount of shared randomness over the corresponding PIR
scheme. The auxiliary database need not hold a copy of the data string x; it only needs to have
access to the shared random string r.

More specifically, we present two general reductions. The first is with respect to an honest
user and costs only an additive logarithmic factor in communication complexity (Subsection 3.1).
The second strengthens the first to deal with any user, possibly dishonest (Subsection 3.3). The
latter is constructed by utilizing a new cryptographic primitive, called “conditional disclosure of
secrets” (introduced in Subsection 3.2), which will also be used in later sections. We note that both
reductions (Theorems 1 and 3) are stated and proved for a single round PIR, but can be generalized
to apply to PIR schemes with any number of rounds.

3.1 A General Reduction with Respect to Honest Users

Theorem 1. Let P be any 1-round k-database PIR scheme with communication complexity
(a(n), Br(n)). Then, there exists a 1-round (k+1)-database honest-user SPIR scheme Sp with
communication complexity (ax(n)+ (k+ 1)[log, n], Br(n) + 1), and shared randomness complexity
n.

Proof. To simplify notation, assume that the index i is taken from the set Z,, = {0,1,...,n — 1}
(rather than from [n]). The scheme Sp involves k databases DBy, ..., DBy, corresponding to
databases of the original scheme P, and an auxiliary database DB,. All databases share a random
string r € {0,1}". The scheme Sp proceeds as follows:

QUERIES: First the user picks queries ¢, .. ., gk as specified by the PIR scheme P, and independently
picks a random shift amount A € Z,,. Then the user sends to each DB;, for 1 < j < k, the same shift
amount A; = A, along with the query ¢;. Finally, the user sends the shifted index 4’ & (1—A)modn
to DBO

) def

ANSWERS: Each database DB;, for 1 < j < k, locally computes a “virtual data string” 2’ = = @
(r > A), where @ denotes bitwise exclusive-or, and r >> A denotes a cyclic shift of the random
string 7 by A places to the right. Then, DB; answers the query ¢; as it would do in the original
PIR scheme P with respect to the computed string 2. Finally, the auxiliary database DB, replies
with the single bit r;.

RECONSTRUCTION: The user reconstructs x; by first reconstructing from the answers of DBy, ..., DB;
a bit bp according to PIR scheme P, and then computing the exclusive-or of this bit with the bit
ry received from DB,.

By the correctness of P, we have bp = ;. Therefore, the reconstruction step of Sp yields
bp@ry =a,®ry = (x; ®ry) & ry = x;, which proves the correctness of Sp. The user’s privacy
follows from the privacy of P, and from the fact that each of the additional queries A and i’ is
uniformly distributed in 7, independently of the P-queries ¢1,...,qx. Finally, to show that the
scheme Sp meets the data-privacy requirement with respect to the honest user, we will use the
following, more general, claim.



Claim 1. Let g = (7, (¢1, A1), (g2, A2), - .., (qk; Ag)) be any (k + 1)-tuple of queries (possibly, but
not necessarily, picked by an honest user). Moreover, suppose that Ay = Ay = -+ = Ay A,
Then, the joint answers of DBy, ..., DB} to their corresponding queries in ¢ are independent of x
given x4 A (where the probability space is over the choice of r, and where the sum i’ + A is taken
modulo n).

; def

Proof. Leta' =x®(r > A). Note that 2’ is the virtual data string computed by each database
DBj, 1 < j <k, in the process of answering to its own query from g, i.e., ¢;. Now, consider the
joint distribution of (z',r;). This distribution is uniform over the set

{(ya b) VRS {07 l}na be {07 1}7yi’+A ®b= xi'-l-A}:

thus depending only on x; A. Since x' determines the answers of DBy, ..., DBy given the query-
tuple ¢, and since r; is the answer of DBy, it follows that the joint distribution of all answers given
such query-tuple ¢ depends on ;A alone. L]

Claim 1 implies that the distribution of the view of an honest user, given that it holds input ¢
and random input p, depends only on a single data bit, because an honest user sets A; = A, =
-+ = A, = A. This shows the data-privacy of Sp with respect to an honest user, and concludes
the proof of Theorem 1. L]

Note that in the above scheme Sp, a dishonest user can either send invalid P-queries, or send
different shifts A; to different databases. However, by Claim 1, only the latter dishonest behavior
could potentially give the user more information on the data. In other words, if the user sends the
same shifts to all databases, then data-privacy will always be maintained, regardless of the validity
of the other queries. Thus, to extend this scheme for a dishonest user, it would suffice to have the
databases (each of which sees only a single A;) send their answers disguised so that the user learns
the answers only if the condition A; = ... = Ay is satisfied. To this end, we use the primitive of
“conditional disclosure of secrets”, introduced in the next subsection.

A natural question regarding the above transformation is whether its shared randomness com-
plexity may be reduced. A partial answer to this question is given in appendix A.2, where it is
shown that for our transformation to be general (i.e. applicable to any underlying PIR scheme),
the shared n-bit string used there must be uniformly distributed over {0, 1}", namely linear shared
randomness is required regardless of the communication complexity of the underlying PIR scheme.

Finally, we note that Claim 1 implies that if P is the trivial 1-database PIR scheme in which
the entire data string is being sent to the user, then the 2-database SPIR scheme Sp constructed
above is resilient also against a dishonest user. We thus have:

Corollary 1. There exists a 1-round, 2-database SPIR scheme &) with communication complexity
(2[logy n],n + 1), and shared randomness complexity n.

While this scheme S; is inefficient on its own, as it requires linear communication complexity,
it will be used as a subprotocol (with small data strings) in our later constructions.

3.2 Conditional Disclosure of Secrets

In this subsection we describe and implement a new cryptographic primitive, called conditional
disclosure of secrets (or CDS for short). This primitive is then used in the next subsection to obtain
a general reduction from SPIR to PIR withstanding any user behavior.



Informally, the conditional disclosure setting involves k players, each holding some private input,
and an external party Carol, which knows all inputs held by the players. In addition, there is a
secret s which is known to at least one of the players but not to Carol. The goal is for the players to
disclose the secret to Carol, subject to a given condition on their joint input (namely if the condition
holds, Carol learns the secret, and if it doesn’t she obtains no information about the secret). The
model allows all the players to have access to a shared random string (hidden from Carol), and
the only communication allowed is a single unidirectional message sent from each player to Carol.
Note that Carol knows whether the messages she receives will help her obtain the secret because
she holds the entire input, and thus knows whether the condition holds.

A formal definition is given below. For convenience, we start by defining a version where the
secret s to be disclosed is known to all players (we call this version conditional disclosure of a
common secret).

Let h:{0,1}"—{0,1} be a fixed boolean function (the condition); let By, ..., By be a partition
of [n] into k sets (each B; C [n] is called the j-th player input portion); and let SD be some secret
domain (e.g., all binary strings of a particular length). A conditional disclosure of a common secret
for the condition h, input partition By,..., By, and secret domain SD, consists of a set of k players
Py, ..., P, (modeled as functions) and (an external party) Carol, as follows. Let r denote a shared
random input of the players, drawn from some distribution R. For any fixed y =y, ...y, € {0,1}"
(the dnput), s € SD (the secret), and 1 < j < k, we define a random variable m; = P;(y|g,, s, r)
(the j-th player message), where the randomness is over the choice of r. Then the following two
conditions must hold:

1. correctness: For every y € {0,1}", if h(y) = 1, then Vs, r, Carol(y, my,...,m;) = s. That
is, if the condition holds, then Carol is always able to reconstruct the secret s from her input
and the messages she received.

2. secrecy: For every y € {0,1}", if h(y) = 0, then for any sg, s; € SD the k-tuples of random

. k k . . . .
variables <mj0 = Pj(ylg;, so, 7")>j:1 and <m§1 = Pj(y|s;, 51, 7")>j:1 are identically distributed
(where the probability is over the choice of ). That is, if the condition does not hold, Carol
obtains no information about the secret s (the messages received by Carol are identically

distributed for any two possible secrets sy and s7).

A similar version can be defined when the secret s is known to at least one of the players (not
necessarily to all of them). In this case we let m; = P;(y|p,,r) for players P; who do not hold s
(their message is constructed only based on their portion of the input and the shared randomness).
We call this (more general) version conditional disclosure of a secret.

The communication complexity of a conditional disclosure protocol is the maximal total size of
all messages sent by the players (over the choices of r), and its shared randomness complezity is the
entropy of R.

We note that the model of conditional disclosure is similar to the non-interactive model of private
computation from [14], which is described in Subsection 4.2. Known results in that (in a sense more
general) model are sufficient to yield some solutions to the conditional disclosure problem. For
instance, results of [14, 16] imply conditional disclosure protocols with communication which is
quadratic in the size of a branching program or a formula describing the condition h (see Remark 2
for discussion). However, the solutions obtained via these general results are usually not efficient
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enough for our purposes. Instead, we show below how to achieve much more efficient solutions,
which use communication at most linear in the size of h.

3.2.1 Reduction to Generalized Secret Sharing

In the following we show how to implement conditional disclosure of secrets under an arbitrary
condition by reducing it to generalized secret sharing [4, 17] relative to a corresponding access
structure.

Generalized secret sharing.  The problem of generalized secret sharing is an extension of the
usual notion of t-out-of-m secret sharing [23]. Informally, a generalized secret sharing protocol is a
randomized protocol for sharing a secret into m shares such that the secret can be reconstructed
from any qualified set of shares, whereas any combination of an unqualified set of shares should
give no information about the secret. Formally, a generalized secret sharing scheme with secret
domain SD is defined by a triple (D, R,C), where D (the dealing function) maps a secret s € SD
and a random input r into an m-tuple of shares (s,...,s,,), R is the distribution from which the
random input r is chosen, and C (the reconstruction function) maps a set A C [m] and an |A|-
tuple of shares into a reconstructed secret s € SD. The collection of qualified sets is specified by a
monotone Boolean function hy, : {0,1}" — {0, 1}, called an access structure, where a set A C [m]
of shares is said to be qualified if hy;(x4) = 1 and otherwise is said to be unqualified. The scheme
S = (D, R,C) is said to be a generalized secret sharing scheme realizing the access structure hy; if
it satisfies the following two requirements: (1) correctness: for any qualified set A C [m], every
secret s € SD, and every random input r, the reconstruction succeeds; that is, C(A, D(s,7)|4) = s;
and (2) secrecy: for any unqualified set A C [m] and secrets s;, s, € SD, the random variables
D(s1,7)|a and D(sq,7)|4 are identically distributed (where the probability is over the choice of r,
distributed according to R). Finally, the share complexity of S is the maximum total size of all
shares in an m-tuple D(s,r), and its randomness complezity is the entropy of R.

Lemma 1. Let hy : {0,1} —{0,1} be a monotone Boolean function. Let h : {0,1}" —{0,1}
be a Boolean function defined by h(yi,...,yn) = har(g1,- .., gm), where each g; depends on a single
variable y;; that is, ¢; € {y1, 71, ..., Yn, Un} for 1 <i < m (such h will be referred to as a projection
of hy). Let S be a generalized secret sharing scheme with secret domain SD realizing the access
structure hj,s, with share complexity # and randomness complexity 7. Then, for any partition
By, ..., B of the inputs to h among k players, there exists a protocol P for disclosing a common
secret s € SD subject to the condition A, with communication complexity 4 and shared randomness
complexity .

Proof. Recall that the CDS protocol P involves players Py, ..., P, each holding a portion
of the input y = yi,...,y, (player P; holds Bj) and the secret s € SD. The players wish to
reveal their secret to Carol subject to the condition h(y) = 1. We show how to construct P
using the generalized secret sharing scheme S = (D, R, C) realizing the access structure h,s, where
hae(91 -5 gm) = My, - Yn)

The protocol P uses a shared random string r distributed according to R, and proceeds as
follows. First, each player P; evaluates D(s,r), generating an m-tuple of shares (sq,...,sp) (note
that all players generate the same shares, since they use the same secret and the same random input
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when evaluating D). Next, for each i € [m], player P; includes the share s; in the message sent
to Carol if and only if the following two conditions hold: (1) g; depends on some input variable y,
held by the player (i.e., g; is either y;, or 7 for some [ € B;); and (2) g; evaluates to 1. That is, the
message sent to Carol by the player P; consists of the restriction of the shares (sq,...,s,,) to those
which satisfy the above two conditions.

Observe that since each input variable y; is held by some player, Carol receives exactly those
shares s; for which g; = 1. By this observation, if Ay (g1, ..., gm) = 1 then Carol has exactly the s;
for which g; = 1, which according to the definition of generalized secret sharing is a qualified set of
shares, and can thus reconstruct the secret s (using the reconstruction function C). On the other
hand, if hy (g1, ..., 9m) = 0 then Carol receives an unqualified set of shares, and hence gains no
information about s. To complete the proof, recall that ha (g1, ..., 9m) = h(y1, ..., y,); thus, Carol
can reconstruct s whenever the condition A(y) holds, and otherwise obtains no information on s.

Finally, the shared randomness complexity of P is the same as the randomness complexity of
S, and the communication complexity of P is no larger than the share complexity of S (since each
share is sent by at most one player). (]

We now use Lemma 1 to obtain an upper bound on the complexity of conditional disclosure of
secrets, depending on the size of a formula computing the condition. The proof of the following
theorem will use a known result about the complexity of generalized secret sharing.

Fact 1. [4] Suppose that hy, : {0,1}" —{0,1} can be computed by a monotone Boolean formula
of size S. Then, there exists a generalized secret sharing scheme realizing h), with SD = {0, 1},
whose communication complexity and shared randomness complexity are bounded by S.

Theorem 2. Suppose that h:{0,1}" — {0,1} can be computed by a Boolean formula of size S,
and let SD = {0,1}. Then, for every partition By,..., By of the inputs to h,

1. there exists a protocol P for disclosing a common secret bit s € SD (known to all players)

subject to the condition h, with communication complexity and shared randomness complexity
bounded by S.

2. there exists a protocol P’ for disclosing a secret bit s € SD (known to at least one player)

subject to the condition h, with communication complexity and shared randomness complexity
bounded by S + 1.

Proof. A protocol P for conditional disclosure of a common secret bit s known to all players
is constructed as follows. Let H be a Boolean formula over the variables ¥y, ..., ¥y, computing h,
whose size is S. Replacing each negative literal 7, with a positive literal w;, we obtain a monotone
Boolean formula Hy, of size S computing a monotone function hy;(y1, ..., Yn, w1, ..., wy,). Note
that h is a projection of hyy, since h(yy, ..., yn) = hasr(Y1s -« - YnsTys - - -, T,,)- Using Fact 1, it follows
from Lemma 1 that the players can disclose the bit s subject to the condition A using at most S
communication bits and at most S shared random bits, which completes the proof of the first part
of the theorem.

For the second part, a protocol P’ for conditional disclosure of a secret bit s known to at least one
player, proceeds as follows. The players first conditionally disclose a shared random bit ro, known to
all of them, subject to the condition h. This is done using the protocol P described above. Finally,
a single player holding s sends the bit s @ ry to Carol. Clearly, if Carol can reconstruct ry then she

12



can also reconstruct s, and if she obtains no information on ry then she can obtain no information
on s, and the theorem follows. L]

Remark 1. Using best known general upper bounds on the complexity of generalized secret
sharing [18], the result of Theorem 2 can be strengthened to apply to any function h with a span
program over GF(2) of size S (see [18] for a definition of the span program model).

3.2.2 Direct Constructions for Special Cases

In the sequel, the conditional disclosure primitive will be used in our reductions for dealing with
dishonest behavior of the user. These applications of conditional disclosure require only a sim-
ple condition (e.g., testing equality between inputs). Therefore, in the following we give direct
constructions of conditional disclosure protocols realizing these specific conditions. These direct
constructions are more efficient than the ones obtained by a straightforward application of The-
orem 2. We stress though that the more general results described above are still useful in other
cryptographic scenarios, such as the one described in Subsection 6.3.

The next lemma shows an efficient implementation of conditional disclosure of secrets, where
the condition tests whether the sum of £ field elements equals 0. Later it will mostly be used with
k = 2, to implement conditional disclosure of secrets where the condition tests for equality between
two strings.

Lemma 2. Let F be a finite field (all arithmetic operations below are in this field). Suppose that
each of k players P; holds an input y; € F, and that a secret s € F' is known to at least one player
Then, there exists a protocol for disclosing the secret s subject to the condition “ k 1y =071
which each player sends a single field element, and whose shared random string COIlSlStS of k random
field elements.

Proof.  Assume without loss of generality that player P, holds the secret s, and let ro, 7y, ..., 7p 1
be independent random elements of F', shared by the parties. The protocol can then proceed as
follows:

e Bach player P;, 1 < j <k — 1, sends to Carol the single field element m; o yiro + 1y
e The player P sends to Carol my = s + yprg — Zf 175

First, note that if all inputs y; add up to 0, then s can be reconstructed as the sum of all messages
m]
71

k i i
=1 —~ =

We now show that if "y, 75 0, the k-tuple of messages (ml, ..., my) is uniformly distributed over
F* independently of s. For any sequence of messages mq, ..., m; € F* we define its support as the
set of all choices rg,r1,...,r,_1 which make the players send this sequence of messages to Carol
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(when the inputs are 4, . .., y; and the secret is s). By the construction of the protocol, the support

consists of exactly all 7o, 7, ..., rp_; satisfying the system of equations
Yiro +n =m
YaTo +7y = my
Yk—1T0 Trg—1 = Mk
YgTo —T1 ... —Tk—1 =M — S

This is a system of k£ linear equations in the k variables 7o, 7y,...,7,-1. When > y; # 0 the &k
equations are linearly independent, since adding the first £ — 1 equations to the last one yield a
triangular system of equations. Therefore, any sequence of messages m, ..., m; € F* has a support
which is a singleton, and in particular all sequences have the same size support. This implies that
the uniform distribution of the field elements 7o, 71, ..., r,_; induces a uniform distribution of the
messages my, . . ., my over F¥_for any input tuple v, . . ., yx with nonzero sum and any secret s € F.

O

Note that the above lemma outperforms the general construction of Theorem 2. Using the
general construction, the communication and randomness required for disclosing a single bit secret
is larger than the total size of k field elements (which is a lower bound on the size of a formula
evaluating the condition), whereas in the specific construction of Lemma 2 communication and
randomness of this size are sufficient for the disclosure of a longer secret, namely a field element.
The following lemma shows that it is possible to further reduce the communication to be dominated
by the secret size, even when the secret is smaller than the inputs.

Lemma 3. Suppose that each of k players holds an input string? y; € {0, 1}*, and a secret string
s € {0,1}™ is known to at least one player. Then, there exists a protocol for disclosing the secret s
subject to the condition “ ;?:1 y; = 0 in which each player sends a string of length m, and whose
shared randomness complexity is k - max(¢, m).

Proof. For a finite field F' = GF(2"), we use a standard representation of field elements by
w-bit strings, such that each element of F'is represented by the coefficient vector of the polynomial
associated with it. (Recall that an element of GF(2") may be identified with a polynomial over
GF(2) of degree < w — 1, modulo some irreducible degree-w polynomial). Such representation
defines an isomorphism between the groups (F,+) and ({0, 1}, ®).

We now consider two possible cases. If £ < m, then the protocol from the proof of Lemma 2
can be used as is, letting F' = GF(2™), and associating the secret s with the corresponding field
element and each input string y; € {0, 1}* with the field element corresponding to its m-bit padding
ijm*E.

In the second case (¢ > m), we use the same protocol with F' = GF(2¢), except that each field
element sent in the original protocol is projected to the m leftmost bits of its representation; that
is, if my; is the field element originally sent by P; and is represented by the string 0,05 --- 0y, then
the message sent from P; to Carol in the new protocol would be the m-bit prefix o,09---0,,. A
key observation is that, under the above representation, the projection operator commutes with
the field addition. Hence, the sum of all -bit projections sent in the new protocol is equal to the

4The claim is formulated for binary strings, but can be generalized to strings over any finite field.
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projection of Zle m;. It follows from the above observation and from the analysis in the proof of
Lemma 2 that if the condition “ le y; = 0°” holds, then s can be reconstructed as the exclusive-or
of all messages. On the other hand, if the condition does not hold, then the original k£ messages
are uniformly and independently distributed over F', from which it follows that the projected m-bit
messages are independently and uniformly distributed over {0,1}™. This proves the correctness
and secrecy of this protocol.

Finally, since in both cases each player sends a message string of length m, the specified
communication bound is met, and since in both cases the protocol of Lemma 2 is invoked with

F = GF(2max(tm)) “the specified shared randomness bound is met as well. O

In particular, the result of Lemma 3 can be applied with & = 2 for conditionally disclosing a
secret s subject to a condition which tests equality of strings held by two players. This protocol
clearly outperforms any protocol obtainable via the general result of Theorem 2; indeed, since
testing equality between (-bit strings requires a formula of size ©(f), the best protocol obtainable
via Theorem 2 would require ©(¢) communication bits for conditionally disclosing a single bit
subject to equality between two ¢-bit strings (compared to only 2 communication bits required using
Lemma 3). The improved efficiency obtained via Lemma 3 will be used in the next subsection.

3.3 A General Reduction with Respect to Dishonest Users

Using the conditional disclosure of secrets primitive described above, the following theorem gives
a general reduction from any PIR scheme to a SPIR scheme for the case of any user (possibly
dishonest).

Theorem 3. Let P be any l-round k-database PIR scheme with communication complexity
(ag(n), Bk(n)). Then, there exists a 1-round, (k+1)-database SPIR scheme S} with communication
complexity at most (ax(n)+ (k+1)[logyn|, 26k(n)+1), and shared randomness complexity O(n+

Br(n))-

Proof. Let Sp be the protocol from the general (honest-user) reduction of Theorem 1. By
Claim 1, Sp satisfies data-privacy as long as the user sends to every database DB; the same shift
amount Aj;. Thus we make S5 be the following modification of Sp, effectively forcing the user to
send the same shifts.

The user’s queries are the same as in Sp, and so are the answers of DBy (the auxiliary database)
and DB;. In addition, for each 2 < j < k, we let DB; and DB, disclose the original Sp-answer
of DB, subject to the condition A; = A; (where A; is the [log, n]-bit shift sent to DB;). This
conditional disclosure is implemented using Lemma 3.

The user-privacy in the original Sp is clearly maintained. The scheme S} meets the data-privacy
requirement, since the use of conditional disclosure guarantees that the (possibly dishonest) user
will obtain information only on answers of databases DB; such that A; = A, which by Claim 1
implies that the user learns at most a single physical bit of data. Hence, S} is indeed a SPIR
scheme.

We now analyze the complexity of this scheme. For each 0 < j < k we let 3/(n) denote
the length of the answer sent by DB, in the scheme Sp. By Theorem 1, we know that g = 1
and that Z?:o ﬂfg(n) = fr(n) + 1. Using Lemma 3, the communication complexity required to
implement the conditional disclosure subprotocol involving the databases DB, and DB, in the
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scheme Sj is 261 (n). The total communication sent from all databases to the user is therefore
Bl(n) + Bi(n) + Z?ZQ(Qﬁ,z(n)) <1+2%F, Bl(n) = 14 2B(n). The total communication sent
from the user is the same as in Sp, namely ax(n) + (k + 1)[logyn]. The shared randomness
complexity is the same as in Sp plus the randomness required by Lemma 3, which sums up to
n+ 25, max(2[log, n], §(n)) = O(n + Bi(n)). N

In subsequent sections we present SPIR schemes which rely on specific structural properties of
some underlying PIR schemes, and exploit them to outperform the above general transformations.
In particular, they use sublinear shared randomness, and do not require an auxiliary database.

4 Specific SPIR Schemes with Respect to Honest Users

In this section we construct honest-user SPIR schemes which perform as well as their PIR coun-
terparts, up to a multiplicative constant, both in terms of communication and randomness. Our
constructions utilize two primitives: private simultaneous messages protocols (described below),
and conditional disclosure of secrets (introduced in Section 3.2 above). Since our schemes rely on
specific PIR schemes from the literature, we first review some details of those PIR schemes which
are important for our constructions.

4.1 Some Known PIR Schemes

We start by describing a PIR scheme from [11], referred to as the basic cube scheme. This scheme
is the basis for the 2-database scheme By from [11], also described below, which in turn serves
as the basis for the recursive k-database scheme By from [1]. The schemes By and the polynomial
interpolation scheme of [11, 3] are described later on, in the proofs of Theorems 6 and 7 respectively.

Basic d-dimensional Cube Scheme: This is a PIR scheme for k& = 27 databases. Assume
without loss of generality that the database size is n = (%, where ¢ is an integer. The index
set [n] can then be identified with the d-dimensional cube [¢]?, where each index i € [n] can be
naturally identified with a d-tuple (i1,...,74). A d-dimensional subcube is a subset S; X - -+ X Sy
of the d-dimensional cube, where each S, is a subset of [¢]. Such a subcube is denoted by the
d-tuple C = (Sy,...,S4). The k(= 2?) databases are assigned all of the binary strings of length d,
DB,Vo € {0,1}% The scheme proceeds as follows.

QUERIES: The user picks a random subcube C' = (S},...,59), where S7,...,SY are independent
random subsets of [(]. Let S} = S° @i, (1 < m < d), where i = (iy,...,14) is the index that
the user wishes to retrieve. For each 0 = 0105 --04 € {0, 1}d, the user sends to database DB, the
subcube C, = (S7',...,S57), where each set S7m is represented by its characteristic ¢-bit string.
ANswERs: Each database DB, o € {0, l}d, computes the exclusive-or of the data bits residing in
the subcube O, and sends the resultant bit b, to the user.’

RECONSTRUCTION: The user computes z; as the exclusive-or of the k£ bits b,’s it has received.

The scheme’s correctness follows from the fact that every bit in x except x; appears in an even
number of subcubes C,, o € {0, l}d, while x; appears in exactly one such subcube (see [11] for

5The exclusive-or of an empty set of bits is defined to be 0.
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details). The communication complexity of this 2%-database scheme is O(n'/?), much worse than
the following scheme B, and its generalization By, which achieves communication O(n'/*=1) for
a constant number of databases k.

The scheme B;:  This scheme may be regarded as a 2-database implementation of the 8-database
(3-dimensional) cube scheme described above. Let ¢ = n'/3, and let i = (iy, iy, i3) be the index of
the data bit being retrieved. Each of the two databases DBy and DB;;; emulates the 4 databases
DB,, o € {0, 1}3, such that the Hamming distance of ¢ from its own index is at most 1. This is
done in the following way. The user sends to DBygy the subcube Cygy = (57,59, S9) and to DBy
the subcube Cyy; = (S}, 54,53) as in the basic cube scheme. We would like the answers of each
of the two databases to include the 4 answer bits of the 4 databases it emulates. To this end,
DByoo replies with its own answer bit bygg along with 3 ¢-bit long strings, each of which contains
the answer bit of one of the other databases it emulates. For instance, the i{-th bit of the string
emulating DBy is obtained by computing the exclusive-or of all data bits residing in the subcube
(SY @ 4,59, 57), implying that the 7,-th bit in this string is equal to bygo. Symmetrically, DBy,
sends the single bit by;; along with 3 ¢-bit long strings, each of which corresponds to the subcubes
obtained from C1y; by “masking” the set S! with all ¢ possible values of i,,,. Altogether, the user
receives 8 answer strings a,, o € {0, 1}3, six of which contain /¢ bits each, and the other two (namely,
agoo and aq11) contain single bits. In each of the ¢-bit long strings, the required answer bit b, can
be found in either the i; bit of the string (for o = 100, 011), the iy bit (for o = 010, 101), or the i3
bit (for ¢ = 001,110). Since the user can locate all 8 bits b,, o € {0,1}", in the answer strings, it
can reconstruct x; by computing their exclusive-or.

4.2 The Private Simultaneous Messages (PSM) Model

In a typical PIR scheme, the honest user can extract from the databases’ answers more information
than just the reconstructed value x;. Towards solving this problem, we use the following idea.
Consider any 1-round PIR scheme. In an execution of such scheme, the user first produces k queries
qi,- - ., qr, depending on the index 7. It then sends each query to the corresponding database and
in response receives k answer strings ag, ..., a,. Finally, the user applies a reconstruction function
U to obtain the desired bit x;. Our idea is to have the user compute the output of ¥ without
actually getting the answers aq, ..., a;, from which it can obtain more information, but rather get
some other messages my, ..., my that keep the privacy of the string x.

Precisely this idea is captured by the model of non-interactive private computation introduced
in [14] and further studied in [16], called the Private Simultaneous Messages (PSM) model. In
this model there are k players, each player P; holding a private input string y;, and an external
referee called Carol. All players have access to a shared random input, which is unknown to Carol.
The goal of a PSM protocol is to let Carol evaluate a function f(y,...,yr) without learning any
additional information about the inputs y;, ..., yx. The scenario of the PSM protocol is similar to a
conditional disclosure protocol (see Subsection 3.2), except that in PSM there is no input to Carol,
and there is no other input to the players except y1, ..., yr. More formally, in a PSM protocol each
player P; sends a single message to Carol, based on its private input y; and the shared random input,
and Carol applies some reconstruction function to the k£ messages she received. A PSM protocol
computing a k-argument function f must satisfy the following requirements: (1) correctness: for
any input tuple ¥y = (yi,...,yx) and any shared random input, the value reconstructed by Carol
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is f(y); and (2) privacy: given any two input tuples y = (y1,...,%), ¥ = (y},...,y;) such that
f(y) = f(y'), the messages viewed by Carol are identically distributed.

The communication complexity and the shared randomness complexity of a PSM protocol are
defined as in the conditional disclosure of secrets model. We denote the communication complexity
of a k-player PSM protocol by ¢x(m), where m is the total number of input bits held by the k
players, and its shared randomness complexity by di(m).

In [14, 16] several upper bounds on PSM complexity are obtained. In particular, it is shown that
any Boolean function with a branching program of size S(m) (with any partition of the m input
bits among k players) can be computed by a PSM protocol whose communication complexity and
shared randomness complexity are O (k- S(m)?) [16]. In general, this quadratic overhead will turn
out to be too expensive for our purposes. However, some functions do admit simple PSM protocols
with linear complexity as we see in the following lemma.

Lemma 4. Let (G,+,0), (H,+,0) be finite Abelian groups, and f:G* — H be a linear function
(thatis, f((y1t21),---, (et2e)) = Flyr, - ue) Ff (20, z) forall (yo, - ue), (21, -, 2) € GF).
Then, there exists a PSM protocol computing f whose communication complexity and shared
randomness complexity are no larger than m, where m is the total number of input bits to f.

Proof. = The PSM protocol for f proceeds as follows. Each player P; masks its input y; with r;,
setting w; = y; + 5, where (ry,...,7:) € G* is a random shared tuple satisfying f(ry,..., ) = 0.
Then, P; sends the masked input w; to Carol. Carol can now compute f(wy,...,wg) = f((yn +
), (e + 1) = flyrs- o yn)+Hf(r, k) = fyr, ., ye)+0 = f(y1,..., k), which is the
desired output value. The privacy of this protocol follows by observing that for any input tuple
y = (y1,...,yx) and message tuple w = (wy,...,wy) such that f(y) = f(w), there exists a unique
random input r (namely, r = w — y) such that f(r) = 0 and the messages induced by the inputs y
and the random input r are w. Therefore, every message tuple w such that f(y) = f(w) has the
same size support (a singleton), implying identical distribution of all such messages. Finally, the
communication and shared randomness complexity are clearly as specified. (]

This lemma is used in the sequel, when the groups GG, H are the binary strings of a fixed length,
and the operation is @ (exclusive-or).

Remark 2. (CDS from PSM) Note that the conditional disclosure of secrets (CDS) primitive
described in Subsection 3.2 and used in Theorem 2 may be implemented (less efficiently) using
PSM computation. Specifically, disclosing a bit s subject to a condition g(y) may be reduced to
the PSM computation of the function f(y,s) = ¢g(y) A s. Indeed, by the correctness of the PSM
protocol for f, if g(y) = 1 then Carol can reconstruct s = g(y) A s. On the other hand, if g(y) = 0
then, by the privacy of the PSM protocol, Carol’s view is identically distributed under the inputs
(y,0) and (y, 1), implying that Carol learns nothing about s. However, the general upper bound on
the complexity of conditional disclosure of secrets, established by Theorem 2, is linear in the size
of a formula (or a span program) computing the condition, whereas best known results on PSM
complexity yield a bound which is quadratic in such representation size. This is because every
function with formula size S(m) is also computable by a branching program of size S(m) + 1 (see
[24, Chapter 14]). This, as mentioned above, gives a PSM complexity of O(S(m)?).
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4.3 SPIR Schemes Based on PSM and CDS Protocols

In this subsection we use PSM and CDS protocols to construct honest-user SPIR schemes. First, in
lemma 5 we apply PSM solutions to a PIR scheme with a particular type of reconstruction function
in order to get an honest-user SPIR scheme. We then discuss the implications of this lemma and
provide an example in which it is used. This example and lemma are also helpful in our later
constructions, in particular ones which involve PIR schemes with a more general reconstruction
function.

Lemma 5. Suppose P is a l-round k-database PIR scheme with communication complexity
(ak(n), Be(n)), such that: (1) the reconstruction function ¥ depends only on the answers of the
databases, and (2) the function W can be computed by a PSM protocol whose communication
complexity is ¢x(m) and whose shared randomness complexity is dy(n). Then, there exists a 1-round
k-database honest-user SPIR scheme & whose communication complexity is (ag(n), cx(6k(n))) and
whose shared randomness complexity is dj,(8x(n)).

Proof. A scheme S of the specified complexity can be obtained from P as follows. The
user chooses queries ¢i,...,¢q; as it does in the PIR scheme P and sends each query ¢; to the
corresponding database DB;. Each database DB; computes its answer a; as it would do in P, but
instead of sending the answer to the user, the databases (using their shared randomness) simulate
the PSM computation of ¥(ay,...,ag). That is, each database DB, sends to the user the message
that player P; would send to Carol in the PSM protocol for W. The correctness and privacy of &
follow from the correctness and privacy of P and of the PSM protocol for ¥, and the complexity is
clearly as stated. (]

We stress that Lemma 5 only yields honest-user SPIR schemes; indeed, a dishonest user can
potentially generate “invalid” queries, such that applying the reconstruction function to their an-
swers gives forbidden information which does not follow from any physical data bit. (Here the idea
of hiding the input to the reconstruction function will not help, since the dishonest user may get
information from the output of the reconstruction function). A direct application of Lemma 5 is
given in the following example.

Example 1. PSM-based honest-user SPIR scheme for the d-dimensional cube scheme.
Consider the basic d-dimensional cube scheme from Subsection 4.1, in which the reconstruction
function consists of computing the exclusive-or of the k£ answer bits sent from the databases. This
scheme does not maintain data-privacy, since the user learns the exclusive-or of k& = 2¢ different
subsets of data bits. In this case, the extra information can be eliminated by applying Lemmas 4
and 5. Specifically, instead of sending the original answer b,, each database DB, will send a masked
answer b, @ r,, where 1 = rg.qo70..01 - - - 7110 1S @ (k — 1)-bit shared random string, and ry..1; is
computed as the exclusive-or of the bits of r. Under the modified scheme, an honest user’s view is
uniformly distributed among all k-tuples whose exclusive-or is @Ue{o’l}d b,, which by the scheme’s
correctness is equal to the physical bit x;.

Other PIR schemes with linear reconstruction function, to which Lemma 5 is applicable with

no communication overhead, include the polynomial-interpolation schemes for O(logn) databases
of [11, 3], for which (dishonest-user) SPIR counterparts will be given in Subsection 5.2.
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Remark 3. (On the generality of Lemma 5) Note that Lemma 5 requires that in the
underlying PIR scheme P, the reconstruction function depends only on the answers computed by
the databases. While this is the case with the basic cube scheme (see Example 1 above), this is
not the case with the scheme B,, for instance, where reconstruction heavily depends on the index
¢ held by the user. In order to satisfy this requirement, any PIR scheme P, whose reconstruction
function ¥ may also depend on the the index ¢ and the queries ¢;, may be augmented into a PIR
scheme P’, whose reconstruction ¥' depends only on the answers, as follows. First, the user secret-
shares the index ¢ between two databases independently of its original queries (e.g., by sending a
[log, n]-bit random string to one database and the exclusive-or of this random string with the binary
representation of ¢ to the other database). Such sharing of i does not violate the user’s privacy and
introduces only a minor overhead on the query complexity. Then, each database DB; appends to
its original answer a; the query g; it received (including the share of 7). The original reconstruction
function ¥ induces a reconstruction function ¥’ for the augmented scheme P’, which depends on
the databases’ answers alone. Hence, Lemma 5 can be applied to the augmented scheme. However,
the complexity of this solution can be prohibitive.

In the remainder of this section we derive an honest-user SPIR scheme from the 2-database PIR
scheme By.° In this case, it is possible to use the PSM methodology of Lemma 5 and Remark 3
to efficiently meet this goal. However, towards constructions in the next sections, we introduce an
alternative, conceptually simpler, methodology of using conditional disclosure of secrets on top of
PSM. A similar methodology may also be useful in different contexts, as will be demonstrated in
Subsection 6.3.

Theorem 4. There exists a 2-database honest-user SPIR scheme, Bj, with communication
complexity and shared randomness complexity O(n'/3).

Proof. Recall the PIR scheme By (see Section 4.1) and, in particular, its reconstruction function
which may be viewed as a two-stage procedure: (1) the user selects a single bit from each of 8
answer strings, depending only on the index i = (iy, i,43); and (2) the user takes the exclusive-or
of the 8 bits it has selected to obtain x;. Thus, if we let the honest user learn only the exclusive-or
of the 8 bits corresponding to 7, the data-privacy requirement will be met. This can be achieved
by using the conditional disclosure of secrets primitive on top of a PSM protocol computing the
exclusive-or of 8 bits. The scheme B, an honest-user SPIR version of B, proceeds as follows:

QUERIES: The user sends the subcubes Cyg to DByyy and Cyy; to DByqq, as in the scheme By. In
addition, the user independently shares the three characteristic vectors x; , m = 1,2, 3, among the
two databases. This is done by picking random £-bit strings ¥ i) such that 0 @il = x; and

m?’ m
sending the three strings i, to DBygo and the three strings i\ to DByy;. 7
ANSWERS: Each of the two databases computes 3 answer strings of length n'/? and 1 one bit answer
as in the By scheme. Denote by a, the answer string emulating DB,,, o € {0, 1}3. The databases
treat each bit of a string a, as an input to a PSM protocol computing the exclusive-or of 8 bits,

6While it is possible to extend our construction to apply to By, the k-database generalization from [1], we postpone
this generalization to the next section, which deals with the case of a dishonest user.
"When the user is honest, this extra sharing of x;,, is redundant since the characteristic vectors of the sets S9 , Sl

sent by the user may be viewed as these shares; however, this presentation more closely resembles the solution for a
dishonest user, described in the the next section.
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and using their shared randomness they compute (but do not send) the PSM message sent for each
such bit. Under the simple PSM protocol for XOR (see Lemma 4 or Example 1), each such message
is by itself a single bit. Let w, denote the string obtained by replacing each bit from a, by its
corresponding PSM message bit. In this case, w, is obtained by masking every bit of a, with the
same random bit r,, where the bits {r,} are 8 random bits whose exclusive-or is 0. Finally, for
every o € {0, 1}3 and 1 < j < |w,|, the databases use their shared randomness to disclose to the
user the j-th bit of w,, (w,);, subject to an appropriate condition. For o = 100,011 the condition
is (19); @ (41); = 1, for o = 010,101 it is (i3),; @ (i3); = 1, and for o = 001,110 it is (i3); @ (i3); = 1.
The single bits wggg, w111 can be sent in a plain form.

RECONSTRUCTION: The user reconstructs the eight PSM message bits corresponding to the index
i (using the reconstruction function of the conditional disclosure protocol), and computes their
exclusive-or to obtain z;.

The correctness of the above scheme and the user’s privacy follow from the correctness and user’s
privacy of the PIR scheme B, and the correctness of the CDS and the PSM schemes used, and are
easy to verify. We turn to show that the scheme meets the data-privacy requirement with respect
to an honest user. We first introduce some notation. By A(x,i,r, p) we denote the 8-tuple of B,-
answers a,, computed by the databases in the execution of B, (or By) induced by (z,1i,r, p), where
x is the data string, 7 is the user’s input query, r is the shared randomness of the databases, and
p is the random input of the user. Similarly, by W (x,1,r, p) we denote the 8-tuple of PSM strings
w,, computed by the databases in the corresponding execution of Bj. Finally, given an 8-tuple
w = (Wy)seq0,138 and an index 7, we let wl; denote the restriction of w to the 8 bits corresponding
to the index 1.

Since the user is honest and by the correctness of B,, the exclusive-or of the eight bits in
A(x,i,r,p)l; is equal to x;. Thus, by the privacy of the PSM protocol for XOR, it follows that for
any x, 2,7 such that x; = 2}, any p and 2z € {0,1}®,

Pr[W iz, i, r,p)li = 2| = Pr[W(a',i,r,p)|i = z]. (1)
By the secrecy of the conditional disclosure protocol and the independence of its shared randomness
from the PSM randomness, it follows that for any z, 2,4, p, v, and z € {0,1}® we have:

Prlviewy(z,i,7,p) =v | W(z,i,r, p)li = 2] = f;r[viewU(.r',i, rop)=v | W' i,rp)=z2. (2

Finally, combining equations (1) and (2) we get that for any x,2', 4, p, v such that x; = x}:

F;r[viewU(ac,z',r, p) =v] = Z l?ﬂr[viewU(x,i,r, p)=v| Wz, irp)li==z - F;r[W(x,i,r, p)li = 2]
2€{0,1}*
= Z Pr[viewy (z',i,r,p) = v | W(z',i,r,p)|i = 2] - Pr[W(z,i,r,p)|i = 2]
r r
2€{0,1}*

= Prlviewy(a',i,7,p) = v],
T

concluding the proof of the data-privacy property. (We note that while the above proof explicitly
refers to all relevant random variables, in subsequent proofs of a similar nature such detailed analysis
will be replaced by higher level arguments.)

It remains to show that the scheme meets the specified complexity bounds. Since the condition
for disclosing each of the O(n'/3) bits of the strings wj is of the form “y; @ys =17 (or equivalently
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T1®ys = 0), where y;, yy are single bits, it follows from Lemma 3 (or Theorem 2) that all such masked
answer bits can be conditionally disclosed with total communication and shared randomness cost of
O(n1/3) bits. Altogether, the communication complexity of the scheme and its shared randomness
complexity are O(n'/3), as required. O

5 Specific SPIR Schemes with Respect to Dishonest Users

In the previous section we were concerned with an honest but curious user. In this section we
construct SPIR schemes which guarantee data-privacy with respect to dishonest users as well. The
following example demonstrates the extra information that a dishonest user may obtain in ordinary
PIR schemes and in the honest-user SPIR scheme constructed above.

Example 2. Consider the scheme By. Suppose that a user sends the subcube Coog = ({i1}, {ia},
{i3}) as a (legitimate) query to the first database. Then, the answers of this database alone, which
include the bits 2, iy is)s T(iy insis) DT (Ginsia) s Tinsinsis) DT (i jsig)s ANA T(i, g 1) DT (i, iy ) fOr all j € [n!/3],
reveal about 3n'/? physical bits of data. Note that by randomly setting this query an honest user
can also learn that many physical data bits, but this occurs with only an exponentially small
probability. Moreover, even in the scheme B} (which perfectly maintains data-privacy for an honest
user), a dishonest user may similarly obtain ©(n'/?) physical data bits. To do this, the user sends
to the first database the same cube Cyyy as above, and sends to the second database the empty cube
Ci11 = (0,0,0). Instead of sharing the characteristic vectors x;, , the user will now share three all-
ones vectors, which would automatically satisfy all disclosure conditions and allow the user to learn
the entirety of the eight strings w,. Then, about 3n'/? physical bits can be reconstructed from the
combined answers of the two databases. For instance, for every j € [n'/3] the user may reconstruct
the bit x(;;, ;,) by computing wogo @ (wi00); ® (Wor0)i, ® (Woo1)iy, D (Wor1)1 @ (Wr01)1 © (Wor1)1 S wiry.

Observe that in the honest-user SPIR scheme B, a dishonest user can cheat in two ways. One
way is to improperly share the characteristic vector of its index (e.g., share the all-ones vector
instead). The other way is to send invalid By-queries. This may give the user extra information
even when the index is properly shared, because invalid Bs-queries can make the output of the
reconstruction function depend on more than one bit of data. In order to become resilient to
dishonest users, any honest-user SPIR scheme can (in principle) be modified to filter every original
answer bit using the conditional disclosure primitive, such that the condition tests for the validity
of the user’s queries. However, the complexity of disclosing each answer bit subject to a full validity
test will be prohibitive. In the next subsections we use alternative means to transform the best
known PIR schemes into SPIR schemes. All these transformations involve at most a constant
multiplicative communication overhead.

5.1 Cube Schemes

In this subsection we construct a k-database SPIR scheme, resilient against dishonest users, whose
communication complexity is O(n'/(>*=1)) (the same as the best k-database PIR scheme known).
We first address the 2-database case, from which we then generalize to the k-database scheme.

Theorem 5. There exists a 2-database SPIR scheme, Bj, with communication complexity and
shared randomness complexity O(n'/?).
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Proof.  Assume that ¢ = n'/? is an integer. The scheme Bj proceeds as follows:

QUERIES: The user sends to DBygy the subcube Cyoo = (S,5Y,5Y) and to DBy the subcube
Ci1 = (S1,55,53), as in the scheme By. In addition, the user independently shares dense repre-
sentations of the index components i,,, m = 1,2,3 (as opposed to the unary representation in the
scheme B)). This is done by viewing each index component i,, as an element of Z,, picking random
[log, ¢]-bit elements 1° il € Z, such that i +i! =i, (mod /), and sending the three strings i,
to DBygo and the three strings i} to DBiy;.

ANSWERS: The answers in Bj are constructed on top of some intermediate computations from
the scheme B,. Recall that b, denotes the answer from database DB, in the basic 3-dimensional
cube scheme, a, denotes the answer string corresponding to DB, in the original scheme B,, and
w, denotes the strings constructed by taking the exclusive-or of each bit in the string a, with the
same random bit r, (these correspond to messages in a PSM protocol for computing XOR). Let
t1,ty,t3 be shared random strings of length ¢ each, and u;, us, ug be shared random bits (these will
be used as “masks” to guarantee that the user gets no information on x if the subcubes it sent are
not consistent with the index whose binary representation was shared). The databases reply with
the following messages:

1. DBygo sends to the user the three bits v, = (x50, tm) ® U, m =1,2,3, where (-,-) denotes

def

inner product over GF(2). Similarly, DByy; sends the bits v, = (Xs1 , tp) ® Un.
2. DBy sends to the user the bit wggg. Similarly, DB;1; sends the bit wqqy.

3. DBy, DBi11 use the SPIR scheme S of Corollary 1 to provide the user with a single bit from
each of the six ¢-bit strings wigg, wo10, woo1 (known to DBygg), and w11 D1, wigr Bta, wi10 B3
(known to DBi11)®, in the positions corresponding to the shared index. This is done by using
the user’s queries 70 ,i! as the queries for the scheme S, where m = 1 for retrieval from
wigg and wgyy @ t1, m = 2 for retrieval from wg1g and wqg; B to, and m = 3 for retrieval from
wgpr and w19 @ t3. Since the index retrieved in the scheme S5 is the sum of the queries to
both databases, this means that the user obtains the bits in position 7; from the first pair of

strings, io from the second pair, and i3 from the third.

RECONSTRUCTION: An honest user reconstruct x; as follows. For m = 1,2, 3 the user reconstructs
the bit (¢,,);,, by computing v2, @ v, . Then, using these 3 bits and the bits obtained from the S;
invocations, it computes

(t1)i, @ (t2)iy, B (t3)i5 @ Wo0o B w111 B (Wor1)i; B (W101)i, B (W110)4s
@ (w100 D t1)i, B (Wo10 D t2)i, B (woo1 B t3)is
= @ by

0e{0,1}3

The correctness and the user’s privacy in this scheme are easy to verify. We now show the
scheme’s data-privacy, relative to any user.

8Recall that in S; only one of the two databases needs to know the data, and the other one only needs access to
the shared random string.
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Lemma 6. Denote by S ,i® b =0,1, m = 1,2,3, queries sent by a possibly dishonest user, and
let i, =40 4+l (mod £). If these queries satisfy SO @ S}, = {i*,} for m = 1,2, 3 then the answers
reveal the bit T (i3 i3,i3) and no other information about the data. Otherwise, the answers reveal no

information about the data.

Proof. First, observe that using the random bits u,, guarantees that for m = 1, 2, 3 the answers

vy, Uy, are two uniformly distributed bits satisfying v, @ v, = (xso@s1 , tm). Thus if the user is

mI -m

honest then SY & S! = {i* } and so the user can obtain (t,,);,, but if S° @& S} # {i* } then the
messages (v, vp,), m = 1,2, 3, jointly give no information about (,,);- . (Note that in the latter
case a user may learn the exclusive-or of the bit (tm)i;n with other bits in %,,, but this still gives no
information on (%,,);: .)

Next, observe that the data privacy of the SPIR scheme S; guarantees that the user learns a
single physical bit from each of the six ¢-bit strings to which the scheme was applied. Moreover, the
position of this bit corresponds to a shared index component ¢, . By the properties of the underlying

PSM protocol, the only information revealed by these bits is their exclusive-or which is

( D bo)®(t)i, @ (t2)i, ® (£3)s,- (3)

ae{0,1}3

Altogether, the only information on « the user can obtain is what follows from (xgo g1 ,tm) and the
outcome of expression (3) above. Now, if S) @S, = {iy,} form = 1,2, 3 then @,c(01}2 bo = T(iri3.47),
implying that z;: ;; ;- is the only information on x learned by the user. On the other hand, if SO @
Sl = {i*,} for some m, then there exists some m for which the user gets no information about
(tm)i: , and thus it learns no information about the data. O

Finally, using Corollary 1 the & invocations can be implemented with a total of O(f) com-
munication complexity and shared randomness complexity. Thus, the scheme meets the specified
complexity bounds. ]

We note that the SPIR scheme B} constructed above is in fact as communication efficient as
the PIR scheme B, up to an additive logarithmic overhead.

Next, we give a k-database generalization of Theorem 5.

Theorem 6. For every constant k > 2 there exists a k-database SPIR scheme, B}/, with commu-
nication complexity and shared randomness complexity O(n!/(2¢=1)),

Proof. We start by giving a short description of the PIR scheme By, from [1]. Let d = 2k — 1
and £ = n'/4. In the scheme By, the k databases (denoted DBy, ..., DB;) jointly emulate the 2°
databases of the d-dimensional cube scheme. The scheme proceeds as follows. The user sends to
DB, the subcube Cya as in the basic cube scheme, and sends to each of DB, ..., DB} the subcube
Cha. In its answers, DB, emulates all databases DB, of the original scheme such that o € {0,1}"
is at Hamming distance at most 1 from 09, similarly to the way such an emulation is done in the
scheme B,. Simultaneously, the remaining databases DB,, ..., DB, jointly emulate the remaining
databases of the original scheme, namely all DB, such that o contains at least two 1’s. This is done
using a constant number (2d —d — 1) of recursive invocations of the scheme Bj,_; between the user
and DBsy, ..., DBj. In each such invocation the user retrieves a single bit b, from a virtual data
string, whose entries correspond to the different subcubes possibly sent to DB, in the basic cube
scheme (i.e., each bit of the virtual data strings is the exclusive-or of data bits residing in such a
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potential subcube). By taking the exclusive-or of the d + 1 bits selected from the answers of DB,
together with the 2¢ —d — 1 bits retrieved by the recursive invocations of By_;, the user reconstructs
Z;.

We now show how to adapt the proof of Theorem 5 to this k-database generalization. Intuitively,
we combine the recursive construction outlined above with the techniques used for constructing the
scheme Bj (of Theorem 5). Note that in B each of the two databases had a role as a “main
database” having some information to send to the user, as well as an “auxiliary database” to help
the other database disclose its own information without revealing any extra information. Similarly
in B we will have DB; be the “main database” in emulating the databases DB, of Hamming
distance at most 1 from 0¢ in the original cube scheme, and DB, be the “auxiliary database” for
this purpose. In addition, DBs, ..., DB, will recursively emulate the other databases of the original
cube scheme, as in the scheme By described above. We start by describing the induction assumption
we will be using, followed by a description of the scheme.

Suppose we have a (k —1)-database SPIR scheme B} ; of communication complexity and shared
randomness complexity O(n'/(2#=3)) In this case we make an additional assumption on B} |: we
assume that the user is required to commit to the index being retrieved. This assumption is made
precise in the following way. We say that a 1-round PIR scheme P satisfies the strong data-privacy
requirement with parameter d', if the following conditions hold:

1. On a data string z of length n' = ¢, the user sends special queries QY. QL 1 <m<d (each
of which is an element of Z;); and

2. If a user (possibly a dishonest user) sends queries in which Q% + Q) = i* (mod () for each
1 <m < d', then the answers reveal at most the bit (7’ ) -

Notice that strong data-privacy implies the usual data-privacy. Also note that the scheme Bj
satisfies this stronger requirement with d’ = 3, as follows from Lemma 6. Our additional assumption
on B}, (which will be carried on to By) is that it satisfies the strong data-privacy requirement with
d =2(k—1)—1=2k—3. The scheme By} proceeds as follows:

QUERIES: The user sends to DB; the subcube Cype = (SV,...,SY) and to each of DBy, ..., DBy

the subcube Cia = (S7,...,5)). In addition, the user independently shares dense representations

of the index components i,,, m = 1,2,...,d, between DB; and DB,, using additive shares over 7,

as in the scheme Bj. Finally, the user sends the queries necessary for the recursive invocations of
w1 described in item 4 below.

ANSWERS: As before, let w, denote the strings corresponding to the PSM message strings for
emulating database DB, in the d-dimensional cube scheme. For o such that weight(o) > 2 these
strings are described below, whereas for o of weight 0 or 1 these can be constructed from the query
Cya exactly as before. In particular, we consider w,,, where e, denotes the m-th unit vector of
length d (note that the databases whose index is in Hamming distance at most 1 from 0% are DBq
and DB, 1 < m < d, and they can be emulated by DB as before). Let ¢,ts,...,t; be shared
random strings of length ¢, and wuq, us, ..., uq be shared random bits. The databases reply with the
following messages:

1. DB, sends to the user the d bits v & (X590, tm) @ U, 1 < m < d. Similarly, DB, sends the
bits v}, = (Xs1, tm) B Un.
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2. DB, sends the bit wge @ s, where s is a shared random bit (to be conditionally disclosed in
item 5 below).

3. DB, computes all £-bit long PSM message strings w,,,, 1 < m < d, emulating databases DB,
in the d-dimensional cube scheme. Then DB, and DB, use the SPIR scheme & to provide
the user with the bit in position i,, of each string w,, @ t,,. Like in the scheme B, this is
done by using the shares of i,, as the queries in S;.

4. For each o € {0, 1}d such that weight(o) > 2, the user and the databases DBy, DBs, ..., DB
recursively invoke B, on the virtual data string w, defined in the following. Let d' = d — 2
and n' = (¢. Let mJ, 1 < z < weight(c), denote the position of the z-th zero in 0. With
every o such that weight(o) > 2 and tuple i' = (i4,...,4,) € [(]* we associate a subcube CY
(of the cube [(]%), which is obtained from Cj« by replacing each set S, 1 < z < weight(o),
with the set S! @ img . Bach w, is defined to be the n'-bit string, whose 7'-th bit is equal to the
exclusive-or of data bits residing in the subcube Cf together with the PSM random bit r,. In
a recursive invocation of Bj_; on the virtual data string w,, the user retrieves the bit whose

index is represented by the d'-tuple @, = (img,img, .-, img,1,...,1), where p = weight(o).

5. The databases conditionally disclose the shared bit s subject to a conjunction of the following
conditions:

(a) For every 3 < j <k, the subcube sent to DB; is equal to the subcube sent to DBs.

(b) For every o € {0,1}* such that weight(c) > 2, the index i’ shared by the user in the
invocation of B_; on w, (in accordance with the strong data-privacy assumption made
on B ) is equal to i’ . This can be verified by comparing each component of 7' with the
corresponding component of ¢ as shared by the user.

(For efficiently disclosing s under the conjunction of all these conditions, the databases may
write s as the exclusive-or of several independent random bits, and disclose each of these bits
subject to a single condition of equality between two strings).

RECONSTRUCTION: The user reconstructs x; by recursively reconstructing the bits retrieved via
B;_,, and taking their exclusive-or with all other bits disclosed to the user.

We start by analyzing the communication and shared randomness complexity. By Lemma 3 and
Corollary 1, the conditional disclosure of the bit s and the SPIR retrievals from the strings we, , ®1,,
can be implemented with O(f) communication and shared randomness complexity, for a constant
k. Thus, by induction (using Bj as basis) the communication complexity is cx(n) = O(¢) + (2¢ —
d—1) ¢ 1(£472) = Of) = O(n'/*=Y), and similarly the shared randomness complexity is also
O(n(l/(Qkfl))_

The correctness and the user’s privacy can be easily verified. It remains to show that the
strong data-privacy requirement also holds for B). We argue that if the user commits to an index
i = (i1,...,1q) (by sharing its components between DB; and DB,), then it can learn at most the
bit z;. As in the Bj scheme, an honest user learns x; alone. In order to learn some information
involving other bits, a dishonest user must deviate from the scheme’s specification either by sending
to DBy, ..., DB subcubes which don’t meet the requirements imposed by 4, or by trying to retrieve
from the recursive invocations of By _, different bits than those corresponding to i. The specified
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disclosure conditions, the data privacy of S, and the strong data-privacy assumption made on B},
guarantee that in both of these cases, the user will learn no information at all. (]

5.2 A Polynomial Interpolation Based Scheme

In this section we prove that the polynomial interpolation based PIR scheme for £ = [log, n + 1]
databases from [11] (see also [3]) can be transformed into a SPIR scheme with the same number of
databases and a constant factor of communication and randomness overhead.

Theorem 7. There exists a [log, n + 1]-database SPIR scheme, with communication complexity
and shared randomness complexity O(log”n - loglogn).

Proof. We start by describing the underlying PIR scheme, which is based on the method of
low-degree polynomial interpolation (see [3, 11] for more details). Assume without loss of generality
that n = 2%, where s is a positive integer, and let £ = s+1 be the number of databases. Let GF(q) be
a finite field with at least k£ +1 elements, and «;, 1 < j < k, be distinct, nonzero elements of GF(q).
With every index i € [n] we associate an s-tuple i = (i1,12,...,15) € {0,1}", corresponding to the
binary representation of 7. For each data string x € {0,1}", let p,(y1,...,ys) denote a multivariate
degree-s polynomial such that p, (i) = x; for every i € [n] (such p, may be taken to be the multilinear
extension of the function f(i) & ;). The user picks a random s-tuple @ = (¢, ..., ¢;) € GF(q)*,
and sends to each database DB, 1 < j < k, the query @/ = a; -+ i. Each database DB; replies
with a single field element q; ' py(@). The user reconstructs z; by interpolation: if p' is the
unique degree-s univariate polynomial (over GF(g¢)) such that p'(c;) = a; for every 1 < j < k, then
x; = p'(0). The communication complexity of this scheme is O(log® nloglogn).

As noted in Subsection 4.3, the linearity of the reconstruction function (interpolation) allows
to obtain a PSM-based honest-user SPIR scheme with the same communication complexity. To
prevent a dishonest user from obtaining any illegitimate information on x, we require the user to
prove that its queries are consistent with some ¢ € {0,1}" and & € GF(g)*. Such a proof will consist
of sharing each entry of @ and 7, and its validation will consist of verifying that 7 € {0,1}* and that
W :aj-5+5for each 1 < j <k.

We begin with the following observation, which also yields a slight improvement to the original
PIR scheme described above. Note that the user reconstructs x; by computing some fized linear
combination over GF(q) of the k field elements replied by the databases. Thus, as a first step,
we can let each database multiply its original answer by the corresponding coefficient, so that
reconstruction will consist of computing the sum of all answers over GF(¢q). Then, if ¢ is chosen to
be a power of 2 (¢ = 2[logs (k+1)] suffices), it is enough for the databases to reply only with the “least
significant bit” of each answer, and for the user to reconstruct z; by taking the exclusive-or of the
k answer bits. From now on we refer to this modified scheme. The corresponding SPIR scheme we
construct is formally described as follows:

QUERIES: The user sends to each database DB; a query @’ as in the original scheme. In addition,
the user picks random tuples 2°,i', @, & € GF(q)* such that ¥ +i' =7 and @ + @ = & and sends
P, to DBy and ', & to each of DBy, ..., DBy.

ANSWERS: Let rq,r9,..., 7 be independent random bits (included in the databases’ shared ran-
domness), and let r denote their exclusive-or. Each database DB; replies with a,; o a; @ r;, where
a; is its answer according to the modified scheme. In addition, the databases use their shared
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randomness to disclose the bit r, subject to a conjunction of the following conditions: (1) for every
3 < j < k, the shares of i and ¢ sent to DB; are identical to those sent to DBy; (2) for every
1 <m < s, either i, +il =0o0ri® +il =1 (where i’ denotes the m-th entry of the b-th share
of 7); and finally (3) for every 1 < j < kand 1 < m <'s, a (% + ¢, ) + (1% + i) = ul,. Note
that the above condition may be expressed by a Boolean formula over O(ks) = O(loglogn) atomic
conditions, each testing equality between two elements of GF(¢) known to two different databases.
For instance, if 5 > 1 then verifying the condition a;(c? + ¢}) + (12 + i) = v/, is equivalent to
comparing ;¢ + 4% . which is known to DBy, and v/, — a;cl, —il,, which is known to DB;. Using
Theorem 2, the conditional disclosure of r can be implemented with communication complexity and
shared randomness complexity of O(log?n - loglogn).

RECONSTRUCTION: The user reconstructs r, and computes x; as the exclusive-or of a}, ..., a; and
r.

The correctness and the user’s privacy of the original scheme are clearly maintained. To see the
data-privacy of this scheme, consider two possible cases. If the user’s queries are valid, then the
tuple (af,d), ..., a},r) is uniformly distributed among all (k + 1)-tuples over GF(2) which add up
to x;, implying that the answer distribution depends only on x;. Otherwise, the user obtains no
information on r, and consequently a},...,a) (which are uniformly and independently distributed
over GF(2)) are independent of the conditional disclosure messages. It follows that in the latter
case the user obtains no information on .

Excluding the conditional disclosure of r, the communication complexity of the scheme is dom-
inated by the query complexity, which is O(log®n - loglogn). Together with the complexity of
disclosing r, which is discussed above, the entire scheme requires O(log” n - loglogn) communica-
tion and shared randomness bits. (]

6 Conclusion and Extensions

We have presented a methodology which allows to implement communication efficient SPIR schemes,
requiring only one round of interaction and withstanding any dishonest behavior of the user. This
methodology may be useful for dealing with other variants of the basic PIR question, as we demon-
strate in this section, as well as in other cryptographic scenarios. In the following we show how to
extend our results in two directions: dealing with retrieval of blocks instead of single-bit records;
and dealing with ¢-privacy, namely privacy against coalitions of up to t colluding databases. We
also present an application which using our methodology for SPIR, and in particular the condi-
tional disclosure of secrets primitive can be implemented quite efficiently. This application, termed
private retrieval with costs, allows a user to privately retrieve (in a single round) any collection of
data items, provided that their total cost does not exceed what it had previously paid for.

6.1 Block Retrieval SPIR schemes

So far, we have restricted our attention to retrieval of single bits rather than multi-bit records, also
referred to as blocks. In this subsection we show how results from the previous sections can be
extended to yield block-retrieval SPIR schemes.

We start by observing that for PIR schemes generality is not lost when only single bit retrieval
is considered: any PIR scheme for single bit retrieval may simply be invoked ¢ times in parallel
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to retrieve a block of ¢ bits. However this argument does not carry on to SPIR schemes, because
a cheating user may invoke the scheme on ¢ bits which do not belong to the same record, thus
obtaining information about more than one physical block. Therefore, we describe a modification
of the above procedure which works for single round SPIR schemes.

Given a single round SPIR scheme where the user can retrieve a single bit out of the n-bit data
string, one can construct a (single round) SPIR scheme to retrieve an ¢-bit record from a data string
of m such records as follows: the user sends queries as in the original bit-retrieval scheme, and the
databases reply £ times to the user’s queries, once for each bit of the record. Each such reply allows
the user to learn a single bit of the selected record, and since the user generates queries only once
it is guaranteed that the ¢ bits that it learns indeed form a single record of the database.

The above transformation from single-bit to multi-bit retrieval is not applicable for multi-round
SPIR schemes, since the same set of queries cannot be used multiple times for different record bits
(queries for each bit must depend on replies received in previous rounds). On the other hand, for
multi-round schemes, our general PIR to SPIR transformation of Section 3 may be extended to
work for multi-bit block retrieval, by letting each entry of the shared random string r consist of ¢
bits instead of a single bit. The protocols and their proofs can be modified in a straightforward
way to support this extension. In addition, note that all our specific SPIR schemes (Sections 4,5)
are single round, and thus may be used for block retrieval by the above transformation. This is
also true for our general SPIR scheme (Section 3), when used with an underlying single round PIR
scheme (which is the case for most PIR schemes known in the literature).

6.2 t-private SPIR schemes

In the general reduction described in Section 3, even if the original PIR scheme P is t-private for
some t > 1, the resultant SPIR scheme Sp will still only be 1-private. This is because if DB
colludes with any other database DB;, the joint view of these two colluding databases includes
both the shift A and the shifted index i’ = (i — A) mod n, from which the user’s index 7 can easily
be recovered. Generalizing the construction of Sp, a t-private SPIR scheme S} can be obtained
from any t-private PIR scheme P as follows. Instead of directly asking DB, for the (i—A)-th bit of
the shared random string r, the user can retrieve this bit by recursively invoking the (¢ — 1)-private
SPIR scheme S;;l with a “fresh” set of databases. As a basis 8% for this recursion, we may take
the trivial 1-database scheme in which the user explicitly asks for the desired index. In particular,
the (k + 1)-database 1-private scheme described in Section 3 may be viewed as the second level of
the recursion. In general, for any ¢-private k-database PIR scheme P, applying this recursion yields
a t-private (kt + 1)-database SPIR scheme Sp whose communication complexity is roughly ¢ times
that of our original (1-private) scheme.

In the following generalization of Theorem 3 we show that the number of databases in the ¢-
private SPIR scheme can be reduced to k + t, at the expense of increasing communication by a
factor of (ki‘l 1).

Theorem 8. Let P be any l-round, k-database, t-private PIR scheme with communication
complexity (ag(n), Bx(n)). Then, there exists a 1-round, (k+t)-database, t-private SPIR scheme

Sp with communication complexity (O(m(ay(n) + [logyn]), O(mpB(n))) and shared randomness
k+t—1

complexity O(mn), where m = ( o
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Proof. A t-private SPIR scheme Sp using K = k + t databases DB, ..., DBk is described in
the following. The construction uses a collection F = {Si, ..., Sim, Smi1} C 25 of database sets
such that:

e S, is a singleton;
e cach other set Sy, 1 < h < m, is of size k;

e for any set T' C [K] of size ¢, there exists a set S € F such that TN .S = ().

Such F exists with m = (kizl) E.g., let S;,p1 = {K}, and for any subset T C [K]| of size t such
that K € T, let Sy = [K]\T."
An honest-user SPIR scheme can now proceed as follows (where all actions are performed using

one round of communication):

e The user U picks m random shift amounts Ay, Ag, ..., A, € Z,;
The databases hold m shared random strings ry,...,r,,, of length n each, and let ry = =z
denote the data string.

e For 1 < j < m, U sends A, to each database in S;, and invokes the PIR scheme P with
database set S; to privately retrieve the bit b; in position i; = i — Zi;ll A; (mod n) of
rj—1 @ (r; > A;). (Notice that in particular, i, = i);

e U explicitly asks the single database in S,,,; for the bit b,,,; in position %, -
S Ap (mod n) of rpy;

e U reconstructs z; by taking the exclusive-or of the m + 1 bits by, ..., by, by

We now show that the scheme is correct, and that it satisfies both privacy requirements. It
follows by induction that for h = 1,2,...,m, by @ bo ® --- ® by = 2; D (71)s,,,, and so (by ® by D
@ by) @ bt = (€ @ (rm)inyy) ® b1 = ;. This proves the correctness of the scheme.

To prove the user’s privacy, consider the view of a collusion 7" of ¢t databases. Since P is t-
private, invocations of P involving members of T" do not disclose any information about ¢. The only
potential source of information about 7 are those messages from the set {Ay, Ao, ..., Ay, i1} that
are viewed by members of T. However, the definition of F guarantees that the collusion 7" will only
view a proper subset of these messages, which contains no information on .

To prove the data-privacy (against an honest user), it suffices to show that given any shift
amounts Aq, ..., A,, and position i,,,, picked by the user, the random variable

(ZL" D (11> A1), r1 @ (ra >> Ag), 12 ® (r3 >> Ag), ..., 11 @ (rm > Ayy), (Tm)im+1) ;

where the strings r4, ..., r, are uniformly and independently distributed over {0, 1}", depends only
on the single data bit x;, where ¢ = 7, + > Aj. This can be proved by iterating the argument used
in the proof of Theorem 1. Letting ry = x, it can be shown by backward induction on A that for

Tt is not hard to observe that the described F is of minimal cardinality, and that it cannot exist at all for K
smaller than k + t. However, by increasing the number of databases K, the cardinality of F can be decreased. For
instance, m can be made as low as ¢t when K = tk + 1, corresponding to the recursive scheme described above.
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h=m-—1,m-2,...,0, the joint distribution (7,® (rpr1 >> Api1), The1®(Thao >> Apio), ooy T 1D
(rm > Ay), ("m)in.,) is independent of r), given (rp);,, where iy = i1 + Ay + Ay + ...+
Api1 (mod n). In particular, for i = 0 we obtain the desired result.

Finally, the same conditional disclosure mechanism used in the proof of Theorem 3 can be used
here as well to guarantee data-privacy against any (possibly dishonest) user. Specifically, in any
invocation of P involving database set Sy, each answer should be disclosed subject to the condition
that all corresponding shift amounts sent by the user are equal. The above analysis shows that this
suffices to guarantee data-privacy.

Aside from the conditional disclosure protocol, the communication in the resultant scheme Sp
involves m invocations of the scheme P, m extra logn-bit query strings, and one extra answer bit.
The conditional disclosure protocol induces a constant multiplicative communication and shared
randomness overhead. This gives the communication and randomness bounds stated in the theorem.

O

6.3 Private Retrieval with Costs

In this subsection we briefly sketch how the conditional disclosure of secrets methodology can be
used together with an underlying SPIR scheme to implement private retrieval with costs.

Let i1, ..., 1, denote the indices of the data records which the user wishes to retrieve,' ¢ denote
a public vector of (-bit integral costs (an n-tuple whose i-th entry ¢; contains a binary representation
of the cost of the i-th data record (0 < ¢; < 2¢ — 1)), and p denote a public cost threshold (i.e., the
amount of money paid by the user). A scheme for private retrieval with costs allows the user to
retrieve the data records indexed by iy, ..., 1, privately (namely without giving the database any
information about iy, ..., 14,,), provided that }2}" , ¢;, < p (i.e. the total cost of the records does not
exceed the amount pre-paid by the user); on the other hand, it should not allow the user to obtain
any information which does not follow from such valid set of records.

The following is a high-level description of a generic implementation of such a scheme, using
an underlying (1-round) SPIR scheme S. Without loss of generality (but possibly with a small
complexity overhead), we may assume that the reconstruction function applied by the user in S
depends on the answers alone, and not on the index i or its random input p. (See Remark 3; also,
notice that this is already the case with the schemes B} constructed in Section 5.) The scheme can
then proceed as follows.

QUERIES: The user chooses independently, for each desired retrieval index i, of x (1 < h < m), a k-
tuple of queries according to the scheme S. It sends to each of the k databases the m corresponding
messages (all in parallel).

ANSWERS: Each database locally computes two answers to each of the user’s queries: one by
considering x as the data string, and the other by considering the cost vector ¢ as the data string
(more precisely, ¢ is considered as ¢ n-bit vectors and the ¢ answers can be used to construct the (-
bit entry ¢;, ). Then, the databases conditionally disclose their z-answers subject to an appropriate
condition on the c-answers. That is, the condition on the c-answers should assert that the sum

10y will be disclosed to the database as an upper bound on the number of data records that the user wishes to

retrieve. If the user wants to retrieve less than m records, the rest of the indices will point to a dummy record of
cost 0.
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of the costs reconstructed from these answers (each of which can be obtained by applying the
reconstruction function of §) is no larger than the public threshold p.

The complexity of realizing conditional disclosure as above can be kept low in the following ways.
First, it is better to use an underlying scheme & whose reconstruction function is computationally
easy (this is the case with the schemes constructed in this paper). Second, it is possible to facilitate
the realization of disclosures under “complicated” conditions by requiring the user to send a witness
to the validity of its queries, which will serve as an additional input to the condition. In this setting,
the general upper bounds given in Theorem 2 can be extended to apply to nondeterministic formulas
or span programs, yielding efficient conditional disclosure protocols whenever the condition can be
computed by an efficient circuit. Indeed, letting the witness supplied by the user consist of all
intermediate gate values, it is possible to verify that the circuit evaluates to 1 using a Boolean
formula whose size is linear in the circuit size. Since addition of m ¢-bit integers can be computed
by a circuit of size O(¢m), the amount of communication required for disclosing each answer bit!'!
is O(¢m) plus m times the size of circuitry required for reconstructing the selected costs from the
C-answers.
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A Necessity of Shared Randomness

A.1 Shared Randomness is Necessary for SPIR

In this section we show that the addition of a shared randomness resource to the basic PIR setting
is in a sense minimal.

Suppose we allow the databases to use private randomness in answering the user’s queries, but
we still do not allow them to interact without the mediation of the user (and in particular we do
not allow them to share a random string unknown to the user). We argue that in this setting,
(information-theoretic) SPIR cannot be implemented at all, regardless of its complexity, even when
the user is honest.

Claim 2.  There exists no (multi-round) k-database SPIR scheme without direct interaction
between different databases, even if the databases are allowed to hold private, independent random
inputs, and the user is honest.

Proof.  Since the user’s view includes all of the communication, the strong privacy requirement
implies that any single database DB; cannot respond to the user’s queries in a way that depends on
the data string . Formally, at any round the distribution of the database’s answer given previous
communication is the same under every x. For otherwise, this answer distribution must either not
follow from some z; alone, thus violating the data-privacy requirement, or alternatively reveal to
the database the index 7 on which it depends, thus violating the user’s privacy. By independence
of private random inputs held by different databases, this implies that the joint distribution of
their answers, given previous communication, is independent of x. Fixing an index i, it follows by
induction on the number of rounds that for any w > 0 the accumulated communication in the first
w rounds is distributed independently of x. This implies that the user’s output cannot depend on
the value of z;, contradicting the correctness requirement. L]

As a special case of Claim 2 we may conclude the following:
Corollary 2. There exists no single-database (information-theoretic) SPIR scheme.

We note that Corollary 2 can also be derived from known results about two-party computation
[12, 19, 2].

A.2 Shared Randomness in General Reduction from SPIR to PIR

We have shown above that the resource of shared randomness is necessary in order for SPIR to be
achievable. In Section 3 we have presented general transformations from PIR to SPIR using linear
shared randomness, and in Sections 4 and 5 specific transformations using about the same shared
randomness as the communication complexity.

A natural question concerning the general transformations is whether their shared randomness
complexity can be reduced, possibly as a function of their communication complexity. We now
argue that if we want the general reduction to apply to any PIR scheme, then its shared randomness
complexity (in the information-theoretic honest user case) is in a sense minimal; that is, the uniform
distribution on {0,1}" from which the shared random string is chosen cannot be replaced by a
distribution on {0,1}" whose entropy is less than n. It is straightforward to observe that this is
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the case with the trivial 1-database PIR scheme in which the database sends the entire data string
to the user; the following claim indicates that this is also the case for PIR schemes with arbitrarily
small communication complexity.

Claim 3. Any PIR scheme of which one answer bit gives the Boolean “OR” of all data bits
requires the shared random string r in the scheme of Theorem 1 to be uniformly distributed over

{0,1}",

Proof. Let R denote the distribution on {0, 1}" from which r is picked, and suppose that R is
not uniform; for n > 2, it easily follows that there exist y,y" € {0,1}" and an index i € [n] such that
yi =y, and Pr[R = y] # Pr[R = y]. Let SE denote the scheme Sp constructed in the proof of
Theorem 1 with the shared random string r distributed according to I, and consider an invocation
of 8% in which the user’s retrieval index is 7 and the specified shift is A = 0. Now, observe that in
this invocation the user can distinguish between the data strings y and y’, as

Prl\/ (y®R); =0 = Pr[R=y]

J€[n]

# PriR=y]=Pr[\/ (yy ®R) = 0].

JE€N]

By the correctness of 8%, the user must also learn the i-th data bit, implying that it obtains more
than a single physical bit of data. (]
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