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Abstract

We want assurances that sensitive information will not keldsed
when aggregate data derived from a database is publiEhter-
ential privacyoffers a strong statistical guarantee that the effect
of the presence of any individual in a database will be neglig
ble, even when an adversary has auxiliary knowledge. Mutheof
prior work in this area consists of proving algorithms to liféed-
entially private one at a time; we propose to streamlinegtisess
with a functional language whose type system automaticplbr-
antees differential privacy, allowing the programmer titevcom-
plex privacy-safe query programs in a flexible and compmséi
way.

The key novelty is the way our type system captutextion
sensitivity a measure of how much a function can magnify the dis-
tance between similar inputs: well-typed programs not aaly’t
go wrong, theycan't go too faron nearby inputs. Moreover, by in-
troducing a monad for random computations, we can showltleat t
established definition of differential privacy falls outtnally as
a special case of this soundness principle. We develop dgamp
including known differentially private algorithms, prisg-aware
variants of standard functional programming idioms, anchpo-
sitionality principles for differential privacy.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guage§ Language Classifications—specialized application lan-
guages

General Terms Languages
Keywords Differential Privacy, Type Systems

1. Introduction

It's no secret that privacy is a problem. A wealth of inforioat
about individuals is accumulating in various databases -tiepia
records, content and link graphs of social networking sive®k
and movie ratings, ... — and there are many potentially gems u
to which it could be put. But, as Netflix and others have ledrne
[26] to their detriment, even when data collectysto release only
anonymized or aggregated results, it is easy to publishirimtion
that reveals much more than was intended, when cleverly itmdb
with other data sources. An exciting new body of workdffer-
ential privacy[6, 7, 12—15, 27] aims to address this problem by,
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first, replacing the informal goal of ‘not violating privdcyith a
technically precise and strong statistical guarantee tfaexl offer-
ing various mechanisms for achieving this guarantee. Hsdlgna
mechanism for publishing data @fferentially privateif any con-
clusion made from the published data is almost exactly @byliik
any one individual's data is omitted from the database. lgsHor
achieving this guarantee can be attractively simple, isiralolv-
ing taking the true answer to a query and adding enough random
noise to blur the contributions of individuals.

For example, the querfHow many patients at this hospital are
over the age of 407?1s intuitively “almost safe”—safe because it
aggregates many individuals’ contributions together, ‘atohost”
because, if an adversary happened to know the ages of every pa
tient except John Doe, then answering this query would diieent
certain knowledge of a fact about John. The differentiavgay
methodology rests on the observation that, if we add a smmalLat
of random noise to its result, we can still get a useful ideghef
true answer to this query while obscuring the contributibrrmy
single individual. By contrast, the queffdiow many patients are
over the age of 40 and also happen to be named John Dae?”
plainly problematic, since it is focused on an individuahex than
an aggregate. Such a query cannot usefully be privatizede gdd
enough noise to obscure any individual’s contribution ®rsult,
there won't be any signal left.

So far, most of the work in differential privacy concernsdifie
algorithms rather than general, compositional languagéufes.
Although there is already an impressive set of differelytiptivate
versions of particular algorithms [6, 18], each new one ireguits
own separate proof. McSherry’s Privacy Integrated QuéRESQ)
[25] are a good step toward more general principles: theyibr
some relational algebra operations on database tablesglagsv
certain forms of composition of queries. But even these ake r
atively limited. We offer here a higher-order functionabgram-
ming language whose type system directly embodies reagonin
about differential privacy. In this language, we d¢arplementvic-
Sherry’s principles of sequential and parallel compositibdiffer-
entially private computations, and many others besidebjgeer-
order functions. This provides a foundational explanatérvhy
compositions of differentially private mechanisms succeethe
ways that they do.

The central idea in our type system also appears in PINQ and
in many of the algorithm-by-algorithm proofs in the diffatil
privacy literature: thesensitivityof query functions to quantitative
differences in their input. Sensitivity is a sort of contityyproperty;

a function of low sensitivity maps nearby inputs to nearbtpats.
To give precise meaning to ‘nearby,” we equip every type with
metric— a notion of distance — on its values.

Sensitivity matters for differential privacy because tineoant
of noise required to make a deterministic query differdlytiari-
vate is proportional to that query’s sensitivity. The sévigy of



both queries discussed above is in fact 1: adding or remawiray
patient’s records from the hospital database can only @hamg
true value of the query by at most 1. This means that we shaldd a
the sameamount of noise tdHow many patients at this hospital
are over the age of 40?4s to“How many patients are over the age
of 40, who also happen to be named John Do&Ri's may appear
counter-intuitive, but actually it is just right: the priva of single
individuals is protected to exactly the same degree in bates.
Of course, the usefulness of the results differs: knowiegatiswer
to the first query with, say, a typical error margin£©f00 could
still be valuable if there are thousands of patients in thephal’'s
records, whereas knowing the answer to the second quergtfwhi
can only be zero or oneft100 is useless. (We might try making the
second query more useful by scaling its answer up numeyicél
John Doe over 407? If yes, then 1,000, elseRt this query has a
sensitivity of 1,000, not 1, and so 1,000 times as much noisgt m
be added, blocking our sneaky attempt to violate privacy.)

To track function sensitivity, we givedistance-awargype sys-
tem. This type system embodies two important connections be
tween differential privacy and concepts from logic and tyipe-
ory. First, reasoning about sensitivity itself stronglgembledin-
ear logic[4, 16], which has been widely applied in programming
languages. The essential intuition about linear logic areht type
theories is that they treat assumptions as consumableroesoiVe
will see that in our setting theapability to sensitively depend on an
input’s valuebehaves like a resource. This intuition recurs through-
out the paper, and we sometimes refer to sensitivity to autiap
if it is counting the number of “uses” of that input.

The other connection comes from the use eh@nadto inter-
nalize the operation of adding random noise to query resules
include in the programming language a monad for random cempu
tations, similar to previously proposed stochastic cal@4, 30].
Since every type has a metric in our setting, we are led tovels&t
should the metric be for the monad? We find that, with the right
choice of metric, the definition of differentially privaterictions
falls out as aspecial caseof the definition of function sensitivity
for functions, when the function output happens to be manadi
This observation is very useful: while prior work treatsfelién-
tial privacy mechanismsand privatequeriesas separate things, we

of 1, and this fact is intimately connected to privacy projess; as
explained in Section 4.
With these in place, the query can be written as the program

Ad : db. add.noise(filter over40d) : db — OR.

As we explain in Section 4, its type indicates that it is aeatif
entially private computation taking a database and produaireal
number. Its runtime behavior is to yield a privacy-presegwioised
count of the number of patients in the hospital that are oQer 4

We begin in Section 2 by describing a core type system that
tracks function sensitivity. We state an informal versidithe key
metric preservation theorenwhich says the execution of every
well-typed function reflects the sensitivity that the tygstem as-
signs it. Section 3 gives examples of programs that can b&imp
mented in our language. Section 4 shows how to add the pidkabi
monad, and Section 5 develops further examples. In Sectioa 6
state the standard safety properties of the type systemadmrmal
statement of the metric preservation theorem, and sketgraof.
The remaining sections discuss related work and offer colim
remarks.

2. A Type System for Function Sensitivity
2.1 Sensitivity

Our point of departure for designing a programming langufage
differential privacy isunction sensitivityA function is said to be-
sensitivg(or have sensitivity) if it can magnify distances between
inputs by a factor of at most Since this definition depends on the
input and output types of the function having a metric (agrotf
distance) defined on them, we begin by discussing a spedal ca
of the definition for functions fronR to R, where we can use the
familiar Euclidean metrielz (z,y) = |z — y| on the real line. We
can then formally define-sensitivity for real-valued functions as
follows.

Definition A function f : R — R is said to bec-sensitiveiff
de(f(2), f(y)) < ¢~ dr(z,y) forallz,y € R.

A special case of this definition that comes up frequentiyés t

see here that they can be unified in a single language. Our typecase wheree = 1. A 1-sensitive function is also calledreonex-

system can express the privacy-safety of individual qseds well
as more complex query protocols (see Section 5) that regigaite
teract with a private database, adjusting which querigsyeform
depending on the responses they receive.

To briefly foreshadow what a query in our language looks like,
suppose that we have the following functions available:

over40: row — bool

size:db — R

filter : (row — bool) — db — db
add.noise: R — OR

The predicateover 40 simply determines whether or not an indi-
vidual database row indicates that patient is over the agé0of

The functionsizetakes an entire database, and outputs how many

rows it contains. Its type uses a special arrewy related to the lin-
ear logic function type of the same name, which expressesitea
function has sensitivity of 1. The higher-order functiter takes

a predicate on database rows and a database; it returnsttbet su
of the rows in the database that satisfy the predicate. Titésirfig
operation also has a sensitivity of 1 in its database argtjraed
again—o is used in its type. Finally, the functicedd_noiseis the
differential privacy mechanism that takes a real numbemapsiti
and returns a random computation (indicated by the manjgtthat
adds in a bit of random noise. This function also has a seitgiti

pansivefunction, since it keeps distances between input points the
same or else makes them smaller. Some examples of 1-sensitiv
functions are

f@)=2  fo(z)=—2x  f3(x) =2/2
fa(z) =lz|  fs(zx) = (x + |z[)/2

and some non-examples include(z) = 2z andf7(z) = 2. The
function fs, while not1-sensitivejs 2-sensitive. On the other hand,
f7 is notc-sensitive for any:.

PrROPOSITION2.1. Every function that isc-sensitive is alsa’-
sensitive for every’ > c.

For example fs is both1/2-sensitive and -sensitive.

So far we only have one typ&, with an associated metric.
‘e would like to introduce other base types, and type opeyato
build new types from old ones. We require that for every type
that we discuss, there is a metidg(z, y) for valuesz, y € 7. This
requirement makes it possible to straightforwardly gelimrahe
definition of c-sensitivity to arbitrary types.

Definition A function f : 1 — 72 is said to bec-sensitiveiff
d-y (f(2), f(y) < c-dr(z,y)forall z,y € 7.

The remainder of this subsection introduces several type op
erators, one after another, with examplescefensitive functions



on the types that they express. We use suggestive progragnmin the differences between their components instead the suen E

language terminology and notation, but emphasize thatidveis- though the underlying set of values is essentially the samee,
sion for now is essentially about pure mathematical fumstio— regard choosing a different metric as creating a distingétyhe
we do not yet worry about computational issues such as th&-pos type 1 & 72 consists of pairgui, v2), (written differently from
bility of nontermination. For example, we speak of valuea tfpe pairs of typer; ® 72 to further emphasize the difference) with the

in a way that should be understood as more or less synonymousmetric
with mere elements of a set — in Section 2.2 below, we will show

’ o ’ ’
how to actually speak formally about types and values. dry&ery ((V1,02), (V1, v2)) = max(dr, (v1,01), dry (2, v2)).

First of all, whenr is a type with associated metrit, let!,.m Now we can say thafis(z,y) = (z,z) is al-sensitive function
be the type whose values are the same as those lmit with the R® R — R & R. More generally& lets us combine outputs
metric ‘scaled up’ by a factor of. That is, we define of different c-sensitive functions even if they share dependency on

d,-(z,y) =7 -d(z,y). common inputs.

One role of this type operator is to allow us to reduce the ephc
of c-sensitivity tol-sensitivity. For we have

PrROPOSITION2.3.If f : 7 — 7 andg : 7 — 72 are c-sensitive,
then\z.(f x, g x) is ac-sensitive function i — 71 & 7.

Next we would like to capture the set of functions itself as a
type, so that we can, for instance, talk about higher-ongectfons.
Let us taker; — 72 to be the type whose values aresensitive
Proof Let =,y : 71 be given. Supposé., (z,y) = . Then functions f : 1 — T2. We _have aIr_e_ady estqblished _that the
di,7, (zy) = cr. For f to bec-sensitive as a functiom — 7 presence of, means that having-sensitive functions suf‘flce_s to
we must havel., (f(z), f(y)) < cr, but this is exactly the same ~ expressc-sensitive functions for alt, so we need not specially
condition that must be satisfied fgrto be al-sensitive function define an entire family ot-sensitive function type constructors:
1,71 — To. W the type ofc-sensitive functions from to 72 is just!.71 — 7.
We define the metric foro as follows:

PROPOSITION2.2. A function f is a c-sensitive function im; —
T2 if and only f it is a 1-sensitive function ih.m, — 2.

We can see therefore thf is al-sensitive functio:R — R, , ,
and also in fact a-sensitive functionrR — !, ,R. The symbol dry—ry (f, ) = I}g’f dry (f(2), f'(2))
!'is borrowed from linear logic, where it indicates that a rese
can be used an unlimited number of times. In our setting aut iof
type!,-7 is analogous to a resource that can be used atrtoses.

This is chosen to ensure that and ® have the expected curry-
ing/uncurrying behavior with respect to each other. We fithtt

We can also speak &f,, which scales up all non-zero distances to that
infinity, which is then like the original linear logit which allows curry(f) = Az.Ay.f (2,y)
unrestricted use. uncurry(g) = Mz, y).9zy

Another way we can consider building up new metric-carrying are1-sensitive functions ifR®R — R) — (R — R — R) and
types from existing ones is by forming productsrifand are (R — R —o R) — (R ® R —o R), respectively.
types with associated metrids, andd,, then letr, ® 7, be the We postulate several more type operators that are quitdidami
type whose values are paifs;, v2) wherev; € 7 andvz € 7. from programming languages. The unit type 1 which has ong/ on

In the metric on this product type, we define the distance eetw inhabitant(), has the metricl; ((), () = 0. Given two typesr
two pairs to be the sum of the distances between each pair of 3n4., we can form their disjoint uniom, + 7», whose values are

components: either of the forminj, v wherev € 7, orinj, v wherev € 7. Its
dry @y ((v1,02), (V1,v2)) = dry (v1,01) + dry (v2,v3) metric is
With this type operator we can describe more arithmeticaper dry (vo,vp) if v = inj; vo andv’ = inj; v;
tions on real numbers. For instance, dry 7 (0,0") = { dry (v0,vh)  if v = inj, vo andv’ = inj, v);
fslmy)=az+y  folz,y)=z-y o0 otherwise.
arel-sensitive functions iR ® R — R, and Note that this definition creates a type that iseatremelydisjoint
Fro(@,y) = (2,7) Fu(@,y) = (y,2) union of two components. Any distances between pairs oftpoin
10T, Y) =LY Yy = within the same component take the distance that that coampon
(z,y) ifx<y specifies, but distances from one component to the otherllare a
fi2(w,y) = (v +y,0)  cswiz,y) = (y.z) otherwise infinite.
’ Notice what this means for the tygol in particular, which

are 1-sensitive functions iR ® R — R ® R. We will see the we define as usual ds+ 1. Itis easy to writec-sensitive functions

usefulness ofswpin particular below in Section 3.6. However, frombool to other types, for the infinite distance between the values
true and false licenses us to map them to any two values we like

fis(z,y) = (z-y,0)  fu(z,y) = (z,2) no matter how far apart they are. However, it is converselyl ha

are notl-sensitive functions iiR®@R — R®R. The functionf4 is for a nontrivial functionto bool to be c-sensitive. The function

of particular interest, since at no point do we ever risk iplying gtzero: R — bool, which returns true when the input is greater

x by a constant greater than(as we do in, sayfs and fi3) and than zero, is not-sensitive for any finite:. This can be blamed,

yet the fact thate is used twicemeans that variation of in the intuitively, on the discontinuity ofjtzeroat zero.

input is effectively doubled in measurable variation of theput. Finally, we include the ability to form (iso)recursive type

This intuition about counting uses of variables is refledtethe pa.T whose values are of the forfold v, wherew is of the type

connection between our type system and linear logic. [wa.T/a]T, and whose metric we would like to give as

This metric is not the only one that we can assign to pairs. no_ /
Just as linear logic has more than one conjunction, our typery duo.7(fold v, fold v) = djya.r/a)r (v, 7).
admits more than one product type. Another one that will erov  This definition, however, is not well-founded, since it deg® on
useful is taking distance between pairs to be thaximumof a metric at possibly a more complex type, due to the sulistitut



[wa.T /). It will suffice as an intuition for our present informal
discussion, since we only want to use it to talk about lisish@r
than, say, types such asv.«r), but a formally correct treatment of
the metric is given in Section 6.1.

With these pieces in place, we can introduce a type of lists of
real numberslistreal = pa.1l + R ® a. (The reader is invited to
consider also the alternative whegeis replaced by; we return
to this choice below in Section 3.) The metric between libtt t
arises from the preceding definitions is as follows. Twoslisf
different lengths are at distanee from each other; this comes
from the definition of the metric on disjoint union types. Fao
lists[z1,...,zn] and[yi,. .., yn] Of the same length, we have

Synl) =Yl —wil.
=1

We now claim that there is d-sensitive functionsort
listreal —o listreal that takes in a list of reals and outputs the sorted
version of that same list. This fact may seem somewhat simgti
since a small variation in the input list can lead to an abchjginge
in the permutation of the list that is produced. However, iwhe
output is not the permutation itself, but merely the valuéshe
sorted list; the apparent point of discontinuity where oméue
overtakes another is exactly where those two values ard,emd
their exchange of positions in the output list is unobsede/ab

Of course, we would prefer not to rely on such informal ar-
guments. So let us turn next to designing a rigorous typeesyst
to capture sensitivity oprograms so that we can see that the
sensitivity of sorting is a consequence of the fact that griéemen-
tation of a sorting program is well-typed.

dlistreal([mh . ,xn]y [yl, .

2.2 Typing Judgment

Type safety for a programming language ordinarily guamstbat

a well-typed open expressianof type 7 is well-behaved during
execution. ‘Well-behaved’ is usually taken to mean thatan
accept any (appropriately typed) value for its free vagabland
will evaluate to a value of type without becoming stuck or causing
runtime errors\Well-typed programs can’t go wrongVe mean to
make a strictly stronger guarantee than this, namely a gteea
of c-sensitivity. It should be the case that if an expressiorivisrg
similar input values for its free variables, the result of evaluatio
will also be suitably close—i.eWell-typed programs can't go too
far. To this end, we take, as usual, a typing judgmeént e : 7
(expressing that is a well-formed expression of typein a context
I') but we add further structure the contexts. By doing so we are
essentially generalizingsensitivity to capture what it means for an
expression to be sensitive to many inputs simultaneousipatis,

to all of the variables in the context — rather than just orentéxts

I" have the syntax

r

forr € R”°U{oo}. To have a hypothesis:,. T while constructing
an expressiom is to have permission to besensitive to variation
in the inputz: the output ofe is allowed to vary by s if the value
substituted forr varies bys. We include the special valus as an
allowed value ofr so that we can express ordinary (unconstrained
by sensitivity) functions as well assensitive functions. Algebraic
operations involvingx are defined by settingo - » = oo (except
for oo -0 = 0) andoco + r = co. This means that to bso-sensitive

is no constraint at all: if we consider the definition of séwgy,
then co-sensitivity permits any variation at all in the input to be
blown up to arbitrary variation in the output.

A well-typed expression :. 71 F e : 72 iS exactly a program
that represents a-sensitive computation. However, we can also
consider more general programs :r, Ti,...,Tn ir, Tn F€: T
in which case the guarantee is that, if eaglvaries bys;, then the

N

result of evaluating: only varies by, r;s;. More carefully, we
state the following metric preservation theorem for theetgys-
tem, which is of central importance. The notatieriz]e indicates
substitution of the value for the variablez in expressiore as
usual.

THEOREM2.4 (Metric Preservation)Supposel” - e : 7. Let
sequences of values;)i<;<, and (v})1<;<» be given. Suppose
foralli € 1,...,nthat we have

LFo,v 7
2. dr, (vi,v]) = 8
3.2, i €T

Ifthe program[v, /1] - - - [vn /e evaluates tw, then there exists
av’ such thafvy /x1] - - - [v;, /z,]e evaluates ta’, and

dr (v, v') < Zrisi.
We give a more precise version of this result in Section 6.

2.3 Types

The complete syntax and formation rules for types are given i
Figure 1. Essentially all of these types have already beeiomed

in Section 2.1. There are type variables(which appear in type
variable context®) base type$ (drawn from a signatur&), unit
and void and sum types, metric-scaled types, and recursive
typespa.7. There are the two pair types and &, which differ

in their metrics. There are two kinds of function spaee,and—,
wherer; — 72 contains just 1-sensitive functions, white — 7

is the ordinary unrestricted function space, containirgftimctions
that can be programmed without any sensitivity requiresemt
the argument. As in linear logic, there is an encoding0f= 72,

in our case a$..m1 — T2, but it is convenient to have the built-
in type constructor— to avoid having to frequently introduce and
eliminate!-typed expressions.

2.4 Expressions

The syntax of expressions is straightforward; indeed, angliage
can be seen as essentially justefinementtype system layered
over the static and dynamic semantics of an ordinary typed-fu
tional programming language. Almost all of the expressamiers
should be entirely familiar. One feature worth noting (Whis also
familiar from linear type systems) is that we distinguisto tinds
of pairs: the one that arises frogy which is eliminated by pattern-
matching and written with (parentheses), and the one ths¢sar
from &, which is eliminated by projection and written wifangle
bracket$. The other is that for clarity we have explicit introduction
and elimination forms for the type constructer

zlcl()](ee)|(ee)

let(z,y) = eine | me | Az.e |ee |
inj, e | (caseeof z.e | z.€) |
le|let lx =eine |

unfold- e | fold, e

Just as with base types, we allow for primitive constants be
drawn from a signatur.

e =

2.5 Typing Relation

To present the typing relation, we need a few algebraic tipes
on contexts. The notatiosT" indicates pointwise scalar multiplica-
tion of all the sensitivity annotations in by s. We can also define
addition of two contexts (which may share some variables) by
Tzt + Az 7)=C+A), 2 0qs T
Tz )+ A=T+A)x:r T
F+ Az n)=C+A), x0T

(z & A)
(z g 1)



Tu=al|b|l|per|TH+T|TRT|T&T|T—T|T =T |7

U, «: type F 7 : type

WU, : type - o : type Uk poet : type U 1:type

b:type € X Uk 7 type r € ROU {oco}
WU Eb: type Uk .7 type
Uk 71 type Uk 7o type *€{+,&,®,—,—}
WU 711 % T2 : type
Figure 1. Type Formation
r>1 Aler:m I'keg:m
var QI

T,xop7hax:T A+4+TF (e1,e2): 71 ®@ T2

F'Fe:11 ®m Az T,y o e T
®RF
A+ 7T F let(z,y) = eine’ : 7/
T'kei:m I'kexy:m F'ke:m1 &7
&I e 4 )

L'k (e1,e2) : 11 & T2 F'Fmie:n

AxirTibFer 7

'Fe:mi+m A,JJ:TTQFeQ:T’

+E

A+7T F caseeof z.ey | m.ea: 7/

Fte:m Nexagthe:7
—_—+I [ ——-
Ikinj,e:m + 72 T'FAze:T—o7

AbFe:7—o7 I'key:r T,z icoThe:T
A+ThrFerex: 7 T'FXze:T— 7
Ale :7—1 They:T Tke:T
—FE — 7
A+ool'Feres: sDEle: s
Fke:lst  Azuysthe 7 er:[“a‘T/a]Tu
'E
A+r[Flet!lr =eine : 7/ F"ﬁ%}‘ieif
I'ke:7
nE

'+ unfolde : [pa.7/alT
poeT

Figure 2. Typing Rules

The typing relation is defined by the inference rules in Fégir
Every occurrence of ands in the typing rules is assumed to be
drawn fromR>° U {co}. Type-checking is decidable; see Section 6
and the appendhdor more details. In short, the only novelty is that
lower bounds on the annotations in the context are inferopd t
down from the leaves to the root of the derivation tree.

The rulevar allows a variable from the context to be used as
long as its annotation is at least 1, since the identity fonds c-
sensitive for any: > 1 (cf. Proposition 2.1). Any other contekt
is allowed to appear in a use ofr, because permission to depend
on a variable is not an obligation to depend on it. (In thipees
our type system is closer to affine logic than linear logic.)

1 Available athttp://www.cis.upenn.edu/~bcpierce/papers/dp.pdf

e1 < A\z.e €g v [v/z]e —
Ax.e — Ax.e e1 €2 v 0=0
€1 — V1 €9 — vV €] — V1 €9 — V2

(e1,e2) = (v1,v2) (e1,e2) = (v1,v2)

e — (v1,v2) [v1/x][v2/yle’ — o e — (v1,v2)

let(z,y) = eine’ — v/ mie — v

e —wv e — inj; v [v/z]e; — o' e—v

inj,e —inj;v  casecofz.e; | z.ey o  folde— folduv

e — foldv
g e —v e — v

[v/z]e — €

s .
uniolde v le —lv let Iz =eine’ — o

Figure 3. Evaluation Rules

In the rule®1, consider the role of the contextB.represents
the variables that, depends on, and captures quantitatively how
sensitive it is to each on& does the same fek. In the conclusion
of the rule, we add together the sensitivities foundlimand A,
precisely because the distances in the type 7> are measured by
a sum of how mucla; andes vary. Compare this té& 7, where we
merely require that the same context is provided in the csi@h
as is used to type the two components of the pair.

We can see the action of the type construttan its introduc-
tion rule. If we scale up the metric on the expression being co
structed, then we must scale up the sensitivity of everyatadeiin
its context to compensate.

The closed-scope elimination rules for, +, and! share a
common pattern. The overall elimination has a choice as t@ ho
much it depends on the expression of the type being elindnties
is written as the numberin all three rules. The cost of this choice
is that contexf that was used to build that expression must then
be multiplied byr. The payoff is that the variable(s) that appear in
the scope of the elimination (in the casesof/, the two variables:
andy, in +F thexs one in each branch) come with permission for
the body to be-sensitive to them. In the case ldf, however, the
variable appears with an annotationsafrather thanr, reflecting
that the!; scaled the metric for that variable by a factorsof

We note that—1I, since — is meant to capture 1-sensitive
functions, appropriately creates a variable in the contgit an
annotation of 1. Compare this te-I, which adds a hypothesis
with annotatiorno, whose use is unrestricted. Conversely—+i’,
note that the contextt used to construct the argument of the
function is multiplied byso in the conclusion. Because the function
e1 makes no guarantee how sensitive it is to its argument, wéncan
turn make no guarantee how mughe2 depends on the variables in
T'. This plays the same role as requirements familiar in litegic,
that the argument to an unrestricted implication cannoeden
linear resources.

2.6 Evaluation

We give a big-step operational semantics for this languagish is
entirely routine. Values, the subset of expressions trealhowed

as results of evaluation, are defined as follows.
v = ()] (v,v) | (v,v)]| Az.e|inj; v | fold, v | v

The judgment — v says thak evaluates t@. The complete
set of evaluation rules is given in Figure 3.



3. Examples

We now present some more sophisticated examples of program
that can be written in this language. We continue to intreduc

new base types and new constants as they become relevant. Fo

readability, we use syntactic sugar for case analysis attérpa
matchingéa la ML.

3.1 Fixpoint Combinator

Because we have general recursive types, we can simulate a fix
point combinator in pretty much the usual way: we just neelkto
a little careful about how sensitivity interacts with fixpts.

Let7o = pav.ao — (1 —o o). Then the expression

Y Af.(Az.Aa.f ((unfold,, =) x) a)
(fold-, (Az.Xa.f ((unfold., z)x)a))
has type((r — o) — (7 — o)) — (7 — o). This is the
standard call-by-value fixed point operator (differingfrthe more
familiar Y combinator by the two\a - - - @ eta-expansions). It is
easy to check that the unfolding rule

T flv—=o

Y fvo—

is admissible whenevef is a function value\z.e.
We could alternatively add a fixpoint operatfix f.e to the
language directly, with the following typing rule:

I ficwT—o0okFe:T—o0

ool fixfe:7—oo0

This rule reflects the type we assignedriabove: uses dfix can
soundly be compiled away by definifixf.e = Y (A\f.e). The
fact that f is added to the context annotated means that we
are allowed to call the recursive function an unrestrictathber
of times withine. The contextl® must be multiplied byso in the
conclusion because we can't (because of the fixpoint), ksttcdmy
bound on how sensitive the overall function is from just oak to
it. In the rest of the examples, we write recursive functionthe
usual high-level form, eliding the translation in termsyaf

3.2 Lists
We can define the type of lists with elementsrias follows:
Tlist=pa.l+7R0

We write [] for the nil valuefold, i« inj,() and h :: ¢l for
fold, iis: inj, (h, tl), and we use common list notations such as
[a,b,c] fora = b :: ¢ = []. Given this, it is straightforward to
programmapin the usual way.

map: (7 — o) — (7 list — o list)

mapf (] =[]

mapf (h::tl) = (fh) = mapf ¢l
The type assigned tmap reflects that a nonexpansive function
mapped over a list yields a nonexpansive function on listeng
bound variable is used exactly once, with the exceptiofy dffiis is
permissible sincg appears in the context during the typechecking
of mapwith anoo annotation.

Similarly, we can write the usual fold combinators overdist

foldl: (t® 0 — 0) — (0 ®@ Tlist) — o
foldl f (init,[]) = init
foldl f (init, (b = tl)) = foldl f (f(h,init),tl)

foldr: (r® o0 —0) — (0 @ Tlist) — o
foldr f (init,[]) = init
foldr f (init, (h :: tl)) = f (h,foldr f (init, tl))

Again, every bound variable is used once, except ffomhich

Sjs provided as an unrestricted argument, making its redeage

acceptable. The fact that the initializer to the fold (of eyp)
together with the list to be folded over (of typelist) occur to
the left of a— is essential, capturing the fact that variation in the
initializer and in every list element can jointly affect tresult.

Binary and iterated concatenation are also straightfatiyar
implemented:

Q@ : 7list ® Tlist —o 7 list
Q([l,z) ==
Q(h:tlyx) =h:Q(t,x)

concat: 7 list list —o 7 list
concat[] =[]
concat(h :: tl) = @ (h, concattl)

If we define the natural numbers as usual by

nat = po.l + o
z = foldnat inj, ()
s ¢ = foldnat inj, =

then we can implement a function that finds the length of aabst
follows:

length: 7 list — nat

length[] = =

length(h :: tl) = s (lengthtl)

However, this implementation is less than ideal, for it ‘con

sumes’ the entire list in producing its answer, leavingHartcom-
putations unable to depend on it. We can instead write

length: 7 list — 7 list ®nat

length[] = ([], 2)
length(h :: t1) = let(tl’, £) = lengthtlin(h :: tI', s £)

which deconstructs the list enough to determine its length,
builds up and returns a fresh copy that can be used for fupttzer
cessing. Consider why this function is well-typed: as itateposes
the input list intoh andtl, thevalueof & is only used once, by in-
cluding it in the output. Also¢l is only used once, as it is passed
to the recursive call, which is able to return a reconstictepy
tl’, which is then included in the output. At no point is any data
duplicated, but only consumed and reconstructed.

3.3 &-lists

Another definition of lists use& instead ofg: we can say alist =
pal + 7 & a. (the ‘a’ inalist is for ‘ampersand’). To distinguish
these lists visually from the earlier definition, we writél for
fold .ist inj; () andConsp for fold jist inj, p.

Recall that& is eliminated by projection rather than pattern-
matching. This forces certain programs over lists to be énpl
mented in different ways. We can still implemenépfor this kind
of list without much trouble.

amap: (7 — o) — (7 alist —o o alist)
amap f Nil = Nil
amapf (Consp) = Consf (m1p), mapf (m2p))

This function is well-typed (despite the apparent doublke afs
p in the last line!) because tHer rule allows the two components
of an &-pair to use the same context. This makes sense, because
the eventual fate of ad-pair is to have one or the other of its
components be projected out.

Thefold operations are more interesting. Consider a naive im-
plementation ofoldl for alist

afoldl: (7 & 0 — o) — (0 & Talist) — o alist
afoldl f p = casemepof z. mip
| z. afoldl f (f(m1z,m1p), m2z)



where we have replaced with & everywhere infoldl’s type to

get the type offoldl. This program isotwell-typed, because: p

is still used in each branch of the case despite the factithats
case-analyzed. TheFE rule sums together these uses, so the result
has sensitivity 2, whilafoldl is supposed to be only 1-sensitive to
its argument of typer & 7 alist.

We would like to case-analyze the structure of the second com
ponent of that pair, the alist, without effectively consuming the
first component. The existing type system does not pernst thit
we can soundly add a primitive

analyze: o & (11 + 72) — (0 & 71) + (0 & 72)

that gives us the extra bit that we need. The operationalvi@ha
of analyzeis simple: given a pair valuév, inj, v') with v : o
andv’ : 7, it returnsinj, (v, v"). With this primitive, a well-typed
implementation offoldl can be given as follows:

unf: (o & Talist) — (0 & (14 7 & T alist))
unfp = <7T_1p7 unfold; st 772p>

afoldl: (7 & o — o) — (o & Talist) —o o alist
afoldl f p = case analyze(unfp) of
z:(oc&l).ma
| z: (0 & (1 & Talist)). afoldl f (f(mi 7oz, mia), Toma)

3.4 Sets

Another useful collection type is finite sets. We posit thaét is a
type for any typer, with the metric on it being the Hamming metric

d-rset(ShSQ) - ||Sl A SQH

whereA indicates symmetric difference of sets, dhsl|| the car-
dinality of the setS; the distance between two sets is the number
of elements that are in one set but not the other.

Note that there is no obvious way to implement this type of set
in terms of the list types just presented, for the metric fietként:
two sets of different size are a finite distance from one aothut
two lists of different size are infinitely far apart.

Primitives that can be added for this type include

size: Tset — R

seffilter: (7 — bool) — 7set —o 7 set
setmap (0 — 7) — 7 — oset —o Tset
N, U, \ : Tset ® Tset —o Tset

split: (7 — bool) — 7set —o Tset ® 7 set

wheresizereturns the cardinality of a set,returns the intersection
of two sets,J their union, and, the difference. Notably, for these
last three primitives, we couldbthave given them the typeset &
Tset —o Tset. To see why, considefb} U {c,d} = {b,c,d}
and {a} U {c,d,e} = {a,c,d, e}. We haved({b},{a}) = 2
andd({c,d},{c,d,e}) = 1 on the two inputs taJ, but on the
outputd({b, ¢, d},{a,c,d,e}) = 3, and 3 is strictly larger than
max(2, 1). The functionssetfilterand setmapwork mostly as ex-
pected, but with a proviso concerning termination below @t-S
tion 3.5.

We note thasizeis a special case of a more basic summation
primitive:

sum: (1 — R) — 7set o R

2The reader may note that this primitive is exactly the welbkn dis-

tributivity property that the BlI, the logic of bunched imgditions [28], no-
tably satisfies in contrast with linear logic. We conjectiirat a type system
based on Bl might also be suitable for distance-sensitivepttations, but
we leave this to future work, because of uncertainties atr@itlecidabil-

ity of typechecking and Bl's lack of exponentials, that ipetators such
as!, which are important for interactions between distancesitge and

-insensitive parts of a program.

The expressiosum f S returns} . clip(f(s)), whereclip(x)
returnsz clipped to the interva]—1, 1] if necessary. This clipping
is required forsumto be 1-sensitive in its set argument. Otherwise,
an individual set element could affect the sum by an unbodinde
amount. We can then defisizeS = sum(Az.1) S.

The operatiorsplit takes a predicate on, and a set; it yields
two sets, one containing the elements of the original seéstitésfy
the predicate and the other containing all the elementsdibrait.
Notice thatsplitis 1-sensitive in its set argument; this is because if
an element is added to or removed from that set, it can ongctff
one of the two output sets, not both.

By using split repeatedly, we can write programs that, given
a set of points inR, computes &istogram a list of counts in-
dicating how many points are in each of many intervals. For
a simple example, suppose our histogram bins are the itgerva
(—00,0], (0,10],..., (90, 100], (100, c0).

hist : R — Rset — Rsetlist
hist ¢ s = if ¢ > 101 then [s] else
let(y,n) = split(Az.c > z)in
y : hist (c+10) n

hist: Rset — R list
hist s = map sizeghist 0 s)

Here we are also assuming the use of ordinary distance-
insensitive arithmetic operations suchas: R — R — bool
and+ : R — R — R. We see in the next section that comparison
operators like> cannot be so straightforwardly generalized to be
distance sensitive.

3.5 Higher-Order Set Operations and Termination

A few comments are in order on the termination of the highrelen
functions setfilter, setmap and setsplit Consider the expression
seftfilter f s for s of type rset and an arbitrary functiory :

7 — bool. If f diverges on some particular input : 7, then
the presence or absencew0fn the sets can makesetfilter f s
diverge or terminate. This runs afoul of the claim of Theor2h
that two metrically similar computations should togetheasleate
to metrically nearby values.

One way of avoiding this problem is to adopt primitives for
which 2.4 can still be proved: we can ensutgnamically that
the function argumentsgtfilter, setmap and setspli) terminates
by imposing a time limit on the number of steps it can run over
each element of the set. Whenever a function exceeds itditirite
while operating on a set element it is left out of the filter or of
the current split as appropriate, and in the cassetrihap a default
element of typer is used.

An alternative is to weaken Theorem 2.4 to state that if two
computations over metrically related inpdisboth terminate, then
their outputs are metrically related. This weakened rdsution-
siderably less desirable for our intended application fieintial
privacy, however.

A final option is to statically ensure the termination of the
function argument. This seems to combine the best features o
both of the other choices, at the price of a more complex jrogr
analysis.

3.6 Sorting

What about distance-sensitive sorting? Ordinarily, tredaf sort-
ing functions is a comparison operator suck»as: 7 x 7 — bool.
However, we cannot taker: R ® R — bool as a primitive, be-
cause> is not 1-sensitive in either of its arguments: it has a garin
discontinuity. (Compare the example gizeroin Section 2.1) Al-
though (0, €) and (¢, 0) are nearby values iR @ R if ¢ is small
(they are juste apart), nonethelessy returns false for one and



true for the other, values dool that are by definition infinitely far
apart.

Because of this we instead take as a primitive the conditiona
swap functiorcswp: R®R — R®QR defined in Section 2.1, which
takes in a pair, and outputs the same pair, swapped if negessa
so that the first component is no larger than the second. We are
therefore essentially concerned wislorting networks [5] with
cswp being the comparator. With the comparator, we can easily
implement a version of insertion sort.

insert: R — Rlist — Rlist

insertz [] = [z]

insertz (h :: tl) = let(a,b) = cswp(z, h) in
a :: (insertb tl)

sort: Rlist — R list
sort[] =]
sort(h :: tl) = inserth (sorttl)

Of course, the execution time of this sort@(n?). It is an
open question whether any of the typida(n logn) sorting al-
gorithms (merge sort, quick sort, heap sort) can be impléaden
in our language, but we can implement bitonic sort [5], whih
O(n(logn)?), and we conjecture that one can implement the log-
depth (and therefor®(n log n) time) sorting network due to Ajtai,
Komlés, and Szemerédi [2].

3.7 Finite Maps

Related to sets are finite maps fremto 7, which we write as the
type o — 7. A finite map f from o to 7 is an unordered set of
tuples(s,t) wheres : ¢ andt : 7, subject to the constraint that
each keys has at most one valueassociated with it: if s, ) € f
and(s,t’) € f, thent = ¢’. One can think of finite maps as SQL
databases where one column is distinguished as the priragry k

This type has essentially the same metric as the metric ey se
de—+(S1,52) = ||S1 A S2||. By isolating the primary key, we
can support some familiar relational algebra operations:

fmsize: (o0 = 7) - R

fmfilter: (¢ — 7 — bool) — (0 = 7) — (0 — 7)
mapval: (1 — m2) — (0 = 11) — (60 = 72)
join: (o0 =1)®(c —12) — (60— (11 ®72))

The size and filter functions work similar to the correspogdi
operations on sets, and there are now two different map tpsra
one that operates on keys and one on values. The join operatio
takes two mapsi, s;)icr, and (4, s;)icr,, and outputs the map
(i, (s1,82))icr,n1,. This operation is 1-sensitive in the pair of
input maps, but only because we have identified a unique pyima
key for both of them! For comparison, the cartesian product
on sets — the operation that join is ordinarily derived from i
relational algebra — igot c-sensitive for any finite:, for we can
see thaf{z} U X) x Y has|Y| many more elements thaxi x Y.
McSherry also noted this issue with unrestricted joins, dedls
with it in a similar way in PINQ [25].

Finally, we are also able to support a form of GroupBy aggre-
gation, in the form of a primitive

group: (7 — o) — laTset —o (o — (7 set))

which takes &ey extractiorfunction f : = — o, and a sefS of
values of typer, and returns a finite map which maps valyes o

to the set ofs € .S such thatf(s) = y. This function is 2-sensitive
(thus thels) in the set argument, because the addition or removal
of a single set element majpangeone element in the output map:

it takes two steps to represent such a change as the remave of
old mapping, and the insertion of the new one.

4. A Calculus for Differential Privacy

We now describe how to apply the above type system to expigessi
differentially privatecomputations. There are two ways to do this.
One is to leverage the fact that our type system capturegtisens
ity, and use standard results about obtaining differeptiabcy by
adding noise ta-sensitive functions. Since Theorem 2.4 guaran-
tees that every well-typed expressibn. db - e : R (for a type
db of databases) is e-sensitive functiordb — R, we can apply
Proposition 4.1 below to obtain a differentially privatenftion by
adding the appropriate amount of noise to the functionslteBut
we can do better. In this section, we show how adding a prétabi
monad to the type theory allows us to directly capture diffeial
privacywithin our language.

4.1 Background

First, we need a few technical preliminaries from the défgral
privacy literature [14].

The definition of differential privacy is a property of rande
ized functions that take as inputdatabase and return a result,
typically a real number.

For the sake of the current discussion, we take a database to
be a set of ‘rows’, one for each user whose privacy we mean to
protect. The type of one user’s data—that is, of one row of the
database—is writterow. For examplerow might be the type of
a single patient’s complete medical record. The type oflutetas
is thendb = row set; we use the letteb for elements of this type.
Differential privacy is parametrized by a numbkesvhich controls
how strong the privacy guarantee is: the smadles, the more
privacy is guaranteed. It is perhaps just as well to thinkualao
as a measure rather lbbw much privacy can be loby allowing a
query to take place. We assume from now on that we have §ixed
to some particular appropriate value.

Informally, a function is differentially private if it belves statis-
tically similarly on similar databases, so that any indiatis pres-
ence in the database has a statistically negligible efixatiabases
b andb’ are consideredimilar, writtenb ~ b’ if they differ by at
most one row—in other words ify, (b, ") < 1. The standard def-
inition [15] of differential privacy for functions from dabases to
real numbers is as follows:

Definition A random functiong : db — R is e-differentially
private if for all S C R, and for all databases b’ with b ~ b’,
we havePrlq(b) € S] < e“Prlq(b) € S].

We see that for a differentially private function, when itput
database has one row added or deleted, there can only be a very
small multiplicative differencee(’) in the probability ofany out-
comeS. For example, suppose an individual is concerned about
their data being included in a query to a hospital’s datglzesbaps
that the result of that query might cause them to be denielthhea
insurance. If we require that query to be -differentially private
(i.e., if e is set t00.1), then they can be reassured that the chance
of them being denied health care can only increase by ab&at 10
(Note that this is a 10% increaselative to what the probability
would have been without the patient’s participation in theathase.

If the probability without the patient’s data being incladdeas5%,
then including the data raises it at mos6t6%, not to15%!)

It is straightforward to generalize this definition to otltgpes,
by using the distance between two inputs instead of the dagab
similarity condition. We say:

Definition A random functiorny : 7 — o is e-differentially private
if for all S C o, and for allv,v" : 7, have Prig(v) € S] <
ecdr(vv )Pr[q(v/) €S|

Although we will use this general definition below in Lemma 4.
for the time being we continue considering only functidbs— R.



One way to achieve differential privacy is via theplace mech-

anism We suppose we have a deterministic database query, a func-

tion f : db — R of known sensitivity, and we produce a differ-
entially private function by addingaplace-distributed nois® the
result of f. The Laplace distributiorCy, is parametrized by.—
intuitively, a measure of the spread, or ‘amount’, of noigebe
added. It has the probability density functiétr[z] = 5=e1I/¥.
The Laplace distribution is symmetric and centered aroierd,z
and its probabilities fall off exponentially as one movesgirom
zero. It is a reasonable noise distribution, which is umjiki®
yield values extremely far from zero. The intended behapfdhe
Laplace mechanism is captured by the following result:

PropPOSITION4.1 ([15]). Supposef : db — R is c-sensitive.
Define the random functiog : db — R by g = A\b.f(b) + N,

whereNN is a random variable distributed according ... Then
q is e-differentially private.

That is, the amount of noise required to makesensitive function
e-private isc/e. Stronger privacy requirements (smaklgand more
sensitive functions (larges) both require more noise.

Note that we must impose a global limit on how many queries

The typing rules for the monad are as follows:
I'kFe:7 AFe:Or TyaxicoThke 07
oI
ool F returne : Ot A+TFletOz =eine : O
The introduction rule multiplies the context by infinity, daise
nearby inputs (perhaps surprisingly!) do not lead to nealddtgr-
ministic probability distributions. Even it andt’ are close, say
d-(t,t') = ¢, still returnt has a 100% chance — amdturn ¢’
has a 0% chance — of yielding The elimination rule adds to-
gether the influencé\ thate may have over the final output dis-
tribution to the influencé" thate’ has, and provides the variabte
unrestrictedly(with annotationo) to e/, because once a differen-
tially private query is made, the published result can bel isany
way at all.
We add the following cases to the operational semantics:
e — v

OF

returne — (1,v)

e] — (pi,’l}i)ie[ Vi e I. [1)7;/.7)162 — (qi]-,wij)]-eJ,i

let Oz = e1inex — (pigij, wij)ier,je;

can be asked of the same database: if we could ask the sanye querWe see thatreturn creates the trivial distribution that always

over and over again, we could eventually learn the true vafye

with high probability despite the noise. If we exhaust thevacy

budget” for a given database, the database must be destyisd
data-consuming aspect of differentially private queriess vthe
initial intuition that guided us to the linear-logic-inspd design
of the type system.

4.2 The Probability Monad

We now show how to extend our language with a monad of random
computations. Formally, the required extensions to théesyare:

Typesr = |07
Expressiong = ---|returnz |let Oz =eine’
Valuesv = |4

We add O, the type of random computations over Expres-
sions now include a monadic return, which deterministjcalt
ways yieldsz, as well as monadic sequencing: the expression
let Oz = eine’ can be interpreted as drawing a sampléom
the random computationa, and then continuing with the compu-
tation e’. We postpone discussing the typing rules until after we
have established what the metric om is, and for that we need to
understand what its values are.

For simplicity, we follow Ramsey and Pfeiffer [30] in taking
a ratherdenotationalapproach, and think of values of typer
as literally being mathematical probability distributsorA more
strictly syntactic presentation (in terms of, say, psetattdom
number generators) certainly is also possible, but is esstl
technical for our present discussion. In what follows, gbpiuility
distribution § is written as(p;, vi)icr, @ multiset of probability-
value pairs. We writé(v) for the probability((p;,v:)icr)(v) =
2_{i|v; =0} Pi OF Observingy in the distributions.

The metric on probability distributions is carefully chos®
allow our type system to speak about differential privacgc&l
that we have assumedo be fixed, and define:

doy,(01,02) = % (meax In <§1Eg

The definition measures homultiplicatively far apart two distri-
butions are in the worst case, as is required by differeptiahcy.
We can then easily see by unrolling definitions that

LEMMA 4.2. A 1-sensitive functiom — Oo is the same thing as
an e-differentially private random function — o.

yieldsv. Monadic sequencing considers all possible valyethat
e could evaluate to, and then subsequently all the valuesethat
could evaluate to, assuming that it received the sampléThe
probabilities of these two steps are multiplied, and appabgly
aggregated together.

Combining the type system’s metric preservation propeiti w
Lemma 4.2, we find that typing guarantees differential myva

COROLLARY 4.3. The execution of any closed prograrsuch that
F e : a7 — Oc is an(ne)-differentially private function fromr
too.

5. Differential Privacy Examples

Easy examples df-differentially private computations come from
applying the Laplace mechanism at the end of a deterministic
computation. We can add a primitive function

add.noise: R — OR

which adds Laplace noisé, . to its input. According to Propo-
sition 4.1, this is exactly the right amount of noise to addtb-
sensitive function to make é-differentially private.

For a concrete example, suppose that we have a funatgen
row — int. We can then straightforwardly implement the over-40
count query from the introduction.

over40: row — bool.
over40r = ager > 40.

countquery: row set — OR
countqueryb = add.noise(setfilter over40b)

Notice that we are able to use convenient higher-order iomak
programming idioms without any difficulty. The functi@mver.40

is also an example of how ‘ordinary programming’ can safely
be mixed in with distance-sensitive programs. Since the typ
over40 uses— rather than—, it makes no promise about sensi-
tivity, and it is able to use ‘discontinuous’ operationselikumeric
comparisors>.

Other deterministic queries can be turned into differdiytjari-
vate functions in a similar way. For example, consider the hi
togram functionhist : Rset — Rlist from Section 3.4. We can
first of all write the following program.

hist query : rowset — (OR) list
hist query b = map addnoise(hist (setmap agé))



This takes a database, finds the age of every individual, and ¢ We sketch how this program can be implemented, taking data
putes a histogram of the ages. Then we prescribe that eawlinte  points to be of the typpt = R®R. The following helper functions
the output list — every bucket in the histogram — should beind  are used:

pendently noised. This yields a list of random computatiovisle assign: ptlist — ptset —o (pt @ int) set

what we ultimately want is a random computation returningt | partition : (pt ® int) set —o pt set list

But we can use monadic sequencing to get exactly this: totx, toty : pt set —o R
seq: (OR) list — O(R list) zip: Tlist — o list — (7 ® o) list
seqf] =return[] — These can be written with the
seq(h :: tl) = let OF" = hin .0 - means. primitives we have described;

let Otl’ = seqtlin
return(h’ :: tl)

assigntakes a list of centers and
the dataset, and returns a version
of the dataset where each point is
labelled by the index of the center
it's closest to. Therpartition di-
vides this up into a list of sets, us-

histquery: row set — O(R list)
hist queryb = seq(hist.query b)

In the differential privacy literature, there are explidéfinitions of \ ' !
both the meaning of sensitivity and the process of safelynadd ing split. The functionstotx and
enough noise to lists of real numbers [15]. By contrast, weeha - toty compute the sum of the first
shown how taderivethese concepts from the primitive metric type L— ' and second coordinates, respec-
R and the type operatoys 1, +, ®, ando. - tively, of each p0|_nt ina ;et. This

We can also derive more complex combinators on differdgtial ~_~'9Ure 4. k-Means Output  can be accomplished witbum
private computations, merely by programming with the monad Finally, zip is the usual zipping operation that combines two lists
We consider first a simple versidrof McSherry's principle of ~ intoalistof pairs. With these, we can write a function thetfprms
sequential composition [25]. one iteration of privaté-means:

iterate: Isptset — Rlist — O(R list)
iterateb ms = let 1/ = bin
let
b = partition (assignms b’)
tr = map(add.noiseo totx) b”

LEMMA 5.1 (Sequential Compositionlet f1 and f» be twoe-
differentially private queries, wherg, is allowed to depend on
the output off;. Then the result of performing both querieis
differentially private.

In short, the privacy losses of consecutive queries aredatiule ty = map(add.noiseo toty) b”
gether. This principle can be embodied as the following &igh t = map(add.noiseo size) b”
order function: stats= zip (zip (tz, ty), t)
SC: (11 —o OT2) — (71 —0 T2 — O73) — (la71 —0 OT3) in
SCfi fot1 =let It, =tiinlet Oto = f1 t)in fo t) to seq(map avg stats
It takes two arguments are the functiofis and f», which are It works by asking for noisy sums of the-coordinate totaly-
both e-differentially private in a data source of type (and f» coordinate total, and total population of each cluster.stheata
additionally has unrestricted access to theresult of f1), and are then combined via the functiavg
returns &e-differentially private computation. avg: ((OR ® OR) ® OR) — O(R ® R)
McSherry also identifies a principle of parallel compositio avg((z,y),t) = let Oz’ = zinlet Oy’ = yin
LEMMA 5.2 (Parallel Composition)Let f; and f» be two e- let Ot' = tinreturn (2’ /',y /t')
differentially private queries, which depend on disjoiatal Then e can read off from the type that one iterationkefeans ise-
the result of performing both queriesddifferentially private. differentially private. This type arises from the 3-way liegtion of
This can be coded up by interpreting “disjoint” with the variableb”. We can use monadic sequencing to do more than

one iteration:
pe: (11 — OT2) — (01 —0 Oo2) — (11 ® 01) — O(T2 ® 02) _ _ _
pcfyg(t,s) =let Ot = ftinlet Os’ = g sinreturn(t’,s’) twoiters : lsptset — Rlist — O(R list)

. i —1let I = bini (i W
In McSherry’s work, what is literally meant by “disjoint” @isjoint two.itersb ms = let 1b" = biniterate!t’ (iterate!s’ ms)

subsets of a database construed as a set of records. Th#is al This function is6e-differentially private. Figure 4 shows the result

possible to treat in our setting, since we have already sedslit of three independent runs of this code, with= 2, 6e = 0.05,

returns ax-pair of two sets. and 12,500 points of synthetic data. We see that it usuallyages
For a final, slightly more complex example, let us consider th  to come reasonably close to the true center of the two chistée

privacy-preserving implementation éfmeans by Blum et al. [6]. have also developed appropriate additional primitivesgodram-

Recall thatk-means is a simple clustering algorithm, which works ming techniques to make it possible (as one would certainhel
as follows. We assume we have a large set of data points in someto choose the number of iterations not statically but atinuet but
space (saR™), and we want to find: ‘centers’ around which they space reasons prevent us from discussing them here.

cluster. We initialize: provisional ‘centers’ to random points in the
space, and iteratively try to improve these guesses. Oretide
consists of grouping each data point with the center it isedbto, 6. Metatheory

then taking the next round’s set bfcenters to be the mean of each  In this section we address the formal correctness of theranog

group. ming language described above. First of all, we can proveoapp
priate versions of the usual basic properties that we expduld
3McSherry actually states a stronger principle, where theed: different of a well-formed typed programming language.

queries, all of different privacy levels. This can also be@lemented in our .
language. LEMMA 6.1 (Weakening)lf '+e: 7,thenT' + Ak e: 7.
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Figure 5. Metric Relation

THEOREM6.2 (Substitution)If " - e :
7', thenA +r[ + [e/z]e’ : 7'

TandA,z ;. 7 F e

THEOREMG6.3 (Preservation)lif e : 7 ande — v, then- v : 7.

Note that the weakening lemma allows both making the context
larger, and making the annotations numerically greatee Jib-
stitution property says that if we substituténto a variable that is
usedr times, therT", the dependencies ef must be multiplied by
r in the result. The preservation lemma is routine; if we haat pr
sented the operational semantics in a small-step styleogrgss
theorem would also be easy to show.

6.1 Defining the Metric

Up to now, the metrics on types have been dealt with somewhat
informally; in particular, our 'definition’ of distance farecursive
types was not well founded. We now describe a formal defimitio
It is convenient to treat the metric not as a function, buteags a
relation on values and expressions. The relatior, v’ : 7 (resp.

e ~, ¢ : 7) means that values andv’ (expressiong ande’) of
typer are at a distance of no more thaapart from each other. The
metric on expressions is defined by evaluation: if the vathes
result from evaluation of the two expressions are no farthan

r apart, then the two expressions are considered to be neifarth
thanr apart. This relation is defined coinductively on the rules in
Figure 5. By this we mean that we define~, v’ : 7 to be the
greatest relation consistent with the given rules. A retats said

to be consistent with a set of inference rules if for any retetl
fact that holds, there exists an inference rule whose ceimiu

is that fact, and all premises of that rule belong to the imtat
Intuitively, this means that we allow infinitely deep inface trees.
Note that~, never appears negatively (i.e., negated or to the left
of an implication) in the premise of any rule, so we can seé tha
closure under the rules is a property preserved by arbitraign

of relations, and therefore the definition is well-formed.

6.2 Metric Preservation Theorem
Now we can state the central novel property that our typesayst

in ', written [v1/z1] - - [vn/xn]. A distance vectory is a list
r1,...,Ty such that every; is in R=° U co. We sayo ~y o T
when, for every{v; /z;] € o and[v;/x;] € o, we havev;, ~,

v; : 7. In this case we think of ando’ as being 4 apart’: the
distance vectory tracks the distance between each corresponding
pair of values. We define th#ot productof a distance vector and

a context as follows: ify is r1,...,r,, andT is as above, then

v-T =30 risi

THEOREMG6.4 (Metric Preservation)Suppose’ + e : 7. Sup-
poseo, o’ are two substitutions foF such thats ~., ¢’ : . Then
we havere ~..r o’e : 7.

A straightforward proof attempt of this theorem fails. If wg
to split cases by the typing derivation @fa problem arises at the
case where = e; e2. The induction hypothesis will tell us that
ey isclose tar’er, and thatre, is close tar’ e2. But the definition
of the metric at function types (whethes or —o — the problem
arises for both of them) only quantifies over one value — hanth
can we reason about bottes ando’ea? This problem is solved by
using astep-indexed metric logical relatidi, 3] which represents
a stronger induction hypothesis, but which agrees with th&im
We defer further details of this argument to the appendix.

7. Related Work

The seminal paper on differential privacy is [15]; it intcambs the
fundamental definition and the Laplace mechanism. Morergéne
mechanisms for directly noising types other thRnalso exist,
such as the exponential mechanism [24], and techniquesbieave
developed to reduce the amount of noise required for regeate
queries, such as the median mechanism [31]. Dwork [13] gives
useful survey of recent results.

Girard’s linear logic [16] was a turning point in a long and
fruitful history of investigation osubstructural logicswhich lack
structural properties such as unrestricted weakening anttac-
tion. A key feature of linear logic compared to earlier substural
logics [20] is its! operator, which bridges linear and ordinary rea-
soning. Our type system takes its structure fromdfime variant
of linear logic (also related to Ketonen'’s Direct Logic [1L9%here
weakening is permitted. The idea of counting, as we do, pielti
uses of the same resource was explored by Wright [32], byt onl
integral numbers of uses were considered.

The study of database privacy and statistical databases mor
generally has a long history. Recent work includes Daleé, &id
Suciu’s study of probabilistic database management sysféfj,
and Machanavajjhala et al's comparison of different ntiof
privacy with respect to real-world census data [22].

Quantitative Information Flow [21, 23] is, like our work, ©o
cerned with how much one piece of a program can affect another
but measures this in terms of how many bits of entropy lealndur
one execution. Provenance analysis [8] in databases titaeksput
data actually used to compute a query’s output, and is alsabta
of detecting that the same piece of data was used multipkestim
produce a given answer [17]. Chaudhuri et al. [10] also saudg-
matic program analyses that establish continuity (in thditional
topological sense) of numerical programs. Our approadardifn
two important ways. First, we consider the stronger propefic-
sensitivity, which is essential for differential privacpications.
Second, we achieve our results with a logically motivatgetyys-
tem, rather than a program analysis.

8. Conclusion

guarantees. We introduce some notation to make the statemenWe have presented a typed functional programming languzge t

more compact. Suppode= x :5, Ti,...2% s, Tn. A substitution
o for I is a list of individual substitutions of values for variable

guarantees differential privacy. It is expressive enowuglericode
examples both from the differential privacy community anahi



functional programming practice. Its type system shows Hdw
ferential privacy arises conceptually from the combirmatbsensi-
tivity analysis and monadic encapsulation of random coatpurts.
There remains a rich frontier of differentially private rhee
nisms and algorithms that are known, but which are descrined
proven correct individually. We expect that the exponémtiacha-
nism should be easy to incorporate into our language, ashehig
order primitive which directly converts McSherry and Talsano-
tion of quality functiong24] into probability distributions. The me-
dian mechanism, whose analysis is considerably more coatet,
is likely to be more of a challenge. The private combinataja
timization algorithms developed by Gupta et al. [18] uséedént
definitions of differential privacy which have an additivea term;
we conjecture this could be captured by varying the notioseof
sitivity to include additive slack. We believe that streamprivate
counter of Chan et al. [9] admits an easy implementation loyngp

up stream types in the usual way. We hope to show in future work

how these, and other algorithms can be programmed in a umifor
privacy-safe language.
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Figure 6. Step-Indexed Evaluation Rules

A. Appendix

refute the possibility that values andwvs are at least as close as
distancer. It is defined by the rules in Figurg?. This relation is
connected to the metric by the fact that ~, v2 : 7 holds if
v1 ~F vy : 7 holds for allk; this is proved in Sectiof?.

A basic property of the logical relation, which helps form an
intuition for it, is the fact that it is preserved by decrewask, and
by increasing . Formally, we have:

LEMMA A.1 (Monotonicity). Suppose; ~* vy : 7.
If &' < k, thenvy ~F v o 7.
If v’ > r, thenv, N,}f, vy i T.

Proof By induction. m

A.3 Fundamental Lemma of Logical Relations

The usual fundamental lemma to show for a logical relation is
a form of reflexivity: that every expression is related tcelts
assuming everything in its context is related to itself. \Wasm
generalize this to account for the metric, but the requiesdrha

is essentially identical to the metric preservation lemneahave
already discussed. The only novelty is that both the premige
conclusion are indexed by a step-index

LEMMA A.2 (Fundamental Lemmal).et a well-typed expression
I' - e : 7 be given. Suppose, o’ are two substitutions far' such
thato ~* o’ : T. Then we havee ~* . e : 7.

Proof By induction first on the number of stegs then on the
typing derivation ofe. We split cases on the typing derivation of
e. We show a couple of illustrative cases as examples.

Case:

In this section we sketch in somewhat more detail the prodfhef
central novel soundness property of our type system.

At a high level, the proof works in two steps. First, we reldte
metric as defined above tostep-indexed metric logical relation

which, as we will see, determines the same metric, but in a way

that constitutes a stronger induction hypothesis. Sulesgty we
can prove a metric preservation theorem directly on thechgi
relation. The fact that the logical relation $$ep-indexedneans
that we imagine we have a finite budget of ‘computation steyitsf
which to discriminate between similar expressions. Thisomoof
‘computation step’ is made precise in the following section

A.1 Step-Indexed Evaluation

The purpose of step-indexing (at least for our purposes) ect
commodate the presence of nontermination in the languagehw
in turn can be blamed on the presence of recursive types.uBeca
of this, we consider as computation stepsheductions of &old
against aminfold; that is, from a small-step point of view, we care
about reductions of the form

unfold fold v — v (1)

But we can count such reductions in big-step style withouttmu
difficulty. We give a step-indexed refinement of the existimger-

ational semantics R v means that evaluates ta, and during
that evaluation, the number of reductions of the fdiis ¢. The
rules are given in Figur@?. Observe that the rule that evaluates a
unfold adds one to the count, and all other rules simply add to-
gether the counts from their subderivations, if any.

A.2 Step-Indexed Metric Logical Relation

Now we introduce the step-indexed metric logical relatidhe
relationv; ~* v, : 7 is conceptually a variant af; ~, vs : 7. It
means approximately the following: that affecomputation steps,
(in the sense we have just described) there is still no ecel¢n

AbFey: T

!
'Fei:7—T

—o F
F+AbFeies: T
In this case, we want to show:

Yu.Vj < k. o(e1 e2) L= Ev'.a'(el e2) — v
k—j /
A UNW,(IJ%A)U i T
Letv andj < k be given, and assume(e; e2) < v. This
means we have a derivation
[v2/x]eo Ly

14 m
oer — A\x.eq gey — Vs

£+m—+p

olere2) — v

suchthat +m+p = j.
By the induction hypothesis oA I es : 7, we know that

) Jx
YV, Vi < k. 0ea & v = Jvh.o’es < v)
k—j« 1

A N P
so pickv,. = v2 andj. = m, and use the fact thate, & s to

obtainv}. What we know about’, at present is that'es < v
k

andvz ~3 3" vy : 7. Using monotonicity, this latter fact
becomes:
k—l—m 1
V2 ~oa Vg I T ()

By the induction hypothesis dnt e; : 7 — 7/, we know that

. Jx
Y. Vi < k. o€ &> v, = Jve.0'€1 — Vs

=

!
A\ Vs ~ . Ve !T —©°T

so pickv, = Az.ep andj. = ¢ and use the fact thate; <
Az.eo to obtainv,. By inversion on the rules defining, we
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Figure 7. Step-Indexed Metric Logical Relation

have that, must be of the form\z.ej, and so what we know
about it is that’e; — Az.e(, and
AT.€o Ni}z )\x.d) cT—o 1
By inversion on this, we have
VsVix <k —4£.Yva, vy : 7.

j i
vo ~IF vy T =

[va/zleo ~ry, [va/alen : 7'

so chooseg.,. = k— ¢ —mands = v- A and us€gx) to see that
[va/z]eo NIfY}ZLTA [vy/x]ey : 7'

By inversion on this, we have

VoVj. < k—L€—m.[va/x]eg &= Fo' [y /z]en — '

k—l—m—js« 1 . /I
A VN rgya VT

so choose.. = p and apply the known fact thtz /x]eo L,

to obtain the required’ such that
k—j /

Ny (r+a) Y

by observing thaty - (I' + A) = v - T' + ~ - A. Note also that
we have established enough facts about evaluation to derive

v LT
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Leto, o’ be given, and assume~" o : I'. We must show

A\x.oe Nﬁp Me.o'e: T —o 7
which means showing that

Vs Vi < kNvi,ve:7. vi~log:iT =

[v1/z]oe NZYF-‘-S [va/z]0’e : T’
by the definition of the logical relation at — 7. But this
follows immediately from the induction hypothesis applied
the derivation ofl,z :; 7 F e : 7’ and the substitutions
[v1/x]o and[vs /z]o”.

As a corollary, we obtain a more familiar result, that every
expression is related to itself at distance zero.

COROLLARY A.3. If - e : 7, then for anyk we haves ~§ e : 7.

A.4 Relating the Metric to the Logical Relation

To see that the metric coincides with the logical relatior,must
first show that the metric satisfies a variant of the trianggejuality
familiar from the study of metric spaces.

LEMMA A.4 (Triangle Inequality).For any closed, well-typed
valuesv, v’,v” : T,
If v~ :7andv ~s 0" : 7, thenv ~, s 0" 7.

Proof By induction on the derivation.m

With this in place, we can show the soundness and completenes
of the logical relation with respect to the metric. We asstacgly
in both of the following results that,v” are closed, well-typed
values of typer.

LEMMA A.5. If v ~F o' : 7 for all k, thenv ~, v’ : 7.

LEMMA A.6. If v ~y o' : T, thenv ~F o' : + for all k.



